1
|
Zimmerlin L, Angarita A, Park TS, Evans-Moses R, Thomas J, Yan S, Uribe I, Vegas I, Kochendoerfer C, Buys W, Leung AKL, Zambidis ET. Proteogenomic reprogramming to a functional human blastomere-like stem cell state via a PARP-DUX4 regulatory axis. Cell Rep 2025; 44:115671. [PMID: 40338744 DOI: 10.1016/j.celrep.2025.115671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 02/17/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025] Open
Abstract
Here, we show that conventional human pluripotent stem cells cultured with non-specific tankyrase-PARP1-inhibited conditions underwent proteogenomic reprogramming to functional blastomere-like tankyrase/PARP inhibitor-regulated naive stem cells (TIRN-SC). TIRN-SCs concurrently expressed hundreds of pioneer factors in hybrid 2C-8C-morula-ICM programs that were augmented by induced expression of DUX4. Injection of TIRN-SCs into 8C-staged murine embryos equipotently differentiated human cells to the extra-embryonic and embryonic compartments of chimeric blastocysts and fetuses. Ectopic expression of murine-E-Cadherin in TIRN-SCs further enhanced interspecific chimeric tissue targeting. TIRN-SC-derived trophoblast stem cells efficiently generated placental chimeras. Proteome-ubiquitinome analyses revealed increased TNKS and reduced PARP1 levels and an ADP-ribosylation-deficient, hyper-ubiquitinated proteome that impacted expression of both tankyrase and PARP1 substrates. ChIP-seq of NANOG-SOX2-OCT4 and PARP1 (NSOP) revealed genome-wide NSOP co-binding at DUX4-accessible enhancers of embryonic lineage factors; suggesting a DUX4-NSOP axis regulated TIRN-SC lineage plasticity. TIRN-SCs may serve as valuable models for studying the proteogenomic regulation of pre-lineage human embryogenesis. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ariana Angarita
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca Evans-Moses
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Justin Thomas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sirui Yan
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Isabel Uribe
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Isabella Vegas
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Clara Kochendoerfer
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Willem Buys
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony K L Leung
- Departments of Biochemistry and Molecular Biology, The Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Hua L, Peng Y, Yan L, Yuan P, Qiao J. Moving toward totipotency: the molecular and cellular features of totipotent and naive pluripotent stem cells. Hum Reprod Update 2025:dmaf006. [PMID: 40299455 DOI: 10.1093/humupd/dmaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Dissecting the key molecular mechanism of embryonic development provides novel insights into embryogenesis and potential intervention strategies for clinical practices. However, the ability to study the molecular mechanisms of early embryo development in humans, such as zygotic genome activation and lineage segregation, is meaningfully constrained by methodological limitations and ethical concerns. Totipotent stem cells have an extended developmental potential to differentiate into embryonic and extraembryonic tissues, providing a suitable model for studying early embryo development. Recently, a series of ground-breaking results on stem cells have identified totipotent-like cells or induced pluripotent stem cells into totipotent-like cells. OBJECTIVE AND RATIONALE This review followed the PRISMA guidelines, surveys the current works of literature on totipotent, naive, and formative pluripotent stem cells, introduces the molecular and biological characteristics of those stem cells, and gives advice for future research. SEARCH METHODS The search method employed the terms 'totipotent' OR 'naive pluripotent stem cell' OR 'formative pluripotent stem cell' for unfiltered search on PubMed, Web of Science, and Cochrane Library. Papers included were those with information on totipotent stem cells, naive pluripotent stem cells, or formative pluripotent stem cells until June 2024 and were published in the English language. Articles that have no relevance to stem cells, or totipotent, naive pluripotent, or formative pluripotent cells were excluded. OUTCOMES There were 152 records included in this review. These publications were divided into four groups according to the species of the cells included in the studies: 67 human stem cell studies, 70 mouse stem cell studies, 9 porcine stem cell studies, and 6 cynomolgus stem cell studies. Naive pluripotent stem cell models have been established in other species such as porcine and cynomolgus. Human and mouse totipotent stem cells, e.g. human 8-cell-like cells, human totipotent blastomere-like cells, and mouse 2-cell-like cells, have been successfully established and exhibit high developmental potency for both embryonic and extraembryonic contributions. However, the observed discrepancies between these cells and real embryos in terms of epigenetics and transcription suggest that further research is warranted. Our results systematically reviewed the established methods, molecular characteristics, and developmental potency of different naive, formative pluripotent, and totipotent stem cells. Furthermore, we provide a parallel comparison between animal and human models, and offer recommendations for future applications to advance early embryo research and assisted reproduction technologies. WIDER IMPLICATIONS Totipotent cell models provide a valuable resource to understand the underlying mechanisms of embryo development and forge new paths toward future treatment of infertility and regenerative medicine. However, current in vitro cell models exhibit epigenetic and transcriptional differences from in vivo embryos, and many cell models are unstable across passages, thus imperfectly recapitulating embryonic development. In this regard, standardizing and expanding current research on totipotent stem cell models are essential to enhance our capability to resemble and decipher embryogenesis.
Collapse
Affiliation(s)
- Lingyue Hua
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Yuyang Peng
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Peng Yuan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Beijing, China
| |
Collapse
|
3
|
Choi HS, Lee JY, Choi MJ, Kim MS, Ryu CJ. Bone marrow stromal cell antigen 2 is broadly expressed in the different pluripotent states of human pluripotent stem cells and regulates the expression of pluripotency genes and three germ layer markers. Hum Cell 2024; 38:34. [PMID: 39718725 DOI: 10.1007/s13577-024-01160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
Human pluripotent stem cells (hPSCs) have at least three distinct states: naïve pluripotency that represents the cellular states of the pre-implantation epiblast cells, primed pluripotency that represents the cellular states of the post-implantation epiblast cells, and formative pluripotency that represents a developmental continuum between naïve and primed pluripotency. Various cell surface markers have been used to define and analyze primed and naïve hPSCs within heterogeneous populations. However, not much is known about common cell surface markers for the different pluripotent states of hPSCs. To study surface molecules important for maintaining naive pluripotency, in this study, we generated murine monoclonal antibodies (MAbs) specific to naïve hPSCs. Subsequent studies showed that N15-F8, one of the MAbs, bound to both naïve and primed hPSCs. Cell surface biotin labeling and subsequent immunoprecipitation proved that N15-F8 recognized bone marrow stromal antigen 2 (BST2) in a conformation-dependent manner. Quantitative polymerase chain reaction (qPCR) revealed that BST2 expression was decreased during the early stages of differentiation via embryoid body (EB) formation in primed hPSCs. BST2 knockdown in primed hPSCs resulted in reduced expression of pluripotency genes. BST2 knockdown in naïve hPSCs also resulted in reduced expression of pluripotency genes and several naïve and primed pluripotent state-specific genes. BST2 knockdown induced the expression of ectoderm and endoderm markers in primed hPSCs, whereas it suppressed the expression of mesoderm markers. The results suggest that BST2 is broadly expressed in the different pluripotent states of hPSCs and regulates the expression of pluripotency genes and three germ layer markers.
Collapse
Affiliation(s)
- Hong Seo Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143-747, Korea
| | - Ji Yoon Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143-747, Korea
| | - Mun Ju Choi
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143-747, Korea
| | - Min Seong Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143-747, Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Institute of Bioscience, Institute of Anticancer Medicine Development, Sejong University, Seoul, 143-747, Korea.
| |
Collapse
|
4
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Chen KG, Johnson KR, Park K, Maric D, Yang F, Liu WF, Fann YC, Mallon BS, Robey PG. Resistance to Naïve and Formative Pluripotency Conversion in RSeT Human Embryonic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580778. [PMID: 38410444 PMCID: PMC10896352 DOI: 10.1101/2024.02.16.580778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the most important properties of human embryonic stem cells (hESCs) is related to their primed and naïve pluripotent states. Our previous meta-analysis indicates the existence of heterogeneous pluripotent states derived from diverse naïve protocols. In this study, we have characterized a commercial medium (RSeT)-based pluripotent state under various growth conditions. Notably, RSeT hESCs can circumvent hypoxic growth conditions as required by naïve hESCs, in which some RSeT cells (e.g., H1 cells) exhibit much lower single cell plating efficiency, having altered or much retarded cell growth under both normoxia and hypoxia. Evidently, hPSCs lack many transcriptomic hallmarks of naïve and formative pluripotency (a phase between naive and primed states). Integrative transcriptome analysis suggests our primed and RSeT hESCs are close to the early stage of post-implantation embryos, similar to the previously reported primary hESCs and early hESC cultures. Moreover, RSeT hESCs did not express naïve surface markers such as CD75, SUSD2, and CD130 at a significant level. Biochemically, RSeT hESCs exhibit a differential dependency of FGF2 and co-independency of both Janus kinase (JAK) and TGFβ signaling in a cell-line-specific manner. Thus, RSeT hESCs represent a previously unrecognized pluripotent state downstream of formative pluripotency. Our data suggest that human naïve pluripotent potentials may be restricted in RSeT medium. Hence, this study provides new insights into pluripotent state transitions in vitro.
Collapse
Affiliation(s)
| | - Kory R. Johnson
- Intramural IT and Bioinformatics Program, Bethesda, Maryland 20892, USA
| | - Kyeyoon Park
- NIH Stem Cell Unit, Bethesda, Maryland 20892, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Forest Yang
- NIH Stem Cell Unit, Bethesda, Maryland 20892, USA
| | - Wen Fang Liu
- NIH Stem Cell Unit, Bethesda, Maryland 20892, USA
| | - Yang C. Fann
- Intramural IT and Bioinformatics Program, Bethesda, Maryland 20892, USA
| | | | - Pamela G. Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
6
|
Buys W, Zambidis ET. Harnessing bioengineered myeloid progenitors for precision immunotherapies. NPJ Regen Med 2023; 8:66. [PMID: 38086850 PMCID: PMC10716389 DOI: 10.1038/s41536-023-00343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/30/2023] [Indexed: 03/05/2025] Open
Abstract
Granulocytes and macrophages are the frontline defenders of the innate immune system. These myeloid cells play a crucial role in not only eliminating pathogens and tumor cells, but also regulating adaptive immune responses. In neonatal sepsis and post-chemotherapy agranulocytosis, the absence of these cells leaves the host highly vulnerable to infections. Beyond replacement to prevent or control neutropenic sepsis, engineered myeloid cells may offer distinct opportunities for cell therapies. For example, the mobility and specific homing capacities of neutrophils to sites of inflammation could be exploited to deliver biocidal agents, or anti-inflammatory healing signals during sepsis, autoimmunity, and organ transplantation. Additionally, myeloid cells can be engineered to express chimeric antigen receptors (CAR), carry chemotherapeutics, or enhance lymphoid tumor killing. However, traditional methods of cell isolation are incapable of providing sufficient cell numbers of these short-lived cells; their propensity for premature activation further complicates their cell engineering. Here, we review current and future biotherapeutic innovations that employ engineered multipotent myeloid progenitors derived from either self-renewing human induced pluripotent stem cells (hiPSC) or primary CD34+ hematopoietic stem-progenitors. We provide a roadmap for solving the challenges of sourcing, cost, and production of engineered myeloid cell therapies.
Collapse
Affiliation(s)
- Willem Buys
- Institute for Cell Engineering, and Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, and Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Lambert KA, Clements CM, Mukherjee N, Pacheco TR, Shellman SX, Henen MA, Vögeli B, Goldstein NB, Birlea S, Hintzsche J, Tan AC, Zhao R, Norris DA, Robinson WA, Wang Y, VanTreeck JG, Shellman YG. SASH1 interacts with TNKS2 and promotes human melanocyte stem cell maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559624. [PMID: 37808724 PMCID: PMC10557680 DOI: 10.1101/2023.09.26.559624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Both aging spots (hyperpigmentation) and hair graying (lack of pigmentation) are associated with aging, two seemingly opposite pigmentation phenotypes. It is not clear how they are mechanistically connected. This study investigated the underlying mechanism in a family with an inherited pigmentation disorder. Clinical examinations identified accelerated hair graying and skin dyspigmentation (intermixed hyper and hypopigmentation) in the family members carrying the SASH1 S519N variant. Cell assays indicated that SASH1 promoted stem-like characteristics in human melanocytes, and SASH1 S519N was defective in this function. Multiple assays showed that SASH1 binds to tankyrase 2 (TNKS2), which is required for SASH1's promotion of stem-like function. Further, the SASH1 S519N variant is in a bona fide Tankyrase-binding motif, and SASH1 S519N alters the binding kinetics and affinity. Results here indicate SASH1 as a novel protein regulating the appropriate balance between melanocyte stem cells (McSC) and mature melanocytes (MCs), with S519N variant causing defects. We propose that dysfunction of McSC maintenance connects multiple aging-associated pigmentation phenotypes in the general population.
Collapse
|
8
|
Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Adv Wound Care (New Rochelle) 2022; 11:622-638. [PMID: 34155919 DOI: 10.1089/wound.2021.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Nonhealing wounds are a significant burden for the health care system all over the world. Existing treatment options are not enough to promote healing, highlighting the urgent need for improved therapies. In addition, the current advancements in tissue-engineered skin constructs and stem cell-based therapies are facing significant hurdles due to the absence of a renewable source of functional cells. Recent Advances: Induced pluripotent stem cell technology (iPSC) is emerging as a novel tool to develop the next generation of personalized medicine for the treatment of chronic wounds. The iPSC provides unlimited access to various skin cells to generate complex personalized three-dimensional skin constructs for disease modeling and autologous grafts. Furthermore, the iPSC-based therapies can target distinct wound healing phases and have shown accelerating wound closure by enhancing angiogenesis, cell migration, tissue regeneration, and modulating inflammation. Critical Issues: Since the last decade, iPSC has been revolutionizing the field of wound healing and skin tissue engineering. Despite the current progress, safety and heterogeneity among iPSC lines are still major hurdles in addition to the lack of large animal studies. These challenges need to be addressed before translating an iPSC-based therapy to the clinic. Future Directions: Future considerations should be given to performing large animal studies to check the safety and efficiency of iPSC-based therapy in a wound healing setup. Furthermore, strategies should be developed to overcome variation between hiPSC lines, develop an efficient manufacturing process for iPSC-derived products, and generate complex skin constructs with vasculature and skin appendages.
Collapse
Affiliation(s)
- Biraja C Dash
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Differentiation of human induced pluripotent stem cells into hypothalamic vasopressin neurons with minimal exogenous signals and partial conversion to the naive state. Sci Rep 2022; 12:17381. [PMID: 36253431 PMCID: PMC9576732 DOI: 10.1038/s41598-022-22405-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
Familial neurohypophyseal diabetes insipidus (FNDI) is a degenerative disease of vasopressin (AVP) neurons. Studies in mouse in vivo models indicate that accumulation of mutant AVP prehormone is associated with FNDI pathology. However, studying human FNDI pathology in vivo is technically challenging. Therefore, an in vitro human model needs to be developed. When exogenous signals are minimized in the early phase of differentiation in vitro, mouse embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) differentiate into AVP neurons, whereas human ESCs/iPSCs die. Human ESCs/iPSCs are generally more similar to mouse epiblast stem cells (mEpiSCs) compared to mouse ESCs. In this study, we converted human FNDI-specific iPSCs by the naive conversion kit. Although the conversion was partial, we found improved cell survival under minimal exogenous signals and differentiation into rostral hypothalamic organoids. Overall, this method provides a simple and straightforward differentiation direction, which may improve the efficiency of hypothalamic differentiation.
Collapse
|
10
|
Ávila-González D, Portillo W, Barragán-Álvarez CP, Hernandez-Montes G, Flores-Garza E, Molina-Hernández A, Diaz-Martinez NE, Diaz NF. The human amniotic epithelium confers a bias to differentiate toward the neuroectoderm lineage in human embryonic stem cells. eLife 2022; 11:68035. [PMID: 35815953 PMCID: PMC9313526 DOI: 10.7554/elife.68035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) derive from the epiblast and have pluripotent potential. To maintain the conventional conditions of the pluripotent potential in an undifferentiated state, inactivated mouse embryonic fibroblast (iMEF) is used as a feeder layer. However, it has been suggested that hESC under this conventional condition (hESC-iMEF) is an artifact that does not correspond to the in vitro counterpart of the human epiblast. Our previous studies demonstrated the use of an alternative feeder layer of human amniotic epithelial cells (hAECs) to derive and maintain hESC. We wondered if the hESC-hAEC culture could represent a different pluripotent stage than that of naïve or primed conventional conditions, simulating the stage in which the amniotic epithelium derives from the epiblast during peri-implantation. Like the conventional primed hESC-iMEF, hESC-hAEC has the same levels of expression as the ‘pluripotency core’ and does not express markers of naïve pluripotency. However, it presents a downregulation of HOX genes and genes associated with the endoderm and mesoderm, and it exhibits an increase in the expression of ectoderm lineage genes, specifically in the anterior neuroectoderm. Transcriptome analysis showed in hESC-hAEC an upregulated signature of genes coding for transcription factors involved in neural induction and forebrain development, and the ability to differentiate into a neural lineage was superior in comparison with conventional hESC-iMEF. We propose that the interaction of hESC with hAEC confers hESC a biased potential that resembles the anteriorized epiblast, which is predisposed to form the neural ectoderm.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Wendy Portillo
- Behavioral and Cognitive Neurobiology, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Carla P Barragán-Álvarez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | | | - Eliezer Flores-Garza
- Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Anayansi Molina-Hernández
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | | | - Nestor F Diaz
- Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| |
Collapse
|
11
|
Collier AJ, Bendall A, Fabian C, Malcolm AA, Tilgner K, Semprich CI, Wojdyla K, Nisi PS, Kishore K, Roamio Franklin VN, Mirshekar-Syahkal B, D’Santos C, Plath K, Yusa K, Rugg-Gunn PJ. Genome-wide screening identifies Polycomb repressive complex 1.3 as an essential regulator of human naïve pluripotent cell reprogramming. SCIENCE ADVANCES 2022; 8:eabk0013. [PMID: 35333572 PMCID: PMC8956265 DOI: 10.1126/sciadv.abk0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Uncovering the mechanisms that establish naïve pluripotency in humans is crucial for the future applications of pluripotent stem cells including the production of human blastoids. However, the regulatory pathways that control the establishment of naïve pluripotency by reprogramming are largely unknown. Here, we use genome-wide screening to identify essential regulators as well as major impediments of human primed to naïve pluripotent stem cell reprogramming. We discover that factors essential for cell state change do not typically undergo changes at the level of gene expression but rather are repurposed with new functions. Mechanistically, we establish that the variant Polycomb complex PRC1.3 and PRDM14 jointly repress developmental and gene regulatory factors to ensure naïve cell reprogramming. In addition, small-molecule inhibitors of reprogramming impediments improve naïve cell reprogramming beyond current methods. Collectively, this work defines the principles controlling the establishment of human naïve pluripotency and also provides new insights into mechanisms that destabilize and reconfigure cell identity during cell state transitions.
Collapse
Affiliation(s)
- Amanda J. Collier
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Adam Bendall
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Andrew A. Malcolm
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Katarzyna Tilgner
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Clive D’Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Peter J. Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Abstract
Prior to implantation, the cells in the mammalian epiblast constitute a naïve pluripotent state, which is distinguished by absence of lineage priming, freedom from epigenetic restriction, and expression of a unique set of transcription factors. However, human embryonic stem cells (hESCs) derived under conventional conditions have exited this naïve state and acquired a more advanced "primed" pluripotent state that corresponds to the post-implantation epiblast. We have developed a cocktail comprising five kinase inhibitors and two growth factors (5i/L/A) that enables induction of defining features of naïve pluripotency in primed hESCs. These conditions can also be applied to induce naïve pluripotency in patient-specific induced pluripotent stem cells (iPSCs). Here, we provide a detailed protocol for inducing naïve pluripotency in primed hESCs and iPSCs and methods for the routine validation of naïve identity. We also outline the use of two fluorescent reporter systems to track acquisition of naïve identity in live cells: (a) a GFP reporter linked to an endogenous OCT4 allele in which the primed-specific proximal enhancer has been deleted (OCT4-ΔPE-GFP); and (b) a dual-color reporter system targeted to both alleles of an X-linked gene that reports on the status of the X chromosome in female cells (MECP2-GFP/tdTomato). The conditions described herein have given insight into various aspects of naïve human pluripotent stem cells (hPSCs), including their unique transposon transcription profile, X chromosome status, and extraembryonic potential.
Collapse
Affiliation(s)
- Laura A Fischer
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Shafqat A Khan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Thorold W Theunissen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Zimmerlin L, Park TS, Bhutto I, Lutty G, Zambidis ET. Generation of Pericytic-Vascular Progenitors from Tankyrase/PARP-Inhibitor-Regulated Naïve (TIRN) Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2416:133-156. [PMID: 34870835 PMCID: PMC9529319 DOI: 10.1007/978-1-0716-1908-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tankyrase/PARP inhibitor-regulated naïve human pluripotent stem cells (TIRN-hPSC) represent a new class of human stem cells for regenerative medicine that can differentiate into multi-lineage progenitors with improved in vivo functionality. Chemical reversion of conventional, primed hPSC to a TIRN-hPSC state alleviates dysfunctional epigenetic donor cell memory, lineage-primed gene expression, and potentially disease-associated aberrations in their differentiated progeny. Here, we provide methods for the reversion of normal or diseased patient-specific primed hPSC to TIRN-hPSC and describe their subsequent differentiation into embryonic-like pericytic-endothelial "naïve" vascular progenitors (N-VP). N-VP possess improved vascular functionality, high epigenetic plasticity, maintain greater genomic stability, and are more efficient in migrating to and re-vascularizing ischemic tissues than those generated from primed isogenic hPSC. We also describe detailed methods for the ocular transplantation and quantitation of vascular engraftment of N-VP into the ischemia-damaged neural retina of a humanized mouse model of ischemic retinopathy. The application of TIRN-hPSC-derived N-VP will advance vascular cell therapies of ischemic retinopathy, myocardial infarction, and cerebral vascular stroke.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tea Soon Park
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Imran Bhutto
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard Lutty
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elias T Zambidis
- Sidney Kimmel Comprehensive Cancer Center, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Lea RA, McCarthy A, Boeing S, Fallesen T, Elder K, Snell P, Christie L, Adkins S, Shaikly V, Taranissi M, Niakan KK. KLF17 promotes human naïve pluripotency but is not required for its establishment. Development 2021; 148:272511. [PMID: 34661235 PMCID: PMC8645209 DOI: 10.1242/dev.199378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/11/2021] [Indexed: 12/11/2022]
Abstract
Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and naïve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development. We investigate the function of KLF17 using primed and naïve hESCs for gain- and loss-of-function analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a naïve-like transcriptome and that KLF17 can drive transgene-mediated resetting to naïve pluripotency. This implies a role for KLF17 in establishing naïve pluripotency. However, CRISPR-Cas9-mediated knockout studies reveal that KLF17 is not required for naïve pluripotency acquisition in vitro. Transcriptome analysis of naïve hESCs identifies subtle effects on metabolism and signalling pathways following KLF17 loss of function, and possible redundancy with other KLF paralogues. Overall, we show that KLF17 is sufficient, but not necessary, for naïve pluripotency under the given in vitro conditions. Summary: Given that KLF17 was shown to be sufficient, but not necessary, to establish naïve pluripotent hESCs, KLF17 might function as a peripheral regulator of human pluripotent stem cells.
Collapse
Affiliation(s)
- Rebecca A Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefan Boeing
- Bioinformatics and Biostatistics Service, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Todd Fallesen
- Crick Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Kay Elder
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | - Phil Snell
- Bourn Hall Clinic, Bourn, Cambridge CB23 2TN, UK
| | | | - Sarah Adkins
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | - Valerie Shaikly
- Assisted Reproduction and Gynaecology Centre, London W1G 6LP, UK
| | | | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.,The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
15
|
Keshet G, Benvenisty N. Large-scale analysis of imprinting in naive human pluripotent stem cells reveals recurrent aberrations and a potential link to FGF signaling. Stem Cell Reports 2021; 16:2520-2533. [PMID: 34597600 PMCID: PMC8514966 DOI: 10.1016/j.stemcr.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Genomic imprinting is a parent-of-origin dependent monoallelic expression of genes. Previous studies showed that conversion of primed human pluripotent stem cells (hPSCs) into naive pluripotency is accompanied by genome-wide loss of methylation that includes imprinted loci. However, the extent of aberrant biallelic expression of imprinted genes is still unknown. Here, we analyze loss of imprinting (LOI) in a large cohort of both bulk and single-cell RNA sequencing samples of naive and primed hPSCs. We show that naive hPSCs exhibit high levels of non-random LOI, with bias toward paternally methylated imprinting control regions. Importantly, we show that different protocols used for the primed to naive conversion led to different extents of LOI, tightly correlated to FGF signaling. This analysis sheds light on the process of LOI occurring during the conversion to naive pluripotency and highlights the importance of these events when modeling disease and development or when utilizing the cells for therapy.
Collapse
Affiliation(s)
- Gal Keshet
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
16
|
Khan SA, Park KM, Fischer LA, Dong C, Lungjangwa T, Jimenez M, Casalena D, Chew B, Dietmann S, Auld DS, Jaenisch R, Theunissen TW. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Rep 2021; 35:109233. [PMID: 34133938 PMCID: PMC8272458 DOI: 10.1016/j.celrep.2021.109233] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Naive human embryonic stem cells (hESCs) have been isolated that more closely resemble the pre-implantation epiblast compared to conventional “primed” hESCs, but the signaling principles underlying these discrete stem cell states remain incompletely understood. Here, we describe the results from a high-throughput screen using ~3,000 well-annotated compounds to identify essential signaling requirements for naive human pluripotency. We report that MEK1/2 inhibitors can be replaced during maintenance of naive human pluripotency by inhibitors targeting either upstream (FGFR, RAF) or downstream (ERK1/2) kinases. Naive hESCs maintained under these alternative conditions display elevated levels of ERK phosphorylation but retain genome-wide DNA hypomethylation and a transcriptional identity of the pre-implantation epiblast. In contrast, dual inhibition of MEK and ERK promotes efficient primed-to-naive resetting in combination with PKC, ROCK, and TNKS inhibitors and activin A. This work demonstrates that induction and maintenance of naive human pluripotency are governed by distinct signaling requirements. Khan et al. describe a high-throughput chemical screen to identify essential signaling requirements for naive human pluripotency in minimal conditions. They report that naive hESCs can be maintained by blocking distinct nodes in the FGF signaling pathway and that dual MEK/ERK inhibition promotes efficient primed-to-naive resetting in combination with activin A.
Collapse
Affiliation(s)
- Shafqat A Khan
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Marta Jimenez
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Dominick Casalena
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Brian Chew
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Kerepesi C, Zhang B, Lee SG, Trapp A, Gladyshev VN. Epigenetic clocks reveal a rejuvenation event during embryogenesis followed by aging. SCIENCE ADVANCES 2021; 7:eabg6082. [PMID: 34172448 PMCID: PMC8232908 DOI: 10.1126/sciadv.abg6082] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/12/2021] [Indexed: 05/05/2023]
Abstract
The notion that the germ line does not age goes back to the 19th-century ideas of August Weismann. However, being metabolically active, the germ line accumulates damage and other changes over time, i.e., it ages. For new life to begin in the same young state, the germ line must be rejuvenated in the offspring. Here, we developed a multi-tissue epigenetic clock and applied it, together with other aging clocks, to track changes in biological age during mouse and human prenatal development. This analysis revealed a significant decrease in biological age, i.e., rejuvenation, during early stages of embryogenesis, followed by an increase in later stages. We further found that pluripotent stem cells do not age even after extensive passaging and that the examined epigenetic age dynamics is conserved across species. Overall, this study uncovers a natural rejuvenation event during embryogenesis and suggests that the minimal biological age (ground zero) marks the beginning of organismal aging.
Collapse
Affiliation(s)
- Csaba Kerepesi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Running the full human developmental clock in interspecies chimeras using alternative human stem cells with expanded embryonic potential. NPJ Regen Med 2021; 6:25. [PMID: 34001907 PMCID: PMC8128894 DOI: 10.1038/s41536-021-00135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) can generate specialized cell lineages that have great potential for regenerative therapies and disease modeling. However, the developmental stage of the lineages generated from conventional hPSC cultures in vitro are embryonic in phenotype, and may not possess the cellular maturity necessary for corrective regenerative function in vivo in adult recipients. Here, we present the scientific evidence for how adult human tissues could generate human–animal interspecific chimeras to solve this problem. First, we review the phenotypes of the embryonic lineages differentiated from conventional hPSC in vitro and through organoid technologies and compare their functional relevance to the tissues generated during normal human in utero fetal and adult development. We hypothesize that the developmental incongruence of embryo-stage hPSC-differentiated cells transplanted into a recipient adult host niche is an important mechanism ultimately limiting their utility in cell therapies and adult disease modeling. We propose that this developmental obstacle can be overcome with optimized interspecies chimeras that permit the generation of adult-staged, patient-specific whole organs within animal hosts with human-compatible gestational time-frames. We suggest that achieving this goal may ultimately have to await the derivation of alternative, primitive totipotent-like stem cells with improved embryonic chimera capacities. We review the scientific challenges of deriving alternative human stem cell states with expanded embryonic potential, outline a path forward for conducting this emerging research with appropriate ethical and regulatory oversight, and defend the case of why current federal funding restrictions on this important category of biomedical research should be liberalized.
Collapse
|
19
|
Johnson KR, Mallon BS, Fann YC, Chen KG. Multivariate meta-analysis reveals global transcriptomic signatures underlying distinct human naive-like pluripotent states. PLoS One 2021; 16:e0251461. [PMID: 33984026 PMCID: PMC8118304 DOI: 10.1371/journal.pone.0251461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
The ground or naive pluripotent state of human pluripotent stem cells (hPSCs), which was initially established in mouse embryonic stem cells (mESCs), is an emerging and tentative concept. To verify this vital concept in hPSCs, we performed a multivariate meta-analysis of major hPSC datasets via the combined analytic powers of percentile normalization, principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and SC3 consensus clustering. This robust bioinformatics approach has significantly improved the predictive values of our meta-analysis. Accordingly, we revealed various similarities or dissimilarities between some naive-like hPSCs (NLPs) generated from different laboratories. Our analysis confirms some previous studies and provides new evidence concerning the existence of three distinct naive-like pluripotent states. Moreover, our study offers global transcriptomic markers that define diverse pluripotent states under various hPSC growth protocols.
Collapse
Affiliation(s)
- Kory R. Johnson
- Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (KRJ); (KGC)
| | - Barbara S. Mallon
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yang C. Fann
- Intramural IT and Bioinformatics Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin G. Chen
- NIH Stem Cell Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (KRJ); (KGC)
| |
Collapse
|
20
|
Xiao Y, Amaral TF, Ross PJ, Soto DA, Diffenderfer KE, Pankonin AR, Jeensuk S, Tríbulo P, Hansen PJ. Importance of WNT-dependent signaling for derivation and maintenance of primed pluripotent bovine embryonic stem cells†. Biol Reprod 2021; 105:52-63. [PMID: 33899086 DOI: 10.1093/biolre/ioab075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
The WNT signaling system plays an important but paradoxical role in the regulation of pluripotency. In the cow, IWR-1, which inhibits canonical WNT activation and has WNT-independent actions, promotes the derivation of primed pluripotent embryonic stem cells from the blastocyst. Here, we describe a series of experiments to determine whether derivation of embryonic stem cells could be generated by replacing IWR-1 with other inhibitors of WNT signaling. Results confirm the importance of inhibition of canonical WNT signaling for the establishment of pluripotent embryonic stem cells in cattle and indicate that the actions of IWR-1 can be mimicked by the WNT secretion inhibitor IWP2 but not by the tankyrase inhibitor XAV939 or WNT inhibitory protein dickkopf 1. The role of Janus kinase-mediated signaling pathways for the maintenance of pluripotency of embryonic stem cells was also evaluated. Maintenance of pluripotency of embryonic stem cells lines was blocked by a broad inhibitor of Janus kinase, even though the cells did not express phosphorylated signal transducer and activator of transcription 3 (pSTAT3). Further studies with blastocysts indicated that IWR-1 blocks the activation of pSTAT3. A likely explanation is that IWR-1 blocks differentiation of embryonic stem cells into a pSTAT3+ lineage. In conclusion, results presented here indicate the importance of inhibition of WNT signaling for the derivation of pluripotent bovine embryonic stem cells, the role of Janus kinase signaling for maintenance of pluripotency, and the participation of IWR-1 in the inhibition of activation of STAT3.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Thiago F Amaral
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| | - Delia A Soto
- Department of Animal Science, University of California, Davis, CA, USA
| | | | - Aimee R Pankonin
- Stem Cell Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Surawich Jeensuk
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA.,Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani, Thailand
| | - Paula Tríbulo
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Peter J Hansen
- Department of Animal Sciences, Donald Henry Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
21
|
Ito A, Ye K, Onda M, Morimoto N, Osakada F. Efficient and robust induction of retinal pigment epithelium cells by tankyrase inhibition regardless of the differentiation propensity of human induced pluripotent stem cells. Biochem Biophys Res Commun 2021; 552:66-72. [PMID: 33743349 DOI: 10.1016/j.bbrc.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Transplantation of retinal pigment epithelium (RPE) cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (hiPSCs) hold great promise as a new therapeutic modality for age-related macular degeneration and Stargardt disease. The development of hESC/hiPSC-derived RPE cells as cell-based therapeutic products requires a robust, scalable production for every hiPSC line congruent for patients. However, individual hESC/hiPSC lines show bias in differentiation. Here we report an efficient, robust method that induces RPE cells regardless of the differentiation propensity of the hiPSC lines. Application of the tankyrase inhibitor IWR-1-endo, which potentially inhibits Wnt signaling, promoted retinal differentiation in dissociated hiPSCs under feeder-free, two-dimensional culture conditions. The other tankyrase inhibitor, XAV939, also promoted retinal differentiation. However, Wnt signaling inhibitors, IWP-2 and iCRT3, that target porcupine and β-catenin/TCF, respectively, did not. Further treatment with the GSK3β inhibitor CHIR99021 and FGF receptor inhibitor SU5402 induced hexagonal pigmented cells with phagocytotic ability. Notably, the IWR-1-endo-based differentiation method induced RPE cells even in an hiPSC line that expresses a lower level of the differentiation propensity marker SALL3, which is indicative of resistance to ectoderm differentiation. The present study demonstrated that tankyrase inhibitors cause efficient and robust RPE differentiation, irrespective of the SALL3 expression levels in hiPSC lines. This differentiation method will resolve line-to-line variations of hiPSCs in RPE production and facilitate clinical application and industrialization of RPE cell products for regenerative medicine.
Collapse
Affiliation(s)
- Arisa Ito
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Ke Ye
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masanari Onda
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
22
|
Panina Y, Yamane J, Kobayashi K, Sone H, Fujibuchi W. Human ES and iPS cells display less drug resistance than differentiated cells, and naïve-state induction further decreases drug resistance. J Toxicol Sci 2021; 46:131-142. [PMID: 33642519 DOI: 10.2131/jts.46.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pluripotent stem cells (PSCs) possess unique characteristics that distinguish them from other cell types. Human embryonic stem (ES) cells are recently gaining attention as a powerful tool for human toxicity assessment without the use of experimental animals, and an embryonic stem cell test (EST) was introduced for this purpose. However, human PSCs have not been thoroughly investigated in terms of drug resistance or compared with other cell types or cell states, such as naïve state, to date. Aiming to close this gap in research knowledge, we assessed and compared several human PSC lines for their resistance to drug exposure. Firstly, we report that RIKEN-2A human induced pluripotent stem (iPS) cells possessed approximately the same sensitivity to selected drugs as KhES-3 human ES cells. Secondly, both ES and iPS cells were several times less resistant to drug exposure than other non-pluripotent cell types. Finally, we showed that iPS cells subjected to naïve-state induction procedures exhibited a sharp increase in drug sensitivity. Upon passage of these naïve-like cells in non-naïve PSC culture medium, their sensitivity to drug exposure decreased. We thus revealed differences in sensitivity to drug exposure among different types or states of PSCs and, importantly, indicated that naïve-state induction could increase this sensitivity.
Collapse
Affiliation(s)
- Yulia Panina
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Junko Yamane
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Kenta Kobayashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| | - Hideko Sone
- Environmental Health and Prevention Research Unit, Yokohama University of Pharmacy
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University
| |
Collapse
|
23
|
Semi K, Takashima Y. Pluripotent stem cells for the study of early human embryology. Dev Growth Differ 2021; 63:104-115. [PMID: 33570781 PMCID: PMC8251740 DOI: 10.1111/dgd.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.
Collapse
Affiliation(s)
- Katsunori Semi
- Center for iPS Cell Research and ApplicationKyoto UniversityKyotoJapan
| | | |
Collapse
|
24
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
25
|
Taei A, Kiani T, Taghizadeh Z, Moradi S, Samadian A, Mollamohammadi S, Sharifi‐Zarchi A, Guenther S, Akhlaghpour A, Asgari Abibeiglou B, Najar‐Asl M, Karamzadeh R, Khalooghi K, Braun T, Hassani S, Baharvand H. Temporal activation of LRH-1 and RAR-γ in human pluripotent stem cells induces a functional naïve-like state. EMBO Rep 2020; 21:e47533. [PMID: 33252195 PMCID: PMC7534641 DOI: 10.15252/embr.201847533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/13/2020] [Accepted: 07/17/2020] [Indexed: 12/19/2022] Open
Abstract
Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts. 2a2iL-hPSCs match several defined criteria of naïve-like pluripotency and contribute to human-mouse interspecies chimeras. Activation of TGF-β signaling is instrumental for acquisition of naïve-like pluripotency by the 2a2iL induction procedure, and transient activation of TGF-β signaling substitutes for 2a to generate naïve-like hPSCs. We reason that 2a2iL-hPSCs are an easily attainable system to evaluate properties of naïve-like hPSCs and for various applications.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| | - Tahereh Kiani
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Zeinab Taghizadeh
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Sharif Moradi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Azam Samadian
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Ali Sharifi‐Zarchi
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
- Computer Engineering DepartmentSharif University of TechnologyTehranIran
| | - Stefan Guenther
- Department of Cardiac Development and RemodelingMax‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Azimeh Akhlaghpour
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Behrouz Asgari Abibeiglou
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Mostafa Najar‐Asl
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Razieh Karamzadeh
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Keynoosh Khalooghi
- Department of Cardiac Development and RemodelingMax‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Thomas Braun
- Department of Cardiac Development and RemodelingMax‐Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Seyedeh‐Nafiseh Hassani
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental BiologyCell Science Research CenterRoyan Institute for Stem Cell Biology and TechnologyACECRTehranIran
- Department of Developmental BiologyUniversity of Science and CultureTehranIran
| |
Collapse
|
26
|
Shiozawa S, Nakajima M, Okahara J, Kuortaki Y, Kisa F, Yoshimatsu S, Nakamura M, Koya I, Yoshimura M, Sasagawa Y, Nikaido I, Sasaki E, Okano H. Primed to Naive-Like Conversion of the Common Marmoset Embryonic Stem Cells. Stem Cells Dev 2020; 29:761-773. [DOI: 10.1089/scd.2019.0259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yoko Kuortaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Fumihiko Kisa
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
- Discovery Research Laboratories I, Minase Research Institute, Ono Pharmaceutical Co., Ltd., Mishima, Japan
| | - Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mari Nakamura
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Ikuko Koya
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Japan
- Bioinformatics Course, Master's/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Wako, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
27
|
Zimmerlin L, Zambidis ET. Pleiotropic roles of tankyrase/PARP proteins in the establishment and maintenance of human naïve pluripotency. Exp Cell Res 2020; 390:111935. [PMID: 32151493 PMCID: PMC7171895 DOI: 10.1016/j.yexcr.2020.111935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/25/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Abstract
Tankyrase 1 (TNKS1; PARP-5a) and Tankyrase 2 (TNKS2; PARP-5b) are poly-ADP-ribosyl-polymerase (PARP)-domain-containing proteins that regulate the activities of a wide repertoire of target proteins via post-translational addition of poly-ADP-ribose polymers (PARylation). Although tankyrases were first identified as regulators of human telomere elongation, important and expansive roles of tankyrase activity have recently emerged in the development and maintenance of stem cell states. Herein, we summarize the current state of knowledge of the various tankyrase-mediated activities that may promote human naïve and 'extended' pluripotency'. We review the putative role of tankyrase and PARP inhibition in trophectoderm specification, telomere elongation, DNA repair and chromosomal segregation, metabolism, and PTEN-mediated apoptosis. Importantly, tankyrases possess PARP-independent activities that include regulation of MDC1-associated DNA repair by homologous recombination (HR) and autophagy/pexophagy, which is an essential mechanism of protein synthesis in the preimplantation embryo. Additionally, tankyrases auto-regulate themselves via auto-PARylation which augments their cellular protein levels and potentiates their non-PARP tankyrase functions. We propose that these non-PARP-related activities of tankyrase proteins may further independently affect both naïve and extended pluripotency via mechanisms that remain undetermined. We broadly outline a hypothetical framework for how inclusion of a tankyrase/PARP inhibitor in small molecule cocktails may stabilize and potentiate naïve and extended pluripotency via pleiotropic routes and mechanisms.
Collapse
Affiliation(s)
- Ludovic Zimmerlin
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| | - Elias T Zambidis
- Institute for Cell Engineering, And Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, 733 N. Broadway, Miller Research Building, Room 755, Baltimore, MD, 21205, United States.
| |
Collapse
|
28
|
Taei A, Rasooli P, Braun T, Hassani SN, Baharvand H. Signal regulators of human naïve pluripotency. Exp Cell Res 2020; 389:111924. [PMID: 32112799 DOI: 10.1016/j.yexcr.2020.111924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/18/2020] [Accepted: 02/23/2020] [Indexed: 12/19/2022]
Abstract
Pluripotent cells transiently develop during peri-implantation embryogenesis and have the capacity to convert into three embryonic lineages. Two typical states of pluripotency, naïve and primed, can be experimentally induced in vitro. The in vitro naïve state can be stabilized in response to environmental inductive cues via a unique transcriptional regulatory program. However, interference with various signaling pathways creates a spectrum of alternative pluripotent cells that display different functions and molecular expression patterns. Similarly, human naïve pluripotent cells can be placed into two main levels - intermediate and bona fide. Here, we discuss several culture conditions that have been used to establish naïve-associated gene regulatory networks in human pluripotent cells. We also describe different transcriptional patterns in various culture systems that are associated with these two levels of human naïve pluripotency.
Collapse
Affiliation(s)
- Adeleh Taei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Paniz Rasooli
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
29
|
Park TS, Zimmerlin L, Evans-Moses R, Thomas J, Huo JS, Kanherkar R, He A, Ruzgar N, Grebe R, Bhutto I, Barbato M, Koldobskiy MA, Lutty G, Zambidis ET. Vascular progenitors generated from tankyrase inhibitor-regulated naïve diabetic human iPSC potentiate efficient revascularization of ischemic retina. Nat Commun 2020; 11:1195. [PMID: 32139672 PMCID: PMC7058090 DOI: 10.1038/s41467-020-14764-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/28/2020] [Indexed: 01/15/2023] Open
Abstract
Here, we report that the functionality of vascular progenitors (VP) generated from normal and disease-primed conventional human induced pluripotent stem cells (hiPSC) can be significantly improved by reversion to a tankyrase inhibitor-regulated human naïve epiblast-like pluripotent state. Naïve diabetic vascular progenitors (N-DVP) differentiated from patient-specific naïve diabetic hiPSC (N-DhiPSC) possessed higher vascular functionality, maintained greater genomic stability, harbored decreased lineage-primed gene expression, and were more efficient in migrating to and re-vascularizing the deep neural layers of the ischemic retina than isogenic diabetic vascular progenitors (DVP). These findings suggest that reprogramming to a stable naïve human pluripotent stem cell state may effectively erase dysfunctional epigenetic donor cell memory or disease-associated aberrations in patient-specific hiPSC. More broadly, tankyrase inhibitor-regulated naïve hiPSC (N-hiPSC) represent a class of human stem cells with high epigenetic plasticity, improved multi-lineage functionality, and potentially high impact for regenerative medicine.
Collapse
Affiliation(s)
- Tea Soon Park
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ludovic Zimmerlin
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rebecca Evans-Moses
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Justin Thomas
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jeffrey S Huo
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Riya Kanherkar
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alice He
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nensi Ruzgar
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rhonda Grebe
- Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Imran Bhutto
- Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Barbato
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael A Koldobskiy
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gerard Lutty
- Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elias T Zambidis
- Institute for Cell Engineering, Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Zhong H, Ren Z, Wang X, Miao K, Ni W, Meng Y, Lu L, Wang C, Liu W, Deng CX, Xu RH, Chen G. Stagewise keratinocyte differentiation from human embryonic stem cells by defined signal transduction modulators. Int J Biol Sci 2020; 16:1450-1462. [PMID: 32210732 PMCID: PMC7085224 DOI: 10.7150/ijbs.44414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 01/02/2023] Open
Abstract
Keratinocyte is the predominant cell type in the epidermis of skin, and it provides the protective barrier function for the body. Various signaling pathways have been implicated in keratinocyte differentiation in animal models; However, their temporal regulation and interactions are still to be explored in pluripotent stem cell models. In this report, we use human embryonic stem cells to demonstrate that epidermal ectoderm and subsequent keratinocyte cell fate can be determined step by step under the regulation of defined factors. The inhibition of TGFβ initiates ectodermal lineage differentiation, and the activation of BMP pathway drives epidermal TP63 expression. Meanwhile, the timely activation of WNT pathway suppresses extraembryonic lineage, and promotes epidermal cell fate. With further specification by NOTCH inhibition, more than 90% of cells become TP63-positive stage Ⅱ keratinocytes. Finally, stage Ⅲ keratinocytes are produced under defined hypo-calcium keratinocyte culture conditions, and are further matured in mouse xenograft model. This study not only establishes an in vitro platform to study keratinocyte cell fate determination, but also provides an efficient protocol to produce keratinocytes for disease models and clinical applications.
Collapse
Affiliation(s)
- Hui Zhong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Zhili Ren
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Xiaoyan Wang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Kai Miao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wenjun Ni
- Department of Urology Surgery, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Ya Meng
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Ligong Lu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China.,Center of Interventional radiology, Zhuhai People's Hospital, Jinan University, Zhuhai, Guangdong 519000, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Weiwei Liu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Ren-He Xu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau.,Bioimaging and Stem Cell Core Facility, Faculty of Health Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
31
|
Chan SW, Rizwan M, Yim EKF. Emerging Methods for Enhancing Pluripotent Stem Cell Expansion. Front Cell Dev Biol 2020; 8:70. [PMID: 32117992 PMCID: PMC7033584 DOI: 10.3389/fcell.2020.00070] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells (PSCs) have great potential to revolutionize the fields of tissue engineering and regenerative medicine as well as stem cell therapeutics. However, the end goal of using PSCs for therapeutic use remains distant due to limitations in current PSC production. Conventional methods for PSC expansion have limited potential to be scaled up to produce the number of cells required for the end-goal of therapeutic use due to xenogenic components, high cost or low efficiency. In this mini review, we explore novel methods and emerging technologies of improving PSC expansion: the use of the two-dimensional mechanobiological strategies of topography and stiffness and the use of three-dimensional (3D) expansion methods including encapsulation, microcarrier-based culture, and suspension culture. Additionally, we discuss the limitations of conventional PSC expansion methods as well as the challenges in implementing non-conventional methods.
Collapse
Affiliation(s)
- Sarah W. Chan
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Muhammad Rizwan
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Evelyn K. F. Yim
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
- Centre for Biotechnology and Bioengineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
32
|
Dong C, Beltcheva M, Gontarz P, Zhang B, Popli P, Fischer LA, Khan SA, Park KM, Yoon EJ, Xing X, Kommagani R, Wang T, Solnica-Krezel L, Theunissen TW. Derivation of trophoblast stem cells from naïve human pluripotent stem cells. eLife 2020; 9:e52504. [PMID: 32048992 PMCID: PMC7062471 DOI: 10.7554/elife.52504] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
Naïve human pluripotent stem cells (hPSCs) provide a unique experimental platform of cell fate decisions during pre-implantation development, but their lineage potential remains incompletely characterized. As naïve hPSCs share transcriptional and epigenomic signatures with trophoblast cells, it has been proposed that the naïve state may have enhanced predisposition for differentiation along this extraembryonic lineage. Here we examined the trophoblast potential of isogenic naïve and primed hPSCs. We found that naïve hPSCs can directly give rise to human trophoblast stem cells (hTSCs) and undergo further differentiation into both extravillous and syncytiotrophoblast. In contrast, primed hPSCs do not support hTSC derivation, but give rise to non-self-renewing cytotrophoblasts in response to BMP4. Global transcriptome and chromatin accessibility analyses indicate that hTSCs derived from naïve hPSCs are similar to blastocyst-derived hTSCs and acquire features of post-implantation trophectoderm. The derivation of hTSCs from naïve hPSCs will enable elucidation of early mechanisms that govern normal human trophoblast development and associated pathologies.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Mariana Beltcheva
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Laura A Fischer
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Shafqat A Khan
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Kyoung-mi Park
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Eun-Ja Yoon
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Xiaoyun Xing
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of MedicineSt. LouisUnited States
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Ting Wang
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
- Department of Genetics, Center for Genome Sciences & Systems Biology, Washington University School of MedicineSt. LouisUnited States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Thorold W Theunissen
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
33
|
Li Y, Wu S, Li X, Guo S, Cai Z, Yin Z, Zhang Y, Liu Z. Wnt signaling associated small molecules improve the viability of pPSCs in a PI3K/Akt pathway dependent way. J Cell Physiol 2020; 235:5811-5822. [DOI: 10.1002/jcp.29514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Shuang Wu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Xuechun Li
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Shimeng Guo
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhuang Cai
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhi Yin
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Yu Zhang
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| | - Zhonghua Liu
- Laboratory of Embryo BiotechnologyCollege of Life Science, Northeast Agricultural UniversityHarbin China
| |
Collapse
|
34
|
Dong C, Fischer LA, Theunissen TW. Recent insights into the naïve state of human pluripotency and its applications. Exp Cell Res 2019; 385:111645. [PMID: 31585117 DOI: 10.1016/j.yexcr.2019.111645] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/21/2019] [Indexed: 01/06/2023]
Abstract
The past decade has seen significant interest in the isolation of pluripotent stem cells corresponding to various stages of mammalian embryonic development. Two distinct and well-defined pluripotent states can be derived from mouse embryos: "naïve" pluripotent cells with properties of pre-implantation epiblast, and "primed" pluripotent cells, resembling post-implantation epiblast. Prompted by the successful interconversion between these two stem cell states in the mouse system, several groups have devised strategies for inducing a naïve state of pluripotency in human pluripotent stem cells. Here, we review recent insights into the naïve state of human pluripotency, focusing on two methods that confer defining transcriptomic and epigenomic signatures of the pre-implantation embryo. The isolation of naïve human pluripotent stem cells offers a window into early developmental mechanisms that cannot be adequately modeled in primed cells, such as X chromosome reactivation, metabolic reprogramming, and the regulation of hominid-specific transposable elements. We outline key unresolved questions regarding naïve human pluripotency, including its extrinsic and intrinsic control mechanisms, potential for embryonic and extraembryonic differentiation, and general utility as a model system for human development and disease.
Collapse
Affiliation(s)
- Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Geng T, Zhang D, Jiang W. Epigenetic Regulation of Transition Among Different Pluripotent States: Concise Review. Stem Cells 2019; 37:1372-1380. [PMID: 31339608 DOI: 10.1002/stem.3064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/12/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
The extraordinary progress of pluripotent stem cell research provides a revolutionary avenue to understand mammalian early embryonic development. Besides well-established conventional mouse and human embryonic stem cells, the discoveries of naive state human stem cell, two-cell-like cell, and the newly defined "extended pluripotent" stem cell and "expanded potential" stem cell with bidirectional chimeric ability have greatly broadened the horizons of more pluripotent states recaptured and maintained in dish, infinitely approaching the totipotent blastomere state. Although all these pluripotent cell types can self-renew and have the ability to differentiate into all the three germ layers, accumulating evidence suggests that these pluripotent states display distinct epigenetic characters. More strikingly, epigenetic reprogramming, including DNA methylation, histone modification, and chromatin remodeling, is required to reset the cell fate commitment, suggesting that epigenetic mechanisms may play an active and important role in the maintenance and transition among these pluripotent states. Here, we have reviewed studies on various pluripotent states, with a highlight on the epigenetic regulation during the interconversion. Stem Cells 2019;37:1372-1380.
Collapse
Affiliation(s)
- Ting Geng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University; Medical Research Institute, Wuhan University; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province, People's Republic of China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University; Medical Research Institute, Wuhan University; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Hubei Province, People's Republic of China
| |
Collapse
|
36
|
Peters XQ, Malinga TH, Agoni C, Olotu FA, Soliman MES. Zoning in on Tankyrases: A Brief Review on the Past, Present and Prospective Studies. Anticancer Agents Med Chem 2019; 19:1920-1934. [PMID: 31648650 DOI: 10.2174/1871520619666191019114321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Tankyrases are known for their multifunctionalities within the poly(ADPribose) polymerases family and playing vital roles in various cellular processes which include the regulation of tumour suppressors. Tankyrases, which exist in two isoforms; Tankyrase 1 and 2, are highly homologous and an integral part of the Wnt β -catenin pathway that becomes overly dysregulated when hijacked by pro-carcinogenic machineries. METHODS In this review, we cover the distinct roles of the Tankyrase isoforms and their involvement in the disease pathogenesis. Also, we provide updates on experimentally and computationally derived antagonists of Tankyrase whilst highlighting the precedence of integrative computer-aided drug design methods towards the discovery of selective inhibitors. RESULTS Despite the high prospects embedded in the therapeutic targeting and blockade of Tankyrase isoforms, the inability of small molecule inhibitors to achieve selective targeting has remained a major setback, even until date. This explains numerous incessant drug design efforts geared towards the development of highly selective inhibitors of the respective Tankyrase isoforms since they mediate distinct aberrancies in disease progression. Therefore, considering the setbacks of conventional drug design methods, can computer-aided approaches actually save the day? CONCLUSION The implementation of computer-aided drug design techniques in Tankyrase research could help complement experimental methods and facilitate ligand/structure-based design and discovery of small molecule inhibitors with enhanced selectivity.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Thembeka H Malinga
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Clement Agoni
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, South Africa
| |
Collapse
|
37
|
Argentati C, Morena F, Tortorella I, Bazzucchi M, Porcellati S, Emiliani C, Martino S. Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci 2019; 20:E5337. [PMID: 31717803 PMCID: PMC6862138 DOI: 10.3390/ijms20215337] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between stem cells and their microenvironment has been shown to have a direct impact on stem cells' decisions about proliferation, growth, migration, and differentiation. It is well known that stem cells, tissues, organs, and whole organisms change their internal architecture and composition in response to external physical stimuli, thanks to cells' ability to sense mechanical signals and elicit selected biological functions. Likewise, stem cells play an active role in governing the composition and the architecture of their microenvironment. Is now being documented that, thanks to this dynamic relationship, stemness identity and stem cell functions are maintained. In this work, we review the current knowledge in mechanobiology on stem cells. We start with the description of theoretical basis of mechanobiology, continue with the effects of mechanical cues on stem cells, development, pathology, and regenerative medicine, and emphasize the contribution in the field of the development of ex-vivo mechanobiology modelling and computational tools, which allow for evaluating the role of forces on stem cell biology.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Ilaria Tortorella
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy; (C.A.); (F.M.); (I.T.); (M.B.); (S.P.); (C.E.)
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy
| |
Collapse
|
38
|
Nakanoh S, Agata K. Evolutionary view of pluripotency seen from early development of non-mammalian amniotes. Dev Biol 2019; 452:95-103. [PMID: 31029690 DOI: 10.1016/j.ydbio.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 11/24/2022]
Abstract
Early embryonic cells are capable of acquiring numerous developmental fates until they become irreversibly committed to specific lineages depending on intrinsic determinants and/or regional interactions. From fertilization to gastrulation, such pluripotent cells first increase in number and then turn to undergoing differentiation. Mechanisms regulating pluripotency in each species attract great interest in developmental biology. Also, outlining the evolutionary background of pluripotency can enhance our understanding of mammalian pluripotency and provide a broader view of early development of vertebrates. Here, we introduce integrative models of pluripotent states in amniotes (mammals, birds and reptiles) to offer a comprehensive overview of widely accepted knowledge about mammalian pluripotency and our recent findings in non-mammalian amniotes, such as chicken and gecko. In particular, we describe 1) the IL6/Stat3 signaling pathway as a positive regulator of naive pluripotency, 2) Fgf/Erk signaling as a process that prepares cells for differentiation, 3) the role of the interactions between these two signaling pathways during the transition from pluripotency to differentiation, and 4) functional diversification of two transcription factors, Class V POUs and Nanog. In the last section, we also briefly discuss possible relationships of unique cell cycle properties of early embryonic cells with signaling pathways and developmental potentials in the pluripotent cell states.
Collapse
Affiliation(s)
- Shota Nakanoh
- Division of Embryology, National Institute for Basic Biology, Okazaki 444-8787, Japan; Wellcome-MRC Cambridge Stem Cell Institute, Anne McLaren Laboratory, University of Cambridge, Cambridge CB2 0SZ, UK; Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Kiyokazu Agata
- Graduate Course in Life Science, Gakushuin University, Toyoshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
39
|
Wilkinson AC, Ryan DJ, Kucinski I, Wang W, Yang J, Nestorowa S, Diamanti E, Tsang JCH, Wang J, Campos LS, Yang F, Fu B, Wilson N, Liu P, Gottgens B. Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro. Exp Hematol 2019; 76:1-12.e5. [PMID: 31326613 PMCID: PMC6859476 DOI: 10.1016/j.exphem.2019.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Pluripotent stem cell (PSC) differentiation in vitro represents a powerful and tractable model to study mammalian development and an unlimited source of cells for regenerative medicine. Within hematology, in vitro PSC hematopoiesis affords novel insights into blood formation and represents an exciting potential approach to generate hematopoietic and immune cell types for transplantation and transfusion. Most studies to date have focused on in vitro hematopoiesis from mouse PSCs and human PSCs. However, differences in mouse and human PSC culture protocols have complicated the translation of discoveries between these systems. We recently developed a novel chemical media formulation, expanded potential stem cell medium (EPSCM), that maintains mouse PSCs in a unique cellular state and extraembryonic differentiation capacity. Herein, we describe how EPSCM can be directly used to stably maintain human PSCs. We further demonstrate that human PSCs maintained in EPSCM can spontaneously form embryoid bodies and undergo in vitro hematopoiesis using a simple differentiation protocol, similar to mouse PSC differentiation. EPSCM-maintained human PSCs generated at least two hematopoietic cell populations, which displayed distinct transcriptional profiles by RNA-sequencing (RNA-seq) analysis. EPSCM also supports gene targeting using homologous recombination, affording generation of an SPI1 (PU.1) reporter PSC line to study and track in vitro hematopoiesis. EPSCM therefore provides a useful tool not only to study pluripotency but also hematopoietic cell specification and developmental-lineage commitment.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - David J Ryan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Iwo Kucinski
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Wei Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jian Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Sonia Nestorowa
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Evangelia Diamanti
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Juexuan Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Lia S Campos
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Nicola Wilson
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, University of Hong Kong, Hong Kong, China
| | - Berthold Gottgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
40
|
Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells Int 2019; 2019:1569740. [PMID: 31428157 PMCID: PMC6681599 DOI: 10.1155/2019/1569740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.
Collapse
|
41
|
Yang J, Ryan DJ, Lan G, Zou X, Liu P. In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nat Protoc 2019; 14:350-378. [PMID: 30617351 DOI: 10.1038/s41596-018-0096-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Molecular and embryology studies have demonstrated that mouse pre-implantation embryo development is a process of progressive cell fate determination. At the time of implantation, three cell lineages are present in the developing blastocyst: the trophectoderm (TE), the epiblast (Epi) and the primitive endoderm (PrE). From these early embryo cells, trophoblast stem (TS) cells, embryonic stem (ES) cells and extra-embryonic endoderm stem (XEN) cells can be derived. Recently, we derived stem cells with blastomere-like features from mouse cleavage-stage embryos, which we named expanded-potential stem cells (EPSCs). Here, we provide detailed protocols that describe how to establish EPSCs from single eight-cell-stage blastomeres or whole eight-cell pre-implantation mouse embryos, or by conversion of mouse ES cells or induced pluripotent stem (iPS) cells reprogrammed from fibroblasts. It takes 2-3 weeks to derive EPSCs from each cell source. The EPSCs derived from these protocols can differentiate into all embryonic and extra-embryonic lineages when implanted into chimeras. Furthermore, bona fide TS and XEN cell lines can be derived from EPSCs in vitro.
Collapse
Affiliation(s)
- Jian Yang
- Wellcome Trust Sanger Institute, Hinxton, UK.
| | | | - Guocheng Lan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Xiangang Zou
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, UK. .,Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
42
|
Rostovskaya M, Stirparo GG, Smith A. Capacitation of human naïve pluripotent stem cells for multi-lineage differentiation. Development 2019; 146:dev172916. [PMID: 30944104 PMCID: PMC6467473 DOI: 10.1242/dev.172916] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
Human naïve pluripotent stem cells (PSCs) share features with the pre-implantation epiblast. They therefore provide an unmatched opportunity for characterising the developmental programme of pluripotency in Homo sapiens Here, we confirm that naïve PSCs do not respond directly to germ layer induction, but must first acquire competence. Capacitation for multi-lineage differentiation occurs without exogenous growth factor stimulation and is facilitated by inhibition of Wnt signalling. Whole-transcriptome profiling during this formative transition highlights dynamic changes in gene expression, which affect many cellular properties including metabolism and epithelial features. Notably, naïve pluripotency factors are exchanged for postimplantation factors, but competent cells remain devoid of lineage-specific transcription. The gradual pace of transition for human naïve PSCs is consistent with the timespan of primate development from blastocyst to gastrulation. Transcriptome trajectory during in vitro capacitation of human naïve cells tracks the progression of the epiblast during embryogenesis in Macaca fascicularis, but shows greater divergence from mouse development. Thus, the formative transition of naïve PSCs in a simple culture system may recapitulate essential and specific features of pluripotency dynamics during an inaccessible period of human embryogenesis.
Collapse
Affiliation(s)
- Maria Rostovskaya
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Austin Smith
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
43
|
Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci 2019; 76:873-892. [PMID: 30420999 PMCID: PMC11105545 DOI: 10.1007/s00018-018-2965-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Embryonic stem cells (ESCs) are immortal stem cells that own multi-lineage differentiation potential. ESCs are commonly derived from the inner cell mass (ICM) of pre-implantation embryos. Due to their tremendous developmental capacity and unlimited self-renewal, ESCs have diverse biomedical applications. Different culture media have been developed to procure and maintain ESCs in a state of naïve pluripotency, and to preserve a stable genome and epigenome during serial passaging. Chromatin modifications such as DNA methylation and histone modifications along with microRNA activity and different signaling pathways dynamically contribute to the regulation of the ESC gene regulatory network (GRN). Such modifications undergo remarkable changes in different ESC media and determine the quality and developmental potential of ESCs. In this review, we discuss the current approaches for derivation and maintenance of ESCs, and examine how differences in culture media impact on the characteristics of pluripotency via modulation of GRN during the course of ICM outgrowth into ESCs. We also summarize the current hypotheses concerning the origin of ESCs and provide a perspective about the relationship of these cells to their in vivo counterparts (early embryonic cells around the time of implantation). Finally, we discuss generation of ESCs from human embryos and domesticated animals, and offer suggestions to further advance this fascinating field.
Collapse
Affiliation(s)
- Seyedeh-Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Taleahmad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Department of Cardiac Development and Remodelling, Max-Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
44
|
Tasnim F, Xing J, Huang X, Mo S, Wei X, Tan MH, Yu H. Generation of mature kupffer cells from human induced pluripotent stem cells. Biomaterials 2019; 192:377-391. [DOI: 10.1016/j.biomaterials.2018.11.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022]
|
45
|
Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:71-94. [DOI: 10.1007/978-3-030-11096-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Liu P, Verhaar AP, Peppelenbosch MP. Signaling Size: Ankyrin and SOCS Box-Containing ASB E3 Ligases in Action. Trends Biochem Sci 2018; 44:64-74. [PMID: 30446376 DOI: 10.1016/j.tibs.2018.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Ankyrin repeat and suppressor of cytokine signaling (SOCS) box (Asb) proteins are ubiquitin E3 ligases. The subfamily of six-ankyrin repeat domain-containing Asb proteins (Asb5, Asb9, Asb11, and Asb13) is of specific interest because they display unusual strong evolutionary conservation (e.g., urochordate and human ASB11 are >49% similar at the amino acid level) and mediate compartment size expansion, regulating, for instance, the size of the brain and muscle compartment. Thus, they may be involved in the explanation of the differences in brain size between humans and apes. Mechanistically, many questions remain, but it has become clear that regulation of canonical Notch signaling and also mitochondrial function are important effectors. Here, we review the action and function of six ankyrin repeat domain-containing Asb proteins in physiology and pathophysiology.
Collapse
Affiliation(s)
- Pengyu Liu
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Auke P Verhaar
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Shahbazi MN, Zernicka-Goetz M. Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 2018; 20:878-887. [PMID: 30038253 DOI: 10.1038/s41556-018-0144-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
The emergence of form and function during mammalian embryogenesis is a complex process that involves multiple regulatory levels. The foundations of the body plan are laid throughout the first days of post-implantation development as embryonic stem cells undergo symmetry breaking and initiate lineage specification, in a process that coincides with a global morphological reorganization of the embryo. Here, we review experimental models and how they have shaped our current understanding of the post-implantation mammalian embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
Generation of Retinal Organoids with Mature Rods and Cones from Urine-Derived Human Induced Pluripotent Stem Cells. Stem Cells Int 2018; 2018:4968658. [PMID: 30008752 PMCID: PMC6020468 DOI: 10.1155/2018/4968658] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022] Open
Abstract
Urine cells, a body trash, have been successfully reprogrammed into human induced pluripotent stem cells (U-hiPSCs) which hold a huge promise in regenerative medicine. However, it is unknown whether or to what extent U-hiPSCs can generate retinal cells so far. With a modified retinal differentiation protocol without addition of retinoic acid (RA), our study revealed that U-hiPSCs were able to differentiate towards retinal fates and form 3D retinal organoids containing laminated neural retina with all retinal cell types located in proper layer as in vivo. More importantly, U-hiPSCs generated highly mature photoreceptors with all subtypes, even red/green cone-rich photoreceptors. Our data indicated that a supplement of RA to culture medium was not necessary for maturation and specification of U-hiPSC-derived photoreceptors at least in the niche of retinal organoids. The success of retinal differentiation with U-hiPSCs provides many opportunities in cell therapy, disease modeling, and drug screening, especially in personalized medicine of retinal diseases since urine cells can be noninvasively collected from patients and their relatives.
Collapse
|
49
|
Park TS, Zimmerlin L, Evans-Moses R, Zambidis ET. Chemical Reversion of Conventional Human Pluripotent Stem Cells to a Naïve-like State with Improved Multilineage Differentiation Potency. J Vis Exp 2018. [PMID: 29939183 DOI: 10.3791/57921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Naïve human pluripotent stem cells (N-hPSC) with improved functionality may have a wide impact in regenerative medicine. The goal of this protocol is to efficiently revert lineage-primed, conventional human pluripotent stem cells (hPSC) maintained on either feeder-free or feeder-dependent conditions to a naïve-like pluripotency with improved functionality. This chemical naïve reversion method employs the classical leukemia inhibitory factor (LIF), GSK3β, and MEK/ERK inhibition cocktail (LIF-2i), supplemented with only a tankyrase inhibitor XAV939 (LIF-3i). LIF-3i reverts conventional hPSC to a stable pluripotent state adopting biochemical, transcriptional, and epigenetic features of the human pre-implantation epiblast. This LIF-3i method requires minimal cell culture manipulation and is highly reproducible in a broad repertoire of human embryonic stem cell (hESC) and transgene-free human induced pluripotent stem cell (hiPSC) lines. The LIF-3i method does not require a re-priming step prior to the differentiation; N-hPSC can be differentiated directly with extremely high efficiencies and maintain karyotypic and epigenomic stabilities (including at imprinted loci). To increase the universality of the method, conventional hPSC are first cultured in the LIF-3i cocktail supplemented with two additional small molecules that potentiate protein kinase A (forskolin) and sonic hedgehog (sHH) (purmorphamine) signaling (LIF-5i). This brief LIF-5i adaptation step significantly enhances the initial clonal expansion of conventional hPSC and permits them to be subsequently naïve-reverted with LIF-3i alone in bulk quantities, thus obviating the need for picking/subcloning rare N-hPSC colonies later. LIF-5i-stabilized hPSCs are subsequently maintained in LIF-3i alone without the need of anti-apoptotic molecules. Most importantly, LIF-3i reversion markedly improves the functional pluripotency of a broad repertoire of conventional hPSC by decreasing their lineage-primed gene expression and erasing the interline variability of directed differentiation commonly observed amongst independent hPSC lines. Representative characterizations of LIF-3i-reverted N-hPSC are provided, and experimental strategies for functional comparisons of isogenic hPSC in lineage-primed vs. naïve-like states are outlined.
Collapse
Affiliation(s)
- Tea Soon Park
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine
| | - Ludovic Zimmerlin
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine;
| | - Rebecca Evans-Moses
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine
| | - Elias T Zambidis
- Department of Oncology, Division of Pediatric Oncology and Institute for Cell Engineering, Johns Hopkins School of Medicine;
| |
Collapse
|
50
|
Modulating cell state to enhance suspension expansion of human pluripotent stem cells. Proc Natl Acad Sci U S A 2018; 115:6369-6374. [PMID: 29866848 PMCID: PMC6016797 DOI: 10.1073/pnas.1714099115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Efficient manufacturing is critical for the translation of cell-based therapies to clinical applications. To date, high-yield expansion of human pluripotent stem cells (hPSC) in suspension bioreactors has not been reported. Here, we present a strategy to shift suspension-grown hPSC to a high-yield state without compromising their ability to differentiate to all three germ layers. In this new state, hPSC expand to densities 5.7 ± 0.2-fold higher than conventional hPSC each passage in suspension bioreactors. High-density suspension cultures enable process intensification, cost reduction, and more efficient manufacturing. This work advances cell-state engineering as a valuable tool to overcome current challenges in therapeutic cell production and processing. The development of cell-based therapies to replace missing or damaged tissues within the body or generate cells with a unique biological activity requires a reliable and accessible source of cells. Human pluripotent stem cells (hPSC) have emerged as a strong candidate cell source capable of extended propagation in vitro and differentiation to clinically relevant cell types. However, the application of hPSC in cell-based therapies requires overcoming yield limitations in large-scale hPSC manufacturing. We explored methods to convert hPSC to alternative states of pluripotency with advantageous bioprocessing properties, identifying a suspension-based small-molecule and cytokine combination that supports increased single-cell survival efficiency, faster growth rates, higher densities, and greater expansion than control hPSC cultures. ERK inhibition was found to be essential for conversion to this altered state, but once converted, ERK inhibition led to a loss of pluripotent phenotype in suspension. The resulting suspension medium formulation enabled hPSC suspension yields 5.7 ± 0.2-fold greater than conventional hPSC in 6 d, for at least five passages. Treated cells remained pluripotent, karyotypically normal, and capable of differentiating into all germ layers. Treated cells could also be integrated into directed differentiated strategies as demonstrated by the generation of pancreatic progenitors (NKX6.1+/PDX1+ cells). Enhanced suspension-yield hPSC displayed higher oxidative metabolism and altered expression of adhesion-related genes. The enhanced bioprocess properties of this alternative pluripotent state provide a strategy to overcome cell manufacturing limitations of hPSC.
Collapse
|