1
|
Uyehara AN, Rasmussen CG. Redundant mechanisms in division plane positioning. Eur J Cell Biol 2023; 102:151308. [PMID: 36921356 DOI: 10.1016/j.ejcb.2023.151308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane orientation. Understanding the types of redundant mechanisms involved provides insight into current models of division plane orientation and opens up new avenues for exploration.
Collapse
Affiliation(s)
- Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA.
| |
Collapse
|
2
|
Genome-Wide Identification and Expression Analysis of Kinesin Family in Barley ( Hordeum vulgare). Genes (Basel) 2022; 13:genes13122376. [PMID: 36553643 PMCID: PMC9778244 DOI: 10.3390/genes13122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kinesin, as a member of the molecular motor protein superfamily, plays an essential function in various plants' developmental processes. Especially at the early stages of plant growth, including influences on plants' growth rate, yield, and quality. In this study, we did a genome-wide identification and expression profile analysis of the kinesin family in barley. Forty-two HvKINs were identified and screened from the barley genome, and a generated phylogenetic tree was used to compare the evolutionary relationships between Rice and Arabidopsis. The protein structure prediction, physicochemical properties, and bioinformatics of the HvKINs were also dissected. Our results reveal the important regulatory roles of HvKIN genes in barley growth. We found many cis- elements related to GA3 and ABA in homeopathic elements of the HvKIN gene and verified them by QRT-PCR, indicating their potential role in the barley kinesin family. The current study revealed the biological functions of barley kinesin genes in barley and will aid in further investigating the kinesin in other plant species.
Collapse
|
3
|
Xing X, Liu M, Jiang F, Zhou R, Bai Y, Wei H, Zhang D, Wei J, Wu Z. Abscisic acid induces the expression of AsKIN during the recovery period of garlic cryopreservation. PLANT CELL REPORTS 2022; 41:1955-1973. [PMID: 36066602 DOI: 10.1007/s00299-022-02894-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Abscisic acid induced the expression of AsKIN during the recovery period of garlic cryopreservation. AsKIN was identified as a gene involved in cold and osmotic stress resistance. Cryopreservation has been proven to be effective in removing viruses from garlic. However, oxidative damage in cryopreservation has a significant impact on the survival after preservation. Abscisic acid (ABA) has been shown to reduce oxidative stress and promote the survival after cryopreservation. However, it is not clear which genes play important roles in this process. In this study, we added ABA to the dehydration step and analyzed the transcriptomic divergences between the ABA-treated group and the control group in three cryogenic steps (dehydration, unloading and recovery). By short time-series expression miner (STEM) analysis and weighted gene co-expression network analysis (WGCNA), the recovery step was identified as the period of significant changes in gene expression levels in cryopreservation. The addition of ABA promoted the upregulated expression of microtubule-related genes in the recovery step. We further identified AsKIN as a hub gene in the recovery step and verified its function. The results showed that overexpression of AsKIN enhanced the tolerance of Arabidopsis to oxidative stress in cryopreservation, influenced the expression of genes in response to cold and osmotic stress and promoted plant growth after stress. The AsKIN gene is likely to be involved in the plant response to cold stress and osmotic stress. These results reveal the molecular mechanisms of ABA in cryopreservation and elucidate the potential biological functions of the kinesin-14 subfamily.
Collapse
Affiliation(s)
- Xiaodong Xing
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Min Liu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Yunhe Bai
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Hanyu Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Deng Zhang
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Jingjing Wei
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, Nanjing, China.
| |
Collapse
|
4
|
Pasten MC, Carballo J, Gallardo J, Zappacosta D, Selva JP, Rodrigo JM, Echenique V, Garbus I. A combined transcriptome - miRNAome approach revealed that a kinesin gene is differentially targeted by a novel miRNA in an apomictic genotype of Eragrostis curvula. FRONTIERS IN PLANT SCIENCE 2022; 13:1012682. [PMID: 36247597 PMCID: PMC9563718 DOI: 10.3389/fpls.2022.1012682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 06/06/2023]
Abstract
Weeping lovegrass (Eragrostis curvula [Shrad.] Nees) is a perennial grass typically established in semi-arid regions, with good adaptability to dry conditions and sandy soils. This polymorphic complex includes both sexual and apomictic cytotypes, with different ploidy levels (2x-8x). Diploids are known to be sexual, while most polyploids are facultative apomicts, and full apomicts have also been reported. Plant breeding studies throughout the years have focused on achieving the introgression of apomixis into species of agricultural relevance, but, given the complexity of the trait, a deeper understanding of the molecular basis of regulatory mechanisms of apomixis is still required. Apomixis is thought to be associated with silencing or disruption of the sexual pathway, and studies have shown it is influenced by epigenetic mechanisms. In a previous study, we explored the role of miRNA-mRNA interactions using two contrasting E. curvula phenotypes. Here, the sexual OTA-S, the facultative Don Walter and the obligate apomictic Tanganyika cDNA and sRNA libraries were inquired, searching for miRNA discovery and miRNA expression regulation of genes related to the reproductive mode. This allowed for the characterization of seven miRNAs and the validation of their miRNA-target interactions. Interestingly, a kinesin gene was found to be repressed in the apomictic cultivar Tanganyika, targeted by a novel miRNA that was found to be overexpressed in this genotype, suggestive of an involvement in the reproductive mode expression. Our work provided additional evidence of the contribution of the epigenetic regulation of the apomictic pathway.
Collapse
Affiliation(s)
- María Cielo Pasten
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - José Carballo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| | - Jimena Gallardo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Diego Zappacosta
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Juan Pablo Selva
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Juan Manuel Rodrigo
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Ingrid Garbus
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina
| |
Collapse
|
5
|
Hotta T, Lee YRJ, Higaki T, Hashimoto T, Liu B. Two Kinesin-14A Motors Oligomerize to Drive Poleward Microtubule Convergence for Acentrosomal Spindle Morphogenesis in Arabidopsis thaliana. Front Cell Dev Biol 2022; 10:949345. [PMID: 35982853 PMCID: PMC9380777 DOI: 10.3389/fcell.2022.949345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plant cells form acentrosomal spindles with microtubules (MTs) converged toward two structurally undefined poles by employing MT minus end-directed Kinesin-14 motors. To date, it is unclear whether the convergent bipolar MT array assumes unified poles in plant spindles, and if so, how such a goal is achieved. Among six classes of Kinesin-14 motors in Arabidopsis thaliana, the Kinesin-14A motors ATK1 (KatA) and ATK5 share the essential function in spindle morphogenesis. To understand how the two functionally redundant Kinesin-14A motors contributed to the spindle assembly, we had ATK1-GFP and ATK5-GFP fusion proteins expressed in their corresponding null mutants and found that they were functionally comparable to their native forms. Although ATK1 was a nuclear protein and ATK5 cytoplasmic prior to nuclear envelop breakdown, at later mitotic stages, the two motors shared similar localization patterns of uniform association with both spindle and phragmoplast MTs. We found that ATK1 and ATK5 were rapidly concentrated toward unified polar foci when cells were under hyperosmotic conditions. Concomitantly, spindle poles became perfectly focused as if there were centrosome-like MT-organizing centers where ATK1 and ATK5 were highly enriched and at which kinetochore fibers pointed. The separation of ATK1/ATK5-highlighted MTs from those of kinetochore fibers suggested that the motors translocated interpolar MTs. Our protein purification and live-cell imaging results showed that ATK1 and ATK5 are associated with each other in vivo. The stress-induced spindle pole convergence was also accompanied by poleward accumulation of the MT nucleator γ-tubulin. These results led to the conclusion that the two Kinesin-14A motors formed oligomeric motor complexes that drove MT translocation toward the spindle pole to establish acentrosomal spindles with convergent poles.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Hashimoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Bo Liu,
| |
Collapse
|
6
|
Abstract
In contrast to well-studied fungal and animal cells, plant cells assemble bipolar spindles that exhibit a great deal of plasticity in the absence of structurally defined microtubule-organizing centers like the centrosome. While plants employ some evolutionarily conserved proteins to regulate spindle morphogenesis and remodeling, many essential spindle assembly factors found in vertebrates are either missing or not required for producing the plant bipolar microtubule array. Plants also produce proteins distantly related to their fungal and animal counterparts to regulate critical events such as the spindle assembly checkpoint. Plant spindle assembly initiates with microtubule nucleation on the nuclear envelope followed by bipolarization into the prophase spindle. After nuclear envelope breakdown, kinetochore fibers are assembled and unified into the spindle apparatus with convergent poles. Of note, compared to fungal and animal systems, relatively little is known about how plant cells remodel the spindle microtubule array during anaphase. Uncovering mitotic functions of novel proteins for spindle assembly in plants will illuminate both common and divergent mechanisms employed by different eukaryotic organisms to segregate genetic materials.
Collapse
Affiliation(s)
- Bo Liu
- Department of Plant Biology, University of California, Davis, California, USA; ,
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California, USA; ,
| |
Collapse
|
7
|
Weiss JD, McVey SL, Stinebaugh SE, Sullivan CF, Dawe RK, Nannas NJ. Frequent Spindle Assembly Errors Require Structural Rearrangement to Complete Meiosis in Zea mays. Int J Mol Sci 2022; 23:ijms23084293. [PMID: 35457112 PMCID: PMC9031645 DOI: 10.3390/ijms23084293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The success of an organism is contingent upon its ability to faithfully pass on its genetic material. In the meiosis of many species, the process of chromosome segregation requires that bipolar spindles be formed without the aid of dedicated microtubule organizing centers, such as centrosomes. Here, we describe detailed analyses of acentrosomal spindle assembly and disassembly in time-lapse images, from live meiotic cells of Zea mays. Microtubules organized on the nuclear envelope with a perinuclear ring structure until nuclear envelope breakdown, at which point microtubules began bundling into a bipolar form. However, the process and timing of spindle assembly was highly variable, with frequent assembly errors in both meiosis I and II. Approximately 61% of cells formed incorrect spindle morphologies, with the most prevalent being tripolar spindles. The erroneous spindles were actively rearranged to bipolar through a coalescence of poles before proceeding to anaphase. Spindle disassembly occurred as a two-state process with a slow depolymerization, followed by a quick collapse. The results demonstrate that maize meiosis I and II spindle assembly is remarkably fluid in the early assembly stages, but otherwise proceeds through a predictable series of events.
Collapse
Affiliation(s)
- Jodi D. Weiss
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Shelby L. McVey
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Sarah E. Stinebaugh
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Caroline F. Sullivan
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - R. Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Natalie J. Nannas
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
- Correspondence:
| |
Collapse
|
8
|
Wang J, Tang F, Gao C, Gao X, Xu B, Shi F. Comparative transcriptome between male fertile and male sterile alfalfa ( Medicago varia). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1487-1498. [PMID: 34366591 PMCID: PMC8295440 DOI: 10.1007/s12298-021-01026-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Male sterility is an important factor in improving crop quality and yield through heterosis breeding. In this study, we analyzed the transcriptomes of male fertile (MF) and male sterile (MS) alfalfa flower buds using the Illumina HiSeq™ 4000 platform. A total of 54.05 million clean reads were generated and assembled into 65,777 unigenes with an average length of 874 bp. The differentially expressed genes (DEGs) between the MF and MS flowers at three stages of pollen development were identified, and there were 3832, 5678 and 5925 DEGs respectively in stages 1, 2 and 3. GO and KEGG functional enrichment analysis revealed 12, 12, 6 and 12 key branch-point genes involved in circadian rhythm, transcription factors, pollen development and flavonoid biosynthesis. Our findings provide novel insights into the mechanism of male sterility in alfalfa. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01026-x.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
- Department of Pharmacy, Baotou Medical College, Baotou, 014040 Inner Mongolia China
| | - Fang Tang
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Cuiping Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Xia Gao
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Bo Xu
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| | - Fengling Shi
- Key Laboratory of Grassland Resources, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, No.29 Erdos Street, Saihan District, Hohhot, 010011 Inner Mongolia China
| |
Collapse
|
9
|
Abstract
Kinesins constitute a superfamily of ATP-driven microtubule motor enzymes that convert the chemical energy of ATP hydrolysis into mechanical work along microtubule tracks. Kinesins are found in all eukaryotic organisms and are essential to all eukaryotic cells, involved in diverse cellular functions such as microtubule dynamics and morphogenesis, chromosome segregation, spindle formation and elongation and transport of organelles. In this review, we explore recently reported functions of kinesins in eukaryotes and compare their specific cargoes in both plant and animal kingdoms to understand the possible roles of uncharacterized motors in a kingdom based on their reported functions in other kingdoms.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing, China.,The College of Advanced Agricultural Science, The University of Chinese Academy of Sciences , Beijing, China
| |
Collapse
|
10
|
Shi W, Ji J, Xue Z, Zhang F, Miao Y, Yang H, Tang D, Du G, Li Y, Shen Y, Cheng Z. PRD1, a homologous recombination initiation factor, is involved in spindle assembly in rice meiosis. THE NEW PHYTOLOGIST 2021; 230:585-600. [PMID: 33421144 DOI: 10.1111/nph.17178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/23/2020] [Indexed: 05/25/2023]
Abstract
The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.
Collapse
Affiliation(s)
- Wenqing Shi
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Eco-Agriculture Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China
| | - Zhihui Xue
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanfan Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjie Miao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Han Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ding Tang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guijie Du
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhukuan Cheng
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
11
|
Transcriptome Analyses Throughout Chili Pepper Fruit Development Reveal Novel Insights into the Domestication Process. PLANTS 2021; 10:plants10030585. [PMID: 33808668 PMCID: PMC8003350 DOI: 10.3390/plants10030585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Chili pepper (Capsicum spp.) is an important crop, as well as a model for fruit development studies and domestication. Here, we performed a time-course experiment to estimate standardized gene expression profiles with respect to fruit development for six domesticated and four wild chili pepper ancestors. We sampled the transcriptomes every 10 days from flowering to fruit maturity, and found that the mean standardized expression profiles for domesticated and wild accessions significantly differed. The mean standardized expression was higher and peaked earlier for domesticated vs. wild genotypes, particularly for genes involved in the cell cycle that ultimately control fruit size. We postulate that these gene expression changes are driven by selection pressures during domestication and show a robust network of cell cycle genes with a time shift in expression, which explains some of the differences between domesticated and wild phenotypes.
Collapse
|
12
|
Galindo-Trigo S, Grand TM, Voigt CA, Smith LM. A malectin domain kinesin functions in pollen and seed development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1828-1841. [PMID: 31950166 PMCID: PMC7094084 DOI: 10.1093/jxb/eraa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/13/2020] [Indexed: 05/25/2023]
Abstract
The kinesin family is greatly expanded in plants compared with animals and, with more than a third up-regulated in expression during cell division, it has been suggested that this expansion facilitated complex plant-specific cytoskeletal rearrangements. The cell cycle-regulated kinesins include two with an N-terminal malectin domain, a protein domain that has been shown to bind polysaccharides and peptides when found extracellularly in receptor-like kinases. Although malectin domain kinesins are evolutionarily deep rooted, their function in plants remains unclear. Here we show that loss of MALECTIN DOMAIN KINESIN 2 (MDKIN2) results in stochastic developmental defects in pollen, embryo, and endosperm. High rates of seed abnormalities and abortion occur in mdkin2 mutants through a partial maternal effect. No additive effect or additional developmental defects were noted in mdkin1 mdkin2 double mutants. MDKIN2 is expressed in regions of cell division throughout the plant. Subcellular localization of MDKIN2 indicates a role in cell division, with a possible secondary function in the nuclei. Our results reveal a non-essential but important role for a malectin domain kinesin during development in plants.
Collapse
Affiliation(s)
- Sergio Galindo-Trigo
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Thomas M Grand
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Christian A Voigt
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| | - Lisa M Smith
- Department of Animal and Plant Sciences and The Plant Production and Protection (P3) Centre, University of Sheffield, Western Bank, Sheffield, UK
| |
Collapse
|
13
|
Abstract
The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1 In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.
Collapse
|
14
|
Gaebelein R, Schiessl SV, Samans B, Batley J, Mason AS. Inherited allelic variants and novel karyotype changes influence fertility and genome stability in Brassica allohexaploids. THE NEW PHYTOLOGIST 2019; 223:965-978. [PMID: 30887525 DOI: 10.1111/nph.15804] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 05/22/2023]
Abstract
Synthetic allohexaploid Brassica hybrids (2n = AABBCC) do not exist naturally, but can be synthesized by crosses between diploid and/or allotetraploid Brassica species. Using these hybrids, we aimed to identify how novel allohexaploids restore fertility and normal meiosis after formation. Chromosome inheritance, genome structure, fertility and meiotic behaviour were assessed in three segregating allohexaploid populations derived from the cross (B. napus × B. carinata) × B. juncea using a combination of molecular marker genotyping, phenotyping and cytogenetics. Plants with unbalanced A-C translocations in one direction (where a C-genome chromosome fragment replaces an A-genome fragment) but not the other (where an A-genome fragment replaces a C-genome fragment) showed significantly reduced fertility across all populations. Genomic regions associated with fertility contained several meiosis genes with putatively causal mutations inherited from the parents (copies of SCC2 in the A genome, PAIR1/PRD3, PRD1 and ATK1/KATA/KIN14a in the B genome, and MSH2 and SMC1/TITAN8 in the C genome). Reduced seed fertility associated with the loss of chromosome fragments from only one subgenome following homoeologous exchanges could comprise a mechanism for biased genome fractionation in allopolyploids. Pre-existing meiosis gene variants present in allotetraploid parents may help to stabilize meiosis in novel allohexaploids.
Collapse
Affiliation(s)
- Roman Gaebelein
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Sarah V Schiessl
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| | - Birgit Samans
- Faculty of Health Science, Technische Hochschule Mittelhessen, Wiesenstrasse 14, Giessen, 35390, Germany
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, 35 Stirling Hwy, Perth, WA, 6009, Australia
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
15
|
Gao Y, Zhang L, Zhao S, Yan Y. Comparative analysis of the male inflorescence transcriptome profiles of an ms22 mutant of maize. PLoS One 2018; 13:e0199437. [PMID: 30005064 PMCID: PMC6044530 DOI: 10.1371/journal.pone.0199437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 11/18/2022] Open
Abstract
In modern agricultural production, maize is the most successful crop utilizing heterosis. 712C-ms22 is an important male sterile material in maize. In this study, we performed transcriptome sequencing analysis of the V10 stage of male inflorescence. Through this analysis, 27.63 million raw reads were obtained, and trimming of the raw data revealed 26.63 million clean reads, with an average match rate of 94.64%. Using Tophat software, we matched these clean reads to the maize reference genome. The abundance of 39,622 genes was measured, and 35,399 genes remained after filtering out the non-expressed genes across all the samples. These genes were classified into 19 categories by clusters of orthologous groups of protein annotation. Transcriptome sequencing analysis of the male sterile and fertile 712C-ms22 maize revealed some key DEGs that may be related to metabolic pathways. qRT-PCR analysis validated the gene expression patterns identified by RNA-seq. This analysis revealed some of the essential genes responsible for pollen development and for pollen tube elongation. Our findings provide useful markers of male sterility and new insights into the global mechanisms mediating male sterility in maize.
Collapse
Affiliation(s)
- Yonggang Gao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| | - LiJuan Zhang
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - ShengChao Zhao
- Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanxin Yan
- Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail: (YG); (YY)
| |
Collapse
|
16
|
Gicking AM, Swentowsky KW, Dawe RK, Qiu W. Functional diversification of the kinesin‐14 family in land plants. FEBS Lett 2018; 592:1918-1928. [DOI: 10.1002/1873-3468.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/24/2018] [Accepted: 05/05/2018] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - R. Kelly Dawe
- Department of Plant Biology University of Georgia Athens GA USA
- Department of Genetics University of Georgia Athens GA USA
| | - Weihong Qiu
- Department of Physics Oregon State University Corvallis OR USA
| |
Collapse
|
17
|
A Kinesin-14 Motor Activates Neocentromeres to Promote Meiotic Drive in Maize. Cell 2018; 173:839-850.e18. [DOI: 10.1016/j.cell.2018.03.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 11/13/2017] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
|
18
|
Li H, Sun B, Sasabe M, Deng X, Machida Y, Lin H, Julie Lee YR, Liu B. Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. THE NEW PHYTOLOGIST 2017; 215:187-201. [PMID: 28370001 DOI: 10.1111/nph.14532] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/19/2017] [Indexed: 05/07/2023]
Abstract
The evolutionarily conserved MAP65 family proteins bundle anti-parallel microtubules (MTs). In Arabidopsis thaliana, mutations in the MAP65-3 gene lead to serious defects in MT organization in the phragmoplast and cause failures in cytokinesis. However, the functions of other ArabidopsisMAP65 isoforms are largely unknown. MAP65 functions were analyzed based on genetic interactions among different map65 mutations. Live-cell imaging and immunolocalization experiments revealed dynamic activities of two closely related MAP65 proteins in dividing cells. The map65-4 mutation caused synthetic lethality with map65-3 although map65-4 alone did not cause a noticeable phenotype. Furthermore, the introduction of an extra copy of the MAP65-4 gene significantly suppressed defects in cytokinesis and seedling growth caused by map65-3 because of restoring MT engagement in the spindle midzone. During mitosis, MAP65-4 first appeared at the preprophase band and persisted at the cortical division site afterwards. It was also concentrated on MTs in the spindle midzone and the phragmoplast. In the absence of MAP65-3, MAP65-4 exhibited greatly enhanced localization in the midzone of developing phragmoplast. Therefore, we have uncovered redundant but differential contributions of MAP65-3 and MAP65-4 to engaging and bundling anti-parallel MTs in the phragmoplast and disclosed a novel action of MAP65-4 at the cortical cell division site.
Collapse
Affiliation(s)
- Haoge Li
- College of Biological Science and Technology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Baojuan Sun
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Xingguang Deng
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
- Key Laboratory of Bio-resources & Eco-environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Honghui Lin
- Key Laboratory of Bio-resources & Eco-environment, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Y-R Julie Lee
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
19
|
Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells. J Cell Biol 2017; 216:1705-1714. [PMID: 28442535 PMCID: PMC5461021 DOI: 10.1083/jcb.201610065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/05/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Minus end-directed cargo transport along microtubules (MTs) is exclusively driven by the molecular motor dynein in a wide variety of cell types. Interestingly, during evolution, plants have lost the genes encoding dynein; the MT motors that compensate for dynein function are unknown. Here, we show that two members of the kinesin-14 family drive minus end-directed transport in plants. Gene knockout analyses of the moss Physcomitrella patens revealed that the plant-specific class VI kinesin-14, KCBP, is required for minus end-directed transport of the nucleus and chloroplasts. Purified KCBP directly bound to acidic phospholipids and unidirectionally transported phospholipid liposomes along MTs in vitro. Thus, minus end-directed transport of membranous cargoes might be driven by their direct interaction with this motor protein. Newly nucleated cytoplasmic MTs represent another known cargo exhibiting minus end-directed motility, and we identified the conserved class I kinesin-14 (ATK) as the motor involved. These results suggest that kinesin-14 motors were duplicated and developed as alternative MT-based minus end-directed transporters in land plants.
Collapse
Affiliation(s)
- Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yohko Tanaka-Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Masahito Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Momoko Nishina
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
20
|
Yamada M, Goshima G. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms. BIOLOGY 2017; 6:biology6010006. [PMID: 28125061 PMCID: PMC5371999 DOI: 10.3390/biology6010006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
Abstract
In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles.
Collapse
Affiliation(s)
- Moé Yamada
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Gohta Goshima
- Graduate School of Science, Division of Biological Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
21
|
Zeng X, Yan X, Yuan R, Li K, Wu Y, Liu F, Luo J, Li J, Wu G. Identification and Analysis of MS5d: A Gene That Affects Double-Strand Break (DSB) Repair during Meiosis I in Brassica napus Microsporocytes. FRONTIERS IN PLANT SCIENCE 2017; 7:1966. [PMID: 28101089 PMCID: PMC5209369 DOI: 10.3389/fpls.2016.01966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/12/2016] [Indexed: 05/13/2023]
Abstract
Here, we report the identification of the Brassica-specific gene MS5d, which is responsible for male sterility in Brassica napus. The MS5d gene is highly expressed in the microsporocyte and encodes a protein that localizes to the nucleus. Light microscopy analyses have demonstrated that the MS5d gene affects microsporocyte meiosis in the thermosensitive genic male sterility line TE5A. Sequence comparisons and genetic complementation revealed a C-to-T transition in MS5d, encoding a Leu-to-Phe (L281F) substitution and causing abnormal male meiosis in TE5A. These findings suggest arrested meiotic chromosome dynamics at pachytene. Furthermore, immunofluorescence analyses showed that double-strand break (DSB) formation and axial elements were normal but that DSB repair and spindle behavior were aberrant in TE5A meiocytes. Collectively, our results indicate that MS5d likely encodes a protein required for chromosomal DSB repair at early stages of meiosis in B. napus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gang Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| |
Collapse
|
22
|
Li J, Zhao PX. Mining Functional Modules in Heterogeneous Biological Networks Using Multiplex PageRank Approach. FRONTIERS IN PLANT SCIENCE 2016; 7:903. [PMID: 27446133 PMCID: PMC4916224 DOI: 10.3389/fpls.2016.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Identification of functional modules/sub-networks in large-scale biological networks is one of the important research challenges in current bioinformatics and systems biology. Approaches have been developed to identify functional modules in single-class biological networks; however, methods for systematically and interactively mining multiple classes of heterogeneous biological networks are lacking. In this paper, we present a novel algorithm (called mPageRank) that utilizes the Multiplex PageRank approach to mine functional modules from two classes of biological networks. We demonstrate the capabilities of our approach by successfully mining functional biological modules through integrating expression-based gene-gene association networks and protein-protein interaction networks. We first compared the performance of our method with that of other methods using simulated data. We then applied our method to identify the cell division cycle related functional module and plant signaling defense-related functional module in the model plant Arabidopsis thaliana. Our results demonstrated that the mPageRank method is effective for mining sub-networks in both expression-based gene-gene association networks and protein-protein interaction networks, and has the potential to be adapted for the discovery of functional modules/sub-networks in other heterogeneous biological networks. The mPageRank executable program, source code, the datasets and results of the presented two case studies are publicly and freely available at http://plantgrn.noble.org/MPageRank/.
Collapse
|
23
|
Higgins DM, Nannas NJ, Dawe RK. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization. FRONTIERS IN PLANT SCIENCE 2016; 7:1277. [PMID: 27610117 PMCID: PMC4997046 DOI: 10.3389/fpls.2016.01277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/11/2016] [Indexed: 05/02/2023]
Abstract
The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation.
Collapse
Affiliation(s)
- David M. Higgins
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
| | | | - R. Kelly Dawe
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
- Department of Genetics, University of GeorgiaAthens, GA, USA
- *Correspondence: R. Kelly Dawe
| |
Collapse
|
24
|
Cui HH, Liao HZ, Tang Y, Du XY, Chen LQ, Ye D, Zhang XQ. ABORTED GAMETOPHYTE 1 is required for gametogenesis in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:1003-1016. [PMID: 25693728 DOI: 10.1111/jipb.12341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
In flowering plants, the male and female gametogenesis is a crucial step of sexual reproduction. Although many genes have been identified as being involved in the gametogenesis process, the genetic mechanisms underlying gametogenesis remains poorly understood. We reported here characterization of the gene, ABORTED GAMETOPHYTE 1 (AOG1) that is newly identified as essential for gametogenesis in Arabidopsis thaliana. AOG1 is expressed predominantly in reproductive tissues including the developing pollen grains and ovules. The AOG1 protein shares no significant amino acid sequence similarity with other documented proteins and is located mainly in nuclei of the cells. Mutation in AOG1 caused degeneration of pollen at the uninucleate microspore stage and severe defect in embryo sacs, leading to a significant reduction in male and female fertility. Furthermore, the molecular analyses showed that the aog1 mutant significantly affected the expression of several genes, which are required for gametogenesis. Our results suggest that AOG1 plays important roles in gametogenesis at the stage prior to pollen mitosis I (PMI) in Arabidopsis, possibly through collaboration with other genes.
Collapse
Affiliation(s)
- Hong-Hui Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hong-Ze Liao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Tang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xin-Yu Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xue-Qin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics 2015; 16:914. [PMID: 26552448 PMCID: PMC4640349 DOI: 10.1186/s12864-015-2186-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/03/2022] Open
Abstract
Background Male sterility is an important mechanism for the production of hybrid seeds in watermelon. Although fruit development has been studied extensively in watermelon, there are no reports on gene expression in floral organs. In this study, RNA-sequencing (RNA-seq) was performed in two near-isogenic watermelon lines (genic male sterile [GMS] line, DAH3615-MS and male fertile line, DAH3615) to identify the differentially expressed genes (DEGs) related to male sterility. Results DEG analysis showed that 1259 genes were significantly associated with male sterility at a FDR P-value of < 0.01. Most of these genes were only expressed in the male fertile line. In addition, 11 functional clusters were identified using DAVID functional classification analysis. Of detected genes in RNA-seq analysis, 19 were successfully validated by qRT-PCR. Conclusions In this study, we carried out a comprehensive floral transcriptome sequence comparison of a male fertile line and its near-isogenic male sterile line in watermelon. This analysis revealed essential genes responsible for stamen development, including pollen development and pollen tube elongation, and allowed their functional classification. These results provided new information on global mechanisms related to male sterility in watermelon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2186-9) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Hamada T, Ueda H, Kawase T, Hara-Nishimura I. Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:1869-76. [PMID: 25367857 PMCID: PMC4256883 DOI: 10.1104/pp.114.252320] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/30/2014] [Indexed: 05/18/2023]
Abstract
The endoplasmic reticulum (ER) is a network of tubules and sheet-like structures in eukaryotic cells. Some ER tubules dynamically change their morphology, and others form stable structures. In plants, it has been thought that the ER tubule extension is driven by the actin-myosin machinery. Here, we show that microtubules also contribute to the ER tubule extension with an almost 20-fold slower rate than the actin filament-based ER extension. Treatment with the actin-depolymerizing drug Latrunculin B made it possible to visualize the slow extension of the ER tubules in transgenic Arabidopsis (Arabidopsis thaliana) plants expressing ER-targeted green fluorescent protein. The ER tubules elongated along microtubules in both directions of microtubules, which have a distinct polarity. This feature is similar to the kinesin- or dynein-driven ER tubule extension in animal cells. In contrast to the animal case, ER tubules elongating with the growing microtubule ends were not observed in Arabidopsis. We also found the spots where microtubules are stably colocalized with the ER subdomains during long observations of 1,040 s, suggesting that cortical microtubules contribute to provide ER anchoring points. The anchoring points acted as the branching points of the ER tubules, resulting in the formation of multiway junctions. The density of the ER tubule junction positively correlated with the microtubule density in both elongating cells and mature cells of leaf epidermis, showing the requirement of microtubules for formation of the complex ER network. Taken together, our findings show that plants use microtubules for ER anchoring and ER tubule extension, which establish fine network structures of the ER within the cell.
Collapse
Affiliation(s)
- Takahiro Hamada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takashi Kawase
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
27
|
Wang H, Liu R, Wang J, Wang P, Shen Y, Liu G. The Arabidopsis kinesin gene AtKin-1 plays a role in the nuclear division process during megagametogenesis. PLANT CELL REPORTS 2014; 33:819-828. [PMID: 24667993 DOI: 10.1007/s00299-014-1594-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
Atkin - 1 , the only Kinesin-1 member of Arabidopsis thaliana , plays a role during female gametogenesis through regulation of nuclear division cycles. Kinesins are microtubule-dependent motor proteins found in eukaryotic organisms. They constitute a superfamily that can be further classified into at least 14 families. In the Kinesin-1 family, members from animal and fungi play roles in long-distance transport of organelles and vesicles. Although Kinesin-1-like sequences have been identified in higher plants, little is known about their function in plant cells, other than in a recently identified Kinesin-1-like protein in a rice pollen semi-sterile mutant. In this study, the gene encoding the only Kinesin-1 member in Arabidopsis, AtKin-1 was found to be specifically expressed in ovules and anthers. AtKin-1 loss-of-function mutants showed substantially aborted ovules in siliques, and this finding was supported by complementation testing. Reciprocal crossing between mutant and wild-type plants indicated that a defect in AtKin-1 results in partially aborted megagametophytes, with no observable effects on pollen fertility. Further observation of ovule development in the mutant pistils indicated that the enlargement of the megaspore was blocked and nuclear division arrested at the one-nucleate stage during embryo sac formation. Our data suggest that AtKin-1 plays a role in the nuclear division cycles during megagametogenesis.
Collapse
Affiliation(s)
- Haiqing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Plateau Institute of Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining, 810001, China,
| | | | | | | | | | | |
Collapse
|
28
|
Endogenous localizome identifies 43 mitotic kinesins in a plant cell. Proc Natl Acad Sci U S A 2014; 111:E1053-61. [PMID: 24591632 DOI: 10.1073/pnas.1311243111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Kinesins are microtubule (MT)-based motor proteins that have been identified in every eukaryotic species. Intriguingly, land plants have more than 60 kinesins in their genomes, many more than that in yeasts or animals. However, many of these have not yet been characterized, and their cellular functions are unknown. Here, by using endogenous tagging, we comprehensively determined the localization of 72 kinesins during mitosis in the moss Physcomitrella patens. We found that 43 kinesins are localized to mitotic structures such as kinetochores, spindle MTs, or phragmoplasts, which are MT-based structures formed during cytokinesis. Surprisingly, only one of them showed an identical localization pattern to the animal homolog, and many were enriched at unexpected sites. RNA interference and live-cell microscopy revealed postanaphase roles for kinesin-5 in spindle/phragmoplast organization, chromosome segregation, and cytokinesis, which have not been observed in animals. Our study thus provides a list of MT-based motor proteins associated with the cell division machinery in plants. Furthermore, our data challenge the current generalization of determining mitotic kinesin function based solely on studies using yeast and animal cells.
Collapse
|
29
|
Zamariola L, Tiang CL, De Storme N, Pawlowski W, Geelen D. Chromosome segregation in plant meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:279. [PMID: 24987397 PMCID: PMC4060054 DOI: 10.3389/fpls.2014.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
Faithful chromosome segregation in meiosis is essential for ploidy stability over sexual life cycles. In plants, defective chromosome segregation caused by gene mutations or other factors leads to the formation of unbalanced or unreduced gametes creating aneuploid or polyploid progeny, respectively. Accurate segregation requires the coordinated execution of conserved processes occurring throughout the two meiotic cell divisions. Synapsis and recombination ensure the establishment of chiasmata that hold homologous chromosomes together allowing their correct segregation in the first meiotic division, which is also tightly regulated by cell-cycle dependent release of cohesin and monopolar attachment of sister kinetochores to microtubules. In meiosis II, bi-orientation of sister kinetochores and proper spindle orientation correctly segregate chromosomes in four haploid cells. Checkpoint mechanisms acting at kinetochores control the accuracy of kinetochore-microtubule attachment, thus ensuring the completion of segregation. Here we review the current knowledge on the processes taking place during chromosome segregation in plant meiosis, focusing on the characterization of the molecular factors involved.
Collapse
Affiliation(s)
- Linda Zamariola
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Choon Lin Tiang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
| | - Wojtek Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of GhentGhent, Belgium
- *Correspondence: Danny Geelen, Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium e-mail:
| |
Collapse
|
30
|
Struk S, Dhonukshe P. MAPs: cellular navigators for microtubule array orientations in Arabidopsis. PLANT CELL REPORTS 2014; 33:1-21. [PMID: 23903948 DOI: 10.1007/s00299-013-1486-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 05/24/2023]
Abstract
Microtubules are subcellular nanotubes composed of α- and β-tubulin that arise from microtubule nucleation sites, mainly composed of γ-tubulin complexes [corrected]. Cell wall encased plant cells have evolved four distinct microtubule arrays that regulate cell division and expansion. Microtubule-associated proteins, the so called MAPs, construct, destruct and reorganize microtubule arrays thus regulating their spatiotemporal transitions during the cell cycle. By physically binding to microtubules and/or modulating their functions, MAPs control microtubule dynamic instability and/or interfilament cross talk. We survey the recent analyses of Arabidopsis MAPs such as MAP65, MOR1, CLASP, katanin, TON1, FASS, TRM, TAN1 and kinesins in terms of their effects on microtubule array organizations and plant development.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | | |
Collapse
|
31
|
Hamada T. Microtubule organization and microtubule-associated proteins in plant cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 312:1-52. [PMID: 25262237 DOI: 10.1016/b978-0-12-800178-3.00001-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plants have unique microtubule (MT) arrays, cortical MTs, preprophase band, mitotic spindle, and phragmoplast, in the processes of evolution. These MT arrays control the directions of cell division and expansion especially in plants and are essential for plant morphogenesis and developments. Organizations and functions of these MT arrays are accomplished by diverse MT-associated proteins (MAPs). This review introduces 10 of conserved MAPs in eukaryote such as γ-TuC, augmin, katanin, kinesin, EB1, CLASP, MOR1/MAP215, MAP65, TPX2, formin, and several plant-specific MAPs such as CSI1, SPR2, MAP70, WVD2/WDL, RIP/MIDD, SPR1, MAP18/PCaP, EDE1, and MAP190. Most of the studies cited in this review have been analyzed in the particular model plant, Arabidopsis thaliana. The significant knowledge of A. thaliana is the important established base to understand MT organizations and functions in plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
32
|
Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, Huang SW, Liu GQ. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the roles of kinesins in exponential cell production and enlargement in cucumber fruit. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4541-57. [PMID: 24023249 PMCID: PMC3808332 DOI: 10.1093/jxb/ert269] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid cell division and expansion in early fruit development are important phases for cucumber fruit yield and quality. Kinesin proteins are microtubule-based motors responsible for modulating cell division and enlargement. In this work, the candidate kinesin genes involved in rapid cell division and expansion during cucumber fruit development were investigated. The morphological and cellular changes during early fruit development were compared in four cucumber genotypes with varied fruit size. The correlation between the expression profiles of cucumber kinesin genes and cellular changes in fruit was investigated. Finally, the biochemical characteristics and subcellular localizations of three candidate kinesins were studied. The results clarified the morphological and cellular changes during early cucumber fruit development. This study found that CsKF2-CsKF6 were positively correlated with rapid cell production; CsKF1 and CsKF7 showed a strongly positive correlation with rapid cell expansion. The results also indicated that CsKF1 localized to the plasma membrane of fast-expanding fruit cells, that CsKF2 might play a role in fruit chloroplast division, and that CsKF3 is involved in the function or formation of phragmoplasts in fruit telophase cells. The results strongly suggest that specific fruit-enriched kinesins are specialized in their functions in rapid cell division and expansion during cucumber fruit development.
Collapse
Affiliation(s)
- Xue Yong Yang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Yan Wang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- * These authors contributed equally to this work
| | - Wei Jie Jiang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- To whom correspondence should be addressed. E-mail: or /
| | - Xiao Ling Liu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xiao Meng Zhang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hong Jun Yu
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - San Wen Huang
- Institute of Vegetables and Flowers (IVF), the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Guo Qin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Zhu C, Dixit R. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. PROTOPLASMA 2012; 249:887-99. [PMID: 22038119 DOI: 10.1007/s00709-011-0343-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. We emphasize the conserved and novel functions of plant kinesins in the organization and function of the different microtubule arrays.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Biology Department, Washington University, 1 Brookings Drive, CB 1137, St. Louis, MO 63130, USA
| | | |
Collapse
|
34
|
Zhu C, Dixit R. Functions of the Arabidopsis kinesin superfamily of microtubule-based motor proteins. PROTOPLASMA 2012; 249:887-899. [PMID: 22038119 DOI: 10.1007/s00709-011-0343-9 [epub ahead print]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/12/2011] [Indexed: 05/17/2023]
Abstract
Plants possess a large number of microtubule-based kinesin motor proteins. While the kinesin-2, 3, 9, and 11 families are absent from land plants, the kinesin-7 and 14 families are greatly expanded. In addition, some kinesins are specifically present only in land plants. The distinctive inventory of plant kinesins suggests that kinesins have evolved to perform specialized functions in plants. Plants assemble unique microtubule arrays during their cell cycle, including the interphase cortical microtubule array, preprophase band, anastral spindle and phragmoplast. In this review, we explore the functions of plant kinesins from a microtubule array viewpoint, focusing mainly on Arabidopsis kinesins. We emphasize the conserved and novel functions of plant kinesins in the organization and function of the different microtubule arrays.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Biology Department, Washington University, 1 Brookings Drive, CB 1137, St. Louis, MO 63130, USA
| | | |
Collapse
|
35
|
Libeau P, Durandet M, Granier F, Marquis C, Berthomé R, Renou JP, Taconnat-Soubirou L, Horlow C. Gene expression profiling of Arabidopsis meiocytes. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:784-93. [PMID: 21815983 DOI: 10.1111/j.1438-8677.2010.00435.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is a special type of cell division present in all organisms that reproduce by sexual reproduction. It ensures the transition between the sporophytic and gametophytic state and allows gamete production through meiotic recombination and chromosome number reduction. In this paper, we describe a technique for the isolation of Arabidopsis thaliana male meiocytes. From this cellular material, it was then possible to develop large-scale transcriptome studies using CATMA microarrays and thus to obtain an overview of genes expressed during Arabidopsis meiosis. The expression profiles were studied with either stringent statistical criteria or by performing clustering. Both methods resulted in gene clusters enriched in meiosis-specific genes (from 14- to 55-fold). Analysis of these data provided a unique set of genes that will be pivotal to further analysis aimed at understanding the meiotic process.
Collapse
Affiliation(s)
- P Libeau
- Institut Jean-Pierre Bourgin, INRA de Versailles, INRA-AgroParisTech, Versailles, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang XY, Chen ZW, Xu T, Qu Z, Pan XD, Qin XH, Ren DT, Liu GQ. Arabidopsis kinesin KP1 specifically interacts with VDAC3, a mitochondrial protein, and regulates respiration during seed germination at low temperature. THE PLANT CELL 2011; 23:1093-106. [PMID: 21406623 PMCID: PMC3082256 DOI: 10.1105/tpc.110.082420] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 02/10/2011] [Accepted: 02/21/2011] [Indexed: 05/17/2023]
Abstract
The involvement of cytoskeleton-related proteins in regulating mitochondrial respiration has been revealed in mammalian cells. However, it is unclear if there is a relationship between the microtubule-based motor protein kinesin and mitochondrial respiration. In this research, we demonstrate that a plant-specific kinesin, Kinesin-like protein 1 (KP1; At KIN14 h), is involved in respiratory regulation during seed germination at a low temperature. Using in vitro biochemical methods and in vivo transgenic cell observations, we demonstrate that KP1 is able to localize to mitochondria via its tail domain (C terminus) and specifically interacts with a mitochondrial outer membrane protein, voltage-dependent anion channel 3 (VDAC3). Targeting of the KP1-tail to mitochondria is dependent on the presence of VDAC3. When grown at 4° C, KP1 dominant-negative mutants (TAILOEs) and vdac3 mutants exhibited a higher seed germination frequency. All germinating seeds of the kp1 and vdac3 mutants had increased oxygen consumption; the respiration balance between the cytochrome pathway and the alternative oxidase pathway was disrupted, and the ATP level was reduced. We conclude that the plant-specific kinesin, KP1, specifically interacts with VDAC3 on the mitochondrial outer membrane and that both KP1 and VDAC3 regulate aerobic respiration during seed germination at low temperature.
Collapse
|
37
|
Yang H, Lu P, Wang Y, Ma H. The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:503-16. [PMID: 21208307 DOI: 10.1111/j.1365-313x.2010.04439.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction, with two consecutive rounds of nuclear divisions, allowing production of haploid gametes. Information regarding the meiotic transcriptome should provide valuable clues about global expression patterns and detailed gene activities. Here we used RNA sequencing to explore the transcriptome of a single plant cell type, the Arabidopsis male meiocyte, detecting the expression of approximately 20 000 genes. Transcription of introns of >400 genes was observed, suggesting previously unannotated exons. More than 800 genes may be preferentially expressed in meiocytes, including known meiotic genes. Of the 3378 Pfam gene families in the Arabidopsis genome, 3265 matched meiocyte-expressed genes, and 18 gene families were over-represented in male meiocytes, including transcription factor and other regulatory gene families. Expression was detected for many genes thought to encode meiosis-related proteins, including MutS homologs (MSHs), kinesins and ATPases. We identified more than 1000 orthologous gene clusters that are also expressed in meiotic cells of mouse and fission yeast, including 503 single-copy genes across the three organisms, with a greater number of gene clusters shared between Arabidopsis and mouse than either share with yeast. Interestingly, approximately 5% transposable element genes were apparently transcribed in male meiocytes, with a positive correlation to the transcription of neighboring genes. In summary, our RNA-Seq transcriptome data provide an overview of gene expression in male meiocytes and invaluable information for future functional studies.
Collapse
Affiliation(s)
- Hongxing Yang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | |
Collapse
|
38
|
Chang F, Wang Y, Wang S, Ma H. Molecular control of microsporogenesis in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:66-73. [PMID: 21145279 DOI: 10.1016/j.pbi.2010.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/17/2010] [Accepted: 11/11/2010] [Indexed: 05/20/2023]
Abstract
Microsporogenesis is essential for male fertility and requires both the formation of somatic and reproductive cells in the anther and meiotic segregation of homologous chromosomes. Molecular genetic studies have uncovered signaling molecules and transcription factors that play crucial roles in determining the anther cell types and in controlling gene expression for microsporogenesis. At the same time, key components of in meiotic recombination pathways have been discovered, enriching our knowledge about plant reproductive development.
Collapse
Affiliation(s)
- Fang Chang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
39
|
The Preprophase Band and Division Site Determination in Land Plants. THE PLANT CYTOSKELETON 2011. [DOI: 10.1007/978-1-4419-0987-9_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Zhou S, Wang Y, Li W, Zhao Z, Ren Y, Wang Y, Gu S, Lin Q, Wang D, Jiang L, Su N, Zhang X, Liu L, Cheng Z, Lei C, Wang J, Guo X, Wu F, Ikehashi H, Wang H, Wan J. Pollen semi-sterility1 encodes a kinesin-1-like protein important for male meiosis, anther dehiscence, and fertility in rice. THE PLANT CELL 2011; 23:111-29. [PMID: 21282525 PMCID: PMC3051251 DOI: 10.1105/tpc.109.073692] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 12/16/2010] [Accepted: 12/28/2010] [Indexed: 05/20/2023]
Abstract
In flowering plants, male meiosis produces four microspores, which develop into pollen grains and are released by anther dehiscence to pollinate female gametophytes. The molecular and cellular mechanisms regulating male meiosis in rice (Oryza sativa) remain poorly understood. Here, we describe a rice pollen semi-sterility1 (pss1) mutant, which displays reduced spikelet fertility (~40%) primarily caused by reduced pollen viability (~50% viable), and defective anther dehiscence. Map-based molecular cloning revealed that PSS1 encodes a kinesin-1-like protein. PSS1 is broadly expressed in various organs, with highest expression in panicles. Furthermore, PSS1 expression is significantly upregulated during anther development and peaks during male meiosis. The PSS1-green fluorescent protein fusion is predominantly localized in the cytoplasm of rice protoplasts. Substitution of a conserved Arg (Arg-289) to His in the PSS1 motor domain nearly abolishes its microtubule-stimulated ATPase activity. Consistent with this, lagging chromosomes and chromosomal bridges were found at anaphase I and anaphase II of male meiosis in the pss1 mutant. Together, our results suggest that PSS1 defines a novel member of the kinesin-1 family essential for male meiotic chromosomal dynamics, male gametogenesis, and anther dehiscence in rice.
Collapse
Affiliation(s)
- Shirong Zhou
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanchang Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Zhao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulong Ren
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Suhai Gu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Su
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hiroshi Ikehashi
- Department of Plant and Resources College of Bioresources, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
41
|
Pawlowski WP. Chromosome organization and dynamics in plants. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:640-645. [PMID: 20970369 DOI: 10.1016/j.pbi.2010.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/02/2010] [Accepted: 09/23/2010] [Indexed: 05/28/2023]
Abstract
The past few years have brought renewed interest in understanding the dynamics of chromosomes in interphase cells as well as during cell division, particularly meiosis. This research has been fueled by new imaging methods, particularly three-dimensional, high-resolution, and live microscopy. Major contributors are also new genetic tools that allow elucidation of mechanisms controlling chromosome behavior. Recent studies in plants have explored chromatin arrangement in interphase nuclei, chromosome interactions and movement during meiotic prophase I, and mechanisms that ensure correct segregation of chromosomes during anaphase. These studies shed light on chromosome dynamics in a small-genome plant Arabidopsis thaliana, as well as in plants with large and complex genomes of polyploid origin, such as wheat and maize.
Collapse
Affiliation(s)
- Wojciech P Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
42
|
Buschmann H, Sambade A, Pesquet E, Calder G, Lloyd CW. Microtubule dynamics in plant cells. Methods Cell Biol 2010; 97:373-400. [PMID: 20719281 DOI: 10.1016/s0091-679x(10)97020-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This chapter describes some of the choices and unavoidable compromises to be made when studying microtubule dynamics in plant cells. The choice of species still depends very much on the ability to produce transgenic plants and most work has been done in the relatively small cells of Arabidopsis plants or in tobacco BY-2 suspension cells. Fluorescence-tagged microtubule proteins have been used to label entire microtubules, or their plus ends, but there are still few minus-end markers for these acentrosomal cells. Pragmatic decisions have to be made about probes, balancing the efficacy of microtubule labeling against a tendency to overstabilize and bundle the microtubules and even induce helical plant growth. A key limitation in visualizing plant microtubules is the ability to keep plants alive for long periods under the microscope and we describe a biochamber that allows for plant cell growth and development while allowing gas exchange and reducing evaporation. Another major difficulty is the limited fluorescence lifetime and we describe imaging strategies to reduce photobleaching in long-term imaging. We also discuss methods of measuring microtubule dynamics, with emphasis on the behavior of plant-specific microtubule arrays.
Collapse
Affiliation(s)
- Henrik Buschmann
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR47UH, United Kingdom
| | | | | | | | | |
Collapse
|
43
|
Kong Z, Hotta T, Lee YRJ, Horio T, Liu B. The {gamma}-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. THE PLANT CELL 2010; 22:191-204. [PMID: 20118227 PMCID: PMC2828712 DOI: 10.1105/tpc.109.071191] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 12/19/2009] [Accepted: 01/13/2010] [Indexed: 05/18/2023]
Abstract
Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein gamma -tubulin, which forms a complex with GCP2-GCP6 (GCP for gamma -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with gamma -tubulin in vivo in Arabidopsis thaliana. When GCP4 expression was repressed by an artificial microRNA, transgenic plants exhibited phenotypes of dwarfism and reduced organ size. In mitotic cells, it was observed that the gamma -tubulin signal associated with the mitotic spindle, and the phragmoplast was depleted when GCP4 was downregulated. Consequently, MTs failed to converge at unified spindle poles, and the bipolar phragmoplast MT array frequently had discrete bundles with extended minus ends, resulting in failed cytokinesis as reflected by cell wall stubs in leaf epidermal cells. In addition, cortical MTs in swollen guard cells and pavement cells of the leaf epidermis became hyperparallel and bundled, which was likely caused by frequent MT nucleation with shallow angles on the wall of extant MTs. Therefore, our results support the notion that GCP4 is an indispensable component for the function of gamma -tubulin in MT nucleation and organization in plant cells.
Collapse
Affiliation(s)
- Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California 95616
| | - Tetsuya Horio
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| |
Collapse
|
44
|
Jiang H, Wang FF, Wu YT, Zhou X, Huang XY, Zhu J, Gao JF, Dong RB, Cao KM, Yang ZN. MULTIPOLAR SPINDLE 1 (MPS1), a novel coiled-coil protein of Arabidopsis thaliana, is required for meiotic spindle organization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:1001-10. [PMID: 19500302 DOI: 10.1111/j.1365-313x.2009.03929.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The spindle is essential for chromosome segregation during meiosis, but the molecular mechanism of meiotic spindle organization in higher plants is still not well understood. Here, we report on the identification and characterization of a plant-specific protein, MULTIPOLAR SPINDLE 1 (MPS1), which is involved in spindle organization in meiocytes of Arabidopsis thaliana. The homozygous mps1 mutant exhibits male and female sterility. Light microscopy showed that mps1 mutants produced multiple uneven spores during anther development, most of which aborted in later stages. Cytological analysis showed that chromosome segregation was abnormal in mps1 meiocytes. Immunolocalization showed unequal bipolar or multipolar spindles in mps1 meiocytes, which indicated that aberrant spindles resulted in disordered chromosome segregation. MPS1 encodes a 377-amino-acid protein with putative coiled-coil motifs. In situ hybridization analysis showed that MPS1 is strongly expressed in meiocytes.
Collapse
Affiliation(s)
- Hua Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guo L, Ho CMK, Kong Z, Lee YRJ, Qian Q, Liu B. Evaluating the microtubule cytoskeleton and its interacting proteins in monocots by mining the rice genome. ANNALS OF BOTANY 2009; 103:387-402. [PMID: 19106179 PMCID: PMC2707338 DOI: 10.1093/aob/mcn248] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/20/2008] [Accepted: 11/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND Microtubules (MTs) are assembled by heterodimers of alpha- and beta-tubulins, which provide tracks for directional transport and frameworks for the spindle apparatus and the phragmoplast. MT nucleation and dynamics are regulated by components such as the gamma-tubulin complex which are conserved among eukaryotes, and other components which are unique to plants. Following remarkable progress made in the model plant Arabidopsis thaliana toward revealing key components regulating MT activities, the completed rice (Oryza sativa) genome has prompted a survey of the MT cytoskeleton in this important crop as a model for monocots. SCOPE The rice genome contains three alpha-tubulin genes, eight beta-tubulin genes and a single gamma-tubulin gene. A functional gamma-tubulin ring complex is expected to form in rice as genes encoding all components of the complex are present. Among proteins that interact with MTs, compared with A. thaliana, rice has more genes encoding some members such as the MAP65/Ase1p/PRC1 family, but fewer for the motor kinesins, the end-binding protein EB1 and the mitotic kinase Aurora. Although most known MT-interacting factors have apparent orthologues in rice, no orthologues of arabidopsis RIC1 and MAP18 have been identified in rice. Among all proteins surveyed here, only a few have had their functions characterized by genetic means in rice. Elucidating functions of proteins of the rice MT cytoskeleton, aided by recent technical advances made in this model monocot, will greatly advance our knowledge of how monocots employ their MTs to regulate their growth and form.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Chin-Min Kimmy Ho
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA
- For correspondence. E-mail:
| |
Collapse
|
46
|
Liu J, Qu LJ. Meiotic and mitotic cell cycle mutants involved in gametophyte development in Arabidopsis. MOLECULAR PLANT 2008; 1:564-74. [PMID: 19825562 DOI: 10.1093/mp/ssn033] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The alternation between diploid and haploid generations is fundamental in the life cycles of both animals and plants. The meiotic cell cycle is common to both animals and plants gamete formation, but in animals the products of meiosis are gametes, whereas for most plants, subsequent mitotic cell cycles are needed for their formation. Clarifying the regulatory mechanisms of mitotic cell cycle progression during gametophyte development will help understanding of sexual reproduction in plants. Many mutants defective in gametophyte development and, in particular, many meiotic and mitotic cell cycle mutants in Arabidopsis male and female gametophyte development were identified through both forward and reverse genetics approaches.
Collapse
Affiliation(s)
- Jingjing Liu
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | |
Collapse
|
47
|
Price TAR, Wedell N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 2008; 134:99-111. [PMID: 18327647 DOI: 10.1007/s10709-008-9253-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 06/26/2007] [Indexed: 11/28/2022]
Abstract
Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.
Collapse
Affiliation(s)
- Tom A R Price
- School of Biosciences, University of Exeter, Cornwall Campus, Penryn, UK.
| | | |
Collapse
|
48
|
Quan L, Xiao R, Li W, Oh SA, Kong H, Ambrose JC, Malcos JL, Cyr R, Twell D, Ma H. Functional divergence of the duplicated AtKIN14a and AtKIN14b genes: critical roles in Arabidopsis meiosis and gametophyte development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:1013-26. [PMID: 18088313 DOI: 10.1111/j.1365-313x.2007.03391.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gene duplication is important for gene family evolution, allowing for functional divergence and innovation. In flowering plants, duplicated genes are widely observed, and functional redundancy of closely related duplicates has been reported, but few cases of functional divergence of close duplicates have been described. Here, we show that the Arabidopsis AtKIN14a and AtKIN14b genes encoding highly similar kinesins are two of the most closely related Arabidopsis paralogs, which were formed by a duplication event that occurred after the split of Arabidopsis and poplar. In addition, AtKIN14a and AtKIN14b exhibit varying degrees of coding sequence divergence. Further genetic studies of plants carrying atkin14a and/or atkin14b mutations indicate that, although these two genes have similar functions, there is clear evidence for functional divergence. Although both genes are important for male and female meiosis, AtKIN14a plays a more critical role in male meiosis than AtKIN14b. Moreover, either one of these two genes is necessary and sufficient for gametophyte development, indicating that they are redundant for this function. Therefore, AtKIN14a and AtKIN14b together play important roles in controlling plant reproductive development. Our results suggest that the AtKIN14a and AtKIN14b genes have retained similar functions in gametophyte development and female meiosis, but have evolved partially distinct functions in male meiosis, with AtKIN14a playing a more substantive role.
Collapse
Affiliation(s)
- Li Quan
- Department of Biology, the Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A mutation in MRH2 kinesin enhances the root hair tip growth defect caused by constitutively activated ROP2 small GTPase in Arabidopsis. PLoS One 2007; 2:e1074. [PMID: 17957256 PMCID: PMC2031828 DOI: 10.1371/journal.pone.0001074] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/07/2007] [Indexed: 01/02/2023] Open
Abstract
Root hair tip growth provides a unique model system for the study of plant cell polarity. Transgenic plants expressing constitutively active (CA) forms of ROP (Rho-of-plants) GTPases have been shown to cause the disruption of root hair polarity likely as a result of the alteration of actin filaments (AF) and microtubules (MT) organization. Towards understanding the mechanism by which ROP controls the cytoskeletal organization during root hair tip growth, we have screened for CA-rop2 suppressors or enhancers using CA1-1, a transgenic line that expresses CA-rop2 and shows only mild disruption of tip growth. Here, we report the characterization of a CA-rop2 enhancer (cae1-1 CA1-1) that exhibits bulbous root hairs. The cae1-1 mutation on its own caused a waving and branching root hair phenotype. CAE1 encodes the root hair growth-related, ARM domain-containing kinesin-like protein MRH2 (and thus cae1-1 was renamed to mrh2-3). Cortical MT displayed fragmentation and random orientation in mrh2 root hairs. Consistently, the MT-stabilizing drug taxol could partially rescue the wavy root hair phenotype of mrh2-3, and the MT-depolymerizing drug Oryzalin slightly enhanced the root hair tip growth defect in CA1-1. Interestingly, the addition of the actin-depolymerizing drug Latrunculin B further enhanced the Oryzalin effect. This indicates that the cross-talk of MT and AF organization is important for the mrh2-3 CA1-1 phenotype. Although we did not observe an apparent effect of the MRH2 mutation in AF organization, we found that mrh2-3 root hair growth was more sensitive to Latrunculin B. Moreover, an ARM domain-containing MRH2 fragment could bind to the polymerized actin in vitro. Therefore, our genetic analyses, together with cell biological and pharmacological evidence, suggest that the plant-specific kinesin-related protein MRH2 is an important component that controls MT organization and is likely involved in the ROP2 GTPase-controlled coordination of AF and MT during polarized growth of root hairs.
Collapse
|
50
|
Price TAR, Wedell N. Selfish genetic elements and sexual selection: their impact on male fertility. Genetica 2007; 132:295-307. [PMID: 17647082 DOI: 10.1007/s10709-007-9173-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.
Collapse
Affiliation(s)
- Tom A R Price
- School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.
| | | |
Collapse
|