1
|
Shahbaz S, Rosero EP, Syed H, Hnatiuk M, Bozorgmehr N, Rahmati A, Zia S, Plemel J, Osman M, Elahi S. Bipotential B-neutrophil progenitors are present in human and mouse bone marrow and emerge in the periphery upon stress hematopoiesis. mBio 2024; 15:e0159924. [PMID: 39012145 PMCID: PMC11323571 DOI: 10.1128/mbio.01599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that gets skewed toward myelopoiesis. This restrains lymphopoiesis, but the role of lymphocytes in this process is not well defined. To unravel the intricacies of neutrophil responses in COVID-19, we performed bulk RNAseq on neutrophils from healthy controls and COVID-19 patients. Principal component analysis revealed distinguishing neutrophil gene expression alterations in COVID-19 patients. ICU and ward patients displayed substantial transcriptional changes, with ICU patients exhibiting a more pronounced response. Intriguingly, neutrophils from COVID-19 patients, notably ICU patients, exhibited an enrichment of immunoglobulin (Ig) and B cell lineage-associated genes, suggesting potential lineage plasticity. We validated our RNAseq findings in a larger cohort. Moreover, by reanalyzing single-cell RNA sequencing (scRNAseq) data on human bone marrow (BM) granulocytes, we identified the cluster of granulocyte-monocyte progenitors (GMP) enriched with Ig and B cell lineage-associated genes. These cells with lineage plasticity may serve as a resource depending on the host's needs during severe systemic infection. This distinct B cell subset may play a pivotal role in promoting myelopoiesis in response to infection. The scRNAseq analysis of BM neutrophils in infected mice further supported our observations in humans. Finally, our studies using an animal model of acute infection implicate IL-7/GM-CSF in influencing neutrophil and B cell dynamics. Elevated GM-CSF and reduced IL-7 receptor expression in COVID-19 patients imply altered hematopoiesis favoring myeloid cells over B cells. Our findings provide novel insights into the relationship between the B-neutrophil lineages during severe infection, hinting at potential implications for disease pathogenesis. IMPORTANCE This study investigates the dynamics of hematopoiesis in COVID-19, focusing on neutrophil responses. Through RNA sequencing of neutrophils from healthy controls and COVID-19 patients, distinct gene expression alterations are identified, particularly in ICU patients. Notably, neutrophils from COVID-19 patients, especially in the ICU, exhibit enrichment of immunoglobulin and B cell lineage-associated genes, suggesting potential lineage plasticity. Validation in a larger patient cohort and single-cell analysis of bone marrow granulocytes support the presence of granulocyte-monocyte progenitors with B cell lineage-associated genes. The findings propose a link between B-neutrophil lineages during severe infection, implicating a potential role for these cells in altered hematopoiesis favoring myeloid cells over B cells. Elevated GM-CSF and reduced IL-7 receptor expression in stress hematopoiesis suggest cytokine involvement in these dynamics, providing novel insights into disease pathogenesis.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Hussain Syed
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Mark Hnatiuk
- Division of Hematology, University of Alberta, Edmonton, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Jason Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Canada
- Women and Children Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
2
|
Bi S, Huang L, Chen Y, Hu Z, Li S, Wang Y, Huang B, Zhang L, Huang Y, Dai B, Du L, Tu Z, Wang Y, Xu D, Xu X, Sun W, Kzhyshkowska J, Wang H, Chen D, Wang F, Zhang S. KAT8-mediated H4K16ac is essential for sustaining trophoblast self-renewal and proliferation via regulating CDX2. Nat Commun 2024; 15:5602. [PMID: 38961108 PMCID: PMC11222414 DOI: 10.1038/s41467-024-49930-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.
Collapse
Affiliation(s)
- Shilei Bi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lijun Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yongjie Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Zhenhua Hu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shanze Li
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yifan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Baoying Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lizi Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuanyuan Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Beibei Dai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lili Du
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zhaowei Tu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yijing Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Dan Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Xiaotong Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wen Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Julia Kzhyshkowska
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, 68167, Mannheim, Germany
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, Russia
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| | - Shuang Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
- Guangdong-Hong Kong-Macao Great Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
3
|
Bozdemir N, Uysal F. Histone acetyltransferases and histone deacetyl transferases play crucial role during oogenesis and early embryo development. Genesis 2023; 61:e23518. [PMID: 37226850 DOI: 10.1002/dvg.23518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Nie Q, Huan X, Kang J, Yin J, Zhao J, Li Y, Zhang Z. MG149 Inhibits MOF-Mediated p53 Acetylation to Attenuate X-Ray Radiation-Induced Apoptosis in H9c2 Cells. Radiat Res 2022; 198:590-598. [PMID: 36481803 DOI: 10.1667/rade-22-00049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Cardiomyocyte apoptosis is involved in the pathogenesis of radiation-induced heart disease, but the underlying epigenetic mechanism remains elusive. We evaluated the potential mediating role of males absent on the first (MOF) in the association between epigenetic activation of p53 lysine 120 (p53K120) and X-ray radiation-induced apoptosis in H9c2 cells. H9c2 cells were pretreated for 24 h with the MOF inhibitor MG149 after 4 Gy irradiation, followed by assessment of cell proliferation, injury, and apoptosis. MOF expression was upregulated by X-ray radiation. MG149 suppressed the proliferation inhibition, reduction of mitochondrial membrane potential, ROS production, and cell apoptosis. MG149 may promote the survival of H9c2 cells via inhibition of MOF-mediated p53K120 acetylation in response to X-ray radiation-induced apoptosis. Our data indicates a MOF-associated epigenetic mechanism in H9c2 cells that promotes attenuation of X-ray radiation-induced injury.
Collapse
Affiliation(s)
- Qianwen Nie
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Xuan Huan
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jing Kang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiangyan Yin
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiahui Zhao
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - ZhengYi Zhang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| |
Collapse
|
5
|
Wang W, Shen Y, Zhang P, Liu L, Sha X, Li H, Wang S, Zhang H, Zhou Y, Shi J. Histone acetylation modification regulator-mediated tumor microenvironment infiltration characteristics and prognostic model of lung adenocarcinoma patients. J Thorac Dis 2022; 14:3886-3902. [PMID: 36389327 PMCID: PMC9641363 DOI: 10.21037/jtd-22-1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The incidence rate of lung adenocarcinoma (LUAD) is rapidly increasing. Recent studies have reported that histone acetylation modification plays an important role in the occurrence and development of tumors. However, the potential role of modification of histone acetylation modification in the development of tumor immune microenvironment is still unclear. METHODS In this study, we comprehensively evaluated the acetylation modification patterns of LUAD samples obtained from various different databases based on 36 histone modification regulators, and constructed a prognostic model based on The Cancer Genome Atlas (TCGA) LUAD cohort using the Cox regression method. The close relationship between histone acetylation and tumor immune characteristics was further studied, including immune infiltration, immune escape and immunotherapy. Finally, we combined three cohort (GSE30219, GSE72094 and GSE50081) from Gene Expression Omnibus (GEO) database to verify the above results. RESULTS We analyzed the expression, mutation and interaction of 36 histone acetylation regulated genes. After Univariate Cox regression analysis and least absolute shrinkage and selection operator regression (LASSO), 5 genes (KAT2B, SIRT2, HDAC5, KAT8, HDAC2) were screened to establish the prognosis model and calculate the risk score. Then, patients in the TCGA cohort were divided into high- and low-risk groups based on the risk scores. Further analysis indicated that patients in the high-risk group exhibited significantly reduced overall survival (OS) compared with those in the low-risk group. The high- and low-risk groups exhibited significant differences in terms of tumor immune characteristics, such as immune infiltration, immune escape and immunotherapy. The high-risk group had lower immune score, less immune cell infiltration and higher clinical stage. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic predictor for LUAD. In addition, drugs sensitive for this classification were identified. Finally, the efficacy of the prognostic model was validated by cohort (GSE30219, GSE72094 and GSE50081) from GEO database. CONCLUSIONS Our study provided a robust signature for predicting changing prognosis of patients with LUAD. Thus, it appears to be a potentially useful prognostic tool. Moreover, the important relationship between histone acetylation and tumor immune microenvironment was revealed.
Collapse
Affiliation(s)
- Wenmiao Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Yao Shen
- School of Medicine, Nantong University, Nantong, China
| | - Peng Zhang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Lei Liu
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Xinyu Sha
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Houqiang Li
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Silin Wang
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, Nantong, China;,Graduate School, Dalian Medical University, Dalian, China;,School of Public Health, Nantong University, Nantong, China
| |
Collapse
|
6
|
Wang M, Liu H, Zhang X, Zhao W, Li D, Xu C, Wu Z, Xie F, Li X. Lack of Mof reduces acute liver injury by enhancing transcriptional activation of Igf1. J Cell Physiol 2021; 236:6559-6570. [PMID: 33634483 DOI: 10.1002/jcp.30332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 12/30/2022]
Abstract
Acute liver injury (ALI) is a rapid pathological process that may cause severe liver disease and may even be life-threatening. During ALI, the function of males absent on the first (MOF) has not yet been elucidated. In this study, we unveiled the expression pattern of MOF during carbon tetrachloride (CCl4 )-induced ALI and role of MOF in the regulation of liver regeneration. In the process of ALI, MOF is significantly overexpressed in the liver injury area. Knockdown of Mof attenuated CCl4 -induced ALI, and promoted liver cell proliferation, hepatic stellate cell activation and aggregation to the injured area, and liver fibrosis. Simultaneously, overexpression of Mof aggravated liver dysfunction caused by ALI. By directly binding to the promoter, MOF suppressed the transcriptional activation of Igf1. Knockdown of Mof promotes the expression of Igf1 and activates the Insulin-like growth factor 1 signaling pathway in the liver. Through this pathway, Knockdown of Mof reduces CCl4 -induced ALI and promotes liver regeneration. Our results provide the first demonstration for MOF contributing to ALI. Further understanding of the role of MOF in ALI may lead to new therapeutic strategies for ALI.
Collapse
Affiliation(s)
- Meng Wang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
- Department of Cell and Neurobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haoyu Liu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xu Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Wenbo Zhao
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Danyang Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
- Department of Rehabilitation, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengpeng Xu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Zhen Wu
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Fei Xie
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| | - Xiangzhi Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Advanced Medical Research Institute, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
7
|
Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN. Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 2021; 9:714370. [PMID: 34422833 PMCID: PMC8377544 DOI: 10.3389/fcell.2021.714370] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS), superoxide anion and hydrogen peroxide, are generated as byproducts of oxidative phosphorylation in the mitochondria or via cell signaling-induced NADPH oxidases in the cytosol. In the recent two decades, a plethora of studies established that elevated ROS levels generated by oxidative eustress are crucial physiological mediators of many cellular and developmental processes. In this review, we discuss the mechanisms of ROS generation and regulation, current understanding of ROS functions in the maintenance of adult and embryonic stem cells, as well as in the process of cell reprogramming to a pluripotent state. Recently discovered cell-non-autonomous ROS functions mediated by growth factors are crucial for controlling cell differentiation and cellular immune response in Drosophila. Importantly, many physiological functions of ROS discovered in Drosophila may allow for deciphering and understanding analogous processes in human, which could potentially lead to the development of novel therapeutic approaches in ROS-associated diseases treatment.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
He M, Zhang T, Yang Y, Wang C. Mechanisms of Oocyte Maturation and Related Epigenetic Regulation. Front Cell Dev Biol 2021; 9:654028. [PMID: 33842483 PMCID: PMC8025927 DOI: 10.3389/fcell.2021.654028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Meiosis is the basis of sexual reproduction. In female mammals, meiosis of oocytes starts before birth and sustains at the dictyate stage of meiotic prophase I before gonadotropins-induced ovulation happens. Once meiosis gets started, the oocytes undergo the leptotene, zygotene, and pachytene stages, and then arrest at the dictyate stage. During each estrus cycle in mammals, or menstrual cycle in humans, a small portion of oocytes within preovulatory follicles may resume meiosis. It is crucial for females to supply high quality mature oocytes for sustaining fertility, which is generally achieved by fine-tuning oocyte meiotic arrest and resumption progression. Anything that disturbs the process may result in failure of oogenesis and seriously affect both the fertility and the health of females. Therefore, uncovering the regulatory network of oocyte meiosis progression illuminates not only how the foundations of mammalian reproduction are laid, but how mis-regulation of these steps result in infertility. In order to provide an overview of the recently uncovered cellular and molecular mechanism during oocyte maturation, especially epigenetic modification, the progress of the regulatory network of oocyte meiosis progression including meiosis arrest and meiosis resumption induced by gonadotropins is summarized. Then, advances in the epigenetic aspects, such as histone acetylation, phosphorylation, methylation, glycosylation, ubiquitination, and SUMOylation related to the quality of oocyte maturation are reviewed.
Collapse
Affiliation(s)
- Meina He
- Department of Biology, School of Basic Medical Science, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Tuo Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Yi Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
9
|
Complex-dependent histone acetyltransferase activity of KAT8 determines its role in transcription and cellular homeostasis. Mol Cell 2021; 81:1749-1765.e8. [PMID: 33657400 DOI: 10.1016/j.molcel.2021.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/20/2022]
Abstract
Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.
Collapse
|
10
|
Burrell JA, Stephens JM. KAT8, lysine acetyltransferase 8, is required for adipocyte differentiation in vitro. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166103. [PMID: 33617987 DOI: 10.1016/j.bbadis.2021.166103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/07/2021] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
KAT8 is a lysine acetyltransferase (KAT) that plays a role in a variety of cellular functions ranging from DNA damage repair to apoptosis. The role of KAT8 in adipocyte development and function has not been studied. Notably, a large genome-wide association study identified KAT8 as part of a novel locus that significantly contributed to body mass index and other metabolic phenotypes. Hence, we examined the expression and regulation of KAT8 during adipocyte development. KAT8 mRNA and protein levels were examined over a time course of adipocyte development, and KAT8 was found to be present in both the cytosol and nucleus of 3T3-L1 adipocytes. Although KAT8 expression was not highly regulated by adipogenesis, its expression was required for the adipogenesis of 3T3-L1 cells. Loss of KAT8 expression in preadipocytes inhibited their ability to differentiate as judged by both lipid accumulation and adipocyte marker gene expression. However, if KAT8 was knocked down after clonal expansion, its absence did not inhibit adipocyte differentiation. Also, loss of KAT8 in adipocytes did not impact lipid accumulation or the expression of adiponectin or other fat markers. Although our data demonstrate that KAT8 is required for adipocyte differentiation, further studies are necessary to determine the functions and regulation of KAT8 in adipose tissue.
Collapse
Affiliation(s)
- Jasmine A Burrell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
11
|
Li L, Ghorbani M, Weisz-Hubshman M, Rousseau J, Thiffault I, Schnur RE, Breen C, Oegema R, Weiss MM, Waisfisz Q, Welner S, Kingston H, Hills JA, Boon EM, Basel-Salmon L, Konen O, Goldberg-Stern H, Bazak L, Tzur S, Jin J, Bi X, Bruccoleri M, McWalter K, Cho MT, Scarano M, Schaefer GB, Brooks SS, Hughes SS, van Gassen KLI, van Hagen JM, Pandita TK, Agrawal PB, Campeau PM, Yang XJ. Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability. J Clin Invest 2020; 130:1431-1445. [PMID: 31794431 DOI: 10.1172/jci131145] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and influence disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis, and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in 9 patients with intellectual disability, seizures, autism, dysmorphisms, and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least 2 of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies 9 individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy, and other developmental anomalies.
Collapse
Affiliation(s)
- Lin Li
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Mohammad Ghorbani
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Monika Weisz-Hubshman
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Justine Rousseau
- Paediatric Department, CHU Sainte-Justine Hospital, University of Montreal, Quebec, Canada
| | - Isabelle Thiffault
- Center for Pediatric Genomic Medicine & Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA.,Faculty of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Rhonda E Schnur
- Division of Genetics, Cooper University Health Care, Camden, New Jersey, USA.,GeneDx, Gaithersburg, Maryland, USA
| | - Catherine Breen
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester, United Kingdom
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marjan Mm Weiss
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Sara Welner
- Division of Pediatric Medical Genetics, The State University of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Helen Kingston
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester, United Kingdom
| | - Jordan A Hills
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Elles Mj Boon
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Lina Basel-Salmon
- Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva, Israel
| | - Osnat Konen
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Imaging Department, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Hadassa Goldberg-Stern
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Epilepsy Unit and EEG Laboratory, Schneider Medical Center, Petach Tikva, Israel
| | - Lily Bazak
- Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shay Tzur
- Laboratory of Molecular Medicine, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel.,Genomic Research Department, Emedgene Technologies, Tel Aviv, Israel
| | - Jianliang Jin
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada.,Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory of Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiuli Bi
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michael Bruccoleri
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | - Maria Scarano
- Division of Genetics, Cooper University Health Care, Camden, New Jersey, USA
| | | | - Susan S Brooks
- Division of Pediatric Medical Genetics, The State University of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Susan Starling Hughes
- Center for Pediatric Genomic Medicine & Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri, USA.,Faculty of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - K L I van Gassen
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Tej K Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas, USA
| | - Pankaj B Agrawal
- Divisions of Newborn Medicine and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philippe M Campeau
- Paediatric Department, CHU Sainte-Justine Hospital, University of Montreal, Quebec, Canada
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada.,Departments of Biochemistry and Medicine, McGill University Health Center, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Cai M, Hu Z, Han L, Guo R. MicroRNA-572/hMOF/Sirt6 regulates the progression of ovarian cancer. Cell Cycle 2020; 19:2509-2518. [PMID: 33026281 DOI: 10.1080/15384101.2020.1809258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human males absent on the first (hMOF) is a histone acetyltransferase (HAT) and is involved in the pathogenesis of various cancers. This article aimed to reveal the potential mechanism of the miR-572/hMOF/Sirt6 axis in ovarian cancer (OC). In this study, we found that the mRNA and protein levels of hMOF and Sirt6 were abnormally down-regulated in OC tissues and cells. Further study indicated that the overexpression of hMOF increased the level of H4 histone acetylation in the Sirt6 promoter region and enhanced the ability of hMOF to bind to the Sirt6 promoter in OC cells, and repressed the proliferation of SKOV3 cells and promoted the apoptosis of SKOV3 cells via up-regulating Sirt6. Moreover, it was found that miR-572 negatively regulated hMOF luciferase activity. After the transfection of miR-572 inhibitor into SKOV3 cells, the cell proliferation was significantly repressed, while this repression was reversed after the transfection of shRNA-hMOF. Besides, the overexpression of hMOF could significantly inhibit the growth of tumors. Overall, our findings uncovered a novel regulatory pattern of hMOF in OC progression and provided new insights for relieving OC.
Collapse
Affiliation(s)
- Mingbo Cai
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Zhenhua Hu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Liping Han
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| |
Collapse
|
13
|
Histone Acetyltransferase MOF Blocks Acquisition of Quiescence in Ground-State ESCs through Activating Fatty Acid Oxidation. Cell Stem Cell 2020; 27:441-458.e10. [PMID: 32610040 DOI: 10.1016/j.stem.2020.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/26/2020] [Accepted: 06/07/2020] [Indexed: 02/08/2023]
Abstract
Self-renewing embryonic stem cells (ESCs) respond to environmental cues by exiting pluripotency or entering a quiescent state. The molecular basis underlying this fate choice remains unclear. Here, we show that histone acetyltransferase MOF plays a critical role in this process through directly activating fatty acid oxidation (FAO) in the ground-state ESCs. We further show that the ground-state ESCs particularly rely on elevated FAO for oxidative phosphorylation (OXPHOS) and energy production. Mof deletion or FAO inhibition induces bona fide quiescent ground-state ESCs with an intact core pluripotency network and transcriptome signatures akin to the diapaused epiblasts in vivo. Mechanistically, MOF/FAO inhibition acts through reducing mitochondrial respiration (i.e., OXPHOS), which in turn triggers reversible pluripotent quiescence specifically in the ground-state ESCs. The inhibition of FAO/OXPHOS also induces quiescence in naive human ESCs. Our study suggests a general function of the MOF/FAO/OXPHOS axis in regulating cell fate determination in stem cells.
Collapse
|
14
|
Wang H, Zhang J, Feng D, Feng X. Effects of mPEG-DSPE/corannulene or perylene nanoparticles on the ovary and oocyte. RSC Adv 2020; 10:16972-16981. [PMID: 35496924 PMCID: PMC9053206 DOI: 10.1039/d0ra02129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/10/2020] [Indexed: 11/25/2022] Open
Abstract
Corannulene (Cor) is a polycyclic aromatic hydrocarbon (PHA) whose molecular structure is three dimensional with a unique bowl-like structure and surface charge. Perylene (Per) is similar to corannulene, with 20π electrons in its fragrance system, but it is a planar structure. Although scientists in various fields have been extensively investigating corannulene, the toxicological evaluation on organisms and its possible mechanisms remain unclear. Our objective is to investigate the toxic effects of corannulene and perylene on ovaries and oocytes. First, corannulene and perylene were wrapped with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)] (mPEG-DSPE) to form mPEG-DSPE/corannulene nanoparticles (mP-D/CoNps) and mPEG-DSPE/perylene nanoparticles (mP-D/PeNps), which enhanced their water solubility and biocompatibility. Then, the toxic effects of mP-D/CoNps or mP-D/PeNps on the quality of mouse oocytes and their possible mechanisms were studied in vivo. Our results indicated that mP-D/CoNps or mP-D/PeNps affected the first polar body extrusion of oocytes, increased the number of primordial follicles in the ovary, altered mitochondrial membrane potentials, induced oxidative stress and led to autophagy and apoptosis. Corannulene (Cor) is a polycyclic aromatic hydrocarbon (PHA) whose molecular structure is three dimensional with a unique bowl-like structure and surface charge.![]()
Collapse
Affiliation(s)
- Hongyu Wang
- College of Life Science
- The Key Laboratory of Bioactive Materials
- Ministry of Education
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Jingwen Zhang
- College of Life Science
- The Key Laboratory of Bioactive Materials
- Ministry of Education
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| | - Daofu Feng
- Department of General Surgery
- Tianjin Medical University General Hospital
- Tianjin 300052
- China
| | - Xizeng Feng
- College of Life Science
- The Key Laboratory of Bioactive Materials
- Ministry of Education
- State Key Laboratory of Medicinal Chemical Biology
- Nankai University
| |
Collapse
|
15
|
Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:789. [PMID: 32042805 DOI: 10.21037/atm.2019.12.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oocyte quality is one of the most important factors involving in female reproduction. The number of compromised oocytes will increase with maternal age, while mitochondrial dysfunction has implicated in age-related poor oocyte. Together with the successful application of ooplasmic transfer (OT) and the critical role of mitochondria in the oocyte, functional mitochondria transfer may be a feasible strategy to improve oocyte quality. However, limitation on ethics and laws are strictly and optimal condition or methods to exert transferring need to be further explored. Therefore, the role of oocyte mitochondria and the effective molecular involving in oocyte quality will be hot topics in next few years. In this review, we summarize the potential mechanism of mitochondria in oocyte and embryo development and discuss the next step for mitochondrial transfer therapy.
Collapse
Affiliation(s)
- Lingbin Qi
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Xian Chen
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen 518045, China
| | - Jian Wang
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Bo Lv
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China
| | - Junhui Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Bin Ni
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Zhigang Xue
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai 200092, China.,Reproductive Medicine Center, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
16
|
Kong M, Chen X, Lv F, Ren H, Fan Z, Qin H, Yu L, Shi X, Xu Y. Serum response factor (SRF) promotes ROS generation and hepatic stellate cell activation by epigenetically stimulating NCF1/2 transcription. Redox Biol 2019; 26:101302. [PMID: 31442911 PMCID: PMC6831835 DOI: 10.1016/j.redox.2019.101302] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Activation of hepatic stellate cells (HSC) is a hallmark event in liver fibrosis. Accumulation of reactive oxygen species (ROS) serves as a driving force for HSC activation. The regulatory subunits of the NOX complex, NCF1 (p47phox) and NCF2 (p67phox), are up-regulated during HSC activation contributing to ROS production and liver fibrosis. The transcriptional mechanism underlying NCF1/2 up-regulation is not clear. In the present study we investigated the role of serum response factor (SRF) in HSC activation focusing on the transcriptional regulation of NCF1/2. We report that compared to wild type littermates HSC-conditional SRF knockout (CKO) mice exhibited a mortified phenotype of liver fibrosis induced by thioacetamide (TAA) injection or feeding with a methionine-and-choline deficient diet (MCD). More importantly, SRF deletion attenuated ROS levels in HSCs in vivo. Similarly, SRF knockdown in cultured HSCs suppressed ROS production in vitro. Further analysis revealed that SRF deficiency resulted in repression of NCF1/NCF2 expression. Mechanistically, SRF regulated epigenetic transcriptional activation of NCF1/NCF2 by interacting with and recruiting the histone acetyltransferase KAT8 during HSC activation. In conclusion, we propose that SRF integrates transcriptional activation of NCF1/NCF2 and ROS production to promote liver fibrosis.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xuyang Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fangqiao Lv
- Department of Cell Biology and the Municipal Laboratory of Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Haozhen Ren
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhiwen Fan
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Qin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiaolei Shi
- Department of Hepato-biliary Surgery and Department of Pathology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China; Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| |
Collapse
|
17
|
Cao Y, Li M, Liu F, Ni X, Wang S, Zhang H, Sui X, Huo R. Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos. FASEB J 2019; 33:8294-8305. [PMID: 30995416 DOI: 10.1096/fj.201801696rrrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1) protein recognizes DNA methylation and histone modification and plays a critical role in epigenetic regulation. Recently, UHRF1 was shown to have a role in DNA methylation in oocytes and early embryos. Here, we reveal that maternal UHRF1 determines the quality of mouse oocytes. We generated oocyte-specific Uhrf1-knockout mice and found that females were sterile, and few maternal UHRF1-null embryos developed into blastocysts. The UHRF1-null oocytes had an increased incidence of aneuploidy and DNA damage. In addition to defective DNA methylation, histone modification was affected during oogenesis, with UHRF1-null germinal vesicle and metaphase II-stage oocytes exhibiting reduced global histone H3 lysine 9 dimethylation levels and elevated acetylation of histone H4 lysine 12. Taken together, our results suggest that UHRF1 plays an important role in determining oocyte quality and affects epigenetic regulation of oocyte maturation as a maternal protein, which is crucial for embryo developmental potential. Further exploration of the biologic function and underlying mechanisms of maternal UHRF1 will enhance our understanding of the maternal control of the oocyte and early embryonic development.-Cao, Y., Li, M., Liu, F., Ni, X., Wang, S., Zhang, H., Sui, X., Huo, R. Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mingrui Li
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Fei Liu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - XiaoBei Ni
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuai Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuesong Sui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Fellous A, Earley RL, Silvestre F. Identification and expression of mangrove rivulus (Kryptolebias marmoratus) histone deacetylase (HDAC) and lysine acetyltransferase (KAT) genes. Gene 2019; 691:56-69. [DOI: 10.1016/j.gene.2018.12.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
|
19
|
Huang Z, Khan M, Xu J, Khan T, Ma H, Khan R, Hussain HMJ, Jiang X, Shi Q. The deubiquitinating gene Usp29 is dispensable for fertility in male mice. SCIENCE CHINA-LIFE SCIENCES 2019; 62:544-552. [DOI: 10.1007/s11427-018-9469-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/01/2018] [Indexed: 11/30/2022]
|
20
|
Zhao H, Li T, Zhao Y, Tan T, Liu C, Liu Y, Chang L, Huang N, Li C, Fan Y, Yu Y, Li R, Qiao J. Single-Cell Transcriptomics of Human Oocytes: Environment-Driven Metabolic Competition and Compensatory Mechanisms During Oocyte Maturation. Antioxid Redox Signal 2019; 30:542-559. [PMID: 29486586 PMCID: PMC6338670 DOI: 10.1089/ars.2017.7151] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS The mechanisms coordinating maturation with an environment-driven metabolic shift, a critical step in determining the developmental potential of human in vitro maturation (IVM) oocytes, remain to be elucidated. Here we explored the key genes regulating human oocyte maturation using single-cell RNA sequencing and illuminated the compensatory mechanism from a metabolic perspective by analyzing gene expression. RESULTS Three key genes that encode CoA-related enzymes were screened from the RNA sequencing data. Two of them, ACAT1 and HADHA, were closely related to the regulation of substrate production in the Krebs cycle. Dysfunction of the Krebs cycle was induced by decreases in the activity of specific enzymes. Furthermore, the activator of these enzymes, the calcium concentration, was also decreased because of the failure of influx of exogenous calcium. Although release of endogenous calcium from the endoplasmic reticulum and mitochondria met the requirement for maturation, excessive release resulted in aneuploidy and developmental incompetence. High nicotinamide nucleotide transhydrogenase expression induced NADPH dehydrogenation to compensate for the NADH shortage resulting from the dysfunction of the Krebs cycle. Importantly, high NADP+ levels activated DPYD to enhance the repair of DNA double-strand breaks to maintain euploidy. INNOVATION The present study shows for the first time that exposure to the in vitro environment can lead to the decline of energy metabolism in human oocytes during maturation but that a compensatory action maintains their developmental competence. CONCLUSION In vitro maturation of human oocytes is mediated through a cascade of competing and compensatory actions driven by genes encoding enzymes.
Collapse
Affiliation(s)
- Hongcui Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tianjie Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yue Zhao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Tao Tan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Changyu Liu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Yali Liu
- 3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Liang Chang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Ning Huang
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Chang Li
- 2 Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology , Kunming, China
| | - Yong Fan
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China .,3 Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yang Yu
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Rong Li
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| | - Jie Qiao
- 1 Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital , Beijing, China
| |
Collapse
|
21
|
Yang LL, Cui YX, Ma JY, Ge ZJ, Shen W, Yin S. Tributyltin oxide exposure impairs mouse oocyte maturation and its possible mechanisms. J Cell Biochem 2018; 120:715-726. [PMID: 30191590 DOI: 10.1002/jcb.27429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/12/2018] [Indexed: 11/07/2022]
Abstract
Tributyltin oxide (TBTO) has been widely used as marine antifouling composition, preservative, biocide, and a stabilizer in plastic industry. Previous studies have indicated that TBTO can cause immunotoxicity as an environmental pollutant. However, little is known about its reproductive toxicity, especially on female oocyte maturation and the underlying mechanisms. In this study, mouse oocytes were cultured with different concentrations of TBTO in vitro, and several crucial events during meiotic maturation were evaluated. We found that the first polar body extrusion rate was significantly reduced, which reflected the disruption of meiotic maturation. The rate of abnormal spindle organization increased significantly, accompanied with a higher rate of chromosome misalignment. In addition, TBTO treatment increased reactive oxygen species generation markedly, which also accelerated the early-stage apoptosis. Moreover, heterogeneous mitochondrial distribution, mitochondrial dysfunction, and higher rate of aneuploidy were detected, which consequently disrupted in vitro fertilization. In conclusion, our results indicated that TBTO exposure could impair mouse oocyte maturation by affecting spindle organization, chromosome alignment, mitochondria functions, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Lei-Lei Yang
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ying-Xue Cui
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Jiang H, Gao Q, Zheng W, Yin S, Wang L, Zhong L, Ali A, Khan T, Hao Q, Fang H, Sun X, Xu P, Pandita TK, Jiang X, Shi Q. MOF influences meiotic expansion of H2AX phosphorylation and spermatogenesis in mice. PLoS Genet 2018; 14:e1007300. [PMID: 29795555 PMCID: PMC6019819 DOI: 10.1371/journal.pgen.1007300] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 06/26/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022] Open
Abstract
Three waves of H2AX phosphorylation (γH2AX) have been observed in male meiotic prophase I: the first is ATM-dependent and occurs at leptonema, while the second and third are ATR-dependent, occuring at zygonema and pachynema, respectively. The third wave of H2AX phosphorylation marks and silences unsynapsed chromosomes. Little is known about H2AX phosphorylation expands to chromatin-wide regions in spermatocytes. Here, we report that histone acetyltransferase (HAT) MOF is involved in all three waves of H2AX phosphorylation expansion. Germ cell-specific deletion of Mof in spermatocytes by Stra8-Cre (Mof cKO) caused global loss of H4K16ac. In leptotene and zygotene spermatocytes of cKO mice, the γH2AX signals were observed only along the chromosomal axes, and chromatin-wide H2AX phosphorylation was lost. In almost 40% of early-mid pachytene spermatocytes from Mof cKO mice, γH2AX and MDC1 were detected along the unsynapsed axes of the sex chromosomes, but failed to expand, which consequently caused meiotic sex chromosome inactivation (MSCI) failure. Furthermore, though RAD51 was proficiently recruited to double-strand break (DSB) sites, defects in DSB repair and crossover formation were observed in Mof cKO spermatocytes, indicating that MOF facilitates meiotic DSB repair after RAD51 recruitment. We propose that MOF regulates male meiosis and is involved in the expansion of all three waves of H2AX phosphorylation from the leptotene to pachytene stages, initiated by ATM and ATR, respectively.
Collapse
Affiliation(s)
- Hanwei Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Qian Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Wei Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Shi Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Liu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Liangwen Zhong
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Asim Ali
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Teka Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Qiaomei Hao
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Hui Fang
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Xiaoling Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Peng Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Tej K. Pandita
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, United States
| | - Xiaohua Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, USTC-SJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, Anhui, China
| |
Collapse
|
23
|
Khan M, Jabeen N, Khan T, Hussain HMJ, Ali A, Khan R, Jiang L, Li T, Tao Q, Zhang X, Yin H, Yu C, Jiang X, Shi Q. The evolutionarily conserved genes: Tex37, Ccdc73, Prss55 and Nxt2 are dispensable for fertility in mice. Sci Rep 2018; 8:4975. [PMID: 29563520 PMCID: PMC5862965 DOI: 10.1038/s41598-018-23176-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 03/07/2018] [Indexed: 02/07/2023] Open
Abstract
There are more than 2300 genes that are predominantly expressed in mouse testes. The role of hundreds of these genes has been studied in mouse spermatogenesis but still there are many genes whose function is unknown. Gene knockout (KO) strategy in mice is widely used for in vivo study of gene function. The present study was designed to explore the function of the four genes: Tex37, Ccdc73, Prss55 and Nxt2, which were evolutionarily conserved in eutherians. We found that these genes had a testis-enriched expression pattern in mice except Nxt2. We knocked out these genes by CRISPR/Cas9 individually and found that all the KO mice had normal fertility with no detectable difference in testis/body weight ratios, epididymal sperm counts, as well as testicular and epididymal histology from wild type mice. Although these genes are evolutionarily conserved in eutherians including human and mouse, they are not individually essential for spermatogenesis, testis development and male fertility in mice in laboratory conditions. Our report of these fertile KO data could avoid the repetition and duplication of efforts which will help in prioritizing efforts to focus on genes that are indispensable for male reproduction.
Collapse
Affiliation(s)
- Manan Khan
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Nazish Jabeen
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Teka Khan
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Hafiz Muhammad Jafar Hussain
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Asim Ali
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Ranjha Khan
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Long Jiang
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Tao Li
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Qizhao Tao
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Xingxia Zhang
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Hao Yin
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Changping Yu
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China
| | - Xiaohua Jiang
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China.
| | - Qinghua Shi
- USTC-SDJH Joint Center for Human Reproduction and Genetics, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China (USTC), Collaborative Innovation Center of Genetics and Development, Hefei, 230027, Anhui, China.
| |
Collapse
|
24
|
Cao Z, Wu R, Gao D, Xu T, Luo L, Li Y, Han J, Zhang Y. Maternal histone acetyltransferase KAT8 is required for porcine preimplantation embryo development. Oncotarget 2017; 8:90250-90261. [PMID: 29163825 PMCID: PMC5685746 DOI: 10.18632/oncotarget.21657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
K (lysine) acetyltransferase 8 (KAT8), an acetyltransferase that specifically catalyzes histone H4 lysine 16 acetylation, is critical for key biological processes including cell proliferation and maintenance of genome stability. However, the role of KAT8 during preimplantation development in pigs remains unclear. Results herein showed that KAT8 mRNA is maternally derived and it is required for successful development of early embryos. An abundance of KAT8 transcripts are expressed in oocytes and its abundance continuously decreases throughout meiotic maturation and preimplantation development. In addition, KAT8 expression is insensitive to RNA polymerase II inhibitor after embryonic genome activation, suggesting its maternal origin. The levels of KAT8 mRNA and H4K16 acetylation were effectively knocked down by siRNA microinjection. Knockdown of KAT8 significantly reduced the blastocyst formation rate and total cell number per blastocyst. Analysis of trophectoderm lineage and marker of DNA double-strand breaks revealed that the impaired developmental competence and quality of embryos might be attributed to defects in both the first two lineages development and genome integrity. Taken together, these results demonstrate that maternal KAT8 is indispensible for porcine early embryo development potentially through maintaining the proliferation of the first two lineages and genome integrity.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ronghua Wu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Luo
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jianyong Han
- State Key Laboratory for Agro-Biotechnology, Department of Biochemistry and Molecular Biology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, Department of Animal Science, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|