1
|
Zhao H, Gong H, Zhu P, Sun C, Sun W, Zhou Y, Wu X, Qiu A, Wen X, Zhang J, Luo D, Liu Q, Li Y. Deciphering the cellular and molecular landscapes of Wnt/β-catenin signaling in mouse embryonic kidney development. Comput Struct Biotechnol J 2024; 23:3368-3378. [PMID: 39310276 PMCID: PMC11416353 DOI: 10.1016/j.csbj.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Background The Wnt/β-catenin signaling pathway is critical in kidney development, yet its specific effects on gene expression in different embryonic kidney cell types are not fully understood. Methods Wnt/β-catenin signaling was activated in mouse E12.5 kidneys in vitro using CHIR99021, with RNA sequencing performed afterward, and the results were compared to DMSO controls (dataset GSE131240). Differential gene expression in ureteric buds and cap mesenchyme following pathway activation (datasets GSE20325 and GSE39583) was analyzed. Single-cell RNA-seq data from the Mouse Cell Atlas was used to link differentially expressed genes (DEGs) with kidney cell types. β-catenin ChIP-seq data (GSE39837) identified direct transcriptional targets. Results Activation of Wnt/β-catenin signaling led to 917 significant DEGs, including the upregulation of Notum and Apcdd1 and the downregulation of Crym and Six2. These DEGs were involved in kidney development and immune response. Single-cell analysis identified 787 DEGs across nineteen cell subtypes, with Macrophage_Apoe high cells showing the most pronounced enrichment of Wnt/β-catenin-activated genes. Gene expression profiles in ureteric buds and cap mesenchyme differed significantly upon β-catenin manipulation, with cap mesenchyme showing a unique set of DEGs. Analysis of β-catenin ChIP-seq data revealed 221 potential direct targets, including Dpp6 and Fgf12. Conclusion This study maps the complex gene expression driven by Wnt/β-catenin signaling in embryonic kidney cell types. The identified DEGs and β-catenin targets elucidate the molecular details of kidney development and the pathway's role in immune processes, providing a foundation for further research into Wnt/β-catenin signaling in kidney development and disease.
Collapse
Affiliation(s)
- Hui Zhao
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 Xing Dao Huan Bei Road, Guangzhou 510005, Guangdong Province, China
| | - Hui Gong
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Peide Zhu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chang Sun
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wuping Sun
- Department of Pain Medicine, Shenzhen Municipal Key Laboratory for Pain Medicine, The affiliated Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen 518060, China
| | - Yujin Zhou
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Xiaoxiao Wu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Ailin Qiu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaosha Wen
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Jinde Zhang
- Guangdong Medical University, Zhanjiang 524023, Guangdong China
| | - Dixian Luo
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| | - Yifan Li
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital) and The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong 518052, China
| |
Collapse
|
2
|
Bugacov H, Der B, Briantseva BM, Guo Q, Kim S, Lindström NO, McMahon AP. Dose-dependent responses to canonical Wnt transcriptional complexes in the regulation of mammalian nephron progenitors. Development 2024; 151:dev202279. [PMID: 39250420 PMCID: PMC11463962 DOI: 10.1242/dev.202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo and in vitro studies argue that concentration-dependent Wnt signaling regulates mammalian nephron progenitor cell (NPC) programs. Canonical Wnt signaling is regulated through the stabilization of β-catenin, a transcriptional co-activator when complexed with Lef/Tcf DNA-binding partners. Using the GSK3β inhibitor CHIR99021 (CHIR) to block GSK3β-dependent destruction of β-catenin, we examined dose-dependent responses to β-catenin in mouse NPCs, using mRNA transduction to modify gene expression. Low CHIR-dependent proliferation of NPCs was blocked on β-catenin removal, with evidence of NPCs arresting at the G2-M transition. While NPC identity was maintained following β-catenin removal, mRNA-seq identified low CHIR and β-catenin dependent genes. High CHIR activated nephrogenesis. Nephrogenic programming was dependent on Lef/Tcf factors and β-catenin transcriptional activity. Molecular and cellular features of early nephrogenesis were driven in the absence of CHIR by a mutated stabilized form of β-catenin. Chromatin association studies indicate low and high CHIR response genes are likely direct targets of canonical Wnt transcriptional complexes. Together, these studies provide evidence for concentration-dependent Wnt signaling in the regulation of NPCs and provide new insight into Wnt targets initiating mammalian nephrogenesis.
Collapse
Affiliation(s)
- Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Discovery Biomarkers, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Wesołek-Leszczyńska A, Pastusiak K, Bogdański P, Szulińska M. Can Adipokine FAM19A5 Be a Biomarker of Metabolic Disorders? Diabetes Metab Syndr Obes 2024; 17:1651-1666. [PMID: 38616989 PMCID: PMC11016272 DOI: 10.2147/dmso.s460226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Aim One of the most critical functions of adipose tissue is the production of adipokines, ie, numerous active substances that regulate metabolism. One is the newly discovered FAM19A5, whose older name is TAFA-5. Purpose The study aimed to review the literature on the FAM19A5 protein. Methods The review was conducted in December 2023 using the PubMed (Medline) search engine. Sixty-four papers were included in the review. Results This protein exhibits the characteristics of an adipokine with positive features for maintaining homeostasis. The results showed that FAM19A5 was highly expressed in adipose tissue, with mild to moderate expression in the brain and ovary. FAM19A5 may also inhibit vascular smooth muscle cell proliferation and migration through the perivascular adipose tissue paracrine pathway. Serum levels of FAM19A5 were decreased in obese children compared with healthy controls. There are negative correlations between FAM19A5, body mass index, and fasting insulin. Serum FAM19A5 level is correlated with type 2 diabetes, waist circumference, waist-to-hip ratio, glutamic pyruvic transferase, fasting plasma glucose, HbA1c, and mean shoulder pulse wave velocity. FAM19A5 expression was reduced in mice with obesity. However, the data available needs to be clarified or contradictory. Conclusion Considering today's knowledge about FAM19A5, we cannot consider this protein as a biomarker of the metabolic syndrome. According to current knowledge, FAM19A5 cannot be considered a marker of metabolic disorders because the results of studies conducted in this area are unclear.
Collapse
Affiliation(s)
- Agnieszka Wesołek-Leszczyńska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University Of Medical Sciences, Poznań, Poland
| | - Katarzyna Pastusiak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| | - Monika Szulińska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
4
|
Davis SN, Grindel SH, Viola JM, Liu GY, Liu J, Qian G, Porter CM, Hughes AJ. Nephron progenitors rhythmically alternate between renewal and differentiation phases that synchronize with kidney branching morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.21.568157. [PMID: 38045273 PMCID: PMC10690271 DOI: 10.1101/2023.11.21.568157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The mammalian kidney achieves massive parallelization of function by exponentially duplicating nephron-forming niches during development. Each niche caps a tip of the ureteric bud epithelium (the future urinary collecting duct tree) as it undergoes branching morphogenesis, while nephron progenitors within niches balance self-renewal and differentiation to early nephron cells. Nephron formation rate approximately matches branching rate over a large fraction of mouse gestation, yet the nature of this apparent pace-maker is unknown. Here we correlate spatial transcriptomics data with branching 'life-cycle' to discover rhythmically alternating signatures of nephron progenitor differentiation and renewal across Wnt, Hippo-Yap, retinoic acid (RA), and other pathways. We then find in human stem-cell derived nephron progenitor organoids that Wnt/β-catenin-induced differentiation is converted to a renewal signal when it temporally overlaps with YAP activation. Similar experiments using RA activation indicate a role in setting nephron progenitor exit from the naive state, the spatial extent of differentiation, and nephron segment bias. Together the data suggest that nephron progenitor interpretation of consistent Wnt/β-catenin differentiation signaling in the niche may be modified by rhythmic activity in ancillary pathways to set the pace of nephron formation. This would synchronize nephron formation with ureteric bud branching, which creates new sites for nephron condensation. Our data bring temporal resolution to the renewal vs. differentiation balance in the nephrogenic niche and inform new strategies to achieve self-sustaining nephron formation in synthetic human kidney tissues.
Collapse
Affiliation(s)
- Sachin N Davis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - John M Viola
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Y Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
5
|
Huang B, Zeng Z, Li H, Li Z, Chen X, Guo J, Zhang CC, Schreiber ME, Vonk AC, Xiang T, Patel T, Li Y, Parvez RK, Der B, Chen JH, Liu Z, Thornton ME, Grubbs BH, Diao Y, Dou Y, Gnedeva K, Lindström NO, Ying Q, Pastor-Soler NM, Fei T, Hallows KR, McMahon AP, Li Z. Modeling kidney development, disease, and plasticity with clonal expandable nephron progenitor cells and nephron organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542343. [PMID: 37293038 PMCID: PMC10245960 DOI: 10.1101/2023.05.25.542343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here we report manipulation of p38 and YAP activity creates a synthetic niche that allows the long-term clonal expansion of primary mouse and human NPCs, and induced NPCs (iNPCs) from human pluripotent stem cells. Cultured iNPCs resemble closely primary human NPCs, generating nephron organoids with abundant distal convoluted tubule cells, which are not observed in published kidney organoids. The synthetic niche reprograms differentiated nephron cells into NPC state, recapitulating the plasticity of developing nephron in vivo. Scalability and ease of genome-editing in the cultured NPCs allow for genome-wide CRISPR screening, identifying novel genes associated with kidney development and disease. A rapid, efficient, and scalable organoid model for polycystic kidney disease was derived directly from genome-edited NPCs, and validated in drug screen. These technological platforms have broad applications to kidney development, disease, plasticity, and regeneration.
Collapse
Affiliation(s)
- Biao Huang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- These authors contributed equally
| | - Zipeng Zeng
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- These authors contributed equally
| | - Hui Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zexu Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xi Chen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chennan C. Zhang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Megan E. Schreiber
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ariel C. Vonk
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tianyuan Xiang
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tadrushi Patel
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yidan Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Riana K. Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jyun Hao Chen
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhenqing Liu
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Matthew E. Thornton
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Brendan H. Grubbs
- Division of Maternal Fetal Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yali Dou
- Department of Medicine, Department of Biochemistry and Molecular Medicine, University of Southern California, CA 90033, USA
| | - Ksenia Gnedeva
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Tina and Rick Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA 90033, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Qilong Ying
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nuria M. Pastor-Soler
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Teng Fei
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Kenneth R. Hallows
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhongwei Li
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Lead contact
| |
Collapse
|
6
|
Comparative whole-genome transcriptome analysis in renal cell populations reveals high tissue specificity of MAPK/ERK targets in embryonic kidney. BMC Biol 2022; 20:112. [PMID: 35550069 PMCID: PMC9102746 DOI: 10.1186/s12915-022-01309-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Background MAPK/ERK signaling is a well-known mediator of extracellular stimuli controlling intracellular responses to growth factors and mechanical cues. The critical requirement of MAPK/ERK signaling for embryonic stem cell maintenance is demonstrated, but specific functions in progenitor regulation during embryonic development, and in particular kidney development remain largely unexplored. We previously demonstrated MAPK/ERK signaling as a key regulator of kidney growth through branching morphogenesis and normal nephrogenesis where it also regulates progenitor expansion. Here, we performed RNA sequencing-based whole-genome expression analysis to identify transcriptional MAPK/ERK targets in two distinct renal populations: the ureteric bud epithelium and the nephron progenitors. Results Our analysis revealed a large number (5053) of differentially expressed genes (DEGs) in nephron progenitors and significantly less (1004) in ureteric bud epithelium, reflecting likely heterogenicity of cell types. The data analysis identified high tissue-specificity, as only a fraction (362) of MAPK/ERK targets are shared between the two tissues. Tissue-specific MAPK/ERK targets participate in the regulation of mitochondrial energy metabolism in nephron progenitors, which fail to maintain normal mitochondria numbers in the MAPK/ERK-deficient tissue. In the ureteric bud epithelium, a dramatic decline in progenitor-specific gene expression was detected with a simultaneous increase in differentiation-associated genes, which was not observed in nephron progenitors. Our experiments in the genetic model of MAPK/ERK deficiency provide evidence that MAPK/ERK signaling in the ureteric bud maintains epithelial cells in an undifferentiated state. Interestingly, the transcriptional targets shared between the two tissues studied are over-represented by histone genes, suggesting that MAPK/ERK signaling regulates cell cycle progression and stem cell maintenance through chromosome condensation and nucleosome assembly. Conclusions Using tissue-specific MAPK/ERK inactivation and RNA sequencing in combination with experimentation in embryonic kidneys, we demonstrate here that MAPK/ERK signaling maintains ureteric bud tip cells, suggesting a regulatory role in collecting duct progenitors. We additionally deliver new mechanistic information on how MAPK/ERK signaling regulates progenitor maintenance through its effects on chromatin accessibility and energy metabolism. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01309-z.
Collapse
|
7
|
Yari FA, Shabani P, Karami S, Sarmadi N, Poustchi H, Bandegi AR. Circulating levels of FAM19A5 are inversely associated with subclinical atherosclerosis in non-alcoholic fatty liver disease. BMC Endocr Disord 2021; 21:153. [PMID: 34344333 PMCID: PMC8335939 DOI: 10.1186/s12902-021-00820-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Family with sequence similarity 19 (chemokine (C-C motif)-like) member A5 (FAM19A5) is a newly identified adipokine. There is a limited number of studies linking FAM19A5 to metabolic disorders. In the current study, we aimed to explore if FAM19A5 is associated with nonalcoholic fatty liver disease (NAFLD). We also sought to determine the possibility of FAM19A5 association with subclinical atherosclerosis in NAFLD patients. METHODS A total of 69 subjects including 37 NAFLD and 32 control subjects were included in this cross-sectional study. Plasma concentration of FAM19A5 was measured with the ELISA method. Carotid artery intima-media thickness (cIMT) was assessed by the ultrasonography. RESULTS Plasma concentration of FAM19A5 in patients with NAFLD was significantly lower in NAFLD patients than controls. Moreover, we observed significant negative correlations between plasma level of FAM19A5 and body mass index (BMI), visceral fat, alanine amino transferase (ALT), aspartate amino transferase (AST), liver stiffness (LS), and cIMT. Following stepwise multiple linear regression analysis, ALT and cIMT were the only determinants of FAM19A5 level. CONCLUSIONS This is the first report to describe association of circulating FAM19A5 levels with NAFLD. Our findings provide further evidence showing relation of FAM19A5 with the risk of atherosclerosis. However, more studies are necessary to unravel the contribution of lower FAM19A5 levels to the NAFLD pathogenesis and the higher risk of atherosclerosis in these patients.
Collapse
Affiliation(s)
- Fatemeh Ali Yari
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Shabani
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sara Karami
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Negar Sarmadi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ahmad Reza Bandegi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
8
|
de Barros Sene L, Lamana GL, Schwambach Vieira A, Scarano WR, Gontijo JAR, Boer PA. Gestational Low Protein Diet Modulation on miRNA Transcriptome and Its Target During Fetal and Breastfeeding Nephrogenesis. Front Physiol 2021; 12:648056. [PMID: 34239447 PMCID: PMC8258388 DOI: 10.3389/fphys.2021.648056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/22/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The kidney ontogenesis is the most structurally affected by gestational protein restriction, reducing 28% of their functional units. The reduced nephron number is predictive of hypertension and cardiovascular dysfunctions that are generally observed in the adult age of most fetal programming models. We demonstrate miRNAs and predict molecular pathway changes associated with reduced reciprocal interaction between metanephros cap (CM) and ureter bud (UB) and a 28% decreased nephron stem cells in the 17 gestational days (17GD) low protein (LP) intake male fetal kidney. Here, we evaluated the same miRNAs and predicted targets in the kidneys of 21GD and at 7 days of life (7DL) LP offspring to elucidate the molecular modulations during nephrogenesis. METHODS Pregnant Wistar rats were allocated into two groups: NP (regular protein diet- 17%) or LP (diet-6%). miRNA transcriptome sequencing (miRNA-Seq) was performed on the MiSeq platform from 21GD and 7DL male offspring kidneys using previously described methods. Among the top 10 dysfunctional regulated miRNAs, we validated 7 related to proliferation, differentiation, and apoptosis processes and investigated predicted target genes and proteins by RT-qPCR and immunohistochemistry. RESULTS In 21GD, LP fetuses were identified alongside 21 differently expressed miRNAs, of which 12 were upregulated and 9 downregulated compared to age-matched NP offspring. In 7-DL LP offspring, the differentially expressed miRNAs were counted to be 74, of which 46 were upregulated and 28 downregulated. The curve from 17-GD to 7-DL shows that mTOR was fundamental in reducing the number of nephrons in fetal kidneys where the mothers were subjected to a protein restriction. IGF1 and TGFβ curves also seemed to present the same mTOR pattern and were modulated by miRNAs 181a-5p, 181a-3p, and 199a-5p. The miRNA 181c-3p modulated SIX2 and Notch1 reduction in 7-DL but not in terms of the enhanced expression of both in the 21-GD, suggesting the participation of an additional regulator. We found enhanced Bax in 21-GD; it was regulated by miRNA 298-5p, and Bcl2 and Caspase-3 were controlled by miRNA (by 7a-5p and not by the predicted 181a-5p). The miRNA 144-3p regulated BCL6, which was enhanced, as well as Zeb 1 and 2 induced by BCL6. These results revealed that in 21GD, the compensatory mechanisms in LP kidneys led to the activation of UB ramification. Besides, an increase of 32% in the CM stem cells and a possible cell cycle halt of renal progenitor cells, which remaining undifferentiated, were observed. In the 7DL, much more altered miRNA expression was found in LP kidneys, and this was probably due to an increased maternal diet content. Additionally, we verified the activation of pathways related to differentiation and consumption of progenitor cells.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriela Leme Lamana
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Andre Schwambach Vieira
- Department of Structural and Functional Biology, Biology Institute, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, FCM, Campinas, Brazil
| |
Collapse
|
9
|
Yang J, Zhang D, Motojima M, Kume T, Hou Q, Pan Y, Duan A, Zhang M, Jiang S, Hou J, Shi J, Qin Z, Liu Z. Super-Enhancer-Associated Transcription Factors Maintain Transcriptional Regulation in Mature Podocytes. J Am Soc Nephrol 2021; 32:1323-1337. [PMID: 33771836 PMCID: PMC8259645 DOI: 10.1681/asn.2020081177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transcriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood. METHODS The distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance. RESULTS Superenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish. CONCLUSIONS FOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs' regulatory roles in glomeruli transcription programs.
Collapse
Affiliation(s)
- Jingping Yang
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Difei Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Pan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhua Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Zhihong Liu
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Sarver DC, Lei X, Wong GW. FAM19A (TAFA): An Emerging Family of Neurokines with Diverse Functions in the Central and Peripheral Nervous System. ACS Chem Neurosci 2021; 12:945-958. [PMID: 33621067 DOI: 10.1021/acschemneuro.0c00757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytokines and chemokines have diverse and pleiotropic functions in peripheral tissues and in the brain. Recent studies uncovered a novel family of neuron-derived secretory proteins, or neurokines, distantly related to chemokines. The FAM19A family comprises five ∼12-15 kDa secretory proteins (FAM19A1-5), also known as TAFA1-5, that are predominantly detected in the central and peripheral nervous system. FAM19A expression in the central nervous system is dynamically regulated during development and in the postnatal brain. As secreted ligands, FAM19A proteins appear to bind to different classes of cell surface receptors (e.g., GPCRs and neurexins). Functional studies using gain- and loss-of-function mouse models established nonredundant roles for each FAM19A family member in regulating diverse physiological processes ranging from locomotor activity and food intake to learning and memory, anxiety- and depressive-like behaviors, social communication, repetitive behaviors, and somatosensory functions. This review summarizes major advances as well as the limitations and knowledge gaps in understanding the regulation and diverse biological functions of this conserved family of neurokines.
Collapse
Affiliation(s)
- Dylan C. Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Xia Lei
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - G. William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
11
|
Li H, Hohenstein P, Kuure S. Embryonic Kidney Development, Stem Cells and the Origin of Wilms Tumor. Genes (Basel) 2021; 12:genes12020318. [PMID: 33672414 PMCID: PMC7926385 DOI: 10.3390/genes12020318] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland;
- GM-Unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland
- Correspondence: ; Tel.: +358-2941-59395
| |
Collapse
|
12
|
Sene LDB, Scarano WR, Zapparoli A, Gontijo JAR, Boer PA. Impact of gestational low-protein intake on embryonic kidney microRNA expression and in nephron progenitor cells of the male fetus. PLoS One 2021; 16:e0246289. [PMID: 33544723 PMCID: PMC7864410 DOI: 10.1371/journal.pone.0246289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Here, we have demonstrated that gestational low-protein (LP) intake offspring present lower birth weight, reduced nephron numbers, renal salt excretion, arterial hypertension, and renal failure development compared to regular protein (NP) intake rats in adulthood. We evaluated the expression of various miRNAs and predicted target genes in the kidney in gestational 17-days LP (DG-17) fetal metanephros to identify molecular pathways involved in the proliferation and differentiation of renal embryonic or fetal cells. METHODS Pregnant Wistar rats were classified into two groups based on protein supply during pregnancy: NP (regular protein diet, 17%) or LP diet (6%). Renal miRNA sequencing (miRNA-Seq) performed on the MiSeq platform, RT-qPCR of predicted target genes, immunohistochemistry, and morphological analysis of 17-DG NP and LP offspring were performed using previously described methods. RESULTS A total of 44 miRNAs, of which 19 were up and 25 downregulated, were identified in 17-DG LP fetuses compared to age-matched NP offspring. We selected 7 miRNAs involved in proliferation, differentiation, and cellular apoptosis. Our findings revealed reduced cell number and Six-2 and c-Myc immunoreactivity in metanephros cap (CM) and ureter bud (UB) in 17-DG LP fetuses. Ki-67 immunoreactivity in CM was 48% lesser in LP compared to age-matched NP fetuses. Conversely, in LP CM and UB, β-catenin was 154%, and 85% increased, respectively. Furthermore, mTOR immunoreactivity was higher in LP CM (139%) and UB (104%) compared to that in NP offspring. TGFβ-1 positive cells in the UB increased by approximately 30% in the LP offspring. Moreover, ZEB1 metanephros-stained cells increased by 30% in the LP offspring. ZEB2 immunofluorescence, although present in the entire metanephros, was similar in both experimental groups. CONCLUSIONS Maternal protein restriction changes the expression of miRNAs, mRNAs, and proteins involved in proliferation, differentiation, and apoptosis during renal development. Renal ontogenic dysfunction, caused by maternal protein restriction, promotes reduced reciprocal interaction between CM and UB; consequently, a programmed and expressive decrease in nephron number occurs in the fetus.
Collapse
Affiliation(s)
- Letícia de Barros Sene
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Bioscience Institute, São Paulo State University, Botucatu, SP, Brazil
| | - Adriana Zapparoli
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - José Antônio Rocha Gontijo
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| | - Patrícia Aline Boer
- Fetal Programming and Hydroelectrolyte Metabolism Laboratory, Nucleus of Medicine and Experimental Surgery, Department of Internal Medicine, Faculty of Medical Sciences at State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
13
|
Drake KA, Chaney CP, Das A, Roy P, Kwartler CS, Rakheja D, Carroll TJ. Stromal β-catenin activation impacts nephron progenitor differentiation in the developing kidney and may contribute to Wilms tumor. Development 2020; 147:dev189597. [PMID: 32541007 PMCID: PMC7406317 DOI: 10.1242/dev.189597] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/02/2020] [Indexed: 02/03/2023]
Abstract
Wilms' tumor (WT) morphologically resembles the embryonic kidney, consisting of blastema, epithelial and stromal components, suggesting tumors arise from the dysregulation of normal development. β-Catenin activation is observed in a significant proportion of WTs; however, much remains to be understood about how it contributes to tumorigenesis. Although activating β-catenin mutations are observed in both blastema and stromal components of WT, current models assume that activation in the blastemal lineage is causal. Paradoxically, studies performed in mice suggest that activation of β-catenin in the nephrogenic lineage results in loss of nephron progenitor cell (NPC) renewal, a phenotype opposite to WT. Here, we show that activation of β-catenin in the stromal lineage non-autonomously prevents the differentiation of NPCs. Comparisons of the transcriptomes of kidneys expressing an activated allele of β-catenin in the stromal or nephron progenitor cells reveals that human WT more closely resembles the stromal-lineage mutants. These findings suggest that stromal β-catenin activation results in histological and molecular features of human WT, providing insights into how alterations in the stromal microenvironment may play an active role in tumorigenesis.
Collapse
Affiliation(s)
- Keri A Drake
- Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christopher P Chaney
- Department of Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amrita Das
- Amgen, Inc., San Francisco, CA 94080, USA
| | - Priti Roy
- Department of Ophthalmology and Visual Sciences, Chicago, IL 60612, USA
| | - Callie S Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas J Carroll
- Department of Molecular Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
14
|
Basta JM, Singh AP, Robbins L, Stout L, Pherson M, Rauchman M. The core SWI/SNF catalytic subunit Brg1 regulates nephron progenitor cell proliferation and differentiation. Dev Biol 2020; 464:176-187. [PMID: 32504627 DOI: 10.1016/j.ydbio.2020.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/09/2023]
Abstract
Chromatin-remodeling complexes play critical roles in establishing gene expression patterns in response to developmental signals. How these epigenetic regulators determine the fate of progenitor cells during development of specific organs is not well understood. We found that genetic deletion of Brg1 (Smarca4), the core enzymatic protein in SWI/SNF, in nephron progenitor cells leads to severe renal hypoplasia. Nephron progenitor cells were depleted in Six2-Cre, Brg1flx/flx mice due to reduced cell proliferation. This defect in self-renewal, together with impaired differentiation resulted in a profound nephron deficit in Brg1 mutant kidneys. Sall1, a transcription factor that is required for expansion and maintenance of nephron progenitors, associates with SWI/SNF. Brg1 and Sall1 bind promoters of many progenitor cell genes and regulate expression of key targets that promote their proliferation.
Collapse
Affiliation(s)
- Jeannine M Basta
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA
| | - Ajeet P Singh
- Division of Pediatric Hematology/Oncology, Departement of Pediatrics and Department of Biochemistry & Molecular Biology, Pennsylvania State University, Hershey, PA 17033 USA
| | - Lynn Robbins
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA; VA St. Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA
| | - Lisa Stout
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA
| | - Michelle Pherson
- Department of Biochemistry & Molecular Biology, Saint Louis University, St. Louis, MO 63104 USA
| | - Michael Rauchman
- John T. Milliken Department of Medicine, Division of Nephrology, Washington University School of Medicine, St. Louis, Mo 63110 USA; VA St. Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA; Deaprtememt of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA.
| |
Collapse
|
15
|
Li Y, Gong H, Ding J, Zhao F, Du J, Wan J, Zhang J, Liu S, Li J, Wang L, Zhou B. Inhibition of GSK3 Represses the Expression of Retinoic Acid Synthetic Enzyme ALDH1A2 via Wnt/β-Catenin Signaling in WiT49 Cells. Front Cell Dev Biol 2020; 8:94. [PMID: 32258025 PMCID: PMC7092725 DOI: 10.3389/fcell.2020.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/04/2020] [Indexed: 02/02/2023] Open
Abstract
Organogenesis, including renal development, requires an appropriate retinoic acid concentration, which is established by differential expression of aldehyde dehydrogenase 1 family member A2 (ALDH1A2) and cytochrome P450 family 26 subfamily A/B/C member 1 (CYP26A1/B1/C1). In the fetal kidney, ALDH1A2 expresses in the developing stroma and renal vesicle and its derivatives but does not present in the ureteric bud. It remains unclear what may contribute to this expression pattern. Here we show that the glycogen synthase kinase 3 alpha/beta (GSK3A/B) inhibitor CHIR99021 significantly represses ALDH1A2 expression in WiT49, which is a Wilms’ tumor cell line that exhibits “triphasic” differential potential and is used as a fetal kidney cell model. CHIR99021 fails to suppress ALDH1A2 as β-catenin is inhibited, suggesting that the downregulation of ALDH1A2 by CHIR99021 is through Wnt/β-catenin signaling. Ectopic expression of mouse Wnt1, Wnt3a, Wnt4, and Wnt9b represses ALDH1A2 expression in WiT49 cells. Using immunohistochemistry, we show an inverse correlation of Aldh1a2 expression with β-catenin in rat E18.5 kidney. ChIP demonstrated that β-catenin is recruited to the ALDH1A2 promoter, the conserved intron1G, and another site within intron 1 of ALDH1A2. Using a luciferase assay, we further show that the ALDH1A2 promoter and the intron1G element are involved in the repression of ALDH1A2 expression by CHIR99021. Our work demonstrates that ALDH1A2 expression can be directly repressed by the Wnt/β-catenin signaling in fetal kidney cells, suggesting that Wnt/β-catenin may play a role in maintaining the expression pattern of ALDH1A2 in the fetal kidney, thus controlling the availability and localization of retinoic acid and regulating aspects of kidney development.
Collapse
Affiliation(s)
- Yifan Li
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China.,Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Hui Gong
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jiangfeng Ding
- Department of Stomotology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Fujuan Zhao
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jihui Du
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Juan Zhang
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Shaoxiong Liu
- Department of Pathology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jing Li
- Department of Endocrinology, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Lei Wang
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Bei Zhou
- Central Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital and the Affiliated Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| |
Collapse
|
16
|
Rutledge EA, Lindström NO, Michos O, McMahon AP. Genetic manipulation of ureteric bud tip progenitors in the mammalian kidney through an Adamts18 enhancer driven tet-on inducible system. Dev Biol 2020; 458:164-176. [PMID: 31734175 PMCID: PMC6995766 DOI: 10.1016/j.ydbio.2019.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/22/2022]
Abstract
The ureteric epithelial progenitor (UEP) population within the embryonic kidney generates the arborized epithelial network of the kidney's collecting system and plays a critical role in the expansion and induction of the surrounding nephron progenitor pool. Adamts18 shows UEP- restricted expression in the kidney and progenitor tip-restricted expression in several other organs undergoing branching epithelial growth. Adamts18 is encoded by 23 exons. Genetic removal of genomic sequence spanning exons 1 to 3 led to a specific loss of Adamts18 expression in UEPs, suggesting this region may encode a UEP-specific enhancer. Intron 2 (3 kb) was shown to have enhancer activity driving expression of the doxycycline inducible tet-on transcriptional regulator (rtTA) in an Adamts18en-rtTA transgenic mouse strain. Crossing Adamts18en-rtTA mice to a doxycycline dependent GFP reporter mouse enabled the live imaging of embryonic kidney explants. This facilitated the analysis of ureteric epithelial branching events at the cellular level. Ablation of UEPs at the initiation of ureteric bud outgrowth through the doxycycline-mediated induction of Diphtheria Toxin A (DTA) generated a range of phenotypes from complete kidneys agenesis, to duplex kidneys with double ureters. The latter outcome points to the potential of regulative processes to restore UEPs. In contrast, overexpression of YAP prior to ureteric bud outgrowth led to a complete failure of kidney development. Elevating YAP levels at later stages retarded branching growth. A similar phenotype was observed with the overexpression of MYC within the branch-tip localized UEP population. These experiments showcase the utility of the Adamts18en-rtTA transgenic model to the investigation of cellular and molecular events specific to branch tip progenitors within the mammalian kidney complementing existing CRE-dependent genetic tools. Further, the illustrative examples point to areas where new insight may be gained into the regulation of UEP programs.
Collapse
Affiliation(s)
- Elisabeth A Rutledge
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA
| | - Odysse Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, 4058, Switzerland
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, CA, 90089, USA.
| |
Collapse
|
17
|
Hu Z, Niu G, Ren J, Wang X, Chen L, Hong R, Ke C. TAFA5 promotes proliferation and migration in gastric cancer. Mol Med Rep 2019; 20:4477-4488. [PMID: 31702029 PMCID: PMC6797941 DOI: 10.3892/mmr.2019.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/23/2019] [Indexed: 12/12/2022] Open
Abstract
TAFA chemokine like family member 5 (TAFA5), a TAFA family member that encodes small secreted proteins in the central nervous system, has been demonstrated to have increased expression in human malignancies. However, the expression and function of TAFA5 in gastric cancer (GC) remains unclear. In the present study, public datasets and human GC samples were used to determine the TAFA5 expression levels. The results revealed that TAFA5 was upregulated in GC when compared with adjacent normal tissues. Overexpression of TAFA5 in GC was associated with poor differentiation, and worse tumor, nodal and metastasis stages. In addition, high TAFA5 expression was correlated with unfavorable patient prognoses. In vitro experiments indicated that downregulation of TAFA5 inhibited the proliferation and migration of GC cell lines. Finally, the results from gene set enrichment analysis using data from The Cancer Genome Atlas revealed that TAFA5 expression was significantly correlated with genes associated with epithelial-mesenchymal transition, which was further confirmed by western blot analysis. In conclusion, the results of the present study suggested that TAFA5 had significant effects on GC progression, suggesting that it may serve as a potential therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Jun Ren
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Xin Wang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Liang Chen
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
18
|
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK Signaling in Regulation of Renal Differentiation. Int J Mol Sci 2019; 20:E1779. [PMID: 30974877 PMCID: PMC6479953 DOI: 10.3390/ijms20071779] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects derived from abnormalities in renal differentiation during embryogenesis. CAKUT is the major cause of end-stage renal disease and chronic kidney diseases in children, but its genetic causes remain largely unresolved. Here we discuss advances in the understanding of how mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity contributes to the regulation of ureteric bud branching morphogenesis, which dictates the final size, shape, and nephron number of the kidney. Recent studies also demonstrate that the MAPK/ERK pathway is directly involved in nephrogenesis, regulating both the maintenance and differentiation of the nephrogenic mesenchyme. Interestingly, aberrant MAPK/ERK signaling is linked to many cancers, and recent studies suggest it also plays a role in the most common pediatric renal cancer, Wilms' tumor.
Collapse
Affiliation(s)
- Kristen Kurtzeborn
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Hyuk Nam Kwon
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
| | - Satu Kuure
- Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland.
- GM-unit, Laboratory Animal Center, Helsinki Institute of Life Science, University of Helsinki, FIN-00014 Helsinki, Finland.
| |
Collapse
|
19
|
Abstract
The nephron is a multifunctional filtration device equipped with an array of sophisticated sensors. For appropriate physiological function in the human and mouse, nephrons must be stereotypically arrayed in large numbers, and this essential structural property that defines the kidney is determined during its fetal development. This review explores the process of nephron determination in the fetal kidney, providing an overview of the foundational literature in the field as well as exploring new developments in this dynamic research area. Mechanisms that ensure that a large number of nephrons can be formed from a small initial number of progenitor cells are central to this process, and the question of how the nephron progenitor cell population balances epithelial differentiation with renewal in the progenitor state is a subject of particular interest. Key growth factor signaling pathways and transcription factor networks are discussed.
Collapse
Affiliation(s)
- Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA;
| |
Collapse
|
20
|
O'Brien LL. Nephron progenitor cell commitment: Striking the right balance. Semin Cell Dev Biol 2018; 91:94-103. [PMID: 30030141 DOI: 10.1016/j.semcdb.2018.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
Abstract
The filtering component of the kidney, the nephron, arises from a single progenitor population. These nephron progenitor cells (NPCs) both self-renew and differentiate throughout the course of kidney development ensuring sufficient nephron endowment. An appropriate balance of these processes must be struck as deficiencies in nephron numbers are associated with hypertension and kidney disease. This review will discuss the mechanisms and molecules supporting NPC maintenance and differentiation. A focus on recent work will highlight new molecular insights into NPC regulation and their dynamic behavior in both space and time.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Cell Biology and Physiology, UNC Kidney Center, University of North Carolina at Chapel Hill, 111 Mason Farm Road, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
21
|
Ge Y, Zhang C, Xiao S, Liang L, Liao S, Xiang Y, Cao K, Chen H, Zhou Y. Identification of differentially expressed genes in cervical cancer by bioinformatics analysis. Oncol Lett 2018; 16:2549-2558. [PMID: 30013649 DOI: 10.3892/ol.2018.8953] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/24/2018] [Indexed: 12/17/2022] Open
Abstract
Cervical cancer is the most common gynecological malignancy. In recent years, the incidence of cervical cancer has had a younger trend. Cervical cancer morbidity and mortality rates have been significantly reduced due to recent decades of cervical cytology screening leading to the early detection and treatment of cervical cancer and precancerous lesions. There are a number of methods used to treat cervical cancer and improve the survival rate. However, the prevalence and recurrence rates of cervical cancer are increasing every year. There is an urgent requirement for a better understanding of the molecular mechanism cervical cancer development. The present study used scientific information retrieval from the Gene Expression Omnibus database to download the GSE26511 dataset, which contained 39 samples, including 19 cervical cancer lymph node-positive samples and 20 cervical cancer lymph node-negative samples. Using Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and weighted gene co-expression network analysis, 1,263 differentially expressed genes were found that affected the biological processes, including 'cell cycle process', 'signaling pathways', 'immune response', 'cell activation', 'regulation of immune system process' and 'inflammatory response'. These areas should be the focus of study for cervical cancer in the future.
Collapse
Affiliation(s)
- Yanshan Ge
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| | - Chaoyang Zhang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lin Liang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| | - Shan Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yanqi Xiang
- Department of Nursing, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410001, P.R. China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongxiang Chen
- Department of Gynecology, People's Hospital of Xinjiang, Urumchi, Xinjiang 830001, P.R. China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,Basic School of Medicine, Central South University, Changsha, Hunan 410078, P.R. China.,Cancer Research Institute, Changsha, Hunan 410078, P.R. China.,Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
22
|
Ramalingam H, Fessler AR, Das A, Valerius MT, Basta J, Robbins L, Brown AC, Oxburgh L, McMahon AP, Rauchman M, Carroll TJ. Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Dev Biol 2018; 440:13-21. [PMID: 29705331 DOI: 10.1016/j.ydbio.2018.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/11/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
Formation of a functional kidney depends on the balance between renewal and differentiation of nephron progenitors. Failure to sustain this balance can lead to kidney failure or stem cell tumors. For nearly 60 years, we have known that signals from an epithelial structure known as the ureteric bud were essential for maintaining this balance. More recently it was discovered that one molecule, Wnt9b, was necessary for both renewal and differentiation of the nephron progenitor cells. How one ligand signaling through one transcription factor promoted two seemingly contradictory cellular processes was unclear. In this study, we show that Wnt9b/beta-catenin signaling alone is sufficient to promote both renewal and differentiation. Moreover, we show that discrete levels of beta-catenin can promote these two disparate fates, with low levels fostering progenitor renewal and high levels driving differentiation. These results provide insight into how Wnt9b regulates distinct target genes that balance nephron progenitor renewal and differentiation.
Collapse
Affiliation(s)
- Harini Ramalingam
- Departments of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA; Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Alicia R Fessler
- Departments of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA; Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Amrita Das
- Departments of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA; Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - M Todd Valerius
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Jeannine Basta
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63104, USA; Department of Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO 63104, USA; VA St. Louis Health Care System, John Cochran Division, St Louis, MO 63106, USA
| | - Lynn Robbins
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63104, USA; Department of Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO 63104, USA; VA St. Louis Health Care System, John Cochran Division, St Louis, MO 63106, USA
| | - Aaron C Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, W.M. Keck School of Medicine of the University of Southern California,1425 San Pablo Street, Los Angeles, CA 90033, USA; Eli and Edythe Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, W.M. Keck School of Medicine of the University of Southern California, 1425 San Pablo Street, Los Angeles, CA 90033, USA
| | - Michael Rauchman
- Department of Internal Medicine, Saint Louis University, St Louis, MO 63104, USA; Department of Biochemistry and Molecular Biology, Saint Louis University, St Louis, MO 63104, USA; VA St. Louis Health Care System, John Cochran Division, St Louis, MO 63106, USA
| | - Thomas J Carroll
- Departments of Internal Medicine (Nephrology), University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA; Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA.
| |
Collapse
|
23
|
|