1
|
Zhang Y, Cao L, Yan H, Luo Z, Chen C, Shangguan Z, Li Q, Shi X, Yang L, Tan W, Yang S, Fu J, Wang C, Dou X, Li Q. Pkd2l1 deletion inhibits the neurogenesis of cerebrospinal fluid-contacting neurons and impedes spinal cord injury repair. Cell Death Discov 2025; 11:194. [PMID: 40268899 PMCID: PMC12019451 DOI: 10.1038/s41420-025-02492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Adult neural stem cells (NSCs) offer a promising avenue for restoring spinal cord injury (SCI). However, their precise identity in the mammalian spinal cord remains unclear. Our previous research demonstrated that Pkd2l1-positive cerebrospinal fluid-contacting neurons (CSF-cNs) possess the NSC properties. Furthermore, understanding the role and molecular mechanisms of CSF-cNs as endogenous NSCs in spinal cord repair is crucial for developing effective treatments. This study utilizes a Pkd2l1-/- transgenic mouse model to investigate the role of CSF-cNs in SCI repair. We found that the CSF-cN population was almost absent in Pkd2l1-/- mice. Following SCI, these mice exhibited a significant reduction in the number of NSCs surrounding the central canal. Notably, Pkd2l1-/- mice showed impaired neuronal regeneration and compromised motor function recovery post-SCI. These findings highlight the potential importance of Pkd2l1 as a target for treating SCI by focusing on endogenous NSCs.
Collapse
Affiliation(s)
- Yi Zhang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Shunyi Maternal and Children's Hospital of Beijing Children's Hospital, Beijing, China
| | - Liang Cao
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Haijian Yan
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhangrong Luo
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chanjuan Chen
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zeyu Shangguan
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qizhe Li
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xuexing Shi
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Leiluo Yang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shengxin Yang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jiangquan Fu
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chunqing Wang
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaowei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Qing Li
- Emergency Department, Emergency Medicine Laboratory, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Luo Z, Shangguan Z, Cao L, Zhang Y, Li Q, Shi X, Fu J, Wang C, Dou X, Tan W, Li Q. Cerebrospinal fluid-contacting neurons: a promising source for adult neural stem cell transplantation in spinal cord injury treatment. Front Cell Dev Biol 2025; 13:1549194. [PMID: 40143967 PMCID: PMC11936957 DOI: 10.3389/fcell.2025.1549194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Transplantation of adult neural stem cells (NSCs) is regarded as one of the most promising approaches for treating spinal cord injury (SCI). However, securing a sufficient and reliable source of adult NSCs remains one of the primary challenges in applying this method for SCI treatment. Cerebrospinal fluid-contacting neurons (CSF-cNs) act as adult NSCs and can be substantially expanded in vitro while maintaining their NSC characteristics even after 60 passages. When CSF-cNs are transplanted into the injury sites of SCI mice, they demonstrate high survival rates along with the ability to proliferate and differentiate into neurons, astrocytes, and oligodendrocytes. Additionally, significant improvements in motor function have been observed in SCI mice following the transplantation of CSF-cNs. These results suggest that CSF-cNs may represent a promising source of adult NSCs for transplantation therapy in SCI.
Collapse
Affiliation(s)
- Zhangrong Luo
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Traumatic Orthopedics, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Zeyu Shangguan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Liang Cao
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yi Zhang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qizhe Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xuexing Shi
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jiangquan Fu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Chunqing Wang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaowei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qing Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Xiong Y, Pi W, Zhao W, Shi W, Yan W, Yang H, Zhou Y, Li Q, Yang L. Roles of cerebrospinal fluid-contacting neurons as potential neural stem cells in the repair and regeneration of spinal cord injuries. Front Cell Dev Biol 2024; 12:1426395. [PMID: 38983786 PMCID: PMC11231923 DOI: 10.3389/fcell.2024.1426395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a distinct group of interneurons characterized by their prominent apical globular protrusions penetrating the spinal cord's central canal and their basal axons extending towards adjacent cells. Identified nearly a century back, the specific roles and attributes of CSF-cNs have just started to emerge due to the historical lack of definitive markers. Recent findings have confirmed that CSF-cNs expressing PKD2L1 possess attributes of neural stem cells, suggesting a critical function in the regeneration processes following spinal cord injuries. This review aims to elucidate the molecular markers of CSF-cNs as potential neural stem cells during spinal cord development and assess their roles post-spinal cord injury, with an emphasis on their potential therapeutic implications for spinal cord repair.
Collapse
Affiliation(s)
- Yanxiang Xiong
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wenjun Pi
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Wang Zhao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weiwei Shi
- Department of Medical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Weihong Yan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Hao Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanrong Zhou
- Department of Health, The Qinglong County People’s Hospital, Qinglong, Guizhou, China
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Leiluo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Cao L, Zhang HQ, He YQ, An PJ, Yang LL, Tan W, Liu G, Wang CQ, Dou XW, Li Q. Culture of cerebrospinal fluid-contacting neurons from neonatal mouse spinal cord. Cell Tissue Bank 2024; 25:443-452. [PMID: 37368142 DOI: 10.1007/s10561-023-10098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) act crucial role in chemosensory and mechanosensory function in spinal cord. Recently, CSF-cNs were found to be an immature neuron and may be involved in spinal cord injury recovery. But how to culture it and explore its function in vitro are not reported in previous research. Here, we first reported culture and identification of CSF-cNs in vitro. We first established a protocol for in vitro culture of CSF-cNs from the cervical spinal cord of mice within 24 h after birth. Polycystic kidney disease 2-like 1 (PKD2L1)+ cells were isolated by fluorescence-activated cell sorting and expressed the neuron marker β-tubulin III and CSF-cNs marker GABA. Intriguingly, PKD2L1+ cells formed neurosphere and expressed neural stem cell markers Nestin, Sox2 and GFAP. Thus, our research provided culture and isolation of CSF-cNs and this facilitate the investigation the CSF-cNs function in vitro.
Collapse
Affiliation(s)
- Liang Cao
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang City, China
| | - Hui-Qian Zhang
- Department of Orthopedic Trauma, Henan Provincial Orthopedic Hospital, Luoyang, China
| | - Yu-Qi He
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Ping-Jiang An
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Lei-Luo Yang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Wei Tan
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Gang Liu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Chun-Qing Wang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China
| | - Xiao-Wei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang City, China.
| | - Qing Li
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang City, 550025, China.
| |
Collapse
|
5
|
Cucun G, Köhler M, Pfitsch S, Rastegar S. Insights into the mechanisms of neuron generation and specification in the zebrafish ventral spinal cord. FEBS J 2024; 291:646-662. [PMID: 37498183 DOI: 10.1111/febs.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA″), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.
Collapse
Affiliation(s)
- Gokhan Cucun
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Melina Köhler
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sabrina Pfitsch
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Sepand Rastegar
- Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
6
|
Bellegarda C, Zavard G, Moisan L, Brochard-Wyart F, Joanny JF, Gray RS, Cantaut-Belarif Y, Wyart C. The Reissner fiber under tension in vivo shows dynamic interaction with ciliated cells contacting the cerebrospinal fluid. eLife 2023; 12:e86175. [PMID: 37772792 PMCID: PMC10617989 DOI: 10.7554/elife.86175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023] Open
Abstract
The Reissner fiber (RF) is an acellular thread positioned in the midline of the central canal that aggregates thanks to the beating of numerous cilia from ependymal radial glial cells (ERGs) generating flow in the central canal of the spinal cord. RF together with cerebrospinal fluid (CSF)-contacting neurons (CSF-cNs) form an axial sensory system detecting curvature. How RF, CSF-cNs and the multitude of motile cilia from ERGs interact in vivo appears critical for maintenance of RF and sensory functions of CSF-cNs to keep a straight body axis, but is not well-understood. Using in vivo imaging in larval zebrafish, we show that RF is under tension and resonates dorsoventrally. Focal RF ablations trigger retraction and relaxation of the fiber's cut ends, with larger retraction speeds for rostral ablations. We built a mechanical model that estimates RF stress diffusion coefficient D at 5 mm2/s and reveals that tension builds up rostrally along the fiber. After RF ablation, spontaneous CSF-cN activity decreased and ciliary motility changed, suggesting physical interactions between RF and cilia projecting into the central canal. We observed that motile cilia were caudally-tilted and frequently interacted with RF. We propose that the numerous ependymal motile monocilia contribute to RF's heterogenous tension via weak interactions. Our work demonstrates that under tension, the Reissner fiber dynamically interacts with motile cilia generating CSF flow and spinal sensory neurons.
Collapse
Affiliation(s)
- Celine Bellegarda
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | - Guillaume Zavard
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | | | | | - Jean-François Joanny
- Paris Sciences et Lettres (PSL) University, Institut Curie, Sorbonne UniversitéParisFrance
- Paris Sciences et Lettres (PSL) University, Collège de FranceParisFrance
| | - Ryan S Gray
- Dell Pediatrics Research Institute, The University of Texas at AustinAustinUnited States
| | - Yasmine Cantaut-Belarif
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| | - Claire Wyart
- Sorbonne Université, Paris Brain Institute (Institut du Cerveau, ICM), Institut National de la Santé et de la Recherche Médicale U1127, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7225, Assistance Publique–Hôpitaux de Paris, Campus Hospitalier Pitié-SalpêtrièreParisFrance
| |
Collapse
|
7
|
Wyart C, Carbo-Tano M, Cantaut-Belarif Y, Orts-Del'Immagine A, Böhm UL. Cerebrospinal fluid-contacting neurons: multimodal cells with diverse roles in the CNS. Nat Rev Neurosci 2023; 24:540-556. [PMID: 37558908 DOI: 10.1038/s41583-023-00723-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Collapse
Affiliation(s)
- Claire Wyart
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France.
| | - Martin Carbo-Tano
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau (ICM), INSERM U1127, UMR CNRS 7225 Paris, Sorbonne Université, Paris, France
| | | | - Urs L Böhm
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Nakamura Y, Kurabe M, Matsumoto M, Sato T, Miytashita S, Hoshina K, Kamiya Y, Tainaka K, Matsuzawa H, Ohno N, Ueno M. Cerebrospinal fluid-contacting neuron tracing reveals structural and functional connectivity for locomotion in the mouse spinal cord. eLife 2023; 12:83108. [PMID: 36805807 PMCID: PMC9943067 DOI: 10.7554/elife.83108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/03/2023] [Indexed: 02/22/2023] Open
Abstract
Cerebrospinal fluid-contacting neurons (CSF-cNs) are enigmatic mechano- or chemosensory cells lying along the central canal of the spinal cord. Recent studies in zebrafish larvae and lampreys have shown that CSF-cNs control postures and movements via spinal connections. However, the structures, connectivity, and functions in mammals remain largely unknown. Here we developed a method to genetically target mouse CSF-cNs that highlighted structural connections and functions. We first found that intracerebroventricular injection of adeno-associated virus with a neuron-specific promoter and Pkd2l1-Cre mice specifically labeled CSF-cNs. Single-cell labeling of 71 CSF-cNs revealed rostral axon extensions of over 1800 μm in unmyelinated bundles in the ventral funiculus and terminated on CSF-cNs to form a recurrent circuitry, which was further determined by serial electron microscopy and electrophysiology. CSF-cNs were also found to connect with axial motor neurons and premotor interneurons around the central canal and within the axon bundles. Chemogenetic CSF-cNs inactivation reduced speed and step frequency during treadmill locomotion. Our data revealed the basic structures and connections of mouse CSF-cNs to control spinal motor circuits for proper locomotion. The versatile methods developed in this study will contribute to further understanding of CSF-cN functions in mammals.
Collapse
Affiliation(s)
- Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Miyuki Kurabe
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological SciencesOkazakiJapan,Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Satoshi Miytashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Yoshinori Kamiya
- Division of Anesthesiology, Niigata University Graduate School of Medical and Dental SciencesNiigataJapan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Hitoshi Matsuzawa
- Center for Advanced Medicine and Clinical Research, Kashiwaba Neurosurgical HospitalSapporoJapan,Center for Integrated Human Brain Science, Niigata UniversityNiigataJapan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of MedicineShimotsukeJapan,Division of Ultrastructural Research, National Institute for Physiological SciencesOkazakiJapan
| | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata UniversityNiigataJapan
| |
Collapse
|
9
|
Maser RL, Calvet JP, Parnell SC. The GPCR properties of polycystin-1- A new paradigm. Front Mol Biosci 2022; 9:1035507. [PMID: 36406261 PMCID: PMC9672506 DOI: 10.3389/fmolb.2022.1035507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 (PC1) is an 11-transmembrane (TM) domain-containing protein encoded by the PKD1 gene, the most frequently mutated gene leading to autosomal dominant polycystic kidney disease (ADPKD). This large (> 462 kDal) protein has a complex posttranslational maturation process, with over five proteolytic cleavages having been described, and is found at multiple cellular locations. The initial description of the binding and activation of heterotrimeric Gαi/o by the juxtamembrane region of the PC1 cytosolic C-terminal tail (C-tail) more than 20 years ago opened the door to investigations, and controversies, into PC1's potential function as a novel G protein-coupled receptor (GPCR). Subsequent biochemical and cellular-based assays supported an ability of the PC1 C-tail to bind numerous members of the Gα protein family and to either inhibit or activate G protein-dependent pathways involved in the regulation of ion channel activity, transcription factor activation, and apoptosis. More recent work has demonstrated an essential role for PC1-mediated G protein regulation in preventing kidney cyst development; however, the mechanisms by which PC1 regulates G protein activity continue to be discovered. Similarities between PC1 and the adhesion class of 7-TM GPCRs, most notably a conserved GPCR proteolysis site (GPS) before the first TM domain, which undergoes autocatalyzed proteolytic cleavage, suggest potential mechanisms for PC1-mediated regulation of G protein signaling. This article reviews the evidence supporting GPCR-like functions of PC1 and their relevance to cystic disease, discusses the involvement of GPS cleavage and potential ligands in regulating PC1 GPCR function, and explores potential connections between PC1 GPCR-like activity and regulation of the channel properties of the polycystin receptor-channel complex.
Collapse
Affiliation(s)
- Robin L. Maser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephen C. Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Cao L, Huang MZ, Zhang Q, Luo ZR, Zhang Y, An PJ, Yang LL, Tan W, Wang CQ, Dou XW, Li Q. The neural stem cell properties of Pkd2l1+ cerebrospinal fluid-contacting neurons in vivo. Front Cell Neurosci 2022; 16:992520. [PMID: 36159391 PMCID: PMC9500444 DOI: 10.3389/fncel.2022.992520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
The neural stem cells (NSCs) in the ventricular-subventricular zone of the adult mammalian spinal cord may be of great benefit for repairing spinal cord injuries. However, the sources of NSCs remain unclear. Previously, we have confirmed that cerebrospinal fluid-contacting neurons (CSF-cNs) have NSC potential in vitro. In this study, we verified the NSC properties of CSF-cNs in vivo. In mouse spinal cords, Pkd2l1+ CSF-cNs localized around the central canal express NSC markers. In vitro, Pkd2l1+ CSF-cNs form a neurosphere and express NSC markers. Activation and proliferation of CSF-cNs can be induced by injection of the neurotrophic factors basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) into the lateral ventricle. Spinal cord injury (SCI) also induces NSC activation and proliferation of CSF-cNs. Collectively, our results demonstrate that Pkd2l1+ CSF-cNs have NSC properties in vivo and may be involved in SCI recovery.
Collapse
Affiliation(s)
- Liang Cao
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ming-Zhi Huang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qiang Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhang-Rong Luo
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Yi Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ping-Jiang An
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lei-Luo Yang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Tan
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Chun-Qing Wang
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiao-Wei Dou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Xiao-Wei Dou,
| | - Qing Li
- Department of Traumatic Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Qing Li,
| |
Collapse
|
11
|
Radial Glia and Neuronal-like Ependymal Cells Are Present within the Spinal Cord of the Trunk (Body) in the Leopard Gecko (Eublepharis macularius). J Dev Biol 2022; 10:jdb10020021. [PMID: 35735912 PMCID: PMC9224675 DOI: 10.3390/jdb10020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
As is the case for many lizards, leopard geckos (Eublepharis macularius) can self-detach a portion of their tail to escape predation, and then regenerate a replacement complete with a spinal cord. Previous research has shown that endogenous populations of neural stem/progenitor cells (NSPCs) reside within the spinal cord of the original tail. In response to tail loss, these NSPCs are activated and contribute to regeneration. Here, we investigate whether similar populations of NSPCs are found within the spinal cord of the trunk (body). Using a long-duration 5-bromo-2′-deoxyuridine pulse-chase experiment, we determined that a population of cells within the ependymal layer are label-retaining following a 20-week chase. Tail loss does not significantly alter rates of ependymal cell proliferation within the trunk spinal cord. Ependymal cells of the trunk spinal cord express SOX2 and represent at least two distinct cell populations: radial glial-like (glial fibrillary acidic protein- and Vimentin-expressing) cells; and neuronal-like (HuCD-expressing) cells. Taken together, these data demonstrate that NSPCs of the trunk spinal cord closely resemble those of the tail and support the use of the tail spinal cord as a less invasive proxy for body spinal cord injury investigations.
Collapse
|
12
|
Regulating Endogenous Neural Stem Cell Activation to Promote Spinal Cord Injury Repair. Cells 2022; 11:cells11050846. [PMID: 35269466 PMCID: PMC8909806 DOI: 10.3390/cells11050846] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) affects millions of individuals worldwide. Currently, there is no cure, and treatment options to promote neural recovery are limited. An innovative approach to improve outcomes following SCI involves the recruitment of endogenous populations of neural stem cells (NSCs). NSCs can be isolated from the neuroaxis of the central nervous system (CNS), with brain and spinal cord populations sharing common characteristics (as well as regionally distinct phenotypes). Within the spinal cord, a number of NSC sub-populations have been identified which display unique protein expression profiles and proliferation kinetics. Collectively, the potential for NSCs to impact regenerative medicine strategies hinges on their cardinal properties, including self-renewal and multipotency (the ability to generate de novo neurons, astrocytes, and oligodendrocytes). Accordingly, endogenous NSCs could be harnessed to replace lost cells and promote structural repair following SCI. While studies exploring the efficacy of this approach continue to suggest its potential, many questions remain including those related to heterogeneity within the NSC pool, the interaction of NSCs with their environment, and the identification of factors that can enhance their response. We discuss the current state of knowledge regarding populations of endogenous spinal cord NSCs, their niche, and the factors that regulate their behavior. In an attempt to move towards the goal of enhancing neural repair, we highlight approaches that promote NSC activation following injury including the modulation of the microenvironment and parenchymal cells, pharmaceuticals, and applied electrical stimulation.
Collapse
|
13
|
Russ DE, Cross RBP, Li L, Koch SC, Matson KJE, Yadav A, Alkaslasi MR, Lee DI, Le Pichon CE, Menon V, Levine AJ. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun 2021; 12:5722. [PMID: 34588430 PMCID: PMC8481483 DOI: 10.1038/s41467-021-25125-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases of the mouse spinal cord have been published in recent years but have not been integrated together. Here, we generate an atlas of spinal cell types based on single-cell transcriptomic data, unifying the available datasets into a common reference framework. We report a hierarchical structure of postnatal cell type relationships, with location providing the highest level of organization, then neurotransmitter status, family, and finally, dozens of refined populations. We validate a combinatorial marker code for each neuronal cell type and map their spatial distributions in the adult spinal cord. We also show complex lineage relationships among postnatal cell types. Additionally, we develop an open-source cell type classifier, SeqSeek, to facilitate the standardization of cell type identification. This work provides an integrated view of spinal cell types, their gene expression signatures, and their molecular organization.
Collapse
Affiliation(s)
- Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ryan B Patterson Cross
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Stephanie C Koch
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, UK
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Archana Yadav
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dylan I Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| |
Collapse
|
14
|
Mukaigasa K, Sakuma C, Yaginuma H. The developmental hourglass model is applicable to the spinal cord based on single-cell transcriptomes and non-conserved cis-regulatory elements. Dev Growth Differ 2021; 63:372-391. [PMID: 34473348 PMCID: PMC9293469 DOI: 10.1111/dgd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
The developmental hourglass model predicts that embryonic morphology is most conserved at the mid-embryonic stage and diverges at the early and late stages. To date, this model has been verified by examining the anatomical features or gene expression profiles at the whole embryonic level. Here, by data mining approach utilizing multiple genomic and transcriptomic datasets from different species in combination, and by experimental validation, we demonstrate that the hourglass model is also applicable to a reduced element, the spinal cord. In the middle of spinal cord development, dorsoventrally arrayed neuronal progenitor domains are established, which are conserved among vertebrates. By comparing the publicly available single-cell transcriptome datasets of mice and zebrafish, we found that ventral subpopulations of post-mitotic spinal neurons display divergent molecular profiles. We also detected the non-conservation of cis-regulatory elements located around the progenitor fate determinants, indicating that the cis-regulatory elements contributing to the progenitor specification are evolvable. These results demonstrate that, despite the conservation of the progenitor domains, the processes before and after the progenitor domain specification diverged. This study will be helpful to understand the molecular basis of the developmental hourglass model.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Chie Sakuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
15
|
The Temporal Mechanisms Guiding Interneuron Differentiation in the Spinal Cord. Int J Mol Sci 2021; 22:ijms22158025. [PMID: 34360788 PMCID: PMC8347920 DOI: 10.3390/ijms22158025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022] Open
Abstract
Neurogenesis timing is an essential developmental mechanism for neuronal diversity and organization throughout the central nervous system. In the mouse spinal cord, growing evidence is beginning to reveal that neurogenesis timing acts in tandem with spatial molecular controls to diversify molecularly and functionally distinct post-mitotic interneuron subpopulations. Particularly, in some cases, this temporal ordering of interneuron differentiation has been shown to instruct specific sensorimotor circuit wirings. In zebrafish, in vivo preparations have revealed that sequential neurogenesis waves of interneurons and motor neurons form speed-dependent locomotor circuits throughout the spinal cord and brainstem. In the present review, we discuss temporal principals of interneuron diversity taken from both mouse and zebrafish systems highlighting how each can lend illuminating insights to the other. Moving forward, it is important to combine the collective knowledge from different systems to eventually understand how temporally regulated subpopulation function differentially across speed- and/or state-dependent sensorimotor movement tasks.
Collapse
|
16
|
Jurčić N, Michelle C, Trouslard J, Wanaverbecq N, Kastner A. Evidence for PKD2L1-positive neurons distant from the central canal in the ventromedial spinal cord and medulla of the adult mouse. Eur J Neurosci 2021; 54:4781-4803. [PMID: 34097332 DOI: 10.1111/ejn.15342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/29/2022]
Abstract
Neurons in contact with the cerebrospinal fluid (CSF) are found around the medullo-spinal central canal (CC) in adult mice. These neurons (CSF-cNs), located within or below the ependymal cell layer, known as the stem cell niche, present a characteristic morphology with a dendrite projecting to the CC and ending with a protrusion. They are GABAergic, present an intermediate neuronal maturity and selectively express PKD2L1, a member of the transient receptor potential channel superfamily with sensory properties. Using immunohistological and electrophysiological recording techniques in mice, we characterize the properties of a new population of PKD2L1 positive cells that is distant from the CC in a zone enriched with astrocytes and ependymal fibers of the ventro-medial spinal cord and medulla. They appear around embryonic day 16 and their number increases up to early postnatal days. With development and the reorganization of the CC region, they progressively become more distant from the CC, suggesting some migratory capabilities. These neurons share functional and phenotypical properties with CSF-cNs but appear subdivided in two groups. One group, present along the midline, has a bipolar morphology and extends a long dendrite along ependymal fibers and towards the CC. The second group, localized in more ventro-lateral regions, has a multipolar morphology and no apparent projection to the CC. Altogether, we describe a novel population of PKD2L1+ neurons distant from the CC but with properties similar to CSF-cNs that might serve to sense modification in the composition of either CSF or interstitial liquid, a function that will need to be confirmed.
Collapse
Affiliation(s)
- Nina Jurčić
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Caroline Michelle
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Jérôme Trouslard
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Nicolas Wanaverbecq
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| | - Anne Kastner
- Institut de Neurosciences de la Timone, Aix-Marseille Univ and CNRS UMR 7289, SpiCCI Team, Marseille, France
| |
Collapse
|
17
|
Wang S, He Y, Zhang H, Chen L, Cao L, Yang L, Wang C, Pan Y, Tang Q, Tan W, Dou X, Li Q. The Neural Stem Cell Properties of PKD2L1 + Cerebrospinal Fluid-Contacting Neurons in vitro. Front Cell Neurosci 2021; 15:630882. [PMID: 33790741 PMCID: PMC8005615 DOI: 10.3389/fncel.2021.630882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/16/2021] [Indexed: 01/20/2023] Open
Abstract
Cerebrospinal fluid-touching neurons (CSF-cNs) exist in the region surrounding the central canal of the spinal cord, which locate in the adult neurogenic niche. Previous research showed that CSF-cNs expressed the molecular markers of immature neural cells in vivo. Here, we explored the potential of CSF-cNs as neural stem cell in intro. We first found that PKD2L1+ CSF-cNs, isolating by FACS using the molecular marker PKD2L1 of CSF-cNs, expressed neural stem cells markers like Nestin, Sox2, and GFAP by immunofluorescence staining. PKD2L1+ CSF-cNs were able to form neurospheres and passaged in vitro. Immunofluorescence staining showed that the neurospheres forming by PKD2L1+ CSF-cNs also expressed neural stem cell markers Nestin, Sox2 and GFAP. The neurospheres expressed proliferation markers Ki67 and PCNA by immunofluorescence staining, indicating that the neurospheres forming by PKD2L1+ CSF-cNs were proliferative. The neurospheres, forming by CSF-cNs, had the ability of differentiation into neurons, astrocytes, and oligodendrocytes. Collectively, our data suggested that PKD2L1+ CSF-cNs have the properties of neural stem cells in vitro and may provide a promising approach for the repair of spinal cord injury.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China.,Shandong Juxian People's Hospital, Rizhao City, China
| | - Yuqi He
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Huiqian Zhang
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Li Chen
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Liang Cao
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China.,School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Leiluo Yang
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China
| | - Chunqing Wang
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China
| | - Yujie Pan
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China
| | - Qian Tang
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China
| | - Wei Tan
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China
| | - Xiaowei Dou
- Clinical Research Center, Affiliated Hospital of Guizhou Medical University, Guiyang City, China
| | - Qing Li
- Department of Orthopedics Traumatic, The Affiliated Hospital of Guizhou Medical University, Guiyang City, China
| |
Collapse
|
18
|
Yang L, Wang F, Strähle U. The Genetic Programs Specifying Kolmer-Agduhr Interneurons. Front Neurosci 2020; 14:577879. [PMID: 33162880 PMCID: PMC7581942 DOI: 10.3389/fnins.2020.577879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
Kolmer-Agduhr (KA) cells are a subgroup of interneurons positioned adjacent to the neurocoele with cilia on the apical surface protruding into the central canal of the spinal cord. Although KA cells were identified almost a century ago, their development and functions are only beginning to be unfolded. Recent studies have revealed the characteristics of KA cells in greater detail, including their spatial distribution, the timing of their differentiation, and their specification via extrinsic signaling and a unique combination of transcription factors in zebrafish and mouse. Cell lineage-tracing experiments have demonstrated that two subsets of KA cells, named KA' and KA" cells, differentiate from motoneuronal progenitors and floor-plate precursors, respectively, in both zebrafish and mouse. Although KA' and KA" cells originate from different progenitors/precursors, they each share a common set of transcription factors. Intriguingly, the combination of transcription factors that promote the acquisition of KA' cell characteristics differs from those that promote a KA" cell identity. In addition, KA' and KA" cells exhibit separable neuronal targets and differential responses to bending of the spinal cord. In this review, we summarize what is currently known about the genetic programs defining the identities of KA' and KA" cell identities. We then discuss how these two subgroups of KA cells are genetically specified.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Uwe Strähle
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
19
|
Ryczko D, Simon A, Ijspeert AJ. Walking with Salamanders: From Molecules to Biorobotics. Trends Neurosci 2020; 43:916-930. [PMID: 33010947 DOI: 10.1016/j.tins.2020.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
How do four-legged animals adapt their locomotion to the environment? How do central and peripheral mechanisms interact within the spinal cord to produce adaptive locomotion and how is locomotion recovered when spinal circuits are perturbed? Salamanders are the only tetrapods that regenerate voluntary locomotion after full spinal transection. Given their evolutionary position, they provide a unique opportunity to bridge discoveries made in fish and mammalian models. Genetic dissection of salamander neural circuits is becoming feasible with new methods for precise manipulation, elimination, and visualisation of cells. These approaches can be combined with classical tools in neuroscience and with modelling and a robotic environment. We propose that salamanders provide a blueprint of the function, evolution, and regeneration of tetrapod locomotor circuits.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.
| | - András Simon
- Karolinska Institute, Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, 17163 Stockholm, Sweden
| | - Auke Jan Ijspeert
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
20
|
Quan FB, Desban L, Mirat O, Kermarquer M, Roussel J, Koëth F, Marnas H, Djenoune L, Lejeune FX, Tostivint H, Wyart C. Somatostatin 1.1 contributes to the innate exploration of zebrafish larva. Sci Rep 2020; 10:15235. [PMID: 32943676 PMCID: PMC7499426 DOI: 10.1038/s41598-020-72039-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
Pharmacological experiments indicate that neuropeptides can effectively tune neuronal activity and modulate locomotor output patterns. However, their functions in shaping innate locomotion often remain elusive. For example, somatostatin has been previously shown to induce locomotion when injected in the brain ventricles but to inhibit fictive locomotion when bath-applied in the spinal cord in vitro. Here, we investigated the role of somatostatin in innate locomotion through a genetic approach by knocking out somatostatin 1.1 (sst1.1) in zebrafish. We automated and carefully analyzed the kinematics of locomotion over a hundred of thousand bouts from hundreds of mutant and control sibling larvae. We found that the deletion of sst1.1 did not impact acousto-vestibular escape responses but led to abnormal exploration. sst1.1 mutant larvae swam over larger distance, at higher speed and performed larger tail bends, indicating that Somatostatin 1.1 inhibits spontaneous locomotion. Altogether our study demonstrates that Somatostatin 1.1 innately contributes to slowing down spontaneous locomotion.
Collapse
Affiliation(s)
- Feng B Quan
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Laura Desban
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Olivier Mirat
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Maxime Kermarquer
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Julian Roussel
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Fanny Koëth
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hugo Marnas
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Lydia Djenoune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - François-Xavier Lejeune
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle (MNHN), CNRS UMR 7221, Paris, France
| | - Claire Wyart
- Sorbonne Université, Institut du Cerveau (ICM), Campus Hospitalier Universitaire Pitié-Salpêtrière, 47 bld de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
21
|
He YQ, Shi XX, Chen L, Zhao WB, Shan J, Lin ZL, Yang LL, Li Q. Cerebrospinal fluid-contacting neurons affect the expression of endogenous neural progenitor cells and the recovery of neural function after spinal cord injury. Int J Neurosci 2020; 131:615-624. [PMID: 32363983 DOI: 10.1080/00207454.2020.1750396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the relationship between cerebrospinal fluid-contacting neurons (CSF-cNs) and endogenous neural progenitor cells (ENPCs) and whether CSF-cNs are involved in nerve repair after spinal cord injury (SCI). METHODS Cholera toxin B-horseradish peroxidase complex (CB-HRP) and cholera toxin B conjugated with saporin (CB-SAP) were injected into the lateral ventricles of spinal cord injured rats to mark and destroy the CSF-cNs. Then the rats in the experimental group were injured by SCI. Observe the content and co-expression of CSF-cNs and ENPCs in rats of each group, and observe the recovery of motor function after SCI in each group. RESULTS After the destruction of CSF-cNs, the number of ENPCs decreased significantly in the long term after the surgery, and the recovery of motor function also deteriorated as compared to the group with intact CSF-cNs. Meanwhile some cells in the spinal cord express both the biological marker of CSF-cNs and ENPCs. CONCLUSION This study shows that the population of ENPCs and motor function recovery in SCI rats declined after the destruction of CSF-cNs, suggesting that CSF-cNs affect the ENPCs population and may be involved in the recovery of neural function after SCI.
Collapse
Affiliation(s)
- Yu-Qi He
- School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China.,Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Xue-Xing Shi
- Department of Orthopedics, Affiliated Baiyun Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Li Chen
- Department of Orthopedics, Dazhou Central Hospital, Dazhou, P.R. China
| | - Wen-Bo Zhao
- Department of first Orthopedics, Fifth Affiliated (zhuhai) Hospital, Zunyi Medical University, Zhuhai, P.R. China
| | - Jing Shan
- Department of Orthopedics, First Affiliated Hospital, Nanchang University, Nanchang, P.R. China
| | - Zong-Long Lin
- School of Clinical Medicine, Guizhou Medical University, Guiyang, P.R. China.,Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Lei-Luo Yang
- Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| | - Qing Li
- Department of Traumatic Orthopedics, Affiliated Hospital, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
22
|
Tonelli Gombalová Z, Košuth J, Alexovič Matiašová A, Zrubáková J, Žežula I, Giallongo T, Di Giulio AM, Carelli S, Tomašková L, Daxnerová Z, Ševc J. Majority of cerebrospinal fluid‐contacting neurons in the spinal cord of
C57Bl/6N
mice is present in ectopic position unlike in other studied experimental mice strains and mammalian species. J Comp Neurol 2020; 528:2523-2550. [DOI: 10.1002/cne.24909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Zuzana Tonelli Gombalová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ján Košuth
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Jarmila Zrubáková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Ivan Žežula
- Institute of Mathematics, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Toniella Giallongo
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Anna Maria Di Giulio
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Stephana Carelli
- Laboratories of Pharmacology, Department of Health SciencesUniversity of Milan Milan Italy
- Pediatric Clinical Research Center "Fondazione Romeo e Enrica Invernizzi", L. Sacco Department of Biomedical and Clinical ScienceUniversity of Milan Milan Italy
| | - Lenka Tomašková
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of ScienceP.J. Šafárik University in Košice Košice Slovak Republic
| |
Collapse
|
23
|
Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo. Curr Biol 2020; 30:827-839.e4. [PMID: 32084399 DOI: 10.1016/j.cub.2019.12.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 02/04/2023]
Abstract
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
Collapse
|
24
|
Moreno-Manzano V. Ependymal cells in the spinal cord as neuronal progenitors. Curr Opin Pharmacol 2019; 50:82-87. [PMID: 31901616 DOI: 10.1016/j.coph.2019.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
Abstract
Ependymal cells are neural progenitors and form part of the central canal of the spinal cord. Therefore, ependymal cells could serve as a potential source of neural progenitors for regenerative medicine applications. Such applications consist of endogenous activation or exogenous transplantation, alone or in combination with pharmacological treatments, to repair spinal cord injuries. This mini review describes the main phenotypical characteristics of ependymal cells from spinal cord and the opportunities offered for spinal cord injury therapeutic application.
Collapse
Affiliation(s)
- Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
25
|
Ringers C, Olstad EW, Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190156. [PMID: 31884916 DOI: 10.1098/rstb.2019.0156] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motile cilia are miniature, whip-like organelles whose beating generates a directional fluid flow. The flow generated by ciliated epithelia is a subject of great interest, as defective ciliary motility results in severe human diseases called motile ciliopathies. Despite the abundance of motile cilia in diverse organs including the nervous system, their role in organ development and homeostasis remains poorly understood. Recently, much progress has been made regarding the identity of motile ciliated cells and the role of motile-cilia-mediated flow in the development and physiology of the nervous system. In this review, we will discuss these recent advances from sensory organs, specifically the nose and the ear, to the spinal cord and brain ventricles. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| |
Collapse
|
26
|
The Temporal Neurogenesis Patterning of Spinal p3-V3 Interneurons into Divergent Subpopulation Assemblies. J Neurosci 2019; 40:1440-1452. [PMID: 31826942 DOI: 10.1523/jneurosci.1518-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
Neuronal diversity provides the spinal cord with the functional flexibility required to perform complex motor tasks. Spinal neurons arise during early embryonic development with the establishment of spatially and molecularly discrete progenitor domains that give rise to distinct, but highly heterogeneous, postmitotic interneuron (IN) populations. Our previous studies have shown that Sim1-expressing V3 INs, originating from the p3 progenitor domain, are anatomically and physiologically divergent. However, the developmental logic guiding V3 subpopulation diversity remains elusive. In specific cases of other IN classes, neurogenesis timing can play a role in determining the ultimate fates and unique characteristics of distinctive subpopulations. To examine whether neurogenesis timing contributes to V3 diversity, we systematically investigated the temporal neurogenesis profiles of V3 INs in the mouse spinal cord. Our work uncovered that V3 INs were organized into either early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves. Early-born V3 INs displayed both ascending and descending commissural projections and clustered into subgroups across dorsoventral spinal laminae. In contrast, late-born V3 INs became fate-restricted to ventral laminae and displayed mostly descending and local commissural projections and uniform membrane properties. Furthermore, we found that the postmitotic transcription factor, Sim1, although expressed in all V3 INs, exclusively regulated the dorsal clustering and electrophysiological diversification of early-born, but not late-born, V3 INs, which indicates that neurogenesis timing may enable newborn V3 INs to interact with different postmitotic differentiation pathways. Thus, our work demonstrates neurogenesis timing as a developmental mechanism underlying the postmitotic differentiation of V3 INs into distinct subpopulation assemblies.SIGNIFICANCE STATEMENT Interneuron (IN) diversity empowers the spinal cord with the computation flexibility required to perform appropriate sensorimotor control. As such, uncovering the developmental logic guiding spinal IN diversity is fundamental to understanding the development of movement. In our current work, through a focus on the cardinal spinal V3 IN population, we investigated the role of neurogenesis timing on IN diversity. We uncovered that V3 INs are organized into early-born [embryonic day 9.5 (E9.5) to E10.5] or late-born (E11.5-E12.5) neurogenic waves, where late-born V3 INs display increasingly restricted subpopulation fates. Next, to better understand the consequences of V3 neurogenesis timing, we investigated the time-dependent functions of the Sim1 transcription factor, which is expressed in postmitotic V3 INs. Interestingly, Sim1 exclusively regulated the diversification of early-born, but not late-born, V3 INs. Thus, our current work indicates neurogenesis timing can modulate the functions of early postmitotic transcription factors and, thus, subpopulation fate specifications.
Collapse
|
27
|
Cañizares MA, Albors AR, Singer G, Suttie N, Gorkic M, Felts P, Storey KG. Multiple steps characterise ventricular layer attrition to form the ependymal cell lining of the adult mouse spinal cord central canal. J Anat 2019; 236:334-350. [PMID: 31670387 PMCID: PMC6956438 DOI: 10.1111/joa.13094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2019] [Indexed: 12/22/2022] Open
Abstract
The ventricular layer of the spinal cord is remodelled during embryonic development and ultimately forms the ependymal cell lining of the adult central canal, which retains neural stem cell potential. This anatomical transformation involves the process of dorsal collapse; however, accompanying changes in tissue organisation and cell behaviour as well as the precise origin of cells contributing to the central canal are not well understood. Here, we describe sequential localised cell rearrangements which accompany the gradual attrition of the spinal cord ventricular layer during development. This includes local breakdown of the pseudostratified organisation of the dorsal ventricular layer prefiguring dorsal collapse and evidence for a new phenomenon, ventral dissociation, during which the ventral‐most floor plate cells separate from a subset that are retained around the central canal. Using cell proliferation markers and cell‐cycle reporter mice, we further show that following dorsal collapse, ventricular layer attrition involves an overall reduction in cell proliferation, characterised by an intriguing increase in the percentage of cells in G1/S. In contrast, programmed cell death does not contribute to ventricular layer remodelling. By analysing transcript and protein expression patterns associated with key signalling pathways, we provide evidence for a gradual decline in ventral sonic hedgehog activity and an accompanying ventral expansion of initial dorsal bone morphogenetic protein signalling, which comes to dominate the forming the central canal lining. This study identifies multiple steps that may contribute to spinal cord ventricular layer attrition and adds to increasing evidence for the heterogeneous origin of the spinal cord ependymal cell population, which includes cells from the floor plate and the roof plate as well as ventral progenitor domains.
Collapse
Affiliation(s)
- Marco A Cañizares
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Aida Rodrigo Albors
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Gail Singer
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nicolle Suttie
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Metka Gorkic
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Paul Felts
- Centre for Anatomy & Human Identification, University of Dundee, Dundee, UK
| | - Kate G Storey
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
28
|
A GABAergic Maf-expressing interneuron subset regulates the speed of locomotion in Drosophila. Nat Commun 2019; 10:4796. [PMID: 31641138 PMCID: PMC6805931 DOI: 10.1038/s41467-019-12693-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Interneurons (INs) coordinate motoneuron activity to generate appropriate patterns of muscle contractions, providing animals with the ability to adjust their body posture and to move over a range of speeds. In Drosophila larvae several IN subtypes have been morphologically described and their function well documented. However, the general lack of molecular characterization of those INs prevents the identification of evolutionary counterparts in other animals, limiting our understanding of the principles underlying neuronal circuit organization and function. Here we characterize a restricted subset of neurons in the nerve cord expressing the Maf transcription factor Traffic Jam (TJ). We found that TJ+ neurons are highly diverse and selective activation of these different subtypes disrupts larval body posture and induces specific locomotor behaviors. Finally, we show that a small subset of TJ+ GABAergic INs, singled out by the expression of a unique transcription factors code, controls larval crawling speed. Spinal interneurons (IN) coordinate motoneuron activity to modulate locomotion behavior. Here, the authors characterize a subset of IN subtypes expressing the Maf transcription factor Traffic Jam (TJ) and report the distinct effects of their activation on body posture and locomotion in Drosophila larvae.
Collapse
|
29
|
Di Bella DJ, Carcagno AL, Bartolomeu ML, Pardi MB, Löhr H, Siegel N, Hammerschmidt M, Marín-Burgin A, Lanuza GM. Ascl1 Balances Neuronal versus Ependymal Fate in the Spinal Cord Central Canal. Cell Rep 2019; 28:2264-2274.e3. [DOI: 10.1016/j.celrep.2019.07.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 07/23/2019] [Indexed: 01/04/2023] Open
|
30
|
Callahan RA, Roberts R, Sengupta M, Kimura Y, Higashijima SI, Bagnall MW. Spinal V2b neurons reveal a role for ipsilateral inhibition in speed control. eLife 2019; 8:e47837. [PMID: 31355747 PMCID: PMC6701946 DOI: 10.7554/elife.47837] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022] Open
Abstract
The spinal cord contains a diverse array of interneurons that govern motor output. Traditionally, models of spinal circuits have emphasized the role of inhibition in enforcing reciprocal alternation between left and right sides or flexors and extensors. However, recent work has shown that inhibition also increases coincident with excitation during contraction. Here, using larval zebrafish, we investigate the V2b (Gata3+) class of neurons, which contribute to flexor-extensor alternation but are otherwise poorly understood. Using newly generated transgenic lines we define two stable subclasses with distinct neurotransmitter and morphological properties. These V2b subclasses synapse directly onto motor neurons with differential targeting to speed-specific circuits. In vivo, optogenetic manipulation of V2b activity modulates locomotor frequency: suppressing V2b neurons elicits faster locomotion, whereas activating V2b neurons slows locomotion. We conclude that V2b neurons serve as a brake on axial motor circuits. Together, these results indicate a role for ipsilateral inhibition in speed control.
Collapse
Affiliation(s)
- Rebecca A Callahan
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Richard Roberts
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | - Mohini Sengupta
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| | | | | | - Martha W Bagnall
- Department of NeuroscienceWashington University School of MedicineSt LouisUnited States
| |
Collapse
|
31
|
Alibardi L. Cerebrospinal fluid-contacting neurons in the regenerating spinal cord of lizards and amphibians are likely mechanoreceptors. J Morphol 2019; 280:1292-1308. [PMID: 31233249 DOI: 10.1002/jmor.21031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 11/11/2022]
Abstract
During spinal cord (SC) regeneration in the tail of amphibians and lizards, small neurons in contact with the central canal and cerebrospinal fluid (CSF) are formed. The present review summarizes previous and recent studies that have characterized most of these neurons as cerebrospinal fluid-contacting neurons (CSFCNs), especially in the regenerating caudal SC of lizards. CSFCNs form tufts of stereocilia immersed in the CSF, secrete exosomes, and are often in contact with a secreted protein-rod indicated as Reissner fiber. Ultrastructural, autoradiographic, immunohistochemical, and behavioral studies strongly indicate that most of these cells are mechanoreceptors that differentiate from ependymal cells within 20-30 days after SC amputation. Numerous CSFCNs are gamma amino-butyric acid (GABA)-ergic, uptake amino acids, receive few synaptic boutons, and contain neurofilaments, fibroblast growth factor (FGFs), and other signaling proteins, the latter likely secreted into the central canal. Similar neurons are formed in the SC of the tuatara (Sphenodon puctatus), anurans, and urodeles during tail regeneration. In lizard, most of their projection remains in the SC close to the regenerated tail, but they form synapses with neurons that receive descending nerves from the brainstem, including vestibular nuclei. CSFCNs, aside a possible neurosecretory activity, might sense liquor movements for maintenance of balance, a role that is supported from recent studies on other caudate vertebrates. The regeneration of these cells also in the nervous system of other vertebrates remains unknown.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, Department of Biology, University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Song SY, Li YH, Bao CY, Li Y, Yin PC, Hong J, Li WL, Shi Y, Zhang LC. Stereotaxic Coordinates and Morphological Characterization of a Unique Nucleus (CSF-Contacting Nucleus) in Rat. Front Neuroanat 2019; 13:47. [PMID: 31143102 PMCID: PMC6520827 DOI: 10.3389/fnana.2019.00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
A unique nucleus, the cerebrospinal fluid (CSF)-contacting nucleus, has recently been recognized in the brain parenchyma. The outstanding feature of this nucleus is that the neural somas are located in the parenchyma, but their processes stretch into the CSF, implying that it may be a key structure bridging the nervous and body fluids-regulating systems and may play a pivotal role in modulating physiological activities. However, the true biological significance of this nucleus needs to be uncovered. The morphology of a nucleus is one of the most important parameters for neuroscience studies. For this reason, a common experimental animal, Sprague-Dawley (SD) rats, was chosen. The position, adjacent structures, neuronal distribution, size, three-dimensional reconstruction, and core coordinates of the CSF-contacting nucleus in SD rats of different weights (90–400 g) were illustrated for the first time. Furthermore, the formulas for calculating the core coordinates of the CSF-contacting nucleus in rats of different weights were revealed. Finally, the possible biological functions uncovered by past research are reviewed in this paper. This study provides an indispensable methodology and a significant reference for researchers interested in this unique nucleus.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Peng-Cheng Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Wan-Lin Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yuan Shi
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
33
|
Ghazale H, Ripoll C, Leventoux N, Jacob L, Azar S, Mamaeva D, Glasson Y, Calvo CF, Thomas JL, Meneceur S, Lallemand Y, Rigau V, Perrin FE, Noristani HN, Rocamonde B, Huillard E, Bauchet L, Hugnot JP. RNA Profiling of the Human and Mouse Spinal Cord Stem Cell Niches Reveals an Embryonic-like Regionalization with MSX1 + Roof-Plate-Derived Cells. Stem Cell Reports 2019; 12:1159-1177. [PMID: 31031189 PMCID: PMC6524006 DOI: 10.1016/j.stemcr.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Anamniotes, rodents, and young humans maintain neural stem cells in the ependymal zone (EZ) around the central canal of the spinal cord, representing a possible endogenous source for repair in mammalian lesions. Cell diversity and genes specific for this region are ill defined. A cellular and molecular resource is provided here for the mouse and human EZ based on RNA profiling, immunostaining, and fluorescent transgenic mice. This uncovered the conserved expression of 1,200 genes including 120 transcription factors. Unexpectedly the EZ maintains an embryonic-like dorsal-ventral pattern of expression of spinal cord developmental transcription factors (ARX, FOXA2, MSX1, and PAX6). In mice, dorsal and ventral EZ cells express Vegfr3 and are derived from the embryonic roof and floor plates. The dorsal EZ expresses a high level of Bmp6 and Gdf10 genes and harbors a subpopulation of radial quiescent cells expressing MSX1 and ID4 transcription factors. A molecular resource for the human and mouse spinal cord ependymal zone Identification of 120 transcription factors in the human and mouse ependymal zone Embryonic-like organization of the adult spinal cord ependymal zone Dorsal ependymal cells expressing Msx1 are derived from the embryonic roof plate
Collapse
Affiliation(s)
- Hussein Ghazale
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Chantal Ripoll
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Nicolas Leventoux
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Laurent Jacob
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Safa Azar
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Daria Mamaeva
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Yael Glasson
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Charles-Felix Calvo
- Neuroglial Interactions in Cerebral Physiopathology. CIRB, CNRS UMR 7241/INSERM U1050 Collège de France 11, Place Marcelin Berthelot, 75005 Paris, France
| | - Jean-Leon Thomas
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France; Department of Neurology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Sarah Meneceur
- Institut Pasteur, Department of Developmental and Stem Cell Biology, UMR3738 CNRS, Paris 75015, France
| | - Yvan Lallemand
- Institut Pasteur, Department of Developmental and Stem Cell Biology, UMR3738 CNRS, Paris 75015, France
| | - Valérie Rigau
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France; CHU of Montpellier, Hopital Gui de Chaulliac, Pathology Department, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Florence E Perrin
- University of Montpellier, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Harun N Noristani
- University of Montpellier, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Brenda Rocamonde
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Emmanuelle Huillard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, 75013, Paris, France
| | - Luc Bauchet
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France; CHU of Montpellier, Hopital Gui de Chaulliac, Neurosurgery Department, 80 Avenue Augustin Fliche, 34091 Montpellier, France
| | - Jean-Philippe Hugnot
- INSERM U1051, INM, Hopital Saint Eloi, 80 Avenue Augustin Fliche, 34091 Montpellier, France; University of Montpellier, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
34
|
Regulation of the apical extension morphogenesis tunes the mechanosensory response of microvilliated neurons. PLoS Biol 2019; 17:e3000235. [PMID: 31002663 PMCID: PMC6493769 DOI: 10.1371/journal.pbio.3000235] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/01/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple types of microvilliated sensory cells exhibit an apical extension thought to be instrumental in the detection of sensory cues. The investigation of the mechanisms underlying morphogenesis of sensory apparatus is critical to understand the biology of sensation. Most of what we currently know comes from the study of the hair bundle of the inner ear sensory cells, but morphogenesis and function of other sensory microvilliated apical extensions remain poorly understood. We focused on spinal sensory neurons that contact the cerebrospinal fluid (CSF) through the projection of a microvilliated apical process in the central canal, referred to as cerebrospinal fluid-contacting neurons (CSF-cNs). CSF-cNs respond to pH and osmolarity changes as well as mechanical stimuli associated with changes of flow and tail bending. In vivo time-lapse imaging in zebrafish embryos revealed that CSF-cNs are atypical neurons that do not lose their apical attachment and form a ring of actin at the apical junctional complexes (AJCs) that they retain during differentiation. We show that the actin-based protrusions constituting the microvilliated apical extension arise and elongate from this ring of actin, and we identify candidate molecular factors underlying every step of CSF-cN morphogenesis. We demonstrate that Crumbs 1 (Crb1), Myosin 3b (Myo3b), and Espin orchestrate the morphogenesis of CSF-cN apical extension. Using calcium imaging in crb1 and espin mutants, we further show that the size of the apical extension modulates the amplitude of CSF-cN sensory response to bending of the spinal cord. Based on our results, we propose that the apical actin ring could be a common site of initiation of actin-based protrusions in microvilliated sensory cells. Furthermore, our work provides a set of actors underlying actin-based protrusion elongation shared by different sensory cell types and highlights the critical role of the apical extension shape in sensory detection. A study of differentiating spinal sensory neurons in vivo uncovers critical factors required for the morphogenesis of sensory microvilli and reveals fine modulation of mechanosensory responses by microvillus length.
Collapse
|
35
|
|
36
|
Becker CG, Becker T, Hugnot JP. The spinal ependymal zone as a source of endogenous repair cells across vertebrates. Prog Neurobiol 2018; 170:67-80. [DOI: 10.1016/j.pneurobio.2018.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
|
37
|
Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat Commun 2018; 9:3804. [PMID: 30228263 PMCID: PMC6143598 DOI: 10.1038/s41467-018-06225-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Defects in cerebrospinal fluid (CSF) flow may contribute to idiopathic scoliosis. However, the mechanisms underlying detection of CSF flow in the central canal of the spinal cord are unknown. Here we demonstrate that CSF flows bidirectionally along the antero-posterior axis in the central canal of zebrafish embryos. In the cfap298tm304 mutant, reduction of cilia motility slows transport posteriorly down the central canal and abolishes spontaneous activity of CSF-contacting neurons (CSF-cNs). Loss of the sensory Pkd2l1 channel nearly abolishes CSF-cN calcium activity and single channel opening. Recording from isolated CSF-cNs in vitro, we show that CSF-cNs are mechanosensory and require Pkd2l1 to respond to pressure. Additionally, adult pkd2l1 mutant zebrafish develop an exaggerated spine curvature, reminiscent of kyphosis in humans. These results indicate that CSF-cNs are mechanosensory cells whose Pkd2l1-driven spontaneous activity reflects CSF flow in vivo. Furthermore, Pkd2l1 in CSF-cNs contributes to maintenance of natural curvature of the spine. Alteration of cerebrospinal fluid (CSF) flow and cilia defects are clinically associated with idiopathic scoliosis. This study shows that transient receptor potential channel Pkd2l1 is required for mechanosensory function of neurons detecting CSF flow and normal spine curvature development in zebrafish.
Collapse
|
38
|
Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, Häring M, Braun E, Borm LE, La Manno G, Codeluppi S, Furlan A, Lee K, Skene N, Harris KD, Hjerling-Leffler J, Arenas E, Ernfors P, Marklund U, Linnarsson S. Molecular Architecture of the Mouse Nervous System. Cell 2018; 174:999-1014.e22. [PMID: 30096314 PMCID: PMC6086934 DOI: 10.1016/j.cell.2018.06.021] [Citation(s) in RCA: 1706] [Impact Index Per Article: 243.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 12/14/2022]
Abstract
The mammalian nervous system executes complex behaviors controlled by specialized, precisely positioned, and interacting cell types. Here, we used RNA sequencing of half a million single cells to create a detailed census of cell types in the mouse nervous system. We mapped cell types spatially and derived a hierarchical, data-driven taxonomy. Neurons were the most diverse and were grouped by developmental anatomical units and by the expression of neurotransmitters and neuropeptides. Neuronal diversity was driven by genes encoding cell identity, synaptic connectivity, neurotransmission, and membrane conductance. We discovered seven distinct, regionally restricted astrocyte types that obeyed developmental boundaries and correlated with the spatial distribution of key glutamate and glycine neurotransmitters. In contrast, oligodendrocytes showed a loss of regional identity followed by a secondary diversification. The resource presented here lays a solid foundation for understanding the molecular architecture of the mammalian nervous system and enables genetic manipulation of specific cell types.
Collapse
Affiliation(s)
- Amit Zeisel
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Hannah Hochgerner
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Peter Lönnerberg
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Anna Johnsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Fatima Memic
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Job van der Zwan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Emelie Braun
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Lars E Borm
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Gioele La Manno
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Simone Codeluppi
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Alessandro Furlan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Kawai Lee
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Nathan Skene
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | | | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Ulrika Marklund
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden.
| |
Collapse
|
39
|
Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii. Proc Natl Acad Sci U S A 2018; 114:5878-5885. [PMID: 28584082 DOI: 10.1073/pnas.1610602114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal. We investigate three-segmented young worms of the marine annelid Platynereis dumerilii, with a rich diversity of differentiated cells present in relatively low number. Starting from whole-mount expression images for close to 100 neural specification and differentiation genes, our atlas identifies and molecularly characterizes 605 bilateral pairs of neurons at specific locations in the ventral nerve cord. Among these pairs, we identify sets of neurons expressing similar combinations of transcription factors, located at spatially coherent anterior-posterior, dorsal-ventral, and medial-lateral coordinates that we interpret as cell types. Comparison with motor and interneuron types in the vertebrate neural tube indicates conserved combinations, for example, of cell types cospecified by Gata1/2/3 and Tal transcription factors. These include V2b interneurons and the central spinal fluid-contacting Kolmer-Agduhr cells in the vertebrates, and several neuron types in the intermediate ventral ganglionic mass in the annelid. We propose that Kolmer-Agduhr cell-like mechanosensory neurons formed part of the mucociliary sole in protostome-deuterostome ancestors and diversified independently into several neuron types in annelid and vertebrate descendants.
Collapse
|
40
|
Spinal Cord Stem Cells In Their Microenvironment: The Ependyma as a Stem Cell Niche. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:55-79. [PMID: 29204829 DOI: 10.1007/978-3-319-69194-7_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.
Collapse
|
41
|
Edwards-Faret G, Cebrián-Silla A, Méndez-Olivos EE, González-Pinto K, García-Verdugo JM, Larraín J. Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis. J Comp Neurol 2018; 526:1712-1732. [PMID: 29603210 DOI: 10.1002/cne.24441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023]
Abstract
Studying the cellular composition and morphological changes of cells lining the central canal during Xenopus laevis metamorphosis could contribute to understand postnatal development and spinal cord regeneration. Here we report the analysis of central canal cells at different stages during metamorphosis using immunofluorescence for protein markers expression, transmission and scanning electron microscopy and cell proliferation assays. The central canal was regionalized according to expression of glial markers, ultrastructure, and proliferation in dorsal, lateral, and ventral domains with differences between larvae and froglets. In regenerative larvae, all cell types were uniciliated, have a radial morphology, and elongated nuclei with lax chromatin, resembling radial glial cells. Important differences in cells of nonregenerative froglets were observed, although uniciliated cells were found, the most abundant cells had multicilia and revealed extensive changes in the maturation and differentiation state. The majority of dividing cells in larvae corresponded to uniciliated cells at dorsal and lateral domains in a cervical-lumbar gradient, correlating with undifferentiated features. Neurons contacting the lumen of the central canal were detected in both stages and revealed extensive changes in the maturation and differentiation state. However, in froglets a very low proportion of cells incorporate 5-ethynyl-2'-deoxyuridine (EdU), associated with the differentiated profile and with the increase of multiciliated cells. Our work showed progressive changes in the cell types lining the central canal of Xenopus laevis spinal cord which are correlated with the regenerative capacities.
Collapse
Affiliation(s)
- Gabriela Edwards-Faret
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Arantxa Cebrián-Silla
- Laboratorio de Neurobiologia Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, CIBERNED, Valencia, Spain
| | - Emilio E Méndez-Olivos
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Karina González-Pinto
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile.,Universidad Arturo Prat del Estado de Chile, Iquique, Chile
| | - José Manuel García-Verdugo
- Laboratorio de Neurobiologia Comparada, Instituto Cavanilles, Universidad de Valencia, Valencia 46980, CIBERNED, Valencia, Spain
| | - Juan Larraín
- Center for Aging and Regeneration, Faculty of Biological Sciences, P. Universidad Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, Santiago, Chile
| |
Collapse
|
42
|
Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018; 360:176-182. [PMID: 29545511 PMCID: PMC7643870 DOI: 10.1126/science.aam8999] [Citation(s) in RCA: 888] [Impact Index Per Article: 126.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 09/30/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
To facilitate scalable profiling of single cells, we developed split-pool ligation-based transcriptome sequencing (SPLiT-seq), a single-cell RNA-seq (scRNA-seq) method that labels the cellular origin of RNA through combinatorial barcoding. SPLiT-seq is compatible with fixed cells or nuclei, allows efficient sample multiplexing, and requires no customized equipment. We used SPLiT-seq to analyze 156,049 single-nucleus transcriptomes from postnatal day 2 and 11 mouse brains and spinal cords. More than 100 cell types were identified, with gene expression patterns corresponding to cellular function, regional specificity, and stage of differentiation. Pseudotime analysis revealed transcriptional programs driving four developmental lineages, providing a snapshot of early postnatal development in the murine central nervous system. SPLiT-seq provides a path toward comprehensive single-cell transcriptomic analysis of other similarly complex multicellular systems.
Collapse
Affiliation(s)
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard A Muscat
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Anna Kuchina
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Paul Sample
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - David J Peeler
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sumit Mukherjee
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Wei Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | | | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
43
|
Andrzejczuk LA, Banerjee S, England SJ, Voufo C, Kamara K, Lewis KE. Tal1, Gata2a, and Gata3 Have Distinct Functions in the Development of V2b and Cerebrospinal Fluid-Contacting KA Spinal Neurons. Front Neurosci 2018; 12:170. [PMID: 29651232 PMCID: PMC5884927 DOI: 10.3389/fnins.2018.00170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
Vertebrate locomotor circuitry contains distinct classes of ventral spinal cord neurons which each have particular functional properties. While we know some of the genes expressed by each of these cell types, we do not yet know how several of these neurons are specified. Here, we investigate the functions of Tal1, Gata2a, and Gata3 transcription factors in the development of two of these populations of neurons with important roles in locomotor circuitry: V2b neurons and cerebrospinal fluid-contacting Kolmer-Agduhr (KA) neurons (also called CSF-cNs). Our data provide the first demonstration, in any vertebrate, that Tal1 and Gata3 are required for correct development of KA and V2b neurons, respectively. We also uncover differences in the genetic regulation of V2b cell development in zebrafish compared to mouse. In addition, we demonstrate that Sox1a and Sox1b are expressed by KA and V2b neurons in zebrafish, which differs from mouse, where Sox1 is expressed by V2c neurons. KA neurons can be divided into ventral KA″ neurons and more dorsal KA′ neurons. Consistent with previous morpholino experiments, our mutant data suggest that Tal1 and Gata3 are required in KA′ but not KA″ cells, whereas Gata2a is required in KA″ but not KA′ cells, even though both of these cell types co-express all three of these transcription factors. In gata2a mutants, cells in the KA″ region of the spinal cord lose expression of most KA″ genes and there is an increase in the number of cells expressing V3 genes, suggesting that Gata2a is required to specify KA″ and repress V3 fates in cells that normally develop into KA″ neurons. On the other hand, our data suggest that Gata3 and Tal1 are both required for KA′ neurons to differentiate from progenitor cells. In the KA′ region of these mutants, cells no longer express KA′ markers and there is an increase in the number of mitotically-active cells. Finally, our data demonstrate that all three of these transcription factors are required for later stages of V2b neuron differentiation and that Gata2a and Tal1 have different functions in V2b development in zebrafish than in mouse.
Collapse
Affiliation(s)
| | - Santanu Banerjee
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | | | - Christiane Voufo
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Kadiah Kamara
- Department of Biology, Syracuse University, Syracuse, NY, United States
| | - Katharine E Lewis
- Department of Biology, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
44
|
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. J Neurosci 2017; 37:10835-10841. [PMID: 29118212 DOI: 10.1523/jneurosci.1829-17.2017] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.
Collapse
|
45
|
Gilbert EAB, Vickaryous MK. Neural stem/progenitor cells are activated during tail regeneration in the leopard gecko (Eublepharis macularius). J Comp Neurol 2017; 526:285-309. [PMID: 28980312 DOI: 10.1002/cne.24335] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 09/16/2017] [Accepted: 09/17/2017] [Indexed: 12/15/2022]
Abstract
As for many lizards, the leopard gecko (Eublepharis macularius) can self-detach its tail to avoid predation and then regenerate a replacement. The replacement tail includes a regenerated spinal cord with a simple morphology: an ependymal layer surrounded by nerve tracts. We hypothesized that cells within the ependymal layer of the original spinal cord include populations of neural stem/progenitor cells (NSPCs) that contribute to the regenerated spinal cord. Prior to tail loss, we performed a bromodeoxyuridine pulse-chase experiment and found that a subset of ependymal layer cells (ELCs) were label-retaining after a 140-day chase period. Next, we conducted a detailed spatiotemporal characterization of these cells before, during, and after tail regeneration. Our findings show that SOX2, a hallmark protein of NSPCs, is constitutively expressed by virtually all ELCs before, during, and after regeneration. We also found that during regeneration, ELCs express an expanded panel of NSPC and lineage-restricted progenitor cell markers, including MSI-1, SOX9, and TUJ1. Using electron microscopy, we determined that multiciliated, uniciliated, and biciliated cells are present, although the latter was only observed in regenerated spinal cords. Our results demonstrate that cells within the ependymal layer of the original, regenerating and fully regenerate spinal cord represent a heterogeneous population. These include radial glia comparable to Type E and Type B cells, and a neuronal-like population of cerebrospinal fluid-contacting cells. We propose that spinal cord regeneration in geckos represents a truncation of the restorative trajectory observed in some urodeles and teleosts, resulting in the formation of a structurally distinct replacement.
Collapse
Affiliation(s)
- E A B Gilbert
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - M K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
46
|
Pasquini JM, Barrantes FJ, Quintá HR. Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1. J Comp Neurol 2017; 525:2861-2875. [DOI: 10.1002/cne.24243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Juana M. Pasquini
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| | | | - Héctor R. Quintá
- Departamento de Química Biológica; Instituto de Química y Físico Química Biológica, Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
47
|
The dual developmental origin of spinal cerebrospinal fluid-contacting neurons gives rise to distinct functional subtypes. Sci Rep 2017; 7:719. [PMID: 28389647 PMCID: PMC5428266 DOI: 10.1038/s41598-017-00350-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/30/2017] [Indexed: 11/30/2022] Open
Abstract
Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks. In the spinal cord, these GABAergic neurons expressing the PKD2L1 channel extend an apical extension into the CSF and an ascending axon in the spinal cord. In zebrafish and mouse spinal CSF-cNs originate from two distinct progenitor domains characterized by distinct cascades of transcription factors. Here we ask whether these neurons with different developmental origins differentiate into cells types with different functional properties. We show in zebrafish larva that the expression of specific markers, the morphology of the apical extension and axonal projections, as well as the neuronal targets contacted by CSF-cN axons, distinguish the two CSF-cN subtypes. Altogether our study demonstrates that the developmental origins of spinal CSF-cNs give rise to two distinct functional populations of sensory neurons. This work opens novel avenues to understand how these subtypes may carry distinct functions related to development of the spinal cord, locomotion and posture.
Collapse
|
48
|
England SJ, Campbell PC, Banerjee S, Swanson AJ, Lewis KE. Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes. Front Cell Dev Biol 2017; 5:5. [PMID: 28271061 PMCID: PMC5318412 DOI: 10.3389/fcell.2017.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left–right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For example, PKD1 forms a complex with PKD2 and mutations in either of these proteins cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete family of pkd genes in zebrafish and other teleosts. We describe the genomic locations and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole genome duplication that occurred at the base of the teleosts. However, in contrast to mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes, suggesting that these have been lost in the teleost lineage. In addition, teleost, and holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be in the process of being lost in the ray-finned fish lineage. We also provide the first comprehensive description of the expression of zebrafish pkd genes during development. In most structures we detect expression of one pkd1-like gene and one pkd2-like gene, consistent with these genes encoding a heteromeric protein complex. For example, we found that pkd2 and pkd1l1 are expressed in Kupffer's vesicle and pkd1 and pkd2 are expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b and pkd2 in the floor-plate. Interestingly, and in contrast to mouse, we observe expression of all seven pkd genes in regions that may correspond to taste receptors. Taken together, these results provide a crucial catalog of pkd genes in an important model system for elucidating cell and developmental processes and modeling human diseases and the most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | | |
Collapse
|
49
|
Alexovič Matiašová A, Ševc J, Tomori Z, Gombalová Z, Gedrová Š, Daxnerová Z. Quantitative analyses of cellularity and proliferative activity reveals the dynamics of the central canal lining during postnatal development of the rat. J Comp Neurol 2017; 525:693-707. [PMID: 27503700 DOI: 10.1002/cne.24091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 07/12/2016] [Accepted: 08/03/2016] [Indexed: 11/07/2022]
Abstract
According to previous opinion, the derivation of neurons and glia from the central canal (CC) lining of the spinal cord in rodents should occur in the embryonic period. Reports of the mitotic activity observed in the lining during postnatal development have often been contradictory, and proliferation was ascribed to the generation of ependymocytes, which are necessary for the elongation of CC walls. Our study quantifies the intensity of proliferation and determines the cellularity of the CC lining in reference to lumbar spinal segment L4 during the postnatal development of rats. The presence of dividing cells peaks in the CC lining on postnatal day 8 (P8), with division occurring in 19.2% ± 3.2% of cells. In adult rats, 3.6% ± 0.9% of cells still proliferate, whereas, in mice, 10.3% ± 2.3% of cells at P8 and only 0.6% ± 0.2% of cells in the CC lining in adulthood are proliferating. In the rat, the length of the cell cycle increases from 100.3 ± 35.7 hours at P1 to 401.4 ± 80.6 hours at P43, with a sudden extension between P15 and P22. Despite the intensive proliferation, the total cellularity of the CC lining at the L4 spinal segment significantly descended in from P8 to P15. According to our calculations, the estimated cellularity was significantly higher compared with the measured cellularity of the CC lining at P15. Our results indicate that CC lining serves as a source of cells beyond ependymal cells during the first postnatal weeks of the rat. J. Comp. Neurol. 525:693-707, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Alexovič Matiašová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 04001, Košice, Slovak Republic
| | - Juraj Ševc
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 04001, Košice, Slovak Republic
| | - Zoltán Tomori
- Institute of Experimental Physics, Slovak Academy of Sciences, 04001, Košice, Slovak Republic
| | - Zuzana Gombalová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 04001, Košice, Slovak Republic
| | - Štefánia Gedrová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 04001, Košice, Slovak Republic
| | - Zuzana Daxnerová
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 04001, Košice, Slovak Republic
| |
Collapse
|
50
|
Orts-Del’Immagine A, Trouslard J, Airault C, Hugnot JP, Cordier B, Doan T, Kastner A, Wanaverbecq N. Postnatal maturation of mouse medullo-spinal cerebrospinal fluid-contacting neurons. Neuroscience 2017; 343:39-54. [DOI: 10.1016/j.neuroscience.2016.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 10/10/2016] [Accepted: 11/21/2016] [Indexed: 11/27/2022]
|