1
|
Qin X, Lin H, Cao Y, Wu RSS, Lai KP, Kong RYC. Embryo developmental toxicity in marine medaka (Oryzias melastigma) due to parental and embryonic 17α-ethinylestradiol exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160594. [PMID: 36455722 DOI: 10.1016/j.scitotenv.2022.160594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The synthetic estrogen 17α-ethinylestradiol (EE2) is a common component of hormone therapy and oral contraceptives and has been widely used for nearly 60 years. Numerous studies have shown that exposure to EE2 can affect embryonic development in a number of fish species. The effects of parental and embryonic EE2 exposure on embryo developmental toxicity and the underlying molecular mechanisms, however, have rarely been examined. In this study, embryos collected from parental EE2-exposed adult fish were examined to assess EE2-induecd toxicity during embryo development. The rate of embryo development including heart rate, hatching rate, and larval locomotion were measured to assess embryo developmental toxicity. The embryonic transcriptome was used to delineate the related developmental toxicity pathways. Our results suggest that parental and embryonic EE2 exposure resulted in growth retardation including a reduction in embryo heart rate, a delay in the appearance eye pigmentation, decreased hatching rate and impaired larval locomotion. In addition, gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Ingenuity Pathway Analysis (IPA) of transcriptome revealed that these impairments are controlled by estrogen receptor and related to eye structure, neuronal and synaptic structure, and behaviour. The key factors identified, including PRKAA2, APOB, EPHB2, OXTR, NR2E3, and POU4F2, could serve as biomarkers for assessing EE2-induced embryo developmental toxicity. For the first time, our results show that eye pigmentation is a potentially sensitive marker of EE2-induced embryo developmental toxicity.
Collapse
Affiliation(s)
- Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong
| | - Huiju Lin
- Department of Chemistry, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Yaru Cao
- Department of Chemistry, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
2
|
Vetrivel S, Truong DJJ, Wurst W, Graw J, Giesert F. Identification of ocular regulatory functions of core histone variant H3.2. Exp Eye Res 2023; 226:109346. [PMID: 36529279 DOI: 10.1016/j.exer.2022.109346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The posttranscriptional modifications (PTM) of the Histone H3 family play an important role in ocular system differentiation. However, there has been no study on the nature of specific Histone H3 subtype carrying these modifications. Fortuitously, we had previously identified a dominant small-eye mutant Aey69 mouse with a mutation in the H3.2 encoding Hist2h3c1 gene (Vetrivel et al., 2019). In continuation, in the present study, the role of Histone H3.2 with relation to the microphtalmic Aey69 has been elaborated. Foremost, a transgenic mouse line expressing the fusion protein H3.2-GFP was generated using Crispr/Cas9. The approach was intended to confer a unique tag to the Hist2h3c1 gene which is similar in sequence and encoded protein structure to other histones. The GFP tag was then used for ChIP Seq analysis of the genes regulated by H3.2. The approach revealed ocular specific H3.2 targets including Ephrin family genes. Altered enrichment of H3.2 was found in the mutant Aey69 mouse, specifically around the ligand Efna5 and the receptor Ephb2. The effect of this altered enrichment on Ephrin signaling was further analysed by QPCR and immunohistochemistry. This study identifies Hist2h3c1 encoded H3.2 as an important epigenetic player in ocular development. By binding to specific regions of ocular developmental factors Histone H3.2 facilitates the function of these genes for successful early ocular development.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Endocrinology, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-University, Munich, Germany.
| | - Dong-Jiunn Jeffery Truong
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764, Neuherberg, Germany.
| |
Collapse
|
3
|
Diacou R, Nandigrami P, Fiser A, Liu W, Ashery-Padan R, Cvekl A. Cell fate decisions, transcription factors and signaling during early retinal development. Prog Retin Eye Res 2022; 91:101093. [PMID: 35817658 PMCID: PMC9669153 DOI: 10.1016/j.preteyeres.2022.101093] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/30/2022]
Abstract
The development of the vertebrate eyes is a complex process starting from anterior-posterior and dorso-ventral patterning of the anterior neural tube, resulting in the formation of the eye field. Symmetrical separation of the eye field at the anterior neural plate is followed by two symmetrical evaginations to generate a pair of optic vesicles. Next, reciprocal invagination of the optic vesicles with surface ectoderm-derived lens placodes generates double-layered optic cups. The inner and outer layers of the optic cups develop into the neural retina and retinal pigment epithelium (RPE), respectively. In vitro produced retinal tissues, called retinal organoids, are formed from human pluripotent stem cells, mimicking major steps of retinal differentiation in vivo. This review article summarizes recent progress in our understanding of early eye development, focusing on the formation the eye field, optic vesicles, and early optic cups. Recent single-cell transcriptomic studies are integrated with classical in vivo genetic and functional studies to uncover a range of cellular mechanisms underlying early eye development. The functions of signal transduction pathways and lineage-specific DNA-binding transcription factors are dissected to explain cell-specific regulatory mechanisms underlying cell fate determination during early eye development. The functions of homeodomain (HD) transcription factors Otx2, Pax6, Lhx2, Six3 and Six6, which are required for early eye development, are discussed in detail. Comprehensive understanding of the mechanisms of early eye development provides insight into the molecular and cellular basis of developmental ocular anomalies, such as optic cup coloboma. Lastly, modeling human development and inherited retinal diseases using stem cell-derived retinal organoids generates opportunities to discover novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Raven Diacou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Prithviraj Nandigrami
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ruth Ashery-Padan
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ales Cvekl
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
4
|
Fox SC, Widen SA, Asai-Coakwell M, Havrylov S, Benson M, Prichard LB, Baddam P, Graf D, Lehmann OJ, Waskiewicz AJ. BMP3 is a novel locus involved in the causality of ocular coloboma. Hum Genet 2022; 141:1385-1407. [PMID: 35089417 DOI: 10.1007/s00439-022-02430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022]
Abstract
Coloboma, a congenital disorder characterized by gaps in ocular tissues, is caused when the choroid fissure fails to close during embryonic development. Several loci have been associated with coloboma, but these represent less than 40% of those that are involved with this disease. Here, we describe a novel coloboma-causing locus, BMP3. Whole exome sequencing and Sanger sequencing of patients with coloboma identified three variants in BMP3, two of which are predicted to be disease causing. Consistent with this, bmp3 mutant zebrafish have aberrant fissure closure. bmp3 is expressed in the ventral head mesenchyme and regulates phosphorylated Smad3 in a population of cells adjacent to the choroid fissure. Furthermore, mutations in bmp3 sensitize embryos to Smad3 inhibitor treatment resulting in open choroid fissures. Micro CT scans and Alcian blue staining of zebrafish demonstrate that mutations in bmp3 cause midface hypoplasia, suggesting that bmp3 regulates cranial neural crest cells. Consistent with this, we see active Smad3 in a population of periocular neural crest cells, and bmp3 mutant zebrafish have reduced neural crest cells in the choroid fissure. Taken together, these data suggest that Bmp3 controls Smad3 phosphorylation in neural crest cells to regulate early craniofacial and ocular development.
Collapse
Affiliation(s)
- Sabrina C Fox
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sonya A Widen
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada.,Vienna BioCenter, Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Mika Asai-Coakwell
- Department of Animal and Poultry and Animal Science, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Serhiy Havrylov
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Matthew Benson
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Lisa B Prichard
- Department of Biological Sciences, MacEwan University, Edmonton, AB, Canada
| | - Pranidhi Baddam
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Daniel Graf
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ordan J Lehmann
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, AB, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, AB, T6G 2E9, Canada. .,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
5
|
Kaczmarek R, Gajdzis P, Gajdzis M. Eph Receptors and Ephrins in Retinal Diseases. Int J Mol Sci 2021; 22:ijms22126207. [PMID: 34201393 PMCID: PMC8227845 DOI: 10.3390/ijms22126207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Retinal diseases are the leading cause of irreversible blindness. They affect people of all ages, from newborns in retinopathy of prematurity, through age-independent diabetic retinopathy and complications of retinal detachment, to age-related macular degeneration (AMD), which occurs mainly in the elderly. Generally speaking, the causes of all problems are disturbances in blood supply, hypoxia, the formation of abnormal blood vessels, and fibrosis. Although the detailed mechanisms underlying them are varied, the common point is the involvement of Eph receptors and ephrins in their pathogenesis. In our study, we briefly discussed the pathophysiology of the most common retinal diseases (diabetic retinopathy, retinopathy of prematurity, proliferative vitreoretinopathy, and choroidal neovascularization) and collected available research results on the role of Eph and ephrins. We also discussed the safety aspect of the use of drugs acting on Eph and ephrin for ophthalmic indications.
Collapse
Affiliation(s)
- Radoslaw Kaczmarek
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Pawel Gajdzis
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Malgorzata Gajdzis
- Department of Ophthalmology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +00-48-71-736-4300
| |
Collapse
|
6
|
Asano S, Yamashita T, Asaoka R, Fujino Y, Murata H, Terasaki H, Yoshihara N, Kakiuchi N, Sakamoto T. Retinal vessel shift and its association with axial length elongation in a prospective observation in Japanese junior high school students. PLoS One 2021; 16:e0250233. [PMID: 33886637 PMCID: PMC8062002 DOI: 10.1371/journal.pone.0250233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/04/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To investigate retinal vessel shift (RVS) and its association with axial length (AL) elongation in junior high school students. METHODS Total 161 eyes of 161 healthy junior high school students were prospectively studied. Optical AL and anterior chamber depth (ACD) measurements, and fundus photography were performed in the first and third grades. Eyes of subjects in the first and third grade that had perfect matching among all the retinal vessels were allocated to the RVS(-) group, otherwise allocated to the RVS(+) group. In the RVS(+) group, the peripapillary retinal arteries angle (PRAA) was measured for quantitative analysis of RVS; the angle between the major retinal arteries. The variables related to PRAA were identified using model selection with the corrected Akaike information criterion. RESULTS Forty-two eyes (26.1%) were allocated to the RVS(+) group. There were seven patterns in the RVS of those in the RVS(+) group, including clockwise shift in the supra temporal area (5 eyes), infra temporal area (7 eyes), and nasal area (9 eyes); anticlockwise shift in the supra temporal area (7 eyes), infra temporal area (5 eyes), and nasal area (2 eyes); and distal shift in the temporal area (7 eyes). The optimal model for the PRAA narrowing included larger AL and body weight in the first grade, and greater AL elongation. CONCLUSION Various (seven) RVS patterns were observed in about 25% of the junior high school students within two years. RVS was associated with AL elongation, and useful to reveal the mechanism of myopic retinal stretch.
Collapse
Affiliation(s)
- Shotaro Asano
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Takehiro Yamashita
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ryo Asaoka
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Shizuoka, Japan
- Seirei Christopher University, Shizuoka, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka, Japan
- * E-mail:
| | - Yuri Fujino
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Murata
- Department of Ophthalmology, The University of Tokyo, Tokyo, Japan
| | - Hiroto Terasaki
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoya Yoshihara
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Naoko Kakiuchi
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
7
|
Chaturvedi V, Murray MJ. Netrins: Evolutionarily Conserved Regulators of Epithelial Fusion and Closure in Development and Wound Healing. Cells Tissues Organs 2021; 211:193-211. [PMID: 33691313 DOI: 10.1159/000513880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022] Open
Abstract
Epithelial remodelling plays a crucial role during development. The ability of epithelial sheets to temporarily lose their integrity as they fuse with other epithelial sheets underpins events such as the closure of the neural tube and palate. During fusion, epithelial cells undergo some degree of epithelial-mesenchymal transition (EMT), whereby cells from opposing sheets dissolve existing cell-cell junctions, degrade the basement membrane, extend motile processes to contact each other, and then re-establish cell-cell junctions as they fuse. Similar events occur when an epithelium is wounded. Cells at the edge of the wound undergo a partial EMT and migrate towards each other to close the gap. In this review, we highlight the emerging role of Netrins in these processes, and provide insights into the possible signalling pathways involved. Netrins are secreted, laminin-like proteins that are evolutionarily conserved throughout the animal kingdom. Although best known as axonal chemotropic guidance molecules, Netrins also regulate epithelial cells. For example, Netrins regulate branching morphogenesis of the lung and mammary gland, and promote EMT during Drosophila wing eversion. Netrins also control epithelial fusion during optic fissure closure and inner ear formation, and are strongly implicated in neural tube closure and secondary palate closure. Netrins are also upregulated in response to organ damage and epithelial wounding, and can protect against ischemia-reperfusion injury and speed wound healing in cornea and skin. Since Netrins also have immunomodulatory properties, and can promote angiogenesis and re-innervation, they hold great promise as potential factors in future wound healing therapies.
Collapse
Affiliation(s)
- Vishal Chaturvedi
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Murray
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia,
| |
Collapse
|
8
|
Chan BHC, Moosajee M, Rainger J. Closing the Gap: Mechanisms of Epithelial Fusion During Optic Fissure Closure. Front Cell Dev Biol 2021; 8:620774. [PMID: 33505973 PMCID: PMC7829581 DOI: 10.3389/fcell.2020.620774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
A key embryonic process that occurs early in ocular development is optic fissure closure (OFC). This fusion process closes the ventral optic fissure and completes the circumferential continuity of the 3-dimensional eye. It is defined by the coming together and fusion of opposing neuroepithelia along the entire proximal-distal axis of the ventral optic cup, involving future neural retina, retinal pigment epithelium (RPE), optic nerve, ciliary body, and iris. Once these have occurred, cells within the fused seam differentiate into components of the functioning visual system. Correct development and progression of OFC, and the continued integrity of the fused margin along this axis, are important for the overall structure of the eye. Failure of OFC results in ocular coloboma-a significant cause of childhood visual impairment that can be associated with several complex ocular phenotypes including microphthalmia and anterior segment dysgenesis. Despite a large number of genes identified, the exact pathways that definitively mediate fusion have not yet been found, reflecting both the biological complexity and genetic heterogeneity of the process. This review will highlight how recent developmental studies have become focused specifically on the epithelial fusion aspects of OFC, applying a range of model organisms (spanning fish, avian, and mammalian species) and utilizing emerging high-resolution live-imaging technologies, transgenic fluorescent models, and unbiased transcriptomic analyses of segmentally-dissected fissure tissue. Key aspects of the fusion process are discussed, including basement membrane dynamics, unique cell behaviors, and the identities and fates of the cells that mediate fusion. These will be set in the context of what is now known, and how these point the way to new avenues of research.
Collapse
Affiliation(s)
- Brian Ho Ching Chan
- The Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Scotland, United Kingdom
| | - Mariya Moosajee
- University College London Institute of Ophthalmology, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.,Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Joe Rainger
- The Division of Functional Genetics and Development, The Royal Dick School of Veterinary Sciences, The Roslin Institute, The University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
9
|
Patel A, Anderson G, Galea GL, Balys M, Sowden JC. A molecular and cellular analysis of human embryonic optic fissure closure related to the eye malformation coloboma. Development 2020; 147:dev193649. [PMID: 33158926 DOI: 10.1242/dev.193649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022]
Abstract
Ocular coloboma is a congenital eye malformation, resulting from a failure in optic fissure closure (OFC) and causing visual impairment. There has been little study of the epithelial fusion process underlying closure in the human embryo and coloboma aetiology remains poorly understood. We performed RNAseq of cell populations isolated using laser capture microdissection to identify novel human OFC signature genes and probe the expression profile of known coloboma genes, along with a comparative murine analysis. Gene set enrichment patterns showed conservation between species. Expression of genes involved in epithelial-to-mesenchymal transition was transiently enriched in the human fissure margins during OFC at days 41-44. Electron microscopy and histological analyses showed that cells transiently delaminate at the point of closure, and produce cytoplasmic protrusions, before rearranging to form two continuous epithelial layers. Apoptosis was not observed in the human fissure margins. These analyses support a model of human OFC in which epithelial cells at the fissure margins undergo a transient epithelial-to-mesenchymal-like transition, facilitating cell rearrangement to form a complete optic cup.
Collapse
Affiliation(s)
- Aara Patel
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Glenn Anderson
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Gabriel L Galea
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Monika Balys
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Jane C Sowden
- UCL Great Ormond Street Institute of Child Health, and NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| |
Collapse
|
10
|
Sun WR, Ramirez S, Spiller KE, Zhao Y, Fuhrmann S. Nf2 fine-tunes proliferation and tissue alignment during closure of the optic fissure in the embryonic mouse eye. Hum Mol Genet 2020; 29:3373-3387. [PMID: 33075808 DOI: 10.1093/hmg/ddaa228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/14/2022] Open
Abstract
Uveal coloboma represents one of the most common congenital ocular malformations accounting for up to 10% of childhood blindness (~1 in 5000 live birth). Coloboma originates from defective fusion of the optic fissure (OF), a transient gap that forms during eye morphogenesis by asymmetric, ventral invagination. Genetic heterogeneity combined with the activity of developmentally regulated genes suggests multiple mechanisms regulating OF closure. The tumor suppressor and FERM domain protein Neurofibromin 2 (NF2) controls diverse processes in cancer, development and regeneration, via Hippo pathway and cytoskeleton regulation. In humans, NF2 mutations can cause ocular abnormalities, including coloboma, however, its actual role in OF closure is unknown. Using conditional inactivation in the embryonic mouse eye, our data indicate that loss of Nf2 function results in a novel underlying cause for coloboma. In particular, mutant eyes show substantially increased retinal pigmented epithelium (RPE) proliferation in the fissure region with concomitant acquisition of RPE cell fate. Cells lining the OF margin can maintain RPE fate ectopically and fail to transition from neuroepithelial to cuboidal shape. In the dorsal RPE of the optic cup, Nf2 inactivation leads to a robust increase in cell number, with local disorganization of the cytoskeleton components F-actin and pMLC2. We propose that RPE hyperproliferation is the primary cause for the observed defects causing insufficient alignment of the OF margins in Nf2 mutants and failure to fuse properly, resulting in persistent coloboma. Our findings indicate that limiting proliferation particularly in the RPE layer is a critical mechanism during OF closure.
Collapse
Affiliation(s)
- Wesley R Sun
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara Ramirez
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Kelly E Spiller
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yan Zhao
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, VEI, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
11
|
Non-del(5q) myelodysplastic syndromes-associated loci detected by SNP-array genome-wide association meta-analysis. Blood Adv 2020; 3:3579-3589. [PMID: 31738830 DOI: 10.1182/bloodadvances.2019000922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell malignancies. Known predisposing factors to adult MDS include rare germline mutations, cytotoxic therapy, age-related clonal hematopoiesis, and autoimmune or chronic inflammatory disorders. To date, no published studies characterizing MDS-associated germline susceptibility polymorphisms exist. We performed a genome-wide association study of 2 sample sets (555 MDS cases vs 2964 control subjects; 352 MDS cases vs 2640 control subjects) in non-del(5q) MDS cases of European genomic ancestry. Meta-analysis identified 8 MDS-associated loci at 1q31.1 (PLA2G4A), 3p14.1 (FAM19A4), 5q21.3 (EFNA5), 6p21.33, 10q23.1 (GRID1), 12q24.32, 15q26.1, and 20q13.12 (EYA2) that approached genome-wide significance. Gene expression for 5 loci that mapped within or near genes was significantly upregulated in MDS bone marrow cells compared with those of control subjects (P < .01). Higher PLA2G4A expression and lower EYA2 expression were associated with poorer overall survival (P = .039 and P = .037, respectively). Higher PLA2G4A expression is associated with mutations in NRAS (P < .001), RUNX1 (P = .012), ASXL1 (P = .007), and EZH2 (P = .038), all of which are known to contribute to MDS development. EYA2 expression was an independently favorable risk factor irrespective of age, sex, and Revised International Scoring System score (relative risk, 0.67; P = .048). Notably, these genes have regulatory roles in innate immunity, a critical driver of MDS pathogenesis. EYA2 overexpression induced innate immune activation, whereas EYA2 inhibition restored colony-forming potential in primary MDS cells indicative of hematopoietic restoration and possible clinical relevance. In conclusion, among 8 suggestive MDS-associated loci, 5 map to genes upregulated in MDS with functional roles in innate immunity and potential biological relevance to MDS.
Collapse
|
12
|
Eckert P, Knickmeyer MD, Heermann S. In Vivo Analysis of Optic Fissure Fusion in Zebrafish: Pioneer Cells, Basal Lamina, Hyaloid Vessels, and How Fissure Fusion is Affected by BMP. Int J Mol Sci 2020; 21:ijms21082760. [PMID: 32316164 PMCID: PMC7215994 DOI: 10.3390/ijms21082760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Colobomata, persistent optic fissures, frequently cause congenital blindness. Here, we focused on optic fissure fusion using in vivo time-lapse imaging in zebrafish. We identified the fusion initiating cells, which we termed “pioneer cells.” Based on morphology, localization, and downregulation of the neuroretinal (NR) precursor marker rx2, these cells could be considered as retinal pigment epithelial (RPE) progenitors. Notably, pioneer cells regain rx2 expression and integrate into the NR after fusion, indicating that they do not belong to the pool of RPE progenitors, supported by the lack of RPE marker expression in pioneer cells. They establish the first cellular contact between the margins in the proximal fissure region and separate the hyaloid artery and vein. After initiation, the fusion site is progressing distally, increasing the distance between the hyaloid artery and vein. A timed BMP (Bone Morphogenetic Protein) induction, resulting in coloboma, did not alter the morphology of the fissure margins, but it did affect the expression of NR and RPE markers within the margins. In addition, it resulted in a persisting basal lamina and persisting remnants of periocular mesenchyme and hyaloid vasculature within the fissure, supporting the necessity of BMP antagonism within the fissure margins. The hampered fissure fusion had severe effects on the vasculature of the eye.
Collapse
Affiliation(s)
- Priska Eckert
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Max D. Knickmeyer
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University Freiburg, 79104 Freiburg, Germany; (P.E.); (M.D.K.)
- Correspondence:
| |
Collapse
|
13
|
Simultaneous Requirements for Hes1 in Retinal Neurogenesis and Optic Cup-Stalk Boundary Maintenance. J Neurosci 2020; 40:1501-1513. [PMID: 31949107 DOI: 10.1523/jneurosci.2327-19.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
The bHLH transcription factor Hes1 is a key downstream effector for the Notch signaling pathway. During embryogenesis neural progenitors express low levels of Hes1 in an oscillating pattern, whereas glial brain boundary regions (e.g., isthmus) have high, sustained Hes1 levels that suppress neuronal fates. Here, we show that in the embryonic mouse retina, the optic nerve head and stalk express high Hes1, with the ONH constituting a boundary between the neural retina and glial cells that ultimately line the optic stalk. Using two Cre drivers with distinct spatiotemporal expression we conditionally inactivated Hes1, to delineate the requirements for this transcriptional repressor during retinal neurogenesis versus patterning of the optic cup and stalk. Throughout retinal neurogenesis, Hes1 maintains proliferation and blocks retinal ganglion cell formation, but surprisingly we found it also promotes cone photoreceptor genesis. In the postnatal eye, Hes1 inactivation with Rax-Cre resulted in increased bipolar neurons and a mispositioning of Müller glia. Our results indicate that Notch pathway regulation of cone genesis is more complex than previously assumed, and reveal a novel role for Hes1 in maintaining the optic cup-stalk boundary.SIGNIFICANCE STATEMENT The bHLH repressor Hes1 regulates the timing of neurogenesis, rate of progenitor cell division, gliogenesis, and maintains tissue compartment boundaries. This study expands current eye development models by showing Notch-independent roles for Hes1 in the developing optic nerve head (ONH). Defects in ONH formation result in optic nerve coloboma; our work now inserts Hes1 into the genetic hierarchy regulating optic fissure closure. Given that Hes1 acts analogously in the ONH as the brain isthmus, it prompts future investigation of the ONH as a signaling factor center, or local organizer. Embryonic development of the ONH region has been poorly studied, which is surprising given it is where the pan-ocular disease glaucoma is widely believed to inflict damage on RGC axons.
Collapse
|
14
|
An update on the genetics of ocular coloboma. Hum Genet 2019; 138:865-880. [PMID: 31073883 DOI: 10.1007/s00439-019-02019-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/19/2019] [Indexed: 01/04/2023]
Abstract
Ocular coloboma is an uncommon, but often severe, sight-threatening condition that can be identified from birth. This congenital anomaly is thought to be caused by maldevelopment of optic fissure closure during early eye morphogenesis. It has been causally linked to both inherited (genetic) and environmental influences. In particular, as a consequence of work to identify genetic causes of coloboma, new molecular pathways that control optic fissure closure have now been identified. Many more regulatory mechanisms still await better understanding to inform on the development of potential therapies for patients with this malformation. This review provides an update of known coloboma genes, the pathways they influence and how best to manage the condition. In the age of precision medicine, determining the underlying genetic cause in any given patient is of high importance.
Collapse
|
15
|
Park S, Lee H, Lee J, Park E, Park S. Ependymal Cells Require Anks1a for Their Proper Development. Mol Cells 2019; 42:245-251. [PMID: 30759972 PMCID: PMC6449714 DOI: 10.14348/molcells.2018.0432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 11/29/2022] Open
Abstract
Ependymal cells constitute the multi-ciliated epithelium, which lines the brain ventricular lumen. Although ependymal cells originate from radial glial cells in the perinatal rodent brain, the exact mechanisms underlying the full differentiation of ependymal cells are poorly understood. In this report, we present evidence that the Anks1a phosphotyrosine binding domain (PTB) adaptor is required for the proper development of ependymal cells in the rodent postnatal brain. Anks1a gene trap targeted LacZ reporter analysis revealed that Anks1a is expressed prominently in the ventricular region of the early postnatal brain and that its expression is restricted to mature ependymal cells during postnatal brain development. In addition, Anks1a-deficient ependymal cells were shown to possess type B cell characteristics, suggesting that ependymal cells require Anks1a in order to be fully differentiated. Finally, Anks1a overexpression in the lateral wall of the neonatal brain resulted in an increase in the number of ependymal cells during postnatal brain development. Altogether, our results suggest that ependymal cells require Anks1a PTB adaptor for their proper development.
Collapse
Affiliation(s)
- Sunjung Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Haeryung Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Jiyeon Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Eunjeong Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
16
|
Okuda S, Takata N, Hasegawa Y, Kawada M, Inoue Y, Adachi T, Sasai Y, Eiraku M. Strain-triggered mechanical feedback in self-organizing optic-cup morphogenesis. SCIENCE ADVANCES 2018; 4:eaau1354. [PMID: 30474058 PMCID: PMC6248953 DOI: 10.1126/sciadv.aau1354] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 05/27/2023]
Abstract
Organogenesis is a self-organizing process of multiple cells in three-dimensional (3D) space, where macroscopic tissue deformations are robustly regulated by multicellular autonomy. It is clear that this robust regulation requires cells to sense and modulate 3D tissue formation across different scales, but its underlying mechanisms are still unclear. To address this question, we developed a versatile computational model of 3D multicellular dynamics at single-cell resolution and combined it with the 3D culture system of pluripotent stem cell-derived optic-cup organoid. The complementary approach enabled quantitative prediction of morphogenesis and its corresponding verification and elucidated that the macroscopic 3D tissue deformation is fed back to individual cellular force generations via mechanosensing. We hereby conclude that mechanical force plays a key role as a feedback regulator to establish the robustness of organogenesis.
Collapse
Affiliation(s)
- S. Okuda
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - N. Takata
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Y. Hasegawa
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - M. Kawada
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Y. Inoue
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - T. Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Y. Sasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - M. Eiraku
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
17
|
Mkk4 and Mkk7 are important for retinal development and axonal injury-induced retinal ganglion cell death. Cell Death Dis 2018; 9:1095. [PMID: 30367030 PMCID: PMC6203745 DOI: 10.1038/s41419-018-1079-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 01/25/2023]
Abstract
The mitogen-activated protein kinase (MAPK) pathway has been shown to be involved in both neurodevelopment and neurodegeneration. c-Jun N-terminal kinase (JNK), a MAPK important in retinal development and after optic nerve crush injury, is regulated by two upstream kinases: MKK4 and MKK7. The specific requirements of MKK4 and MKK7 in retinal development and retinal ganglion cell (RGC) death after axonal injury, however, are currently undefined. Optic nerve injury is an important insult in many neurologic conditions including traumatic, ischemic, inflammatory, and glaucomatous optic neuropathies. Mice deficient in Mkk4, Mkk7, and both Mkk4 and Mkk7 were generated. Immunohistochemistry was used to study the distribution and structure of retinal cell types and to assess RGC survival after optic nerve injury (mechanical controlled optic nerve crush (CONC)). Adult Mkk4- and Mkk7-deficient retinas had all retinal cell types, and with the exception of small areas of disrupted photoreceptor lamination in Mkk4-deficient mice, the retinas of both mutants were grossly normal. Deficiency of Mkk4 or Mkk7 reduced JNK signaling in RGCs after axonal injury and resulted in a significantly greater percentage of surviving RGCs 35 days after CONC as compared to wild-type controls (Mkk4: 51.5%, Mkk7: 29.1%, WT: 15.2%; p < 0.001). Combined deficiency of Mkk4 and Mkk7 caused failure of optic nerve formation, irregular retinal axonal trajectories, disruption of retinal lamination, clumping of RGC bodies, and dendritic fasciculation of dopaminergic amacrine cells. These results suggest that MKK4 and MKK7 may serve redundant and unique roles in molecular signaling important for retinal development and injury response following axonal insult.
Collapse
|
18
|
Murcia Pienkowski V, Kucharczyk M, Młynek M, Szczałuba K, Rydzanicz M, Poszewiecka B, Skórka A, Sykulski M, Biernacka A, Koppolu AA, Posmyk R, Walczak A, Kosińska J, Krajewski P, Castaneda J, Obersztyn E, Jurkiewicz E, Śmigiel R, Gambin A, Chrzanowska K, Krajewska-Walasek M, Płoski R. Mapping of breakpoints in balanced chromosomal translocations by shallow whole-genome sequencing points to EFNA5, BAHD1 and PPP2R5E as novel candidates for genes causing human Mendelian disorders. J Med Genet 2018; 56:104-112. [PMID: 30352868 DOI: 10.1136/jmedgenet-2018-105527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/04/2022]
Abstract
BACKGROUND Mapping the breakpoints in de novo balanced chromosomal translocations (BCT) in symptomatic individuals provides a unique opportunity to identify in an unbiased way the likely causative genetic defect and thus find novel human disease candidate genes. Our aim was to fine-map breakpoints of de novo BCTs in a case series of nine patients. METHODS Shallow whole-genome mate pair sequencing (SGMPS) together with long-range PCR and Sanger sequencing. In one case (BCT disrupting BAHD1 and RET) cDNA analysis was used to verify expression of a fusion transcript in cultured fibroblasts. RESULTS In all nine probands 11 disrupted genes were found, that is, EFNA5, EBF3, LARGE, PPP2R5E, TXNDC5, ZNF423, NIPBL, BAHD1, RET, TRPS1 and SLC4A10. Five subjects had translocations that disrupted genes with so far unknown (EFNA5, BAHD1, PPP2R5E, TXNDC5) or poorly delineated impact on the phenotype (SLC4A10, two previous reports of BCT disrupting the gene). The four genes with no previous disease associations (EFNA5, BAHD1, PPP2R5E, TXNDC5), when compared with all human genes by a bootstrap test, had significantly higher pLI (p<0.017) and DOMINO (p<0.02) scores indicating enrichment in genes likely to be intolerant to single copy damage. Inspection of individual pLI and DOMINO scores, and local topologically associating domain structure suggested that EFNA5, BAHD1 and PPP2R5E were particularly good candidates for novel disease loci. The pathomechanism for BAHD1 may involve deregulation of expression due to fusion with RET promoter. CONCLUSION SGMPS in symptomatic carriers of BCTs is a powerful approach to delineate novel human gene-disease associations.
Collapse
Affiliation(s)
- Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Kucharczyk
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Marlena Młynek
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Barbara Poszewiecka
- Faculty of Mathematics, Informatics and Mechanics, Institute of Informatics, University of Warsaw, Warsaw, Poland
| | - Agata Skórka
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland.,Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Sykulski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,genXone, Poznan, Poland
| | - Anna Biernacka
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Anna Koppolu
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Renata Posmyk
- Department of Clinical Genetics, Podlaskie Medical Center, Bialystok, Poland.,Department of Perinatology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Walczak
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Krajewski
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jennifer Castaneda
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Elżbieta Jurkiewicz
- Department of Diagnostic Imaging, The Children's Memorial Health Institute, Warsaw, Poland
| | - Robert Śmigiel
- Department of Pediatrics and Rare Disorder, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Gambin
- Faculty of Mathematics, Informatics and Mechanics, Institute of Informatics, University of Warsaw, Warsaw, Poland
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland
| | | | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
19
|
Bernstein CS, Anderson MT, Gohel C, Slater K, Gross JM, Agarwala S. The cellular bases of choroid fissure formation and closure. Dev Biol 2018; 440:137-151. [PMID: 29803644 DOI: 10.1016/j.ydbio.2018.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
Defects in choroid fissure (CF) formation and closure lead to coloboma, a major cause of childhood blindness. Despite genetic advances, the cellular defects underlying coloboma remain poorly elucidated due to our limited understanding of normal CF morphogenesis. We address this deficit by conducting high-resolution spatio-temporal analyses of CF formation and closure in the chick, mouse and fish. We show that a small ventral midline invagination initiates CF formation in the medial-proximal optic cup, subsequently extending it dorsally toward the lens, and proximally into the optic stalk. Unlike previously supposed, the optic disc does not form solely as a result of this invagination. Morphogenetic events that alter the shape of the proximal optic cup also direct clusters of outer layer and optic stalk cells to form dorsal optic disc. A cross-species comparison suggests that CF closure can be accomplished by breaking down basement membranes (BM) along the CF margins, and by establishing BM continuity along the dorsal and ventral surfaces of the CF. CF closure is subsequently accomplished via two distinct mechanisms: tissue fusion or the intercalation of various tissues into the inter-CF space. We identify several novel cell behaviors that underlie CF fusion, many of which involve remodeling of the retinal epithelium. In addition to BM disruption, these include NCAD downregulation along the SOX2+ retinal CF margin, and the protrusion or movement of partially polarized retinal cells into the inter-CF space to mediate fusion. Proximally, the inter-CF space does not fuse or narrow and is instead loosely packed with migrating SOX2+/PAX2+/Vimentin+ astrocytes until it is closed by the outgoing optic nerve. Taken together, our results highlight distinct proximal-distal differences in CF morphogenesis and closure and establish detailed cellular models that can be utilized for understanding the genetic bases of coloboma.
Collapse
Affiliation(s)
- Cassidy S Bernstein
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Mitchell T Anderson
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Chintan Gohel
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA
| | - Kayleigh Slater
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Seema Agarwala
- Molecular Biosciences Department, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, TX 78712, USA; Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
|
21
|
Heimsath EG, Yim YI, Mustapha M, Hammer JA, Cheney RE. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep 2017; 7:17354. [PMID: 29229982 PMCID: PMC5725431 DOI: 10.1038/s41598-017-17638-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
Myosin-X (Myo10) is an unconventional myosin best known for its striking localization to the tips of filopodia. Despite the broad expression of Myo10 in vertebrate tissues, its functions at the organismal level remain largely unknown. We report here the generation of KO-first (Myo10tm1a/tm1a), floxed (Myo10tm1c/tm1c), and KO mice (Myo10tm1d/tm1d). Complete knockout of Myo10 is semi-lethal, with over half of homozygous KO embryos exhibiting exencephaly, a severe defect in neural tube closure. All Myo10 KO mice that survive birth exhibit a white belly spot, all have persistent fetal vasculature in the eye, and ~50% have webbed digits. Myo10 KO mice that survive birth can breed and produce litters of KO embryos, demonstrating that Myo10 is not absolutely essential for mitosis, meiosis, adult survival, or fertility. KO-first mice and an independent spontaneous deletion (Myo10m1J/m1J) exhibit the same core phenotypes. During retinal angiogenesis, KO mice exhibit a ~50% decrease in endothelial filopodia, demonstrating that Myo10 is required to form normal numbers of filopodia in vivo. The Myo10 mice generated here demonstrate that Myo10 has important functions in mammalian development and provide key tools for defining the functions of Myo10 in vivo.
Collapse
Affiliation(s)
- Ernest G Heimsath
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yang-In Yim
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mirna Mustapha
- Department of Otolaryngology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard E Cheney
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Cell Biology and Physiology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Genes and pathways in optic fissure closure. Semin Cell Dev Biol 2017; 91:55-65. [PMID: 29198497 DOI: 10.1016/j.semcdb.2017.10.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022]
Abstract
Embryonic development of the vertebrate eye begins with the formation of an optic vesicle which folds inwards to form a double-layered optic cup with a fissure on the ventral surface, known as the optic fissure. Closure of the optic fissure is essential for subsequent growth and development of the eye. A defect in this process can leave a gap in the iris, retina or optic nerve, known as a coloboma, which can lead to severe visual impairment. This review brings together current information about genes and pathways regulating fissure closure from human coloboma patients and animal models. It focuses especially on current understanding of the morphological changes and processes of epithelial remodelling occurring at the fissure margins.
Collapse
|
23
|
Smith R, Huang YT, Tian T, Vojtasova D, Mesalles-Naranjo O, Pollard SM, Pratt T, Price DJ, Fotaki V. The Transcription Factor Foxg1 Promotes Optic Fissure Closure in the Mouse by Suppressing Wnt8b in the Nasal Optic Stalk. J Neurosci 2017; 37:7975-7993. [PMID: 28729440 PMCID: PMC5559767 DOI: 10.1523/jneurosci.0286-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 11/21/2022] Open
Abstract
During vertebrate eye morphogenesis, a transient fissure forms at its inferior part, known as the optic fissure. This will gradually close, giving rise to a healthy, spherical optic cup. Failure of the optic fissure to close gives rise to an ocular disorder known as coloboma. During this developmental process, Foxg1 is expressed in the optic neuroepithelium, with highest levels of expression in the nasal optic stalk. Foxg1-/- mutant mice have microphthalmic eyes with a large ventral coloboma. We found Wnt8b expression upregulated in the Foxg1-/- optic stalk and hypothesized that, similar to what is observed in telencephalic development, Foxg1 directs development of the optic neuroepithelium through transcriptional suppression of Wnt8b To test this, we generated Foxg1-/-;Wnt8b-/- double mutants of either sex and found that the morphology of the optic cup and stalk and the closure of the optic fissure were substantially rescued in these embryos. This rescue correlates with restored Pax2 expression in the anterior tip of the optic fissure. In addition, although we do not find evidence implicating altered proliferation in the rescue, we observe a significant increase in apoptotic cell density in Foxg1-/-;Wnt8b-/- double mutants compared with the Foxg1-/- single mutant. Upregulation of Wnt/β-catenin target molecules in the optic cup and stalk may underlie the molecular and morphological defects in the Foxg1-/- mutant. Our results show that proper optic fissure closure relies on Wnt8b suppression by Foxg1 in the nasal optic stalk to maintain balanced apoptosis and Pax2 expression in the nasal and temporal edges of the fissure.SIGNIFICANCE STATEMENT Coloboma is an ocular disorder that may result in a loss of visual acuity and accounts for ∼10% of childhood blindness. It results from errors in the sealing of the optic fissure (OF), a transient structure at the bottom of the eye. Here, we investigate the colobomatous phenotype of the Foxg1-/- mutant mouse. We identify upregulated expression of Wnt8b in the optic stalk of Foxg1-/- mutants before OF closure initiates. Foxg1-/-;Wnt8b-/- double mutants show a substantial rescue of the Foxg1-/- coloboma phenotype, which correlates with a rescue in molecular and cellular defects of Foxg1-/- mutants. Our results unravel a new role of Foxg1 in promoting OF closure providing additional knowledge about the molecules and cellular mechanisms underlying coloboma formation.
Collapse
Affiliation(s)
- Rowena Smith
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Tian Tian
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Dominika Vojtasova
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Oscar Mesalles-Naranjo
- Information Service Division, NHS National Services Scotland, Edinburgh, EH12 9EB, United Kingdom
| | - Steven M Pollard
- Medical Research Council Centre for Regenerative Medicine, Edinburgh, EH16 4UU, United Kingdom, and
- Edinburgh Cancer Research UK Cancer Centre, Edinburgh, EH16 4UU, United Kingdom
| | - Thomas Pratt
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - David J Price
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom
| | - Vassiliki Fotaki
- Edinburgh Medical School, Biomedical Sciences, Centre for Integrative Physiology, Edinburgh, EH8 9XD, United Kingdom,
| |
Collapse
|
24
|
Park E, Noh H, Park S. Identification of an Enhancer Critical for the ephirn-A5 Gene Expression in the Posterior Region of the Mesencephalon. Mol Cells 2017; 40:426-433. [PMID: 28614915 PMCID: PMC5523019 DOI: 10.14348/molcells.2017.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 11/27/2022] Open
Abstract
Ephrin-A5 has been implicated in the regulation of brain morphogenesis and axon pathfinding. In this study, we used bacterial homologous recombination to express a LacZ reporter in various ephrin-A5 BAC clones to identify elements that regulate ephrin-A5 gene expression during mesencephalon development. We found that there is mesencephalon-specific enhancer activity localized to a specific +25.0 kb to +30.5 kb genomic region in the first intron of ephrin-A5. Further comparative genomic analysis indicated that two evolutionary conserved regions, ECR1 and ECR2, were present within this 5.5 kb region. Deletion of ECR1 from the enhancer resulted in disrupted mesencephalon-specific enhancer activity in transgenic embryos. We also found a consensus binding site for basic helix-loop-helix (bHLH) transcription factors (TFs) in a highly conserved region at the 3'-end of ECR1. We further demonstrated that specific deletion of the bHLH TF binding site abrogated the mesencephalon-specific enhancer activity in transgenic embryos. Finally, both electrophoretic mobility shift assay and luciferase-based transactivation assay revealed that the transcription factor Ascl1 bound the bHLH consensus binding site in the mesencephalon-specific ephrin-A5 enhancer in vitro. Together, these results suggest that the bHLH TF binding site in ECR1 is involved in the positive regulation of ephrin-A5 gene expression during the development of the mesencephalon.
Collapse
Affiliation(s)
- Eunjeong Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Hyuna Noh
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Soochul Park
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
25
|
Rolo A, Savery D, Escuin S, de Castro SC, Armer HEJ, Munro PMG, Molè MA, Greene NDE, Copp AJ. Regulation of cell protrusions by small GTPases during fusion of the neural folds. eLife 2016; 5:e13273. [PMID: 27114066 PMCID: PMC4846376 DOI: 10.7554/elife.13273] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/18/2016] [Indexed: 11/26/2022] Open
Abstract
Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI:http://dx.doi.org/10.7554/eLife.13273.001 The neural tube is an embryonic structure that gives rise to the brain and spinal cord. It originates from a flat sheet of cells – the neural plate – that rolls up and fuses to form a tube during development. If this closure fails, it leads to birth defects such as spina bifida, a condition that causes severe disability because babies are born with an exposed and damaged spinal cord. As the edges of the neural plate meet, they need to fuse together to produce a closed tube. It was known that cells at these edges extend protrusions. However, it was unclear how these protrusions are regulated, whether they arise from neural or non-neural cells and whether or not they are required for the neural tube to close fully. By studying mutant mouse embryos, Rolo et al. found that cellular protrusions are indeed required for the neural tube to close completely. These protrusions proved to be regulated by proteins called Rac1 and Cdc42, which control the filaments inside the cell that are responsible for cell shape and movement. Rolo et al. also found that the cells that give rise to the protrusions are not part of the neural plate itself. Instead, these cells are neighboring cells from the layer that later forms the epidermis of the skin (the surface ectoderm). Future studies will need to investigate which signals instruct those precise cells to make protrusions and to discover what happens to the protrusions after contact is made with cells on the opposite side. It will also be important to determine whether spina bifida may arise in humans if the protrusions are defective or absent. DOI:http://dx.doi.org/10.7554/eLife.13273.002
Collapse
Affiliation(s)
- Ana Rolo
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Dawn Savery
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Sandra C de Castro
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Hannah E J Armer
- Imaging Unit, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Peter M G Munro
- Imaging Unit, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Matteo A Molè
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|