1
|
Koyama H, Ito AM, Okumura H, Otani T, Nakamura K, Fujimori T. Cell position-based evaluation of mechanical features of cells in multicellular systems. J Theor Biol 2025; 604:112070. [PMID: 39978539 DOI: 10.1016/j.jtbi.2025.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Measurement of mechanical forces of cell-cell interactions is important for studying the emergence of diverse three-dimensional morphologies of multicellular organisms. We previously reported an image-based statistical method for inferring effective pairwise forces of cell-cell interactions (i.e., attractive/repulsive forces), where a cell particle model was fitted to cell tracking data acquired by live imaging. However, because the particle model is a coarse-grained model, it remains unclear how the pairwise forces relates to sub-cellular mechanical components including cell-cell adhesive forces. Here we applied our inference method to cell tracking data generated by vertex models that assumed sub-cellular components. Through this approach, we investigated the relationship between the effective pairwise forces and various sub-cellular components: cell-cell adhesion forces, cell surface tensions, cell-extracellular matrix (ECM) adhesion, traction forces between cells and ECM, cell growth, etc. We found that the cell-cell adhesion forces were attractive, and both the cell surface tensions and cell-ECM adhesive forces were repulsive, etc. These results indicate that sub-cellular mechanical components can contribute to the effective attractive/repulsive forces of cell-cell interactions. This comprehensive analysis provides theoretical bases for linking the pairwise forces to the sub-cellular mechanical components: this showcase is useful for speculating the sub-cellular mechanical components from the information of cell positions, and for interpreting simulation results based on particle models.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan.
| | - Atsushi M Ito
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan
| | - Hisashi Okumura
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Biomolecular Dynamics Simulation Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tetsuhisa Otani
- SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan; Division of Cell Structure, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Laboratory of Cell Biology and Biochemistry, Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397 Tokyo, Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
2
|
Richa P, Häring M, Wang Q, Choudhury AR, Göpfert MC, Wolf F, Großhans J, Kong D. Synchronization in epithelial tissue morphogenesis. Curr Biol 2025:S0960-9822(25)00382-3. [PMID: 40239658 DOI: 10.1016/j.cub.2025.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Coordination of cell behavior is central to morphogenesis, when arrays of cells simultaneously undergo shape changes or dynamic rearrangements. In epithelia, cell shape changes invariably exert mechanical forces, which adjacent cells could sense to trigger an active response. However, molecular mechanisms for such mechano-transduction and especially their role for tissue-wide coordination in morphogenesis have remained ambiguous. Here, we investigate the function of Tmc, a key component of cellular mechano-transduction in vertebrate hearing, for coordination of cell dynamics in the epithelial amnioserosa of Drosophila embryos. We directly probed cell-cell mechano-transduction in vivo by opto-chemically inducing single-cell contractions and discovered a Tmc-dependent contraction response in neighboring cell groups. On the tissue scale, we uncover synchronization of neighboring cell area oscillations, which is impaired in Tmc mutants. A data-driven model of Tmc-dependent cell-cell interactions predicts that synchronization leads to an isotropic force map and effectively shields the tissue from external mechanical pulling. By microdissection, we detect equal junction tension along the axial and lateral axis in wild-type but increased lateral tension in Tmc mutants. Thus, Tmc transduces forces into an intracellular response that coordinates mechanical cell behavior in epithelial tissue.
Collapse
Affiliation(s)
- Prachi Richa
- Department of Biology, Philipps University, Hans-Meerwein-Straße 6, Marburg 35043, Germany; Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University, Heinrich-Düker-Weg 12, Göttingen 37073, Germany
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University, Heinrich-Düker-Weg 12, Göttingen 37073, Germany; Institute for Nonlinear Dynamics, Georg August University, Friedrich-Hund-Pl. 1, Göttingen 37077, Germany; Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, Göttingen 37077, Germany
| | - Qiyan Wang
- Department of Biology, Philipps University, Hans-Meerwein-Straße 6, Marburg 35043, Germany
| | - Ankit Roy Choudhury
- Department of Biology, Philipps University, Hans-Meerwein-Straße 6, Marburg 35043, Germany
| | - Martin C Göpfert
- Department of Cellular Neurobiology, Georg August University, Julia-Lermontowa-Weg 3, Göttingen 37077, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University, Heinrich-Düker-Weg 12, Göttingen 37073, Germany; Institute for Nonlinear Dynamics, Georg August University, Friedrich-Hund-Pl. 1, Göttingen 37077, Germany; Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, Göttingen 37077, Germany; Max Planck Institute for Multidisciplinary Sciences, Hermann Rein Straße 3, Göttingen 37075, Germany.
| | - Jörg Großhans
- Department of Biology, Philipps University, Hans-Meerwein-Straße 6, Marburg 35043, Germany; Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University, Heinrich-Düker-Weg 12, Göttingen 37073, Germany.
| | - Deqing Kong
- Department of Biology, Philipps University, Hans-Meerwein-Straße 6, Marburg 35043, Germany; Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University, Heinrich-Düker-Weg 12, Göttingen 37073, Germany; Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution and Marine Biodiversity, Ocean University of China, Yushan Road 5, Qingdao 266003, China.
| |
Collapse
|
3
|
Goyal R, Castro PA, Levin JB, Shim S, Mizuno GO, Tian L, Borodinsky LN. Vesicular glutamate release is necessary for neural tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.05.631426. [PMID: 39829813 PMCID: PMC11741360 DOI: 10.1101/2025.01.05.631426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The brain and spinal cord originate from a neural tube that is preceded by a flat structure known as the neural plate during early embryogenesis. In humans, failure of the neural plate to convert into a tube by the fourth week of pregnancy leads to neural tube defects (NTDs), birth defects with serious neurological consequences. The signaling mechanisms governing the process of neural tube morphogenesis are unclear. Here we show that in Xenopus laevis embryos, neural plate cells release glutamate during neural plate folding in a Ca 2+ and vesicular glutamate transporter-1 (VGluT1)-dependent manner. Vesicular release of glutamate elicits Ca 2+ transients in neural plate cells that correlate with activation of Erk1/2. Knocking down or out VGluT1 leads to NTDs through increased expression of Sox2, neural stem cell transcription factor, and neural plate cell proliferation. Exposure during early pregnancy to neuroactive drugs that disrupt these signaling mechanisms might increase the risk of NTDs in offspring.
Collapse
|
4
|
Teranishi A, Mori M, Ichiki R, Toda S, Shioi G, Okuda S. An actin bracket-induced elastoplastic transition determines epithelial folding irreversibility. Nat Commun 2024; 15:10476. [PMID: 39668169 PMCID: PMC11638340 DOI: 10.1038/s41467-024-54906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024] Open
Abstract
During morphogenesis, epithelial sheets undergo sequential folding to form three-dimensional organ structures. The resulting folds are often irreversible, ensuring that morphogenesis progresses in one direction. However, the mechanism establishing folding irreversibility remains unclear. Here, we report a mechanical property of epithelia that determines folding irreversibility. Using a mechanical assay, we demonstrate that long-term, high-curvature folding induces plastic, irreversible deformations, while short-term or low-curvature folding results in an elastic, shape-restoring response. This elastic-plastic transition occurs in a switch-like manner, with critical thresholds in folding curvature and duration. The transition is induced by F-actin accumulating into a bracket-like structure across the fold, triggered by cells sensing deformations via mechanosensitive signaling pathways, including TRPC 3/6-mediated calcium influx and ligand-independent EGFR activation. These results demonstrate that cells control epithelial folding irreversibility by detecting folding characteristics and adaptively switching between elastic and plastic responses, providing mechanical insight into the directionality of morphogenesis.
Collapse
Affiliation(s)
- Aki Teranishi
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Misato Mori
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Rihoko Ichiki
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Satoshi Toda
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Go Shioi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Satoru Okuda
- Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
- Sapiens Life Sciences, Evolution and Medicine Research Center, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Tsujimoto T, Ou Y, Suzuki M, Murata Y, Inubushi T, Nagata M, Ishihara Y, Yonei A, Miyashita Y, Asano Y, Sakai N, Sakata Y, Ogino H, Yamashiro T, Kurosaka H. Compromised actin dynamics underlie the orofacial cleft in Baraitser-Winter Cerebrofrontofacial syndrome with a variant in ACTB. Hum Mol Genet 2024; 33:1975-1985. [PMID: 39271101 DOI: 10.1093/hmg/ddae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Craniofacial anomalies encompassing the orofacial cleft are associated with > 30% of systemic congenital malformations. Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) is a rare genetic disorder attributed to variants in the actin beta (ACTB) or actin gamma genes that are correlated with a range of craniofacial abnormalities, including cleft lip and/or palate. The underlying pathological mechanism of BWCFF remains elusive, and it is necessary to investigate the etiology of orofacial clefts in patients with BWCFF. In this study, we identified a missense variant (c.1043C > T: p.S348L) in the ACTB gene of a patient with BWCFF and concomitant cleft lip and palate. Furthermore, we performed functional assessments of this variant using various disease models such as the MDCK cell line and Xenopus laevis. These models revealed a compromised capacity of mutated ACTB to localize to the epithelial junction, consequently affecting the behavior of epithelial cells. Additionally, we discovered that the mutated ACTB exhibited an impaired ability to bind PROFILIN1, a critical factor in actin polymerization. This defective ability may contribute to the molecular etiology of aberrant epithelial cell adhesion and migration, resulting in orofacial cleft formation in BWCFF.
Collapse
Affiliation(s)
- Takayuki Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yushi Ou
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Yuka Murata
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayumi Yonei
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norio Sakai
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Health Science, Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Suzuki M, Yasue N, Ueno N. Differential cellular stiffness across tissues that contribute to Xenopus neural tube closure. Dev Growth Differ 2024; 66:320-328. [PMID: 38925637 PMCID: PMC11457508 DOI: 10.1111/dgd.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
During the formation of the neural tube, the primordium of the vertebrate central nervous system, the actomyosin activity of cells in different regions drives neural plate bending. However, how the stiffness of the neural plate and surrounding tissues is regulated and mechanically influences neural plate bending has not been elucidated. Here, we used atomic force microscopy to reveal the relationship between the stiffness of the neural plate and the mesoderm during Xenopus neural tube formation. Measurements with intact embryos revealed that the stiffness of the neural plate was consistently higher compared with the non-neural ectoderm and that it increased in an actomyosin activity-dependent manner during neural plate bending. Interestingly, measurements of isolated tissue explants also revealed that the relationship between the stiffness of the apical and basal sides of the neural plate was reversed during bending and that the stiffness of the mesoderm was lower than that of the basal side of the neural plate. The experimental elevation of mesoderm stiffness delayed neural plate bending, suggesting that low mesoderm stiffness mechanically supports neural tube closure. This study provides an example of mechanical interactions between tissues during large-scale morphogenetic movements.
Collapse
Affiliation(s)
- Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for LifeHiroshima UniversityHiroshimaJapan
- Division of Morphogenesis, National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Basic Biology Programthe Graduate University of Advanced StudiesAichiJapan
| | - Naoko Yasue
- Division of Morphogenesis, National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic BiologyNational Institutes of Natural SciencesAichiJapan
- Basic Biology Programthe Graduate University of Advanced StudiesAichiJapan
| |
Collapse
|
7
|
Balashova OA, Panoutsopoulos AA, Visina O, Selhub J, Knoepfler PS, Borodinsky LN. Noncanonical function of folate through folate receptor 1 during neural tube formation. Nat Commun 2024; 15:1642. [PMID: 38388461 PMCID: PMC10883926 DOI: 10.1038/s41467-024-45775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Folate supplementation reduces the occurrence of neural tube defects (NTDs), birth defects consisting in the failure of the neural tube to form and close. The mechanisms underlying NTDs and their prevention by folate remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. FOLR1 knockdown in neural organoids and in Xenopus laevis embryos leads to NTDs that are rescued by pteroate, a folate precursor that is unable to participate in metabolism. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein, molecule essential for apical endocytosis and turnover of C-cadherin in neural plate cells. In addition, folates increase Ca2+ transient frequency, suggesting that folate and FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.
Collapse
Affiliation(s)
- Olga A Balashova
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
| | - Alexios A Panoutsopoulos
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Olesya Visina
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jacob Selhub
- Tufts-USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| | - Paul S Knoepfler
- Department of Cell Biology & Human Anatomy, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Laura N Borodinsky
- Department of Physiology & Membrane Biology, Shriners Hospitals for Children Northern California, University of California Davis, School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
8
|
Ishii R, Yoshida M, Suzuki N, Ogino H, Suzuki M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Dev Growth Differ 2023; 65:300-310. [PMID: 37477433 DOI: 10.1111/dgd.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Xenopus tadpoles serve as an exceptional model organism for studying post-embryonic development in vertebrates. During post-embryonic development, large-scale changes in tissue morphology, including organ regeneration and metamorphosis, occur at the organ level. However, understanding these processes in a three-dimensional manner remains challenging. In this study, the use of X-ray micro-computed tomography (microCT) for the three-dimensional observation of the soft tissues of Xenopus tadpoles was explored. The findings revealed that major organs, such as the brain, heart, and kidneys, could be visualized with high contrast by phosphotungstic acid staining following fixation with Bouin's solution. Then, the changes in brain shape during telencephalon regeneration were analyzed as the first example of utilizing microCT to study organ regeneration in Xenopus tadpoles, and it was found that the size of the amputated telencephalon recovered to >80% of its original length within approximately 1 week. It was also observed that the ventricles tended to shrink after amputation and maintained this state for at least 3 days. This shrinkage was transient, as the ventricles expanded to exceed their original size within the following week. Temporary shrinkage and expansion of the ventricles, which were also observed in transgenic or fluorescent dye-injected tadpoles with telencephalon amputation, may be significant in tissue homeostasis in response to massive brain injury and subsequent repair and regeneration. This established method will improve experimental analyses in developmental biology and medical science using Xenopus tadpoles.
Collapse
Affiliation(s)
- Riona Ishii
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Mana Yoshida
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Nanoka Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
9
|
Balashova OA, Panoutsopoulos AA, Visina O, Selhub J, Knoepfler PS, Borodinsky LN. Non-canonical function of folate/folate receptor 1 during neural tube formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549718. [PMID: 37503108 PMCID: PMC10370062 DOI: 10.1101/2023.07.19.549718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Folate supplementation reduces the occurrence of neural tube defects, one of the most common and serious birth defects, consisting in the failure of the neural tube to form and close early in pregnancy. The mechanisms underlying neural tube defects and folate action during neural tube formation remain unclear. Here we show that folate receptor 1 (FOLR1) is necessary for the formation of neural tube-like structures in human-cell derived neural organoids. Knockdown of FOLR1 in human neural organoids as well as in the Xenopus laevis in vivo model leads to neural tube defects that are rescued by pteroate, a folate precursor that binds to FOLR1 but is unable to participate in metabolic pathways. We demonstrate that FOLR1 interacts with and opposes the function of CD2-associated protein (CD2AP), a molecule that we find is essential for apical endocytosis and the spatiotemporal turnover of the cell adherens junction component C-cadherin in neural plate cells. The counteracting action of FOLR1 on these processes is mediated by regulating CD2AP protein level via a degradation-dependent mechanism. In addition, folate and pteroate increase Ca 2+ transient frequency in the neural plate in a FOLR1-dependent manner, suggesting that folate/FOLR1 signal intracellularly to regulate neural plate folding. This study identifies a mechanism of action of folate distinct from its vitamin function during neural tube formation.
Collapse
|
10
|
Matsuda M, Rozman J, Ostvar S, Kasza KE, Sokol SY. Mechanical control of neural plate folding by apical domain alteration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528047. [PMID: 36798359 PMCID: PMC9934705 DOI: 10.1101/2023.02.10.528047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Vertebrate neural tube closure is associated with complex changes in cell shape and behavior, however, the relative contribution of these processes to tissue folding is not well understood. In this study, we evaluated morphology of the superficial cell layer in the Xenopus neural plate. At the stages corresponding to the onset of tissue folding, we observed the alternation of cells with apically constricting and apically expanding apical domains. The cells had a biased orientation along the anteroposterior (AP) axis. This apical domain heterogeneity required planar cell polarity (PCP) signaling and was especially pronounced at neural plate hinges. Vertex model simulations suggested that spatially dispersed isotropically constricting cells cause the elongation of their non-constricting counterparts along the AP axis. Consistent with this hypothesis, cell-autonomous induction of apical constriction in Xenopus ectoderm cells was accompanied by the expansion of adjacent non-constricting cells. Our observations indicate that a subset of isotropically constricting cells can initiate neural plate bending, whereas a 'tug-of-war' contest between the force-generating and responding cells reduces its shrinking along the AP axis. This mechanism is an alternative to anisotropic shrinking of cell junctions that are perpendicular to the body axis. We propose that neural folding relies on PCP-dependent transduction of mechanical signals between neuroepithelial cells.
Collapse
|
11
|
Castro PA, Pinto-Borguero I, Yévenes GE, Moraga-Cid G, Fuentealba J. Antiseizure medication in early nervous system development. Ion channels and synaptic proteins as principal targets. Front Pharmacol 2022; 13:948412. [PMID: 36313347 PMCID: PMC9614143 DOI: 10.3389/fphar.2022.948412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The main strategy for the treatment of epilepsy is the use of pharmacological agents known as antiseizure medication (ASM). These drugs control the seizure onset and improves the life expectancy and quality of life of patients. Several ASMs are contraindicated during pregnancy, due to a potential teratogen risk. For this reason, the pharmacological treatments of the pregnant Women with Epilepsy (WWE) need comprehensive analyses to reduce fetal risk during the first trimester of pregnancy. The mechanisms by which ASM are teratogens are still under study and scientists in the field, propose different hypotheses. One of them, which will be addressed in this review, corresponds to the potential alteration of ASM on ion channels and proteins involved in relevant signaling and cellular responses (i.e., migration, differentiation) during embryonic development. The actual information related to the action of ASM and its possible targets it is poorly understood. In this review, we will focus on describing the eventual presence of some ion channels and synaptic proteins of the neurotransmitter signaling pathways present during early neural development, which could potentially interacting as targets of ASM. This information leads to elucidate whether these drugs would have the ability to affect critical signaling during periods of neural development that in turn could explain the fetal malformations observed by the use of ASM during pregnancy.
Collapse
Affiliation(s)
- Patricio A. Castro
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- *Correspondence: Patricio A. Castro,
| | - Ingrid Pinto-Borguero
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
12
|
Christodoulou N, Skourides PA. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure. Development 2022; 149:275604. [PMID: 35662330 PMCID: PMC9340557 DOI: 10.1242/dev.200358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Neural tube closure (NTC) is a fundamental process during vertebrate development and is indispensable for the formation of the central nervous system. Here, using Xenopus laevis embryos, live imaging, single-cell tracking, optogenetics and loss-of-function experiments, we examine the roles of convergent extension and apical constriction, and define the role of the surface ectoderm during NTC. We show that NTC is a two-stage process with distinct spatiotemporal contributions of convergent extension and apical constriction at each stage. Convergent extension takes place during the first stage and is spatially restricted at the posterior tissue, whereas apical constriction occurs during the second stage throughout the neural plate. We also show that the surface ectoderm is mechanically coupled with the neural plate and its movement during NTC is driven by neural plate morphogenesis. Finally, we show that an increase in surface ectoderm resistive forces is detrimental for neural plate morphogenesis. Summary: Detailed characterization of the contribution of distinct morphogenetic processes and mechanical tissue coupling during neural tube closure, a process indispensable for central nervous system formation in vertebrates.
Collapse
Affiliation(s)
- Neophytos Christodoulou
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| | - Paris A. Skourides
- University of Cyprus Department of Biological Sciences , , P.O. Box 20537, 2109 Nicosia , Cyprus
| |
Collapse
|
13
|
Varadarajan S, Chumki SA, Stephenson RE, Misterovich ER, Wu JL, Dudley CE, Erofeev IS, Goryachev AB, Miller AL. Mechanosensitive calcium flashes promote sustained RhoA activation during tight junction remodeling. J Cell Biol 2022; 221:213049. [PMID: 35254388 PMCID: PMC8906493 DOI: 10.1083/jcb.202105107] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022] Open
Abstract
Epithelial cell–cell junctions remodel in response to mechanical stimuli to maintain barrier function. Previously, we found that local leaks in tight junctions (TJs) are rapidly repaired by local, transient RhoA activation, termed “Rho flares,” but how Rho flares are regulated is unknown. Here, we discovered that intracellular calcium flashes and junction elongation are early events in the Rho flare pathway. Both laser-induced and naturally occurring TJ breaks lead to local calcium flashes at the site of leaks. Additionally, junction elongation induced by optogenetics increases Rho flare frequency, suggesting that Rho flares are mechanically triggered. Depletion of intracellular calcium or inhibition of mechanosensitive calcium channels (MSCs) reduces the amplitude of calcium flashes and diminishes the sustained activation of Rho flares. MSC-dependent calcium influx is necessary to maintain global barrier function by regulating reinforcement of local TJ proteins via junction contraction. In all, we uncovered a novel role for MSC-dependent calcium flashes in TJ remodeling, allowing epithelial cells to repair local leaks induced by mechanical stimuli.
Collapse
Affiliation(s)
| | - Shahana A Chumki
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Eileen R Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Jessica L Wu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Claire E Dudley
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI
| | - Ivan S Erofeev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Andrew B Goryachev
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, Scotland
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| |
Collapse
|
14
|
Baldwin AT, Kim JH, Seo H, Wallingford JB. Global analysis of cell behavior and protein dynamics reveals region-specific roles for Shroom3 and N-cadherin during neural tube closure. eLife 2022; 11:e66704. [PMID: 35244026 PMCID: PMC9010020 DOI: 10.7554/elife.66704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Failures of neural tube closure are common and serious birth defects, yet we have a poor understanding of the interaction of genetics and cell biology during neural tube closure. Additionally, mutations that cause neural tube defects (NTDs) tend to affect anterior or posterior regions of the neural tube but rarely both, indicating a regional specificity to NTD genetics. To better understand the regional specificity of cell behaviors during neural tube closure, we analyzed the dynamic localization of actin and N-cadherin via high-resolution tissue-level time-lapse microscopy during Xenopus neural tube closure. To investigate the regionality of gene function, we generated mosaic mutations in shroom3, a key regulator or neural tube closure. This new analytical approach elucidates several differences between cell behaviors during cranial/anterior and spinal/posterior neural tube closure, provides mechanistic insight into the function of shroom3, and demonstrates the ability of tissue-level imaging and analysis to generate cell biological mechanistic insights into neural tube closure.
Collapse
Affiliation(s)
- Austin T Baldwin
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Juliana H Kim
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - Hyemin Seo
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at AustinAustinUnited States
| |
Collapse
|
15
|
Abstract
Cell shape changes based on actomyosin contractility provide a driving force in tissue morphogenesis. The temporally and spatially coordinated constrictions of many cells result in changes in tissue morphology. Given the networks of complex and mutual cellular interactions, the mechanisms underlying the emergence in tissue behavior are challenging to pinpoint. Important in the analysis of such interactions are novel methods for noninvasive interference with single-cell resolution and sub-minute timescale temporal control. Here we characterize an optochemical approach of Ca2+ uncaging to control cell contractility in Drosophila embryos. We describe in detail the method of sample preparation, microinjection, Ca2+ uncaging, and data analysis.
Collapse
Affiliation(s)
- Deqing Kong
- Department of Biology, Philipps University, Marburg, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, Marburg, Germany.
| |
Collapse
|
16
|
Petzold J, Gentleman E. Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Front Cell Dev Biol 2021; 9:761871. [PMID: 34820380 PMCID: PMC8606660 DOI: 10.3389/fcell.2021.761871] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Although understanding how soluble cues direct cellular processes revolutionised the study of cell biology in the second half of the 20th century, over the last two decades, new insights into how mechanical cues similarly impact cell fate decisions has gained momentum. During development, extrinsic cues such as fluid flow, shear stress and compressive forces are essential for normal embryogenesis to proceed. Indeed, both adult and embryonic stem cells can respond to applied forces, but they can also detect intrinsic mechanical cues from their surrounding environment, such as the stiffness of the extracellular matrix, which impacts differentiation and morphogenesis. Cells can detect changes in their mechanical environment using cell surface receptors such as integrins and focal adhesions. Moreover, dynamic rearrangements of the cytoskeleton have been identified as a key means by which forces are transmitted from the extracellular matrix to the cell and vice versa. Although we have some understanding of the downstream mechanisms whereby mechanical cues are translated into changes in cell behaviour, many of the signalling pathways remain to be defined. This review discusses the importance of intrinsic mechanical cues on adult cell fate decisions, the emerging roles of cell surface mechano-sensors and the cytoskeleton in enabling cells to sense its microenvironment, and the role of intracellular signalling in translating mechanical cues into transcriptional outputs. In addition, the contribution of mechanical cues to fundamental processes during embryogenesis such as apical constriction and convergent extension is discussed. The continued development of tools to measure the biomechanical properties of soft tissues in vivo is likely to uncover currently underestimated contributions of these cues to adult stem cell fate decisions and embryogenesis, and may inform on regenerative strategies for tissue repair.
Collapse
Affiliation(s)
- Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Roy Choudhury A, Großhans J, Kong D. Ion Channels in Epithelial Dynamics and Morphogenesis. Cells 2021; 10:cells10092280. [PMID: 34571929 PMCID: PMC8465836 DOI: 10.3390/cells10092280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 01/21/2023] Open
Abstract
Mechanosensitive ion channels mediate the neuronal sensation of mechanical signals such as sound, touch, and pain. Recent studies point to a function of these channel proteins in cell types and tissues in addition to the nervous system, such as epithelia, where they have been little studied, and their role has remained elusive. Dynamic epithelia are intrinsically exposed to mechanical forces. A response to pull and push is assumed to constitute an essential part of morphogenetic movements of epithelial tissues, for example. Mechano-gated channels may participate in sensing and responding to such forces. In this review, focusing on Drosophila, we highlight recent results that will guide further investigations concerned with the mechanistic role of these ion channels in epithelial cells.
Collapse
|
18
|
Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation. PLoS One 2021; 16:e0254763. [PMID: 34320001 PMCID: PMC8318228 DOI: 10.1371/journal.pone.0254763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/02/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the processes by which the mammalian embryo implants in the maternal uterus is a long-standing challenge in embryology. New insights into this morphogenetic event could be of great importance in helping, for example, to reduce human infertility. During implantation the blastocyst, composed of epiblast, trophectoderm and primitive endoderm, undergoes significant remodelling from an oval ball to an egg cylinder. A main feature of this transformation is symmetry breaking and reshaping of the epiblast into a “cup”. Based on previous studies, we hypothesise that this event is the result of mechanical constraints originating from the trophectoderm, which is also significantly transformed during this process. In order to investigate this hypothesis we propose MG# (MechanoGenetic Sharp), an original computational model of biomechanics able to reproduce key cell shape changes and tissue level behaviours in silico. With this model, we simulate epiblast and trophectoderm morphogenesis during implantation. First, our results uphold experimental findings that repulsion at the apical surface of the epiblast is essential to drive lumenogenesis. Then, we provide new theoretical evidence that trophectoderm morphogenesis indeed can dictate the cup shape of the epiblast and fosters its movement towards the uterine tissue. Our results offer novel mechanical insights into mouse peri-implantation and highlight the usefulness of agent-based modelling methods in the study of embryogenesis.
Collapse
|
19
|
Werner JM, Negesse MY, Brooks DL, Caldwell AR, Johnson JM, Brewster RM. Hallmarks of primary neurulation are conserved in the zebrafish forebrain. Commun Biol 2021; 4:147. [PMID: 33514864 PMCID: PMC7846805 DOI: 10.1038/s42003-021-01655-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/23/2020] [Indexed: 11/25/2022] Open
Abstract
Primary neurulation is the process by which the neural tube, the central nervous system precursor, is formed from the neural plate. Incomplete neural tube closure occurs frequently, yet underlying causes remain poorly understood. Developmental studies in amniotes and amphibians have identified hingepoint and neural fold formation as key morphogenetic events and hallmarks of primary neurulation, the disruption of which causes neural tube defects. In contrast, the mode of neurulation in teleosts has remained highly debated. Teleosts are thought to have evolved a unique mode of neurulation, whereby the neural plate infolds in absence of hingepoints and neural folds, at least in the hindbrain/trunk where it has been studied. Using high-resolution imaging and time-lapse microscopy, we show here the presence of these morphological landmarks in the zebrafish anterior neural plate. These results reveal similarities between neurulation in teleosts and other vertebrates and hence the suitability of zebrafish to understand human neurulation. Jonathan Werner, Maraki Negesse et al. visualize zebrafish neurulation during development to determine whether hallmarks of neural tube formation in other vertebrates also apply to zebrafish. They find that neural tube formation in the forebrain shares features such as hingepoints and neural folds with other vertebrates, demonstrating the strength of the zebrafish model for understanding human neurulation.
Collapse
Affiliation(s)
- Jonathan M Werner
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Maraki Y Negesse
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Dominique L Brooks
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Allyson R Caldwell
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Jafira M Johnson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Rachel M Brewster
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
20
|
Koyama H, Fujimori T. Isotropic expansion of external environment induces tissue elongation and collective cell alignment. J Theor Biol 2020; 496:110248. [PMID: 32275986 DOI: 10.1016/j.jtbi.2020.110248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 12/01/2022]
Abstract
Cell movement is crucial for morphogenesis in multicellular organisms. Growing embryos or tissues often expand isotropically, i.e., uniformly, in all dimensions. On the surfaces of these expanding environments, which we call "fields," cells are subjected to frictional forces and move passively in response. However, the potential roles of isotropically expanding fields in morphogenetic events have not been investigated well. Our previous mathematical simulations showed that a tissue was elongated on an isotropically expanding field (Imuta et al., 2014). However, the underlying mechanism remains unclarified, and how cells behave during tissue elongation was not investigated. In this study, we mathematically analyzed the effect of isotropically expanding fields using a vertex model, a standard type of multi-cellular model. We found that cells located on fields were elongated along a similar direction each other and exhibited a columnar configuration with nearly single-cell width. Simultaneously, it was confirmed that the cell clusters were also elongated, even though field expansion was absolutely isotropic. We then investigated the mechanism underlying these counterintuitive phenomena. In particular, we asked whether the dynamics of elongation was predominantly determined by the properties of the field, the cell cluster, or both. Theoretical analyses involving simplification of the model revealed that cell clusters have an intrinsic ability to asymmetrically deform, leading to their elongation. Importantly, this ability is effective only under the non-equilibrium conditions provided by field expansion. This may explain the elongation of the notochord, located on the surface of the growing mouse embryo. We established the mechanism underlying tissue elongation induced by isotropically expanding external environments, and its involvement in collective cell alignment with cell elongation, providing key insight into morphogenesis involving multiple adjacent tissues.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Japan.
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Japan
| |
Collapse
|
21
|
Benavides-Rivas C, Tovar LM, Zúñiga N, Pinto-Borguero I, Retamal C, Yévenes GE, Moraga-Cid G, Fuentealba J, Guzmán L, Coddou C, Bascuñán-Godoy L, Castro PA. Altered Glutaminase 1 Activity During Neurulation and Its Potential Implications in Neural Tube Defects. Front Pharmacol 2020; 11:900. [PMID: 32636743 PMCID: PMC7316894 DOI: 10.3389/fphar.2020.00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/02/2020] [Indexed: 01/04/2023] Open
Abstract
The neurulation process is regulated by a large amount of genetic and environmental factors that determine the establishment, folding, and fusion of the neural plate to form the neural tube, which develops into the main structure of the central nervous system. A recently described factor involved in this process is glutamate. Through NMDA ionotropic receptor, glutamate modifies intracellular Ca2+ dynamics allowing the oriented cell migration and proliferation, essentials processes in neurulation. Glutamate synthesis depends on the mitochondrial enzyme known as glutaminase 1 (GLS1) that is widely expressed in brain and kidney. The participation of GLS 1 in prenatal neurogenic processes and in the adult brain has been experimentally established, however, its participation in early stages of embryonic development has not been described. The present investigation describes for the first time the presence and functionality of GLS1 in Xenopus laevis embryos during neurulation. Although protein expression levels remains constant, the catalytic activity of GLS1 increases significantly (~66%) between early (stage 12) and middle to late (stages 14-19) neurulation process. Additionally, the use of 6-diazo-5-oxo-L-norleucine (L-DON, competitive inhibitor of glutamine-depend enzymes), reduced significantly the GLS1 specific activity during neurulation (~36%) and induce the occurrence of neural tube defects involving its possible participation in the neural tube closure in Xenopus laevis embryos.
Collapse
Affiliation(s)
- Camila Benavides-Rivas
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Lina Mariana Tovar
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Nicolás Zúñiga
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ingrid Pinto-Borguero
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudio Retamal
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E. Yévenes
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leonardo Guzmán
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudio Coddou
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Luisa Bascuñán-Godoy
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Patricio A. Castro
- Laboratory of Physiology and Pharmacology for Neural Development, LAND, Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
22
|
Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. J Mol Biol 2019; 432:605-620. [PMID: 31711960 DOI: 10.1016/j.jmb.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.
Collapse
|
23
|
Kong D, Lv Z, Häring M, Lin B, Wolf F, Großhans J. In vivo optochemical control of cell contractility at single-cell resolution. EMBO Rep 2019; 20:e47755. [PMID: 31663248 PMCID: PMC6893293 DOI: 10.15252/embr.201947755] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 09/14/2019] [Accepted: 10/02/2019] [Indexed: 01/01/2023] Open
Abstract
The spatial and temporal dynamics of cell contractility plays a key role in tissue morphogenesis, wound healing, and cancer invasion. Here, we report a simple optochemical method to induce cell contractions in vivo during Drosophila morphogenesis at single-cell resolution. We employed the photolabile Ca2+ chelator o-nitrophenyl EGTA to induce bursts of intracellular free Ca2+ by laser photolysis in the epithelial tissue. Ca2+ bursts appear within seconds and are restricted to individual target cells. Cell contraction reliably followed within a minute, causing an approximately 50% drop in the cross-sectional area. Increased Ca2+ levels are reversible, and the target cells further participated in tissue morphogenesis. Depending on Rho kinase (ROCK) activity but not RhoGEF2, cell contractions are paralleled with non-muscle myosin II accumulation in the apico-medial cortex, indicating that Ca2+ bursts trigger non-muscle myosin II activation. Our approach can be, in principle, adapted to many experimental systems and species, as no specific genetic elements are required.
Collapse
Affiliation(s)
- Deqing Kong
- Institute for Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Zhiyi Lv
- Institute for Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Matthias Häring
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Benjamin Lin
- Department of Cell Biology, HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Fred Wolf
- Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.,Institute for Nonlinear Dynamics, Georg-August-Universität Göttingen, Göttingen, Germany.,Campus Institute for Dynamics of Biological Networks, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Georg-August-Universität Göttingen, Göttingen, Germany.,Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
24
|
A simple mechanochemical model for calcium signalling in embryonic epithelial cells. J Math Biol 2019; 78:2059-2092. [PMID: 30826846 PMCID: PMC6560504 DOI: 10.1007/s00285-019-01333-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/14/2018] [Indexed: 12/17/2022]
Abstract
Calcium signalling is one of the most important mechanisms of information propagation in the body. In embryogenesis the interplay between calcium signalling and mechanical forces is critical to the healthy development of an embryo but poorly understood. Several types of embryonic cells exhibit calcium-induced contractions and many experiments indicate that calcium signals and contractions are coupled via a two-way mechanochemical feedback mechanism. We present a new analysis of experimental data that supports the existence of this coupling during apical constriction. We then propose a simple mechanochemical model, building on early models that couple calcium dynamics to the cell mechanics and we replace the hypothetical bistable calcium release with modern, experimentally validated calcium dynamics. We assume that the cell is a linear, viscoelastic material and we model the calcium-induced contraction stress with a Hill function, i.e. saturating at high calcium levels. We also express, for the first time, the "stretch-activation" calcium flux in the early mechanochemical models as a bottom-up contribution from stretch-sensitive calcium channels on the cell membrane. We reduce the model to three ordinary differential equations and analyse its bifurcation structure semi-analytically as two bifurcation parameters vary-the [Formula: see text] concentration, and the "strength" of stretch activation, [Formula: see text]. The calcium system ([Formula: see text], no mechanics) exhibits relaxation oscillations for a certain range of [Formula: see text] values. As [Formula: see text] is increased the range of [Formula: see text] values decreases and oscillations eventually vanish at a sufficiently high value of [Formula: see text]. This result agrees with experimental evidence in embryonic cells which also links the loss of calcium oscillations to embryo abnormalities. Furthermore, as [Formula: see text] is increased the oscillation amplitude decreases but the frequency increases. Finally, we also identify the parameter range for oscillations as the mechanical responsiveness factor of the cytosol increases. This work addresses a very important and not well studied question regarding the coupling between chemical and mechanical signalling in embryogenesis.
Collapse
|
25
|
Koyama H, Shi D, Fujimori T. Biophysics in oviduct: Planar cell polarity, cilia, epithelial fold and tube morphogenesis, egg dynamics. Biophys Physicobiol 2019; 16:89-107. [PMID: 30923666 PMCID: PMC6435019 DOI: 10.2142/biophysico.16.0_89] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Organs and tissues in multi-cellular organisms exhibit various morphologies. Tubular organs have multi-scale morphological features which are closely related to their functions. Here we discuss morphogenesis and the mechanical functions of the vertebrate oviduct in the female reproductive tract, also known as the fallopian tube. The oviduct functions to convey eggs from the ovary to the uterus. In the luminal side of the oviduct, the epithelium forms multiple folds (or ridges) well-aligned along the longitudinal direction of the tube. In the epithelial cells, cilia are formed orienting toward the downstream of the oviduct. The cilia and the folds are supposed to be involved in egg transportation. Planar cell polarity (PCP) is developed in the epithelium, and the disruption of the Celsr1 gene, a PCP related-gene, causes randomization of both cilia and fold orientations, discontinuity of the tube, inefficient egg transportation, and infertility. In this review article, we briefly introduce various biophysical and biomechanical issues in the oviduct, including physical mechanisms of formation of PCP and organized cilia orientation, epithelial cell shape regulation, fold pattern formation generated by mechanical buckling, tubulogenesis, and egg transportation regulated by fluid flow. We also mention about possible roles of the oviducts in egg shape formation and embryogenesis, sinuous patterns of tubes, and fold and tube patterns observed in other tubular organs such as the gut, airways, etc.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Dongbo Shi
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Centre for Organismal Studies, Heidelberg University, Heidelberg 69120, Germany
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Aichi 444-8787, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
26
|
Calcium oscillations coordinate feather mesenchymal cell movement by SHH dependent modulation of gap junction networks. Nat Commun 2018; 9:5377. [PMID: 30560870 PMCID: PMC6299091 DOI: 10.1038/s41467-018-07661-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/14/2018] [Indexed: 12/30/2022] Open
Abstract
Collective cell migration mediates multiple tissue morphogenesis processes. Yet how multi-dimensional mesenchymal cell movements are coordinated remains mostly unknown. Here we report that coordinated mesenchymal cell migration during chicken feather elongation is accompanied by dynamic changes of bioelectric currents. Transcriptome profiling and functional assays implicate contributions from functional voltage-gated Ca2+ channels (VGCCs), Connexin-43 based gap junctions, and Ca2+ release activated Ca2+ (CRAC) channels. 4-Dimensional Ca2+ imaging reveals that the Sonic hedgehog-responsive mesenchymal cells display synchronized Ca2+ oscillations, which expand progressively in area during feather elongation. Inhibiting VGCCs, gap junctions, or Sonic hedgehog signaling alters the mesenchymal Ca2+ landscape, cell movement patterns and feather bud elongation. Ca2+ oscillations induced by cyclic activation of opto-cCRAC channels enhance feather bud elongation. Functional disruption experiments and promoter analysis implicate synergistic Hedgehog and WNT/β-Catenin signaling in activating Connexin-43 expression, establishing gap junction networks synchronizing the Ca2+ profile among cells, thereby coordinating cell movement patterns. The molecular mechanisms regulating mesenchymal cell movements are unclear. Here, the authors show in chicken feather elongation that SHH/WNT signalling establishes gap-junctions, enabling synchronized Ca2 + oscillations to emerge for and in turn coordinating directed cell migration.
Collapse
|
27
|
Visetsouk MR, Falat EJ, Garde RJ, Wendlick JL, Gutzman JH. Basal epithelial tissue folding is mediated by differential regulation of microtubules. Development 2018; 145:dev.167031. [PMID: 30333212 PMCID: PMC6262788 DOI: 10.1242/dev.167031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/09/2018] [Indexed: 01/02/2023]
Abstract
The folding of epithelial tissues is crucial for development of three-dimensional structure and function. Understanding this process can assist in determining the etiology of developmental disease and engineering of tissues for the future of regenerative medicine. Folding of epithelial tissues towards the apical surface has long been studied, but the molecular mechanisms that mediate epithelial folding towards the basal surface are just emerging. Here, we utilize zebrafish neuroepithelium to identify mechanisms that mediate basal tissue folding to form the highly conserved embryonic midbrain-hindbrain boundary. Live imaging revealed Wnt5b as a mediator of anisotropic epithelial cell shape, both apically and basally. In addition, we uncovered a Wnt5b-mediated mechanism for specific regulation of basal anisotropic cell shape that is microtubule dependent and likely to involve JNK signaling. We propose a model in which a single morphogen can differentially regulate apical versus basal cell shape during tissue morphogenesis. Summary: Examination of cell shape changes during zebrafish neuroepithelium tissue folding reveals that Wnt5b specifically regulates basal anisotropic cell shape via a microtubule-dependent mechanism, likely involving JNK signaling.
Collapse
Affiliation(s)
- Mike R Visetsouk
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Elizabeth J Falat
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Ryan J Garde
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer L Wendlick
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| | - Jennifer H Gutzman
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53201, USA
| |
Collapse
|
28
|
Paudel S, Sindelar R, Saha M. Calcium Signaling in Vertebrate Development and Its Role in Disease. Int J Mol Sci 2018; 19:E3390. [PMID: 30380695 PMCID: PMC6274931 DOI: 10.3390/ijms19113390] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence over the past three decades suggests that altered calcium signaling during development may be a major driving force for adult pathophysiological events. Well over a hundred human genes encode proteins that are specifically dedicated to calcium homeostasis and calcium signaling, and the majority of these are expressed during embryonic development. Recent advances in molecular techniques have identified impaired calcium signaling during development due to either mutations or dysregulation of these proteins. This impaired signaling has been implicated in various human diseases ranging from cardiac malformations to epilepsy. Although the molecular basis of these and other diseases have been well studied in adult systems, the potential developmental origins of such diseases are less well characterized. In this review, we will discuss the recent evidence that examines different patterns of calcium activity during early development, as well as potential medical conditions associated with its dysregulation. Studies performed using various model organisms, including zebrafish, Xenopus, and mouse, have underscored the critical role of calcium activity in infertility, abortive pregnancy, developmental defects, and a range of diseases which manifest later in life. Understanding the underlying mechanisms by which calcium regulates these diverse developmental processes remains a challenge; however, this knowledge will potentially enable calcium signaling to be used as a therapeutic target in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Sudip Paudel
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Regan Sindelar
- College of William and Mary, Williamsburg, VA 23187, USA.
| | - Margaret Saha
- College of William and Mary, Williamsburg, VA 23187, USA.
| |
Collapse
|
29
|
Brown JM, García-García MJ. Secretory pathway calcium ATPase 1 (SPCA1) controls mouse neural tube closure by regulating cytoskeletal dynamics. Development 2018; 145:dev.170019. [PMID: 30228103 DOI: 10.1242/dev.170019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/05/2018] [Indexed: 12/26/2022]
Abstract
Neural tube closure relies on the apical constriction of neuroepithelial cells. Research in frog and fly embryos has found links between the levels of intracellular calcium, actomyosin dynamics and apical constriction. However, genetic evidence for a role of calcium in apical constriction during mammalian neurulation is still lacking. Secretory pathway calcium ATPase (SPCA1) regulates calcium homeostasis by pumping cytosolic calcium into the Golgi apparatus. Loss of function in Spca1 causes cranial exencephaly and spinal cord defects in mice, phenotypes previously ascribed to apoptosis. However, our characterization of a novel allele of Spca1 revealed that neurulation defects in Spca1 mutants are not due to cell death, but rather to a failure of neuroepithelial cells to apically constrict. We show that SPCA1 influences cell contractility by regulating myosin II localization. Furthermore, we found that loss of Spca1 disrupts actin dynamics and the localization of the actin remodeling protein cofilin 1. Taken together, our results provide evidence that SPCA1 promotes neurulation by regulating the cytoskeletal dynamics that promote apical constriction and identify cofilin 1 as a downstream effector of SPCA1 function.
Collapse
Affiliation(s)
- Joel M Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - María J García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
30
|
Koyama H, Fujimori T. Biomechanics of epithelial fold pattern formation in the mouse female reproductive tract. Curr Opin Genet Dev 2018; 51:59-66. [DOI: 10.1016/j.gde.2018.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/07/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
|
31
|
Shindo A, Audrey A, Takagishi M, Takahashi M, Wallingford JB, Kinoshita M. Septin-dependent remodeling of cortical microtubule drives cell reshaping during epithelial wound healing. J Cell Sci 2018; 131:jcs212647. [PMID: 29777035 PMCID: PMC6031381 DOI: 10.1242/jcs.212647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Wounds in embryos heal rapidly through contraction of the wound edges. Despite well-recognized significance of the actomyosin purse string for wound closure, roles for other cytoskeletal components are largely unknown. Here, we report that the septin cytoskeleton cooperates with actomyosin and microtubules to coordinate circumferential contraction of the wound margin and concentric elongation of wound-proximal cells in Xenopus laevis embryos. Microtubules reoriented radially, forming bundles along lateral cell cortices in elongating wound-proximal cells. Depletion of septin 7 (Sept7) slowed wound closure by attenuating the wound edge contraction and cell elongation. ROCK/Rho-kinase inhibitor-mediated suppression of actomyosin contractility enhanced the Sept7 phenotype, whereas the Sept7 depletion did not affect the accumulation of actomyosin at the wound edge. The cortical microtubule bundles were reduced in wound-proximal cells in Sept7 knockdown (Sept7-KD) embryos, but forced bundling of microtubules mediated by the microtubule-stabilizing protein Map7 did not rescue the Sept7-KD phenotype. Nocodazole-mediated microtubule depolymerization enhanced the Sept7-KD phenotype, suggesting that Sept7 is required for microtubule reorganization during cell elongation. Our findings indicate that septins are required for the rapid wound closure by facilitating cortical microtubule reorganization and the concentric elongation of surrounding cells.
Collapse
Affiliation(s)
- Asako Shindo
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
- Department of Molecular Biosciences, University of Texas at Austin, Austin 78712, USA
| | - Anastasia Audrey
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| | - Maki Takagishi
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- Department of Tumor Pathology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin 78712, USA
| | - Makoto Kinoshita
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| |
Collapse
|
32
|
Chen M, Laursen SH, Habekost M, Knudsen CH, Buchholdt SH, Huang J, Xu F, Liu X, Bolund L, Luo Y, Nissen P, Febbraro F, Denham M. Central and Peripheral Nervous System Progenitors Derived from Human Pluripotent Stem Cells Reveal a Unique Temporal and Cell-Type Specific Expression of PMCAs. Front Cell Dev Biol 2018; 6:5. [PMID: 29468158 PMCID: PMC5808168 DOI: 10.3389/fcell.2018.00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/19/2018] [Indexed: 01/23/2023] Open
Abstract
The P-type ATPases family consists of ion and lipid transporters. Their unique diversity in function and expression is critical for normal development. In this study we investigated human pluripotent stem cells (hPSC) and different neural progenitor states to characterize the expression of the plasma membrane calcium ATPases (PMCAs) during human neural development and in mature mesencephalic dopaminergic (mesDA) neurons. Our RNA sequencing data identified a dynamic change in ATPase expression correlating with the differentiation time of the neural progenitors, which was independent of the neuronal progenitor type. Expression of ATP2B1 and ATP2B4 were the most abundantly expressed, in accordance with their main role in Ca2+ regulation and we observed all of the PMCAs to have a subcellular punctate localization. Interestingly in hPSCs ATP2B1 and ATP2B3 were highly expressed in a cell cycle specific manner and ATP2B2 and ATP2B4 were highly expressed in a hPSC sub-population. In neural rosettes a strong apical PMCA expression was identified in the luminal region. Lastly, we confirmed all PMCAs to be expressed in mesDA neurons, however at varying levels. Our results reveal that PMCA expression dynamically changes during stem cell differentiation and highlights the diverging needs of cell populations to regulate and properly integrate Ca2+ changes, which can ultimately correspond to changes in specific stem cell transcription states.
Collapse
Affiliation(s)
- Muwan Chen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sofie H Laursen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mette Habekost
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Camilla H Knudsen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Susanne H Buchholdt
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jinrong Huang
- Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China
| | - Fengping Xu
- Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Liu
- Beijing Genomics Institute, Shenzhen, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Beijing Genomics Institute, Shenzhen, China.,Lars Bolund Institute of Regenerative Medicine, Beijing Genomics Institute-Qingdao, Qingdao, China.,China National GeneBank, Beijing Genomics Institute, Shenzhen, China
| | - Poul Nissen
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Fabia Febbraro
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mark Denham
- Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
33
|
Hayashi K, Yamamoto TS, Ueno N. Intracellular calcium signal at the leading edge regulates mesodermal sheet migration during Xenopus gastrulation. Sci Rep 2018; 8:2433. [PMID: 29402947 PMCID: PMC5799360 DOI: 10.1038/s41598-018-20747-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/23/2018] [Indexed: 12/15/2022] Open
Abstract
During the gastrulation stage in animal embryogenesis, the cells leading the axial mesoderm migrate toward the anterior side of the embryo, vigorously extending cell protrusions such as lamellipodia. It is thought that the leading cells sense gradients of chemoattractants emanating from the ectodermal cells and translate them to initiate and maintain the cell movements necessary for gastrulation. However, it is unclear how the extracellular information is converted to the intracellular chemical reactions that lead to motion. Here we demonstrated that intracellular Ca2+ levels in the protrusion-forming leading cells are markedly higher than those of the following cells and the axial mesoderm cells. We also showed that inhibiting the intracellular Ca2+ significantly retarded the gastrulation cell movements, while increasing the intracellular Ca2+ with an ionophore enhanced the migration. We further found that the ionophore treatment increased the active form of the small GTPase Rac1 in these cells. Our results suggest that transient intracellular Ca2+ signals play an essential role in the active cell migration during gastrulation.
Collapse
Affiliation(s)
- Kentaro Hayashi
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takamasa S Yamamoto
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Naoto Ueno
- Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Department of Basic Biology, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
34
|
Hara Y. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue. Dev Growth Differ 2017; 59:340-350. [DOI: 10.1111/dgd.12356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/02/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Yusuke Hara
- Mechanobiology Institute National University of Singapore T‐Lab 5A Engineering Drive 1, Level 9 Singapore 117411
- Temasek Life Sciences Laboratory National University of Singapore 1 Research Link Singapore 117604 Singapore
| |
Collapse
|