1
|
Hayashi Y, Bai H, Takahashi M, Mitani T, Kawahara M. Effect of introducing somatic mitochondria into an early embryo on zygotic gene activation†. Biol Reprod 2025; 112:614-627. [PMID: 39812326 DOI: 10.1093/biolre/ioaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 01/14/2025] [Indexed: 01/16/2025] Open
Abstract
Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear. In this study, we analyzed mouse embryos into which liver-derived somatic mitochondria were introduced (SM-embryos). Most SM-embryos were arrested at the two-cell stage. Some of the introduced somatic mitochondria became round, while others remained elongated and large. RNA-sequencing revealed a disruption of both minor and major zygotic gene activation (ZGA) in SM-embryos. Minor ZGA did not terminate before major ZGA, and the onset of major ZGA was inhibited, as shown by histone modification analyses of histone H3 lysine 4 trimethylation and histone H3 lysine 27 acetylation. Further analysis of metabolites involved in histone modification regulation in SM-embryos showed a significantly lower NAD+/NADH ratio in SM-embryos than in control embryos. Additionally, the mitochondrial membrane potential, an indicator of mitochondrial function, was lower in SM-embryos than in control embryos. Our results demonstrated that introducing somatic mitochondria into an embryo induces mitochondrial dysfunction, thereby disrupting metabolite production, leading to a disruption in ZGA and inducing developmental arrest. Our findings reveal that the alignment between cell differentiation and mitochondrial maturity is essential for early embryonic development.
Collapse
Affiliation(s)
- Yoshihiro Hayashi
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Masashi Takahashi
- Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Hokkaido, Japan
| | - Tomohiro Mitani
- Laboratory of Animal Production System, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Kita9 Nishi9 Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| |
Collapse
|
2
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 PMCID: PMC11876448 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Honda M, Inoue R, Nishiyama K, Ueda T, Komuro A, Amano H, Sugisawa R, Dash S, Shirakawa J, Okada H. Vgll2 as an integrative regulator of mitochondrial function and contractility specific to skeletal muscle. J Cell Physiol 2024; 239:e31436. [PMID: 39286968 DOI: 10.1002/jcp.31436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
During skeletal muscle adaptation to physiological or pathophysiological signals, contractile apparatus and mitochondrial function are coordinated to alter muscle fiber type. Although recent studies have identified various factors involved in modifying contractile proteins and mitochondrial function, the molecular mechanisms coordinating contractile and metabolic functions during muscle fiber transition are not fully understood. Using a gene-deficient mouse approach, our previous studies uncovered that vestigial-like family member 2 (Vgll2), a skeletal muscle-specific transcription cofactor activated by exercise, is essential for fast-to-slow adaptation of skeletal muscle. The current study provides evidence that Vgll2 plays a role in increasing muscle mitochondrial mass and oxidative capacity. Transgenic Vgll2 overexpression in mice altered muscle fiber composition toward the slow type and enhanced exercise endurance, which contradicted the outcomes observed with Vgll2 deficiency. Vgll2 expression was positively correlated with the expression of genes related to mitochondrial function in skeletal muscle, mitochondrial DNA content, and protein abundance of oxidative phosphorylation complexes. Additionally, Vgll2 overexpression significantly increased the maximal respiration of isolated muscle fibers and enhanced the suppressive effects of endurance training on weight gain. Notably, no additional alteration in expression of myosin heavy chain genes was observed after exercise, suggesting that Vgll2 plays a direct role in regulating mitochondrial function, independent of its effect on contractile components. The observed increase in exercise endurance and metabolic efficiency may be attributed to the acute upregulation of genes promoting fatty acid utilization as a direct consequence of Vgll2 activation facilitated by endurance exercise. Thus, the current study establishes that Vgll2 is an integrative regulator of mitochondrial function and contractility in skeletal muscle.
Collapse
Affiliation(s)
- Masahiko Honda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohma, Kanagawa, Japan
| | - Takeshi Ueda
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Akiyoshi Komuro
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Hisayuki Amano
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ryoichi Sugisawa
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Suman Dash
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Gunma, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hitoshi Okada
- Department of Biochemistry, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Graduate School of Medical Sciences, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
- Antiaging Center, Kindai University, Higashi-Osaka, Osaka, Japan
| |
Collapse
|
4
|
Yan MQ, Zhu BH, Liu XH, Yang YM, Duan XY, Wang Y, Sun H, Feng M, Li T, Liu XM. Mitoguardin 1 and 2 promote granulosa cell proliferation by activating AKT and regulating the Hippo-YAP1 signaling pathway. Cell Death Dis 2023; 14:779. [PMID: 38012141 PMCID: PMC10682431 DOI: 10.1038/s41419-023-06312-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Mitochondria have been identified to be involved in oxidative phosphorylation, lipid metabolism, cell death, and cell proliferation. Previous studies have demonstrated that mitoguardin (Miga), a mitochondrial protein that governs mitochondrial fusion, mitochondria-endoplasmic reticulum (ER) contacts, lipid formation, and autophagy, is crucial for ovarian endocrine and follicular development. Nevertheless, whether mammalian MIGA1 or MIGA2 (MIGA1,-2) regulates ovarian granulosa cell proliferation remains unclear. This study revealed that mammalian MIGA1,-2 promotes cell proliferation and regulates the phosphorylation and localization of Yes-associated protein 1 (YAP1) in ovarian granulosa cells. MIGA2 upregulation resulted in reduced YAP1 activity, while MIGA2 removal led to increased YAP1 activity. Further analysis indicated that MIGA1,-2 regulated YAP1 via the Hippo signaling pathway and regulated protein kinase B (AKT) activity in collaboration with YAP1. In addition, lysophosphatidic acid (LPA) regulated MIGA2 expression and AKT activity by activating YAP1. Briefly, we demonstrated that the mitochondrial MIGA1 and MIGA2, especially MIGA2, promoted cellular proliferation by activating AKT and regulating the Hippo/YAP1 signaling pathway in ovarian granulosa cells, which may contribute to the molecular pathogenesis of reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Ming-Qi Yan
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Bing-Hong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, 215300, Kunshan, China
| | - Yu-Meng Yang
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Xiu-Yun Duan
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China
| | - Mei Feng
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xiao-Man Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China.
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China.
| |
Collapse
|
5
|
Ko CI, Biesiada J, Zablon HA, Zhang X, Medvedovic M, Puga A. The aryl hydrocarbon receptor directs the differentiation of murine progenitor blastomeres. Cell Biol Toxicol 2023; 39:1657-1676. [PMID: 36029422 PMCID: PMC10425484 DOI: 10.1007/s10565-022-09755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Key regulatory decisions during cleavage divisions in mammalian embryogenesis determine the fate of preimplantation embryonic cells. Single-cell RNA sequencing of early-stage-2-cell, 4-cell, and 8-cell-blastomeres show that the aryl hydrocarbon receptor (AHR), traditionally considered as an environmental sensor, directs blastomere differentiation. Disruption of AHR functions in Ahr knockout embryos or in embryos from dams exposed to dioxin, the prototypic xenobiotic AHR agonist, significantly impairs blastocyst formation, causing repression and loss of transcriptional heterogeneity of OCT4 and CDX2 and incidence of nonspecific downregulation of pluripotency. Trajectory-the path of differentiation-and gene variability analyses further confirm that deregulation of OCT4 functions and changes of transcriptional heterogeneity resulting from disruption of AHR functions restrict the emergence of differentiating blastomeres in 4-cell embryos. It appears that AHR directs the differentiation of progenitor blastomeres and that disruption of preimplantation AHR functions may significantly perturb embryogenesis leading to long-lasting conditions at the heart of disease in offspring's adulthood.
Collapse
Affiliation(s)
- Chia-I Ko
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Center for Biostatistics, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Genomics, Epigenomics, and Sequencing Core, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Center for Biostatistics, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
6
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|
7
|
Pervaiz S. Editorial: The proceedings of mitochondria apoptosis and cancer (MAC 2021) virtual symposium. Front Cell Dev Biol 2023; 10:1118314. [PMID: 36684418 PMCID: PMC9845600 DOI: 10.3389/fcell.2022.1118314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Shazib Pervaiz
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,National University Cancer Institute, National University Health System, Singapore, Singapore,*Correspondence: Shazib Pervaiz,
| |
Collapse
|
8
|
Hsu SC, Lin CY, Lin YY, Collins CC, Chen CL, Kung HJ. TEAD4 as an Oncogene and a Mitochondrial Modulator. Front Cell Dev Biol 2022; 10:890419. [PMID: 35602596 PMCID: PMC9117765 DOI: 10.3389/fcell.2022.890419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in Metazoa that controls organ size through regulating cell proliferation and apoptosis. To acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the signaling hub that relays the extracellular stimuli to the transcription of target genes. Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent manner through other signal pathways. Although TEAD4 plays an essential role in determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has been reported in several cancers, including colon cancer, gastric cancer, breast cancer, and prostate cancer and serves as a valuable prognostic marker. Recent studies show that TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial dynamics and cell metabolism by modulating the expression of mitochondrial- and nuclear-encoded electron transport chain genes. TEAD4’s functions including oncogenic activities are tightly controlled by its subcellular localization. As a predominantly nuclear protein, its cytoplasmic translocation is triggered by several signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly, TEAD4 is also localized in mitochondria, although the translocation mechanism remains unclear. In this report, we describe the current understanding of TEAD4 as an oncogene, epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be discussed.
Collapse
Affiliation(s)
- Sheng-Chieh Hsu
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ching-Yu Lin
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Yi Lin
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Colin C. Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chia-Lin Chen
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| | - Hsing-Jien Kung
- Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California, Davis, Sacramento, CA, United States
- *Correspondence: Chia-Lin Chen, ; Hsing-Jien Kung,
| |
Collapse
|
9
|
Abstract
Differentiation is the process by which a cell activates the expression of tissue-specific genes, downregulates the expression of potency markers, and acquires the phenotypic characteristics of its mature fate. The signals that regulate differentiation include biochemical and mechanical factors within the surrounding microenvironment. We describe recent breakthroughs in our understanding of the mechanical control mechanisms that regulate differentiation, with a specific emphasis on the differentiation events that build the early mouse embryo. Engineering approaches to reproducibly mimic the mechanical regulation of differentiation will permit new insights into early development and applications in regenerative medicine. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Celeste M Nelson
- Departments of Chemical & Biological Engineering and Molecular Biology, Princeton University, Princeton, New Jersey USA;
| |
Collapse
|
10
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
11
|
Complement induces podocyte pyroptosis in membranous nephropathy by mediating mitochondrial dysfunction. Cell Death Dis 2022; 13:281. [PMID: 35351877 PMCID: PMC8964685 DOI: 10.1038/s41419-022-04737-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/23/2022]
Abstract
Podocyte damage mediated by in situ complement activation in the glomeruli is a key factor in the pathogenesis of membranous nephropathy (MN), but the molecular mechanism has not been fully elucidated. Pyroptosis is a special type of programmed cell death, mediate inflammatory response and induce tissue injury. However, it is not clear whether pyroptosis is involved in the development and progression of MN. Here, we report that pyroptosis plays an important role in promoting podocyte injury in MN. We first observed the occurrence of pyroptosis in the kidneys of MN patients and validated that complement stimulation triggered pyroptosis in podocytes and that inhibiting pyroptosis reversed complement-induced podocyte damage in vitro. In addition, stimulation of complement caused mitochondrial depolarization and reactive oxygen species (ROS) production in podocytes, and inhibition of ROS reversed complement-induced pyroptosis in podocytes. Interestingly, inhibition of pyroptosis in turn partially alleviated these effects. Furthermore, we also found the involvement of pyroptosis in the kidneys of passive Heymann nephritis (PHN) rats, and inhibitors of pyroptosis-related molecules relieved PHN-induced kidney damage in vivo. Our findings demonstrate that pyroptosis plays a critical role in complement-induced podocyte damage in MN and mitochondrial dysfunction is an important mechanism underlying this process. It provides new insight that pyroptosis may serve as a novel therapeutic target for MN treatment in future studies.
Collapse
|
12
|
TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death Differ 2021; 28:2045-2059. [PMID: 33469230 PMCID: PMC8257617 DOI: 10.1038/s41418-020-00732-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023] Open
Abstract
The Hippo signaling effector, TEAD1 plays an essential role in cardiovascular development. However, a role for TEAD1 in postmitotic cardiomyocytes (CMs) remains incompletely understood. Herein we reported that TEAD1 is required for postmitotic CM survival. We found that adult mice with ubiquitous or CM-specific loss of Tead1 present with a rapid lethality due to an acute-onset dilated cardiomyopathy. Surprisingly, deletion of Tead1 activated the necroptotic pathway and induced massive cardiomyocyte necroptosis, but not apoptosis. In contrast to apoptosis, necroptosis is a pro-inflammatory form of cell death and consistent with this, dramatically higher levels of markers of activated macrophages and pro-inflammatory cytokines were observed in the hearts of Tead1 knockout mice. Blocking necroptosis by administration of necrostatin-1 rescued Tead1 deletion-induced heart failure. Mechanistically, genome-wide transcriptome and ChIP-seq analysis revealed that in adult hearts, Tead1 directly activates a large set of nuclear DNA-encoded mitochondrial genes required for assembly of the electron transfer complex and the production of ATP. Loss of Tead1 expression in adult CMs increased mitochondrial reactive oxygen species, disrupted the structure of mitochondria, reduced complex I-IV driven oxygen consumption and ATP levels, resulting in the activation of necroptosis. This study identifies an unexpected paradigm in which TEAD1 is essential for postmitotic CM survival by maintaining the expression of nuclear DNA-encoded mitochondrial genes required for ATP synthesis.
Collapse
|
13
|
p38-MAPK-mediated translation regulation during early blastocyst development is required for primitive endoderm differentiation in mice. Commun Biol 2021; 4:788. [PMID: 34172827 PMCID: PMC8233355 DOI: 10.1038/s42003-021-02290-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Successful specification of the two mouse blastocyst inner cell mass (ICM) lineages (the primitive endoderm (PrE) and epiblast) is a prerequisite for continued development and requires active fibroblast growth factor 4 (FGF4) signaling. Previously, we identified a role for p38 mitogen-activated protein kinases (p38-MAPKs) during PrE differentiation, but the underlying mechanisms have remained unresolved. Here, we report an early blastocyst window of p38-MAPK activity that is required to regulate ribosome-related gene expression, rRNA precursor processing, polysome formation and protein translation. We show that p38-MAPK inhibition-induced PrE phenotypes can be partially rescued by activating the translational regulator mTOR. However, similar PrE phenotypes associated with extracellular signal-regulated kinase (ERK) pathway inhibition targeting active FGF4 signaling are not affected by mTOR activation. These data indicate a specific role for p38-MAPKs in providing a permissive translational environment during mouse blastocyst PrE differentiation that is distinct from classically reported FGF4-based mechanisms.
Collapse
|
14
|
Chen CL, Hsu SC, Chung TY, Chu CY, Wang HJ, Hsiao PW, Yeh SD, Ann DK, Yen Y, Kung HJ. Arginine is an epigenetic regulator targeting TEAD4 to modulate OXPHOS in prostate cancer cells. Nat Commun 2021; 12:2398. [PMID: 33893278 PMCID: PMC8065123 DOI: 10.1038/s41467-021-22652-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Arginine plays diverse roles in cellular physiology. As a semi-essential amino acid, arginine deprivation has been used to target cancers with arginine synthesis deficiency. Arginine-deprived cancer cells exhibit mitochondrial dysfunction, transcriptional reprogramming and eventual cell death. In this study, we show in prostate cancer cells that arginine acts as an epigenetic regulator to modulate histone acetylation, leading to global upregulation of nuclear-encoded oxidative phosphorylation (OXPHOS) genes. TEAD4 is retained in the nucleus by arginine, enhancing its recruitment to the promoter/enhancer regions of OXPHOS genes and mediating coordinated upregulation in a YAP1-independent but mTOR-dependent manner. Arginine also activates the expression of lysine acetyl-transferases and increases overall levels of acetylated histones and acetyl-CoA, facilitating TEAD4 recruitment. Silencing of TEAD4 suppresses OXPHOS functions and prostate cancer cell growth in vitro and in vivo. Given the strong correlation of TEAD4 expression and prostate carcinogenesis, targeting TEAD4 may be beneficially used to enhance arginine-deprivation therapy and prostate cancer therapy. Alterations in metabolism and amino acid usage are common in cancer cells. Here, the authors show in prostate cancer cells that arginine globally upregulates nuclear-encoded oxidative phosphorylation genes by altering histone acetylation and retaining TEAD4 in the nucleus to transactivate genes.
Collapse
Affiliation(s)
- Chia-Lin Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| | - Sheng-Chieh Hsu
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tan-Ya Chung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Cheng-Ying Chu
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Pei-Wen Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Shauh-Der Yeh
- Department of Urology and Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David K Ann
- Department of Diabetes and Metabolic Diseases Research, Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Yun Yen
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, Taiwan. .,Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan. .,Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan. .,Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
15
|
Machine learning-assisted high-content analysis of pluripotent stem cell-derived embryos in vitro. Stem Cell Reports 2021; 16:1331-1346. [PMID: 33891867 PMCID: PMC8185434 DOI: 10.1016/j.stemcr.2021.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Stem cell-based embryo models by cultured pluripotent and extra-embryonic lineage stem cells are novel platforms to model early postimplantation development. We showed that induced pluripotent stem cells (iPSCs) could form ITS (iPSCs and trophectoderm stem cells) and ITX (iPSCs, trophectoderm stem cells, and XEN cells) embryos, resembling the early gastrula embryo developed in vivo. To facilitate the efficient and unbiased analysis of the stem cell-based embryo model, we set up a machine learning workflow to extract multi-dimensional features and perform quantification of ITS embryos using 3D images collected from a high-content screening system. We found that different PSC lines differ in their ability to form embryo-like structures. Through high-content screening of small molecules and cytokines, we identified that BMP4 best promoted the morphogenesis of the ITS embryo. Our study established an innovative strategy to analyze stem cell-based embryo models and uncovered new roles of BMP4 in stem cell-based embryo models.
Collapse
|
16
|
Fan T, Huang Y. Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Sci Rep 2021; 11:7896. [PMID: 33846424 PMCID: PMC8042068 DOI: 10.1038/s41598-021-86919-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate epigenetic landscape across multiple species and identify transcription factors (TFs) and their roles in controlling cell fate decision events during early embryogenesis. We made a comprehensively joint-research of chromatin accessibility of five species during embryogenesis by integration of ATAC-seq and RNA-seq datasets. Regulatory roles of candidate early embryonic TFs were investigated. Widespread accessible chromatin in early embryos overlapped with putative cis-regulatory sequences. Sets of cell-fate-determining TFs were identified. YOX1, a key cell cycle regulator, were found to homologous to clusters of TFs that are involved in neuron and epidermal cell-fate determination. Our research provides an intriguing insight into evolution of cell-fate decision during early embryogenesis among organisms.
Collapse
Affiliation(s)
- Tongqiang Fan
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| | - Youjun Huang
- grid.443483.c0000 0000 9152 7385State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou, 311300 People’s Republic of China
| |
Collapse
|
17
|
Zappaterra M, Gioiosa S, Chillemi G, Zambonelli P, Davoli R. Dissecting the Gene Expression Networks Associated with Variations in the Major Components of the Fatty Acid Semimembranosus Muscle Profile in Large White Heavy Pigs. Animals (Basel) 2021; 11:ani11030628. [PMID: 33673460 PMCID: PMC7997476 DOI: 10.3390/ani11030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The amount and fatty acid composition of intramuscular fat are important features for the qualitative characteristics of processed and fresh meat products, but the knowledge of the key molecular drivers controlling these traits is still scant. To this aim, the present study investigated the co-expression networks of genes related to variations in the major fatty acids deposited in pig Semimembranosus muscle. Palmitic and palmitoleic acid contents were associated with a downregulation of genes involved in autophagy, mitochondrial fusion, and mitochondrial activity, suggesting that the deposition of these fatty acids may be enhanced in muscles with a reduced mitochondrial function. A higher proportion of oleic acid and a reduction in the percentages of n-6 and n-3 polyunsaturated fatty acids were related to changes in the mRNA levels of genes involved in Mitogen-Activated Protein Kinase (MAPK) signaling. The obtained results indicated gene expression networks and new candidate genes associated with the studied traits. Further studies are needed to confirm our results and identify in the discussed genes molecular markers for future selection schemes aimed at improving pork nutritional and technological quality. Furthermore, as pigs are considered reliable animal models for several human conditions, the obtained results may also be of interest for improving the knowledge of the molecular pathways associated with obesity and diabetes. Abstract To date, high-throughput technology such as RNA-sequencing has been successfully applied in livestock sciences to investigate molecular networks involved in complex traits, such as meat quality. Pork quality depends on several organoleptic, technological, and nutritional characteristics, and it is also influenced by the fatty acid (FA) composition of intramuscular fat (IMF). To explore the molecular networks associated with different IMF FA compositions, the Semimembranosus muscle (SM) from two groups of Italian Large White (ILW) heavy pigs divergent for SM IMF content was investigated using transcriptome analysis. After alignment and normalization, the obtained gene counts were used to perform the Weighted Correlation Network Analysis (WGCNA package in R environment). Palmitic and palmitoleic contents showed association with the same gene modules, comprising genes significantly enriched in autophagy, mitochondrial fusion, and mitochondrial activity. Among the key genes related to these FAs, we found TEAD4, a gene regulating mitochondrial activity that seems to be a promising candidate for further studies. On the other hand, the genes comprised in the modules associated with the IMF contents of oleic, n-6, and n-3 polyunsaturated FAs (PUFAs) were significantly enriched in Mitogen-Activated Protein Kinase (MAPK) signaling, in agreement with previous studies suggesting that several MAPK players may have a primary role in regulating lipid deposition. These results give an insight into the molecular cascade associated with different IMF FA composition in ILW heavy pigs. Further studies are needed to validate the results and confirm whether some of the identified key genes may be effective candidates for pork quality.
Collapse
Affiliation(s)
- Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
- Correspondence: (M.Z.); (R.D.)
| | - Silvia Gioiosa
- CINECA SuperComputing Applications and Innovation Department (SCAI), Via dei Tizii 6, I-00185 Roma, Italy;
| | - Giovanni Chillemi
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), La Tuscia University of Viterbo, Via S. Camillo de Lellis, I-01100 Viterbo, Italy;
| | - Paolo Zambonelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy;
- Correspondence: (M.Z.); (R.D.)
| |
Collapse
|
18
|
Cao Z, Zhang L, Hong R, Li Y, Wang Y, Qi X, Ning W, Gao D, Xu T, Ma Y, Yu T, Knott JG, Sathanawongs A, Zhang Y. METTL3-mediated m6A methylation negatively modulates autophagy to support porcine blastocyst development‡. Biol Reprod 2021; 104:1008-1021. [PMID: 33590832 DOI: 10.1093/biolre/ioab022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/21/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
N6-methyladenosine (m6A) catalyzed by METTL3 regulates the maternal-to-zygotic transition in zebrafish and mice. However, the role and mechanism of METTL3-mediated m6A methylation in blastocyst development remains unclear. Here, we show that METTL3-mediated m6A methylation sustains porcine blastocyst development via negatively modulating autophagy. We found that reduced m6A levels triggered by METTL3 knockdown caused embryonic arrest during morula-blastocyst transition and developmental defects in trophectoderm cells. Intriguingly, overexpression of METTL3 in early embryos resulted in increased m6A levels and these embryos phenocopied METTL3 knockdown embryos. Mechanistically, METTL3 knockdown or overexpression resulted in a significant increase or decrease in expression of ATG5 (a key regulator of autophagy) and LC3 (an autophagy marker) in blastocysts, respectively. m6A modification of ATG5 mRNA mainly occurs at 3'UTR, and METTL3 knockdown enhanced ATG5 mRNA stability, suggesting that METTL3 negatively regulated autophagy in an m6A dependent manner. Furthermore, single-cell qPCR revealed that METTL3 knockdown only increased expression of LC3 and ATG5 in trophectoderm cells, indicating preferential inhibitory effects of METTL3 on autophagy activity in the trophectoderm lineage. Importantly, autophagy restoration by 3MA (an autophagy inhibitor) treatment partially rescued developmental defects of METTL3 knockdown blastocysts. Taken together, these results demonstrate that METTL3-mediated m6A methylation negatively modulates autophagy to support blastocyst development.
Collapse
Affiliation(s)
- Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ling Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Renyun Hong
- Department of Reproductive Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yiqing Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xin Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wei Ning
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Di Gao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tengteng Xu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Tong Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jason G Knott
- Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Anucha Sathanawongs
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
19
|
Abstract
The mitochondria, present in almost all eukaryotic cells, produce energy but also contribute to many other essential cellular functions. One of the unique characteristics of the mitochondria is that they have their own genome, which is only maternally transmitted via highly specific mechanisms that occur during gametogenesis and embryogenesis. The mature oocyte has the highest mitochondrial DNA copy number of any cell. This high mitochondrial mass is directly correlated to the capacity of the oocyte to support the early stages of embryo development in many species. Indeed, the subtle energetic and metabolic modifications that are necessary for each of the key steps of early embryonic development rely heavily on the oocyte’s mitochondrial load and activity. For example, epigenetic reprogramming depends on the metabolic cofactors produced by the mitochondrial metabolism, and the reactive oxygen species derived from the mitochondrial respiratory chain are essential for the regulation of cell signaling in the embryo. All these elements have also led scientists to consider the mitochondria as a potential biomarker of oocyte competence and embryo viability, as well as a key target for future potential therapies. However, more studies are needed to confirm these findings. This review article summarizes the past two decades of research that have led to the current understanding of mitochondrial functions in reproduction
Collapse
|
20
|
Stirparo GG, Kurowski A, Yanagida A, Bates LE, Strawbridge SE, Hladkou S, Stuart HT, Boroviak TE, Silva JCR, Nichols J. OCT4 induces embryonic pluripotency via STAT3 signaling and metabolic mechanisms. Proc Natl Acad Sci U S A 2021; 118:e2008890118. [PMID: 33452132 PMCID: PMC7826362 DOI: 10.1073/pnas.2008890118] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.
Collapse
Affiliation(s)
- Giuliano G Stirparo
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom;
- Living Systems Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Agata Kurowski
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ayaka Yanagida
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Living Systems Institute, University of Exeter, EX4 4QD Exeter, United Kingdom
| | - Lawrence E Bates
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Stanley E Strawbridge
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Siarhei Hladkou
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Hannah T Stuart
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Thorsten E Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, CB2 3EG Cambridge, United Kingdom
| | - Jose C R Silva
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, CB2 1GA Cambridge, United Kingdom
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, CB2 0AW Cambridge, United Kingdom;
- Department of Physiology, Development and Neuroscience, University of Cambridge, CB2 3EG Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, CB2 3EG Cambridge, United Kingdom
| |
Collapse
|
21
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
22
|
Abstract
It has long been known that glucose is required for the development of pre-implantation mouse embryos, but the mechanism accounting for such a requirement has remained unknown. In this issue of Developmental Cell, Chi et al. dissect the molecular pathways that respond to the state of glucose metabolism to drive the morula to blastocyst transition.
Collapse
|
23
|
Medini H, Cohen T, Mishmar D. Mitochondria Are Fundamental for the Emergence of Metazoans: On Metabolism, Genomic Regulation, and the Birth of Complex Organisms. Annu Rev Genet 2020; 54:151-166. [PMID: 32857636 DOI: 10.1146/annurev-genet-021920-105545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Out of many intracellular bacteria, only the mitochondria and chloroplasts abandoned their independence billions of years ago and became endosymbionts within the host eukaryotic cell. Consequently, one cannot grow eukaryotic cells without their mitochondria, and the mitochondria cannot divide outside of the cell, thus reflecting interdependence. Here, we argue that such interdependence underlies the fundamental role of mitochondrial activities in the emergence of metazoans. Several lines of evidence support our hypothesis: (a) Differentiation and embryogenesis rely on mitochondrial function; (b) mitochondrial metabolites are primary precursors for epigenetic modifications (such as methyl and acetyl), which are critical for chromatin remodeling and gene expression, particularly during differentiation and embryogenesis; and (c) mitonuclear coregulation adapted to accommodate both housekeeping and tissue-dependent metabolic needs. We discuss the evolution of the unique mitochondrial genetic system, mitochondrial metabolites, mitonuclear coregulation, and their critical roles in the emergence of metazoans and in human disorders.
Collapse
Affiliation(s)
- Hadar Medini
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501 Israel;
| | - Tal Cohen
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501 Israel;
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501 Israel;
| |
Collapse
|
24
|
Saha B, Ganguly A, Home P, Bhattacharya B, Ray S, Ghosh A, Rumi MAK, Marsh C, French VA, Gunewardena S, Paul S. TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss. Proc Natl Acad Sci U S A 2020; 117:17864-17875. [PMID: 32669432 PMCID: PMC7395512 DOI: 10.1073/pnas.2002449117] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early pregnancy loss affects ∼15% of all implantation-confirmed human conceptions. However, evolutionarily conserved molecular mechanisms that regulate self-renewal of trophoblast progenitors and their association with early pregnancy loss are poorly understood. Here, we provide evidence that transcription factor TEAD4 ensures survival of postimplantation mouse and human embryos by controlling self-renewal and stemness of trophoblast progenitors within the placenta primordium. In an early postimplantation mouse embryo, TEAD4 is selectively expressed in trophoblast stem cell-like progenitor cells (TSPCs), and loss of Tead4 in postimplantation mouse TSPCs impairs their self-renewal, leading to embryonic lethality before embryonic day 9.0, a developmental stage equivalent to the first trimester of human gestation. Both TEAD4 and its cofactor, yes-associated protein 1 (YAP1), are specifically expressed in cytotrophoblast (CTB) progenitors of a first-trimester human placenta. We also show that a subset of unexplained recurrent pregnancy losses (idiopathic RPLs) is associated with impaired TEAD4 expression in CTB progenitors. Furthermore, by establishing idiopathic RPL patient-specific human trophoblast stem cells (RPL-TSCs), we show that loss of TEAD4 is associated with defective self-renewal in RPL-TSCs and rescue of TEAD4 expression restores their self-renewal ability. Unbiased genomics studies revealed that TEAD4 directly regulates expression of key cell cycle genes in both mouse and human TSCs and establishes a conserved transcriptional program. Our findings show that TEAD4, an effector of the Hippo signaling pathway, is essential for the establishment of pregnancy in a postimplantation mammalian embryo and indicate that impairment of the Hippo signaling pathway could be a molecular cause for early human pregnancy loss.
Collapse
Affiliation(s)
- Biswarup Saha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Avishek Ganguly
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Pratik Home
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Valerie A French
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
25
|
Patra SK. Roles of OCT4 in pathways of embryonic development and cancer progression. Mech Ageing Dev 2020; 189:111286. [PMID: 32531293 DOI: 10.1016/j.mad.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Somatic cells may be reprogrammed to pluripotent state by ectopic expression of certain transcription factors; namely, OCT4, SOX2, KLF4 and c-MYC. However, the molecular and cellular mechanisms are not adequately understood, especially for human embryonic development. Studies during the last five years implicated importance of OCT4 in human zygotic genome activation (ZGA), patterns of OCT4 protein folding and role of specialized sequences in binding to DNA for modulation of gene expression during development. Epigenetic modulation of OCT4 gene and post translational modifications of OCT4 protein activity in the context of multiple cancers are important issues. A consensus is emerging that chromatin organization and epigenetic landscape play crucial roles for the interactions of transcription factors, including OCT4 with the promoters and/or regulatory sequences of genes associated with human embryonic development (ZGA through lineage specification) and that when the epigenome niche is deregulated OCT4 helps in cancer progression, and how OCT4 silencing in somatic cells of adult organisms may impact ageing.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
26
|
Israel S, Casser E, Drexler HCA, Fuellen G, Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. BMC Genomics 2019; 20:755. [PMID: 31638890 PMCID: PMC6805607 DOI: 10.1186/s12864-019-6106-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. Results We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). Conclusions TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.
Collapse
Affiliation(s)
- Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
27
|
Marom S, Blumberg A, Kundaje A, Mishmar D. mtDNA Chromatin-like Organization Is Gradually Established during Mammalian Embryogenesis. iScience 2019; 12:141-151. [PMID: 30684873 PMCID: PMC6352746 DOI: 10.1016/j.isci.2018.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
Unlike the nuclear genome, the mammalian mitochondrial genome (mtDNA) is thought to be coated solely by mitochondrial transcription factor A (TFAM), whose binding sequence preferences are debated. Therefore, higher-order mtDNA organization is considered much less regulated than both the bacterial nucleoid and the nuclear chromatin. However, our recently identified conserved DNase footprinting pattern in human mtDNA, which co-localizes with regulatory elements and responds to physiological conditions, likely reflects a structured higher-order mtDNA organization. We hypothesized that this pattern emerges during embryogenesis. To test this hypothesis, we analyzed assay for transposase-accessible chromatin sequencing (ATAC-seq) results collected during the course of mouse and human early embryogenesis. Our results reveal, for the first time, a gradual and dynamic emergence of the adult mtDNA footprinting pattern during embryogenesis of both mammals. Taken together, our findings suggest that the structured adult chromatin-like mtDNA organization is gradually formed during mammalian embryogenesis. Mouse and human mtDNA ATAC-seq footprinting patterns are formed during embryogenesis mtDNA footprinting sites were either occupied in preimplantation or appeared later mtDNA footprinting associates with regulatory elements and protein-binding sites The mtDNA footprinting sites tend to harbor secondary structures
Collapse
Affiliation(s)
- Shani Marom
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Amit Blumberg
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Dan Mishmar
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|