1
|
Hassan D, Chen J. CEBPA restricts alveolar type 2 cell plasticity during development and injury-repair. Nat Commun 2024; 15:4148. [PMID: 38755149 PMCID: PMC11099190 DOI: 10.1038/s41467-024-48632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.
Collapse
Affiliation(s)
- Dalia Hassan
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Pediatrics, Perinatal Institute Division of Pulmonary Biology, University of Cincinnati and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
2
|
Jank M, Schwartz J, Miyake Y, Ozturk Aptekmann A, Patel D, Boettcher M, Keijzer R. Dysregulation of CITED2 in abnormal lung development in the nitrofen rat model. Pediatr Surg Int 2024; 40:43. [PMID: 38291157 DOI: 10.1007/s00383-023-05607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE CITED2 both modulates lung, heart and diaphragm development. The role of CITED2 in the pathogenesis of congenital diaphragmatic hernia (CDH) is unknown. We aimed to study CITED2 during abnormal lung development in the nitrofen model. METHODS Timed-pregnant rats were given nitrofen on embryonic day (E) 9 to induce CDH. Fetal lungs were harvested on E15, 18 and 21. We performed RT-qPCR, RNAscope™ in situ hybridization and immunofluorescence staining for CITED2. RESULTS We observed no difference in RT-qPCR (control: 1.09 ± 0.22 and nitrofen: 0.95 ± 0.18, p = 0.64) and in situ hybridization (1.03 ± 0.03; 1.04 ± 0.03, p = 0.97) for CITED2 expression in E15 nitrofen and control pups. At E18, CITED2 expression was reduced in in situ hybridization of nitrofen lungs (1.47 ± 0.05; 1.14 ± 0.07, p = 0.0006), but not altered in RT-qPCR (1.04 ± 0.16; 0.81 ± 0.13, p = 0.33). In E21 nitrofen lungs, CITED2 RNA expression was increased in RT-qPCR (1.04 ± 0.11; 1.52 ± 0.17, p = 0.03) and in situ hybridization (1.08 ± 0.07, 1.29 ± 0.04, p = 0.02). CITED2 protein abundance was higher in immunofluorescence staining of E21 nitrofen lungs (2.96 × 109 ± 0.13 × 109; 4.82 × 109 ± 0.25 × 109, p < 0.0001). CONCLUSION Our data suggest that dysregulation of CITED2 contributes to abnormal lung development of CDH, as demonstrated by the distinct spatial-temporal distribution in nitrofen-induced lungs.
Collapse
MESH Headings
- Animals
- Female
- Pregnancy
- Rats
- 2,4-Dinitrophenol
- Disease Models, Animal
- Gene Expression Regulation, Developmental
- Hernias, Diaphragmatic, Congenital/chemically induced
- Hernias, Diaphragmatic, Congenital/genetics
- Hernias, Diaphragmatic, Congenital/metabolism
- Lung/abnormalities
- Lung Diseases/metabolism
- Phenyl Ethers/toxicity
- Rats, Sprague-Dawley
- Respiratory System Abnormalities
Collapse
Affiliation(s)
- Marietta Jank
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Jacquelyn Schwartz
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Yuichiro Miyake
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Arzu Ozturk Aptekmann
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Daywin Patel
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Keijzer
- Department of Surgery, Division of Pediatric Surgery, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, AE402-820 Sherbrook Street, Winnipeg, MB, R3A 1S1, Canada.
| |
Collapse
|
3
|
Cheong SS, Luis TC, Stewart M, Hillier R, Hind M, Dean CH. A method for TAT-Cre recombinase-mediated floxed allele modification in ex vivo tissue slices. Dis Model Mech 2023; 16:dmm050267. [PMID: 37828896 PMCID: PMC10629676 DOI: 10.1242/dmm.050267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023] Open
Abstract
Precision-cut lung slices (PCLS) are used for a variety of applications. However, methods to manipulate genes in PCLS are currently limited. We developed a new method, TAT-Cre recombinase-mediated floxed allele modification in tissue slices (TReATS), to induce highly effective and temporally controlled gene deletion or activation in ex vivo PCLS. Treatment of PCLS from Rosa26-flox-stop-flox-EYFP mice with cell-permeant TAT-Cre recombinase induced ubiquitous EYFP protein expression, indicating successful Cre-mediated excision of the upstream loxP-flanked stop sequence. Quantitative real-time PCR confirmed induction of EYFP. We successfully replicated the TReATS method in PCLS from Vangl2flox/flox mice, leading to the deletion of loxP-flanked exon 4 of the Vangl2 gene. Cre-treated Vangl2flox/flox PCLS exhibited cytoskeletal abnormalities, a known phenotype caused by VANGL2 dysfunction. We report a new method that bypasses conventional Cre-Lox breeding, allowing rapid and highly effective gene manipulation in ex vivo tissue models.
Collapse
Affiliation(s)
- Sek-Shir Cheong
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| | - Tiago C. Luis
- Centre for Inflammatory Diseases, Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Michelle Stewart
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Rosie Hillier
- The Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Matthew Hind
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
- National Institute for Health Research (NIHR) Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK
| | - Charlotte H. Dean
- National Heart and Lung Institute (NHLI), Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
4
|
Ikonomou L, Yampolskaya M, Mehta P. Multipotent Embryonic Lung Progenitors: Foundational Units of In Vitro and In Vivo Lung Organogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:49-70. [PMID: 37195526 PMCID: PMC10351616 DOI: 10.1007/978-3-031-26625-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Transient, tissue-specific, embryonic progenitors are important cell populations in vertebrate development. In the course of respiratory system development, multipotent mesenchymal and epithelial progenitors drive the diversification of fates that results to the plethora of cell types that compose the airways and alveolar space of the adult lungs. Use of mouse genetic models, including lineage tracing and loss-of-function studies, has elucidated signaling pathways that guide proliferation and differentiation of embryonic lung progenitors as well as transcription factors that underlie lung progenitor identity. Furthermore, pluripotent stem cell-derived and ex vivo expanded respiratory progenitors offer novel, tractable, high-fidelity systems that allow for mechanistic studies of cell fate decisions and developmental processes. As our understanding of embryonic progenitor biology deepens, we move closer to the goal of in vitro lung organogenesis and resulting applications in developmental biology and medicine.
Collapse
Affiliation(s)
- Laertis Ikonomou
- Department of Oral Biology, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.
- Cell, Gene and Tissue Engineering Center, University at Buffalo, The State University of New York, Buffalo, NY, USA.
| | | | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Du Y, Jiao J, Cao A, Ji C, Li M, Ji C, Wu Y, Guo Y, Wang Y, Zhou J, Ren Y. Ultrasound-based radiomics for the evaluation of fetal rat lung maturity a non-invasive assessment method (Ultrasound-based radiomics in fetal rat lung). Prenat Diagn 2022; 42:1429-1437. [PMID: 36056747 DOI: 10.1002/pd.6229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To establish a classification model for the evaluation of rat fetal lung maturity (FLM) using radiomics technology. METHOD A total of 430 high-throughput features were extracted per fetal lung image from 134 fetal lung ultrasound images (four-cardiac-chamber views) of 67 Sprague-Dawley (SD) fetal rats with gestational age (GA) of 16-21 days. The detection of fetal lung tissues included histopathological staining and the expression of the surface protein (SP) SP-A, SP-B, and SP-C. A machine learning classification model was established by a support vector machine based on histopathological results to analyze the relationship between fetal lung texture characteristics and FLM. RESULTS The rat fetal lungs were divided into two groups: terminal sac period (SD1) and canalicular period (SD2). The mRNA transcription and protein expression level of SP-C protein were significantly higher in the SD1 group than in the SD2 group (P < 0.05). The diagnostic performance of the rat FLM classification model was measured as follows: area under the receiver operating characteristic curve (AUC), 0.93 (training set) and 0.89 (validation set); sensitivity, 89.26% (training set) and 87.10% (validation set); specificity, 85.87% (training set) and 79.17% (validation set); accuracy, 87.79% (training set) and 83.64% (validation set). CONCLUSION Ultrasound-based radiomics technology can be used to evaluate the FLM of rats, which lays a foundation for further research on this technology in human fetal lungs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanran Du
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Jing Jiao
- Department of Electronic Engineering, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai, China
| | - Aili Cao
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Chao Ji
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Man Li
- Obstetrics and Gynecology Hospital of Fudan University, No.128, Shenyang Road, Shanghai, 200090, China
| | - Chenli Ji
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Yang Wu
- Putuo Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No.164, Lanxi Road, Shanghai, 200062, China
| | - Yi Guo
- Department of Electronic Engineering, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai, China
| | - Yuanyuan Wang
- Department of Electronic Engineering, Fudan University, No. 220, Handan Road, Yangpu District, Shanghai, 200433, China.,Key Laboratory of Medical Imaging, Computing and Computer-Assisted Intervention, Shanghai, China
| | - Jianqiao Zhou
- Department of Ultrasound, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, Rui Jin 2nd Road, Shanghai, 200025, China
| | - Yunyun Ren
- Obstetrics and Gynecology Hospital of Fudan University, No.128, Shenyang Road, Shanghai, 200090, China
| |
Collapse
|
6
|
Khattar D, Fernandes S, Snowball J, Guo M, Gillen MC, Jain SS, Sinner D, Zacharias W, Swarr DT. PI3K signaling specifies proximal-distal fate by driving a developmental gene regulatory network in SOX9+ mouse lung progenitors. eLife 2022; 11:67954. [PMID: 35976093 PMCID: PMC9427112 DOI: 10.7554/elife.67954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The tips of the developing respiratory buds are home to important progenitor cells marked by the expression of SOX9 and ID2. Early in embryonic development (prior to E13.5), SOX9+progenitors are multipotent, generating both airway and alveolar epithelium, but are selective progenitors of alveolar epithelial cells later in development. Transcription factors, including Sox9, Etv5, Irx, Mycn, and Foxp1/2 interact in complex gene regulatory networks to control proliferation and differentiation of SOX9+progenitors. Molecular mechanisms by which these transcription factors and other signaling pathways control chromatin state to establish and maintain cell-type identity are not well-defined. Herein, we analyze paired gene expression (RNA-Seq) and chromatin accessibility (ATAC-Seq) data from SOX9+ epithelial progenitor cells (EPCs) during embryonic development in Mus musculus. Widespread changes in chromatin accessibility were observed between E11.5 and E16.5, particularly at distal cis-regulatory elements (e.g. enhancers). Gene regulatory network (GRN) inference identified a common SOX9+ progenitor GRN, implicating phosphoinositide 3-kinase (PI3K) signaling in the developmental regulation of SOX9+ progenitor cells. Consistent with this model, conditional ablation of PI3K signaling in the developing lung epithelium in mouse resulted in an expansion of the SOX9+ EPC population and impaired airway epithelial cell differentiation. These data demonstrate that PI3K signaling is required for epithelial patterning during lung organogenesis, and emphasize the combinatorial power of paired RNA and ATAC seq in defining regulatory networks in development.
Collapse
Affiliation(s)
- Divya Khattar
- Department of Pediatrics, University of CincinnatiCincinnatiUnited States
| | - Sharlene Fernandes
- Perinatal Institute, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterWinston-SalemUnited States
| | - John Snowball
- Perinatal Institute, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterWinston-SalemUnited States
| | - Minzhe Guo
- Perinatal Institute, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterWinston-SalemUnited States
| | - Matthew C Gillen
- Department of Pediatrics, University of CincinnatiCincinnatiUnited States
| | - Suchi Singh Jain
- Perinatal Institute, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Wake Forest UniversityWinston-SalemUnited States
| | - Debora Sinner
- Perinatal Institute, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterWinston-SalemUnited States,Department of Pediatrics, University of CincinnatiCincinnatiUnited States
| | - William Zacharias
- Perinatal Institute, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterWinston-SalemUnited States,Department of Medicine, University of CincinnatiCincinnatiUnited States
| | - Daniel T Swarr
- Department of Pediatrics, University of CincinnatiCincinnatiUnited States,Perinatal Institute, Cincinnati Children's Hospital Medical CenterCincinnatiUnited States,Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical CenterWinston-SalemUnited States,Department of Pediatrics, University of CincinnatiCincinnatiUnited States
| |
Collapse
|
7
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
8
|
Ivy JR, Carter RN, Zhao JF, Buckley C, Urquijo H, Rog-Zielinska EA, Panting E, Hrabalkova L, Nicholson C, Agnew EJ, Kemp MW, Morton NM, Stock SJ, Wyrwoll C, Ganley IG, Chapman KE. Glucocorticoids regulate mitochondrial fatty acid oxidation in fetal cardiomyocytes. J Physiol 2021; 599:4901-4924. [PMID: 34505639 DOI: 10.1113/jp281860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
The late gestational rise in glucocorticoids contributes to the structural and functional maturation of the perinatal heart. Here, we hypothesized that glucocorticoid action contributes to the metabolic switch in perinatal cardiomyocytes from carbohydrate to fatty acid oxidation. In primary mouse fetal cardiomyocytes, dexamethasone treatment induced expression of genes involved in fatty acid oxidation and increased mitochondrial oxidation of palmitate, dependent upon a glucocorticoid receptor (GR). Dexamethasone did not, however, induce mitophagy or alter the morphology of the mitochondrial network. In vivo, in neonatal mice, dexamethasone treatment induced cardiac expression of fatty acid oxidation genes. However, dexamethasone treatment of pregnant C57Bl/6 mice at embryonic day (E)13.5 or E16.5 failed to induce fatty acid oxidation genes in fetal hearts assessed 24 h later. Instead, at E17.5, fatty acid oxidation genes were downregulated by dexamethasone, as was GR itself. PGC-1α, required for glucocorticoid-induced maturation of primary mouse fetal cardiomyocytes in vitro, was also downregulated in fetal hearts at E17.5, 24 h after dexamethasone administration. Similarly, following a course of antenatal corticosteroids in a translational sheep model of preterm birth, both GR and PGC-1α were downregulated in heart. These data suggest that endogenous glucocorticoids support the perinatal switch to fatty acid oxidation in cardiomyocytes through changes in gene expression rather than gross changes in mitochondrial volume or mitochondrial turnover. Moreover, our data suggest that treatment with exogenous glucocorticoids may interfere with normal fetal heart maturation, possibly by downregulating GR. This has implications for clinical use of antenatal corticosteroids when preterm birth is considered a possibility. KEY POINTS: Glucocorticoids are steroid hormones that play a vital role in late pregnancy in maturing fetal organs, including the heart. In fetal cardiomyocytes in culture, glucocorticoids promote mitochondrial fatty acid oxidation, suggesting they facilitate the perinatal switch from carbohydrates to fatty acids as the predominant energy substrate. Administration of a synthetic glucocorticoid in late pregnancy in mice downregulates the glucocorticoid receptor and interferes with the normal increase in genes involved in fatty acid metabolism in the heart. In a sheep model of preterm birth, antenatal corticosteroids (synthetic glucocorticoid) downregulates the glucocorticoid receptor and the gene encoding PGC-1α, a master regulator of energy metabolism. These experiments suggest that administration of antenatal corticosteroids in anticipation of preterm delivery may interfere with fetal heart maturation by downregulating the ability to respond to glucocorticoids.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Roderic N Carter
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jin-Feng Zhao
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Charlotte Buckley
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Helena Urquijo
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Eva A Rog-Zielinska
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Emma Panting
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.,School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Lenka Hrabalkova
- The Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cara Nicholson
- The Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Emma J Agnew
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.,Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, Western Australia, Australia.,Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Nicholas M Morton
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Sarah J Stock
- The Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.,Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, Western Australia, Australia.,The Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Caitlin Wyrwoll
- School of Human Sciences, The University of Western Australia, Crawley, Australia
| | - Ian G Ganley
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Karen E Chapman
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.,School of Human Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
9
|
Frum T, Spence JR. hPSC-derived organoids: models of human development and disease. J Mol Med (Berl) 2021; 99:463-473. [PMID: 32857169 PMCID: PMC7914270 DOI: 10.1007/s00109-020-01969-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022]
Abstract
Organoids derived from human pluripotent stem cells (hPSCs) have emerged as important models for investigating human-specific aspects of development and disease. Here we discuss hPSC-derived organoids through the lens of development-highlighting how stages of human development align with the development of hPSC-derived organoids in the tissue culture dish. Using hPSC-derived lung and intestinal organoids as examples, we discuss the value and application of such systems for understanding human biology, as well as strategies for enhancing organoid complexity and maturity.
Collapse
Affiliation(s)
- Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jason R Spence
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|
11
|
Bridges JP, Sudha P, Lipps D, Wagner A, Guo M, Du Y, Brown K, Filuta A, Kitzmiller J, Stockman C, Chen X, Weirauch MT, Jobe AH, Whitsett JA, Xu Y. Glucocorticoid regulates mesenchymal cell differentiation required for perinatal lung morphogenesis and function. Am J Physiol Lung Cell Mol Physiol 2020; 319:L239-L255. [PMID: 32460513 DOI: 10.1152/ajplung.00459.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
While antenatal glucocorticoids are widely used to enhance lung function in preterm infants, cellular and molecular mechanisms by which glucocorticoid receptor (GR) signaling influences lung maturation remain poorly understood. Deletion of the glucocorticoid receptor gene (Nr3c1) from fetal pulmonary mesenchymal cells phenocopied defects caused by global Nr3c1 deletion, while lung epithelial- or endothelial-specific Nr3c1 deletion did not impair lung function at birth. We integrated genome-wide gene expression profiling, ATAC-seq, and single cell RNA-seq data in mice in which GR was deleted or activated to identify the cellular and molecular mechanisms by which glucocorticoids control prenatal lung maturation. GR enhanced differentiation of a newly defined proliferative mesenchymal progenitor cell (PMP) into matrix fibroblasts (MFBs), in part by directly activating extracellular matrix-associated target genes, including Fn1, Col16a4, and Eln and by modulating VEGF, JAK-STAT, and WNT signaling. Loss of mesenchymal GR signaling blocked fibroblast progenitor differentiation into mature MFBs, which in turn increased proliferation of SOX9+ alveolar epithelial progenitor cells and inhibited differentiation of mature alveolar type II (AT2) and AT1 cells. GR signaling controls genes required for differentiation of a subset of proliferative mesenchymal progenitors into matrix fibroblasts, in turn, regulating signals controlling AT2/AT1 progenitor cell proliferation and differentiation and identifying cells and processes by which glucocorticoid signaling regulates fetal lung maturation.
Collapse
Affiliation(s)
- James P Bridges
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Parvathi Sudha
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dakota Lipps
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Andrew Wagner
- College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Minzhe Guo
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yina Du
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kari Brown
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alyssa Filuta
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joseph Kitzmiller
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Courtney Stockman
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alan H Jobe
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Jeffrey A Whitsett
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Yan Xu
- Perinatal Institute, Section of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Castaldi A, Horie M, Rieger ME, Dubourd M, Sunohara M, Pandit K, Zhou B, Offringa IA, Marconett CN, Borok Z. Genome-wide integration of microRNA and transcriptomic profiles of differentiating human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 319:L173-L184. [PMID: 32432919 DOI: 10.1152/ajplung.00519.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells, the latter being capable of self-renewal and transdifferentiation into AT1 cells for normal maintenance and restoration of epithelial integrity following injury. MicroRNAs (miRNAs) are critical regulators of several biological processes, including cell differentiation; however, their role in establishment/maintenance of cellular identity in adult alveolar epithelium is not well understood. To investigate this question, we performed genome-wide analysis of sequential changes in miRNA and gene expression profiles using a well-established model in which human AT2 (hAT2) cells transdifferentiate into AT1-like cells over time in culture that recapitulates many aspects of transdifferentiation in vivo. We defined three phases of miRNA expression during the transdifferentiation process as "early," "late," and "consistently" changed, which were further subclassified as up- or downregulated. miRNAs with altered expression at all time points during transdifferentiation were the largest subgroup, suggesting the need for consistent regulation of signaling pathways to mediate this process. Target prediction analysis and integration with previously published gene expression data identified glucocorticoid signaling as the top pathway regulated by miRNAs. Serum/glucocorticoid-regulated kinase 1 (SGK1) emerged as a central regulatory factor, whose downregulation correlated temporally with gain of hsa-miR-424 and hsa-miR-503 expression. Functional validation demonstrated specific targeting of these miRNAs to the 3'-untranslated region of SGK1. These data demonstrate the time-related contribution of miRNAs to the alveolar transdifferentiation process and suggest that inhibition of glucocorticoid signaling is necessary to achieve the AT1-like cell phenotype.
Collapse
Affiliation(s)
- Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Masafumi Horie
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Megan E Rieger
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mickael Dubourd
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsuhiro Sunohara
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kusum Pandit
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ite A Offringa
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Crystal N Marconett
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zea Borok
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
13
|
Yin Y, Ornitz DM. FGF9 and FGF10 activate distinct signaling pathways to direct lung epithelial specification and branching. Sci Signal 2020; 13:eaay4353. [PMID: 32127497 PMCID: PMC7271816 DOI: 10.1126/scisignal.aay4353] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblast growth factors (FGFs) 9 and 10 are essential during the pseudoglandular stage of lung development. Mesothelium-produced FGF9 is principally responsible for mesenchymal growth, whereas epithelium-produced FGF9 and mesenchyme-produced FGF10 guide lung epithelial development, and loss of either of these ligands affects epithelial branching. Because FGF9 and FGF10 activate distinct FGF receptors (FGFRs), we hypothesized that they would control distinct developmental processes. Here, we found that FGF9 signaled through epithelial FGFR3 to directly promote distal epithelial fate specification and inhibit epithelial differentiation. By contrast, FGF10 signaled through epithelial FGFR2b to promote epithelial proliferation and differentiation. Furthermore, FGF9-FGFR3 signaling functionally opposed FGF10-FGFR2b signaling, and FGFR3 preferentially used downstream phosphoinositide 3-kinase (PI3K) pathways, whereas FGFR2b relied on downstream mitogen-activated protein kinase (MAPK) pathways. These data demonstrate that, within lung epithelial cells, different FGFRs function independently; they bind receptor-specific ligands and direct distinct developmental functions through the activation of distinct downstream signaling pathways.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
14
|
Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to manufacture cells for modeling human lungs. Adv Drug Deliv Rev 2020; 161-162:90-109. [PMID: 32835746 PMCID: PMC7442933 DOI: 10.1016/j.addr.2020.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Chronic lung diseases remain major healthcare burdens, for which the only curative treatment is lung transplantation. In vitro human models are promising platforms for identifying and testing novel compounds to potentially decrease this burden. Directed differentiation of pluripotent stem cells is an important strategy to generate lung cells to create such models. Current lung directed differentiation protocols are limited as they do not 1) recapitulate the diversity of respiratory epithelium, 2) generate consistent or sufficient cell numbers for drug discovery platforms, and 3) establish the histologic tissue-level organization critical for modeling lung function. In this review, we describe how lung development has formed the basis for directed differentiation protocols, and discuss the utility of available protocols for lung epithelial cell generation and drug development. We further highlight tissue engineering strategies for manipulating biophysical signals during directed differentiation such that future protocols can recapitulate both chemical and physical cues present during lung development.
Collapse
Affiliation(s)
- Ratna Varma
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - John P Soleas
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada
| | - Thomas K Waddell
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital, 101 College St., Toronto, ON M5G 1L7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Alison P McGuigan
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada.
| |
Collapse
|
15
|
Affiliation(s)
- Serge Adnot
- 1 INSERM U955 Créteil, France.,2 Département de Physiologie-Explorations Fonctionnelles DHU-ATVB, Hôpital Henri Mondor Créteil, France.,3 Université Paris-Est Créteil Créteil, France and
| | - Larissa Lipskaia
- 1 INSERM U955 Créteil, France.,2 Département de Physiologie-Explorations Fonctionnelles DHU-ATVB, Hôpital Henri Mondor Créteil, France.,3 Université Paris-Est Créteil Créteil, France and
| | - David Bernard
- 4 UMR INSERM U1052/CNRS 5286 Université de Lyon-Centre Léon Bérard Lyon, France
| |
Collapse
|
16
|
Shrestha A, Carraro G, Nottet N, Vazquez-Armendariz AI, Herold S, Cordero J, Singh I, Wilhelm J, Barreto G, Morty R, El Agha E, Mari B, Chen C, Zhang JS, Chao CM, Bellusci S. A critical role for miR-142 in alveolar epithelial lineage formation in mouse lung development. Cell Mol Life Sci 2019; 76:2817-2832. [PMID: 30887098 PMCID: PMC11105218 DOI: 10.1007/s00018-019-03067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023]
Abstract
The respiratory epithelium arises from alveolar epithelial progenitors which differentiate into alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. AT2 cells are stem cells in the lung critical for the repair process after injury. Mechanisms regulating AT1 and AT2 cell maturation are poorly defined. We report that the activation of the glucocorticoid pathway in an in vitro alveolar epithelial lineage differentiation assay led to increased AT2 marker Sftpc and decreased miR-142 expression. Using miR-142 KO mice, we demonstrate an increase in the AT2/AT1 cell number ratio. Overexpression of miR-142 in alveolar progenitor cells in vivo led to the opposite effect. Examination of the KO lungs at E18.5 revealed enhanced expression of miR-142 targets Apc, Ep300 and Kras associated with increased β-catenin and p-Erk signaling. Silencing of miR-142 expression in lung explants grown in vitro triggers enhanced Sftpc expression as well as increased AT2/AT1 cell number ratio. Pharmacological inhibition of Ep300-β-catenin but not Erk in vitro prevented the increase in Sftpc expression triggered by loss of miR-142. These results suggest that the glucocorticoid-miR-142-Ep300-β-catenin signaling axis controls pneumocyte maturation.
Collapse
Affiliation(s)
- Amit Shrestha
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Lung and Regenerative Medicine Institutes, Los Angeles, CA, USA
| | - Nicolas Nottet
- Centre National de la Recherche Scientifique, CNRS, UMR 7275, Institut de Pharmacologie Moleculaire et Cellulaire (IPMC), Sophia Antipolis, France
- Universite Cote d'Azur, Nice, France
| | - Ana Ivonne Vazquez-Armendariz
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Susanne Herold
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Julio Cordero
- Lung Cancer Epigenetics, Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Indrabahadur Singh
- Lung Cancer Epigenetics, Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Guillermo Barreto
- Lung Cancer Epigenetics, Member of the German Center of Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Max-Planck-Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russian Federation
| | - Rory Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Elie El Agha
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Bernard Mari
- Centre National de la Recherche Scientifique, CNRS, UMR 7275, Institut de Pharmacologie Moleculaire et Cellulaire (IPMC), Sophia Antipolis, France
- Universite Cote d'Azur, Nice, France
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Cho-Ming Chao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany.
- Department of General Pediatrics and Neonatology, University Children's Hospital Gießen, Justus-Liebig-University, Giessen, Germany.
| | - Saverio Bellusci
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
17
|
Mittal R, Woo FW, Castro CS, Cohen MA, Karanxha J, Mittal J, Chhibber T, Jhaveri VM. Organ‐on‐chip models: Implications in drug discovery and clinical applications. J Cell Physiol 2018; 234:8352-8380. [DOI: 10.1002/jcp.27729] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Frank W. Woo
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Carlo S. Castro
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Madeline A. Cohen
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Joana Karanxha
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Jeenu Mittal
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| | - Tanya Chhibber
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University Chandigarh India
| | - Vasanti M. Jhaveri
- Department of Otolaryngology University of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
18
|
Kim HT, Yin W, Jin YJ, Panza P, Gunawan F, Grohmann B, Buettner C, Sokol AM, Preussner J, Guenther S, Kostin S, Ruppert C, Bhagwat AM, Ma X, Graumann J, Looso M, Guenther A, Adelstein RS, Offermanns S, Stainier DYR. Myh10 deficiency leads to defective extracellular matrix remodeling and pulmonary disease. Nat Commun 2018; 9:4600. [PMID: 30389913 PMCID: PMC6214918 DOI: 10.1038/s41467-018-06833-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 09/25/2018] [Indexed: 01/18/2023] Open
Abstract
Impaired alveolar formation and maintenance are features of many pulmonary diseases that are associated with significant morbidity and mortality. In a forward genetic screen for modulators of mouse lung development, we identified the non-muscle myosin II heavy chain gene, Myh10. Myh10 mutant pups exhibit cyanosis and respiratory distress, and die shortly after birth from differentiation defects in alveolar epithelium and mesenchyme. From omics analyses and follow up studies, we find decreased Thrombospondin expression accompanied with increased matrix metalloproteinase activity in both mutant lungs and cultured mutant fibroblasts, as well as disrupted extracellular matrix (ECM) remodeling. Loss of Myh10 specifically in mesenchymal cells results in ECM deposition defects and alveolar simplification. Notably, MYH10 expression is downregulated in the lung of emphysema patients. Altogether, our findings reveal critical roles for Myh10 in alveologenesis at least in part via the regulation of ECM remodeling, which may contribute to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Hyun-Taek Kim
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
| | - Wenguang Yin
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Young-June Jin
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Paolo Panza
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Beate Grohmann
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Carmen Buettner
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Anna M Sokol
- Scientific Service Group of Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Jens Preussner
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Sawa Kostin
- Scientific Service Group of Morphometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Clemens Ruppert
- Biobank, University of Giessen & Marburg Lung Center (UGLMC), Giessen, 35392, Germany
| | - Aditya M Bhagwat
- Bioinformatics Core, Weill Cornell Medicine - Qatar, Doha, PO 24144, Qatar
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Johannes Graumann
- Scientific Service Group of Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, 60323, Germany
| | - Mario Looso
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Andreas Guenther
- Biobank, University of Giessen & Marburg Lung Center (UGLMC), Giessen, 35392, Germany
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, 60323, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, 60323, Germany.
| |
Collapse
|
19
|
Nikolić MZ, Sun D, Rawlins EL. Human lung development: recent progress and new challenges. Development 2018; 145:145/16/dev163485. [PMID: 30111617 PMCID: PMC6124546 DOI: 10.1242/dev.163485] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed biologically significant differences between human and mouse lung development, and have reported new in vitro systems that allow experimental manipulation of human lung models. At the same time, emerging clinical data suggest that the origins of some adult lung diseases are found in embryonic development and childhood. The convergence of these research themes has fuelled a resurgence of interest in human lung developmental biology. In this Review, we discuss our current understanding of human lung development, which has been profoundly influenced by studies in mice and, more recently, by experiments using in vitro human lung developmental models and RNA sequencing of human foetal lung tissue. Together, these approaches are helping to shed light on the mechanisms underlying human lung development and disease, and may help pave the way for new therapies. Summary: This Review describes how recent technological advances have shed light on the mechanisms underlying human lung development and disease, and outlines the future challenges in this field.
Collapse
Affiliation(s)
- Marko Z Nikolić
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK.,University of Cambridge School of Clinical Medicine, Department of Medicine, Cambridge CB2 0QQ, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
20
|
Johnson JA, Watson JK, Nikolić MZ, Rawlins EL. Fank1 and Jazf1 promote multiciliated cell differentiation in the mouse airway epithelium. Biol Open 2018; 7:bio033944. [PMID: 29661797 PMCID: PMC5936064 DOI: 10.1242/bio.033944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
The airways are lined by secretory and multiciliated cells which function together to remove particles and debris from the respiratory tract. The transcriptome of multiciliated cells has been extensively studied, but the function of many of the genes identified is unknown. We have established an assay to test the ability of over-expressed transcripts to promote multiciliated cell differentiation in mouse embryonic tracheal explants. Overexpression data indicated that Fibronectin type 3 and ankyrin repeat domains 1 (Fank1) and JAZF zinc finger 1 (Jazf1) promoted multiciliated cell differentiation alone, and cooperatively with the canonical multiciliated cell transcription factor Foxj1. Moreover, knock-down of Fank1 or Jazf1 in adult mouse airway epithelial cultures demonstrated that these factors are both required for ciliated cell differentiation in vitro This analysis identifies Fank1 and Jazf1 as novel regulators of multiciliated cell differentiation. Moreover, we show that they are likely to function downstream of IL6 signalling and upstream of Foxj1 activity in the process of ciliated cell differentiation. In addition, our in vitro explant assay provides a convenient method for preliminary investigation of over-expression phenotypes in the developing mouse airways.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jo-Anne Johnson
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Julie K Watson
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Marko Z Nikolić
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Wellcome Trust/MRC Stem Cell Institute, Department of Pathology, University of Cambridge, Cambridge, CB2 1QN, UK
| |
Collapse
|
21
|
Developmental mechanisms and adult stem cells for therapeutic lung regeneration. Dev Biol 2018; 433:166-176. [DOI: 10.1016/j.ydbio.2017.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/09/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022]
|
22
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
23
|
Kwon HR, Nelson DA, DeSantis KA, Morrissey JM, Larsen M. Endothelial cell regulation of salivary gland epithelial patterning. Development 2017; 144:211-220. [PMID: 28096213 DOI: 10.1242/dev.142497] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 12/19/2022]
Abstract
Perfusion-independent regulation of epithelial pattern formation by the vasculature during organ development and regeneration is of considerable interest for application in restoring organ function. During murine submandibular salivary gland development, the vasculature co-develops with the epithelium during branching morphogenesis; however, it is not known whether the vasculature has instructive effects on the epithelium. Using pharmacological inhibitors and siRNA knockdown in embryonic organ explants, we determined that VEGFR2-dependent signaling is required for salivary gland epithelial patterning. To test directly for a requirement for endothelial cells in instructive epithelial patterning, we developed a novel ex vivo cell fractionation/reconstitution assay. Immuno-depletion of CD31+ endothelial cells in this assay confirmed a requirement for endothelial cells in epithelial patterning of the gland. Depletion of endothelial cells or inhibition of VEGFR2 signaling in organ explants caused an aberrant increase in cells expressing the ductal proteins K19 and K7, with a reduction in Kit+ progenitor cells in the endbuds of reconstituted glands. Addition of exogenous endothelial cells to reconstituted glands restored epithelial patterning, as did supplementation with the endothelial cell-regulated mesenchymal factors IGFBP2 and IGFBP3. Our results demonstrate that endothelial cells promote expansion of Kit+ progenitor cells and suppress premature ductal differentiation in early developing embryonic submandibular salivary gland buds.
Collapse
Affiliation(s)
- Hae Ryong Kwon
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Kara A DeSantis
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA.,Graduate Program in Molecular, Cellular, Developmental, and Neural Biology, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Jennifer M Morrissey
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
24
|
Nikolić MZ, Caritg O, Jeng Q, Johnson JA, Sun D, Howell KJ, Brady JL, Laresgoiti U, Allen G, Butler R, Zilbauer M, Giangreco A, Rawlins EL. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 2017; 6. [PMID: 28665271 PMCID: PMC5555721 DOI: 10.7554/elife.26575] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
The embryonic mouse lung is a widely used substitute for human lung development. For example, attempts to differentiate human pluripotent stem cells to lung epithelium rely on passing through progenitor states that have only been described in mouse. The tip epithelium of the branching mouse lung is a multipotent progenitor pool that self-renews and produces differentiating descendants. We hypothesized that the human distal tip epithelium is an analogous progenitor population and tested this by examining morphology, gene expression and in vitro self-renewal and differentiation capacity of human tips. These experiments confirm that human and mouse tips are analogous and identify signalling pathways that are sufficient for long-term self-renewal of human tips as differentiation-competent organoids. Moreover, we identify mouse-human differences, including markers that define progenitor states and signalling requirements for long-term self-renewal. Our organoid system provides a genetically-tractable tool that will allow these human-specific features of lung development to be investigated. DOI:http://dx.doi.org/10.7554/eLife.26575.001 Degenerative lung disease occurs when the structure of the lungs breaks down, which makes it harder to get enough oxygen into the bloodstream. Most, but not all, cases occur in smokers and ex-smokers or people who have been exposed to a lot of air pollution. Currently, there is no way to reverse the damage, and even slowing the progress of the disease is extremely difficult. Some researchers are looking for ways to treat patients with degenerative lung diseases by regenerating the surface of their lungs. However, it is still not clear what the most effective route towards this long-term goal will be. One approach to lung regeneration is to use findings from developmental biology to understand how embryos normally build the gas exchange surfaces in the lungs. This knowledge may allow scientists to trigger a similar process in an adult lung to renew or replace any diseased tissue. Alternatively, cells could be collected from patients, reprogrammed and then coaxed into becoming a gas exchange surface in the laboratory. Such a “lung-in-a-dish” could be used to understand how degenerative diseases develop, to discover and test new drugs, or even to treat the patient directly via a transplant. To date, the embryonic development of lungs has mostly been studied using mouse lungs as a model system. However, it was not clear if human lungs actually develop in similar ways to mouse lungs, and whether using mice is a valid research strategy. Nikolić et al. compared embryonic lungs from humans and mice and showed that they are indeed very similar in terms of the cell types that they contain and how they mature. However, some key differences were identified that can only be explored in human cells and tissue. Nikolić et al. went on to identify conditions that allowed them to grow cells from human embryonic lungs indefinitely in a dish. These cells can now be used to investigate the aspects of lung development that are specific to humans. Together these findings provide a useful guide to allow scientists to coax human cells growing in a laboratory to become lung cells. Further improvements to this process will make the lungs-in-a-dish more true to the real organs, meaning that they could be used to better understand lung disease and identify new medicines. In the longer term, Nikolić et al. hope to gain enough insight from the human lung-in-a-dish model to eventually be able to regenerate the lungs of patients with degenerative lung disease. However, this possibility is still many years away. DOI:http://dx.doi.org/10.7554/eLife.26575.002
Collapse
Affiliation(s)
- Marko Z Nikolić
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Oriol Caritg
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Quitz Jeng
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jo-Anne Johnson
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Kate J Howell
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Jane L Brady
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Usua Laresgoiti
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - George Allen
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Richard Butler
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | - Matthias Zilbauer
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom.,Department of Paediatric Gastroenterology, University of Cambridge and Addenbrookes Hospital, Cambridge, United Kingdom
| | - Adam Giangreco
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom.,Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust/MRC Stem Cell Institute, Cambridge, United Kingdom
| |
Collapse
|
25
|
Abstract
Purpose of Review The lung research field has pioneered the use of organoids for the study of cell-cell interactions. Recent Findings The use of organoids for airway basal cells is routine. However, the development of organoids for the other regions of the lung is still in its infancy. Such cultures usually rely on cell-cell interactions between the stem cells and a putative niche cell for their growth and differentiation. Summary The use of co-culture organoid systems has facilitated the in vitro cultivation of previously inaccessible stem cell populations, providing a novel method for dissecting the molecular requirements of these cell-cell interactions. Future technology development will allow the growth of epithelial-only organoids in more defined media and also the introduction of specific non-epithelial cells for the study of cell interactions. These developments will require an improved understanding of the epithelial and non-epithelial cell types present in the lung and their lineage relationships.
Collapse
|