1
|
Rethemeier S, Fritzsche S, Mühlen D, Bucher G, Hunnekuhl VS. Differences in size and number of embryonic type II neuroblast lineages correlate with divergent timing of central complex development between beetle and fly. eLife 2025; 13:RP99717. [PMID: 40326533 PMCID: PMC12055003 DOI: 10.7554/elife.99717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
The insect brain and the timing of its development underwent evolutionary adaptations. However, little is known about the underlying developmental processes. The central complex of the brain is an excellent model to understand neural development and divergence. It is produced in large parts by type II neuroblasts, which produce intermediate progenitors, another type of cycling precursor, to increase their neural progeny. Type II neuroblasts lineages are believed to be conserved among insects, but little is known on their molecular characteristics in insects other than flies. Tribolium castaneum has emerged as a model for brain development and evolution. However, type II neuroblasts have so far not been studied in this beetle. We created a fluorescent enhancer trap marking expression of Tc-fez/earmuff, a key marker for intermediate progenitors. Using combinatorial labeling of further markers, including Tc-pointed, we characterized embryonic type II neuroblast lineages. Intriguingly, we found nine lineages per hemisphere in the Tribolium embryo while Drosophila produces only eight per brain hemisphere. These embryonic lineages are significantly larger in Tribolium than they are in Drosophila and contain more intermediate progenitors. Finally, we mapped these lineages to the domains of head patterning genes. Notably, Tc-otd is absent from all type II neuroblasts and intermediate progenitors, whereas Tc-six3 marks an anterior subset of the type II lineages. Tc-six4 specifically marks the territory where anterior-medial type II neuroblasts differentiate. In conclusion, we identified a conserved pattern of gene expression in holometabolan central complex forming type II neuroblast lineages, and conserved head patterning genes emerged as new candidates for conferring spatial identity to individual lineages. The higher number and greater lineage size of the embryonic type II neuroblasts in the beetle correlate with a previously described embryonic phase of central complex formation. These findings stipulate further research on the link between stem cell activity and temporal and structural differences in central complex development.
Collapse
Affiliation(s)
- Simon Rethemeier
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
- University Medical Center Göttingen (UMG)GöttingenGermany
| | - Sonja Fritzsche
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Dominik Mühlen
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Gregor Bucher
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| | - Vera S Hunnekuhl
- University of Göttingen, Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental GeneticsGöttingenGermany
| |
Collapse
|
2
|
Thor S. Indirect neurogenesis in space and time. Nat Rev Neurosci 2024; 25:519-534. [PMID: 38951687 DOI: 10.1038/s41583-024-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.
Collapse
Affiliation(s)
- Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
3
|
Zhang H, Rui M, Ma Z, Gong S, Zhang S, Zhou Q, Gan C, Gong W, Wang S. Golgi-to-ER retrograde transport prevents premature differentiation of Drosophila type II neuroblasts via Notch-signal-sending daughter cells. iScience 2024; 27:108545. [PMID: 38213621 PMCID: PMC10783626 DOI: 10.1016/j.isci.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.
Collapse
Affiliation(s)
- Huanhuan Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhixin Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Sifan Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shuliu Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qingxia Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Congfeng Gan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wenting Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
4
|
Rajan A, Anhezini L, Rives-Quinto N, Chhabra JY, Neville MC, Larson ED, Goodwin SF, Harrison MM, Lee CY. Low-level repressive histone marks fine-tune gene transcription in neural stem cells. eLife 2023; 12:e86127. [PMID: 37314324 PMCID: PMC10344426 DOI: 10.7554/elife.86127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/11/2023] [Indexed: 06/15/2023] Open
Abstract
Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Noemi Rives-Quinto
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Jay Y Chhabra
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Elizabeth D Larson
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-MadisonMadisonUnited States
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan-Ann ArborAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Division of Genetic Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn ArborUnited States
- Rogel Cancer Center, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
5
|
Chen R, Deng X, Zhu S. The Ets protein Pointed P1 represses Asense expression in type II neuroblasts by activating Tailless. PLoS Genet 2022; 18:e1009928. [PMID: 35100262 PMCID: PMC8830786 DOI: 10.1371/journal.pgen.1009928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/10/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Intermediate neural progenitors (INPs) boost the number and diversity of neurons generated from neural stem cells (NSCs) by undergoing transient proliferation. In the developing Drosophila brains, INPs are generated from type II neuroblasts (NBs). In order to maintain type II NB identity and their capability to produce INPs, the proneural protein Asense (Ase) needs to be silenced by the Ets transcription factor pointed P1 (PntP1), a master regulator of type II NB development. However, the molecular mechanisms underlying the PntP1-mediated suppression of Ase is still unclear. In this study, we utilized genetic and molecular approaches to determine the transcriptional property of PntP1 and identify the direct downstream effector of PntP1 and the cis-DNA elements that mediate the suppression of ase. Our results demonstrate that PntP1 directly activates the expression of the transcriptional repressor, Tailless (Tll), by binding to seven Ets-binding sites, and Tll in turn suppresses the expression of Ase in type II NBs by binding to two hexameric core half-site motifs. We further show that Tll provides positive feedback to maintain the expression of PntP1 and the identity of type II NBs. Thus, our study identifies a novel direct target of PntP1 and reveals mechanistic details of the specification and maintenance of the type II NB identity by PntP1. Type II neuroblasts (NBs) are the neural stem cells (NSCs) in Drosophila central brains that produce neurons by generating intermediate neural progenitors (INPs) to boost brain complexity, as mammalian NSCs do during the development of neocortex. The key to the generation of INPs from type II NBs is the suppression of proneural protein Asense (Ase) in type II NBs by the Ets family transcription factor Pointed P1 (PntP1), but how PntP1 suppresses Ase expression remains unclear. In this study, we provided evidence to demonstrate that PntP1 directly activates the orphan nuclear receptor Tailless (Tll), which in turn suppresses Ase expression to maintain the capability of type II NBs to produce INPs. Meanwhile, Tll provides positive feedback to maintain the expression of PntP1 and type II NB identity. We further identified seven PntP1 binding sites in the tll enhancer regions and two Tll binding sites in the ase regulatory regions that mediate the activation of tll and the suppression of ase, respectively. Our work reveals detailed mechanisms of the specification and maintenance of the type II NB identity by PntP1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Rajan A, Ostgaard CM, Lee CY. Regulation of Neural Stem Cell Competency and Commitment during Indirect Neurogenesis. Int J Mol Sci 2021; 22:12871. [PMID: 34884676 PMCID: PMC8657492 DOI: 10.3390/ijms222312871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022] Open
Abstract
Indirect neurogenesis, during which neural stem cells generate neurons through intermediate progenitors, drives the evolution of lissencephalic brains to gyrencephalic brains. The mechanisms that specify intermediate progenitor identity and that regulate stem cell competency to generate intermediate progenitors remain poorly understood despite their roles in indirect neurogenesis. Well-characterized lineage hierarchy and available powerful genetic tools for manipulating gene functions make fruit fly neural stem cell (neuroblast) lineages an excellent in vivo paradigm for investigating the mechanisms that regulate neurogenesis. Type II neuroblasts in fly larval brains repeatedly undergo asymmetric divisions to generate intermediate neural progenitors (INPs) that undergo limited proliferation to increase the number of neurons generated per stem cell division. Here, we review key regulatory genes and the mechanisms by which they promote the specification and generation of INPs, safeguarding the indirect generation of neurons during fly larval brain neurogenesis. Homologs of these regulators of INPs have been shown to play important roles in regulating brain development in vertebrates. Insight into the precise regulation of intermediate progenitors will likely improve our understanding of the control of indirect neurogenesis during brain development and brain evolution.
Collapse
Affiliation(s)
- Arjun Rajan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
| | - Cyrina M. Ostgaard
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheng-Yu Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; (A.R.); (C.M.O.)
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Chen R, Hou Y, Connell M, Zhu S. Homeodomain protein Six4 prevents the generation of supernumerary Drosophila type II neuroblasts and premature differentiation of intermediate neural progenitors. PLoS Genet 2021; 17:e1009371. [PMID: 33556050 PMCID: PMC7895384 DOI: 10.1371/journal.pgen.1009371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/19/2021] [Accepted: 01/15/2021] [Indexed: 11/19/2022] Open
Abstract
In order to boost the number and diversity of neurons generated from neural stem cells, intermediate neural progenitors (INPs) need to maintain their homeostasis by avoiding both dedifferentiation and premature differentiation. Elucidating how INPs maintain homeostasis is critical for understanding the generation of brain complexity and various neurological diseases resulting from defects in INP development. Here we report that Six4 expressed in Drosophila type II neuroblast (NB) lineages prevents the generation of supernumerary type II NBs and premature differentiation of INPs. We show that loss of Six4 leads to supernumerary type II NBs likely due to dedifferentiation of immature INPs (imINPs). We provide data to further demonstrate that Six4 inhibits the expression and activity of PntP1 in imINPs in part by forming a trimeric complex with Earmuff and PntP1. Furthermore, knockdown of Six4 exacerbates the loss of INPs resulting from the loss of PntP1 by enhancing ectopic Prospero expression in imINPs, suggesting that Six4 is also required for preventing premature differentiation of INPs. Taken together, our work identified a novel transcription factor that likely plays important roles in maintaining INP homeostasis. Intermediate neural progenitors (INPs) are descendants of neural stem cells that can proliferate for a short term to amplify the number of nerve cells generated in the brain. INPs play critical roles in determining how big and complex a brain can grow. To perform their function, INPs need to maintain their own population and must not adopt the identity of neural stem cells, a process called dedifferentiation, or acquire the fate of their own daughter cells and stop proliferation too soon, a process called premature differentiation. However, how INPs avoid dedifferentiation and premature differentiation is not fully understood. In this study, we identified a protein called Six4 as a novel factor that plays important roles in preventing the generation of extra neural stem cells and premature differentiation of INPs in developing fruit fly brains. We described how Six4 functionally and physically interacts with other factors that are involved in regulating INP cell fate specification. Our work provides novel insights into the mechanisms regulating INP development and could have important implications in understanding how complex brains are generated during normal development and how abnormal brain development or brain tumor can occur when INPs fail to avoid premature differentiation or dedifferentiation.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Yanjun Hou
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Marisa Connell
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Overton IM, Sims AH, Owen JA, Heale BSE, Ford MJ, Lubbock ALR, Pairo-Castineira E, Essafi A. Functional Transcription Factor Target Networks Illuminate Control of Epithelial Remodelling. Cancers (Basel) 2020; 12:cancers12102823. [PMID: 33007944 PMCID: PMC7652213 DOI: 10.3390/cancers12102823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell identity is governed by gene expression, regulated by transcription factor (TF) binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making. We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions. Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme important in development, tumour progression and fibrosis. Predicted "neutral" (non-functional) TF binding always accounted for the majority (50% to 95%) of candidate target genes from statistically significant peaks and HOT regions had higher functional binding than most of the Snail and Twist datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity in development and disease. We identified new gene functions and network modules including crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that reshape Waddington's epigenetic landscape during epithelial remodelling. Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour biology, with implications for precision medicine. Predicted invasion roles were validated using a tractable cell model, supporting our approach.
Collapse
Affiliation(s)
- Ian M. Overton
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Correspondence:
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Jeremy A. Owen
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bret S. E. Heale
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Matthew J. Ford
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Alexander L. R. Lubbock
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Erola Pairo-Castineira
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Abdelkader Essafi
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| |
Collapse
|
9
|
Zacharioudaki E, Falo Sanjuan J, Bray S. Mi-2/NuRD complex protects stem cell progeny from mitogenic Notch signaling. eLife 2019; 8:41637. [PMID: 30694174 PMCID: PMC6379090 DOI: 10.7554/elife.41637] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/15/2019] [Indexed: 12/21/2022] Open
Abstract
To progress towards differentiation, progeny of stem cells need to extinguish expression of stem-cell maintenance genes. Failures in such mechanisms can drive tumorigenesis. In Drosophila neural stem cell (NSC) lineages, excessive Notch signalling results in supernumerary NSCs causing hyperplasia. However, onset of hyperplasia is considerably delayed implying there are mechanisms that resist the mitogenic signal. Monitoring the live expression of a Notch target gene, E(spl)mγ, revealed that normal attenuation is still initiated in the presence of excess Notch activity so that re-emergence of NSC properties occurs only in older progeny. Screening for factors responsible, we found that depletion of Mi-2/NuRD ATP remodeling complex dramatically enhanced Notch-induced hyperplasia. Under these conditions, E(spl)mγ was no longer extinguished in NSC progeny. We propose that Mi-2 is required for decommissioning stem-cell enhancers in their progeny, enabling the switch towards more differentiated fates and rendering them insensitive to mitogenic factors such as Notch.
Collapse
Affiliation(s)
- Evanthia Zacharioudaki
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Knigdom
| | - Julia Falo Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Knigdom
| | - Sarah Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Knigdom
| |
Collapse
|
10
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
11
|
Vivekanand P. Lessons from Drosophila Pointed, an ETS family transcription factor and key nuclear effector of the RTK signaling pathway. Genesis 2018; 56:e23257. [PMID: 30318758 DOI: 10.1002/dvg.23257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 11/05/2022]
Abstract
The ETS family of transcription factors are evolutionarily conserved throughout the metazoan lineage and are critical for regulating cellular processes such as proliferation, differentiation, apoptosis, angiogenesis, and migration. All members have an ETS DNA binding domain, while a subset also has a protein-protein interaction domain called the SAM domain. Pointed (Pnt), an ETS transcriptional activator functions downstream of the receptor tyrosine kinase (RTK) signaling pathway to regulate diverse processes during the development of Drosophila. This review highlights the indispensable role that Pnt plays in regulating normal development and how continued investigation into its function and regulation will provide key mechanistic insight into understanding why the de-regulation of its vertebrate orthologs, ETS1 and ETS2 results in cancer.
Collapse
|
12
|
Guo Z, Qin J, Zhou X, Zhang Y. Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. Int J Mol Sci 2018; 19:ijms19113691. [PMID: 30469390 PMCID: PMC6274879 DOI: 10.3390/ijms19113691] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions. Consequently, considering the importance of versatile TFs in orchestrating diverse insect physiological processes, this review will assist a growing number of entomologists to interrogate this understudied field, and to propel the progress of their contributions to pest control and even human health.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Harding K, White K. Drosophila as a Model for Developmental Biology: Stem Cell-Fate Decisions in the Developing Nervous System. J Dev Biol 2018; 6:E25. [PMID: 30347666 PMCID: PMC6315890 DOI: 10.3390/jdb6040025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Stem cells face a diversity of choices throughout their lives. At specific times, they may decide to initiate cell division, terminal differentiation, or apoptosis, or they may enter a quiescent non-proliferative state. Neural stem cells in the Drosophila central nervous system do all of these, at stereotypical times and anatomical positions during development. Distinct populations of neural stem cells offer a unique system to investigate the regulation of a particular stem cell behavior, while comparisons between populations can lead us to a broader understanding of stem cell identity. Drosophila is a well-described and genetically tractable model for studying fundamental stem cell behavior and the mechanisms that underlie cell-fate decisions. This review will focus on recent advances in our understanding of the factors that contribute to distinct stem cell-fate decisions within the context of the Drosophila nervous system.
Collapse
Affiliation(s)
- Katherine Harding
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA
| | - Kristin White
- Massachusetts General Hospital Cutaneous Biology Research Center, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
14
|
Paglia S, Sollazzo M, Di Giacomo S, de Biase D, Pession A, Grifoni D. Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in Drosophila. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2690187. [PMID: 29445734 PMCID: PMC5763105 DOI: 10.1155/2017/2690187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 02/05/2023]
Abstract
Different regions in the mammalian adult brain contain immature precursors, reinforcing the concept that brain cancers, such as glioblastoma multiforme (GBM), may originate from cells endowed with stem-like properties. Alterations of the tumour suppressor gene PTEN are very common in primary GBMs. Very recently, PTEN loss was shown to undermine a specific molecular axis, whose failure is associated with the maintenance of the GBM stem cells in mammals. This axis is composed of PTEN, aPKC, and the polarity determinant Lethal giant larvae (Lgl): PTEN loss promotes aPKC activation through the PI3K pathway, which in turn leads to Lgl inhibition, ultimately preventing stem cell differentiation. To find the neural precursors responding to perturbations of this molecular axis, we targeted different neurogenic regions of the Drosophila brain. Here we show that PTEN mutation impacts aPKC and Lgl protein levels also in Drosophila. Moreover, we demonstrate that PI3K activation is not sufficient to trigger tumourigenesis, while aPKC promotes hyperplastic growth of the neuroepithelium and a noticeable expansion of the type II neuroblasts. Finally, we show that these neuroblasts form invasive tumours that persist and keep growing in the adult, leading the affected animals to untimely death, thus displaying frankly malignant behaviours.
Collapse
Affiliation(s)
- Simona Paglia
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Manuela Sollazzo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Di Giacomo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario de Biase
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Annalisa Pession
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Daniela Grifoni
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
15
|
Walsh KT, Doe CQ. Drosophila embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. Development 2017; 144:4552-4562. [PMID: 29158446 DOI: 10.1242/dev.157826] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/03/2017] [Indexed: 12/27/2022]
Abstract
Drosophila neuroblasts are an excellent model for investigating how neuronal diversity is generated. Most brain neuroblasts generate a series of ganglion mother cells (GMCs) that each make two neurons (type I lineage), but 16 brain neuroblasts generate a series of intermediate neural progenitors (INPs) that each produce 4-6 GMCs and 8-12 neurons (type II lineage). Thus, type II lineages are similar to primate cortical lineages, and may serve as models for understanding cortical expansion. Yet the origin of type II neuroblasts remains mysterious: do they form in the embryo or larva? If they form in the embryo, do their progeny populate the adult central complex, as do the larval type II neuroblast progeny? Here, we present molecular and clonal data showing that all type II neuroblasts form in the embryo, produce INPs and express known temporal transcription factors. Embryonic type II neuroblasts and INPs undergo quiescence, and produce embryonic-born progeny that contribute to the adult central complex. Our results provide a foundation for investigating the development of the central complex, and tools for characterizing early-born neurons in central complex function.
Collapse
Affiliation(s)
- Kathleen T Walsh
- Howard Hughes Medical Institute, Institute of Molecular Biology, and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Howard Hughes Medical Institute, Institute of Molecular Biology, and Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
16
|
Li X, Chen R, Zhu S. bHLH-O proteins balance the self-renewal and differentiation of Drosophila neural stem cells by regulating Earmuff expression. Dev Biol 2017; 431:239-251. [PMID: 28899667 DOI: 10.1016/j.ydbio.2017.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/23/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
Balancing self-renewal and differentiation of stem cells requires differential expression of self-renewing factors in two daughter cells generated from the asymmetric division of the stem cells. In Drosophila type II neural stem cell (or neuroblast, NB) lineages, the expression of the basic helix-loop-helix-Orange (bHLH-O) family proteins, including Deadpan (Dpn) and E(spl) proteins, is required for maintaining the self-renewal and identity of type II NBs, whereas the absence of these self-renewing factors is essential for the differentiation of intermediate neural progenitors (INPs) generated from type II NBs. Here, we demonstrate that Dpn maintains type II NBs by suppressing the expression of Earmuff (Erm). We provide evidence that Dpn and E(spl) proteins suppress Erm by directly binding to C-sites and N-boxes in the cis-regulatory region of erm. Conversely, the absence of bHLH-O proteins in INPs allows activation of erm and Erm-mediated maturation of INPs. Our results further suggest that Pointed P1 (PntP1) mediates the dedifferentiation of INPs resulting from the loss of Erm or overexpression of Dpn or E(spl) proteins. Taken together, these findings reveal mechanisms underlying the regulation of the maintenance of type II NBs and differentiation of INPs through the differential expression of bHLH-O family proteins.
Collapse
Affiliation(s)
- Xiaosu Li
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, United States.
| |
Collapse
|
17
|
Janssens DH, Hamm DC, Anhezini L, Xiao Q, Siller KH, Siegrist SE, Harrison MM, Lee CY. An Hdac1/Rpd3-Poised Circuit Balances Continual Self-Renewal and Rapid Restriction of Developmental Potential during Asymmetric Stem Cell Division. Dev Cell 2017; 40:367-380.e7. [PMID: 28245922 DOI: 10.1016/j.devcel.2017.01.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/16/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
How the developmental potential of differentiating stem cell progeny becomes rapidly and stably restricted following asymmetric stem cell division is unclear. In the fly larval brain, earmuff (erm) uniquely functions to restrict the developmental potential of intermediate neural progenitors (INPs) generated by asymmetrically dividing neural stem cells (neuroblasts). Here we demonstrate that the histone deacetylase Hdac1/Rpd3 functions together with self-renewal transcriptional repressors to maintain the erm immature INP enhancer in an inactive but poised state in neuroblasts. Within 2 hr of immature INP birth, downregulation of repressor activities alleviates Rpd3-mediated repression on the erm enhancer, enabling acetylation of multiple histone proteins and activating Erm expression. Erm restricts the developmental potential in immature INPs by repressing genes encoding neuroblast transcriptional activators. We propose that poising the fast-activating enhancers of master regulators of differentiation through continual histone deacetylation in stem cells enables self-renewal and rapid restriction of developmental potential following asymmetric division.
Collapse
Affiliation(s)
- Derek H Janssens
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danielle C Hamm
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Lucas Anhezini
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Qi Xiao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Karsten H Siller
- Advanced Research Computing Services, University of Virginia, Charlottesville, VA 22904, USA
| | - Sarah E Siegrist
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Cheng-Yu Lee
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|