1
|
Bischoff MC, Norton JE, Munguia EA, Clark SE, Gurley NJ, Korankye R, Gyabaah EA, Encarnacion T, Serody CJ, Jones CD, Peifer M. A large reverse-genetic screen identifies numerous regulators of testis nascent myotube collective cell migration and collective organ sculpting. Mol Biol Cell 2025; 36:ar21. [PMID: 39745864 PMCID: PMC11809313 DOI: 10.1091/mbc.e24-10-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. Migrating mesenchymal cells form tissues that shape the body's organs. We developed a powerful model, exploring how Drosophila nascent myotubes migrate onto the testis during pupal development, forming the muscles ensheathing it and creating its characteristic spiral shape. To define genes regulating this, we used RNA sequencing (RNA-seq) to identify genes expressed in myotubes during migration. Using this dataset, we curated a list of 131 ligands, receptors, and cytoskeletal regulators, including all Rho/Ras/Rap1 regulators, as candidates. We then expressed 279 short hairpin RNAs (shRNAs) targeting these genes and examined adult testes. We identified 29 genes with diverse roles in morphogenesis. Some have phenotypes consistent with defective migration, while others alter testis shape in different ways, revealing the underlying logic of testis morphogenesis. We followed up on the Rho-family GEF dPix in detail. dPix knockdown drastically reduced migration and thus muscle coverage. Our data suggest different isoforms of dPix play distinct roles in this process and reveal a role for its partner Git. We also explored whether dPix regulates Cdc42 activity or cell adhesion. Our RNA-seq dataset and genetic analysis provide an important resource for the community to explore cell migration and organ morphogenesis.
Collapse
Affiliation(s)
- Maik C. Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Jenevieve E. Norton
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Erika A. Munguia
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Sarah E. Clark
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Rebecca Korankye
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Emmanuel Addai Gyabaah
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Taino Encarnacion
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Christopher J. Serody
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
2
|
Liu Z, Lu C, Ma L, Li C, Luo H, Liu Y, Liu X, Li H, Cui Y, Zeng J, Bottasso‐Arias N, Sinner D, Li L, Wang J, Stainier DYR, Yin W. The T-Type Calcium Channel CACNA1H is Required for Smooth Muscle Cytoskeletal Organization During Tracheal Tubulogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308622. [PMID: 39360593 PMCID: PMC11600216 DOI: 10.1002/advs.202308622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 08/23/2024] [Indexed: 10/04/2024]
Abstract
Abnormalities of tracheal smooth muscle (SM) formation are associated with several clinical disorders including tracheal stenosis and tracheomalacia. However, the cellular and molecular mechanisms underlying tracheal SM formation remain poorly understood. Here, it is shown that the T-type calcium channel CACNA1H is a novel regulator of tracheal SM formation and contraction. Cacna1h in an ethylnitrosourea forward genetic screen for regulators of respiratory disease using the mouse as a model is identified. Cacna1h mutants exhibit tracheal stenosis, disorganized SM and compromised tracheal contraction. CACNA1H is essential to maintain actin polymerization, which is required for tracheal SM organization and tube formation. This process appears to be partially mediated through activation of the actin regulator RhoA, as pharmacological increase of RhoA activity ameliorates the Cacna1h-mutant trachea phenotypes. Analysis of human tracheal tissues indicates that a decrease in CACNA1H protein levels is associated with congenital tracheostenosis. These results provide insight into the role for the T-type calcium channel in cytoskeletal organization and SM formation during tracheal tube formation and suggest novel targets for congenital tracheostenosis intervention.
Collapse
Affiliation(s)
- Ziying Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
- Guangzhou National LaboratoryGuangzhou International Bio IslandNo. 9 XingDaoHuanBei RoadGuangzhouGuangdong Province510005P. R. China
| | - Chunyan Lu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Li Ma
- Heart center & Department of Pediatric SurgeryGuangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdong510623P. R. China
| | - Changjiang Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Haiyun Luo
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Yiqi Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Xinyuan Liu
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Haiqing Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Yachao Cui
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Jiahang Zeng
- Department of Thoracic SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623P. R. China
| | - Natalia Bottasso‐Arias
- Division of Neonatology and Pulmonary BiologyCCHMCCollege of MedicineUniversity of CincinnatiCincinnatiOH45221USA
| | - Debora Sinner
- Division of Neonatology and Pulmonary BiologyCCHMCCollege of MedicineUniversity of CincinnatiCincinnatiOH45221USA
| | - Le Li
- Department of Thoracic SurgeryGuangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhou510623P. R. China
| | - Jian Wang
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
| | - Didier Y. R. Stainier
- Department of Developmental GeneticsMax Planck Institute for Heart and Lung ResearchMember of the German Center for Lung Research (DZL)61231Bad NauheimGermany
| | - Wenguang Yin
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory Healththe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510182P. R. China
- Guangzhou National LaboratoryGuangzhou International Bio IslandNo. 9 XingDaoHuanBei RoadGuangzhouGuangdong Province510005P. R. China
- Key Laboratory of Biological Targeting DiagnosisTherapy and Rehabilitation of Guangdong Higher Education Institutesthe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhou510005P. R. China
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| |
Collapse
|
3
|
Bischoff MC, Norton JE, Peifer M. Plexin/Semaphorin Antagonism Orchestrates Collective Cell Migration, Gap Closure and Organ sculpting by Contact-Mesenchymalization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617649. [PMID: 39416156 PMCID: PMC11482903 DOI: 10.1101/2024.10.10.617649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cell behavior emerges from the intracellular distribution of properties like protrusion, contractility and adhesion. Thus, characteristic emergent rules of collective migration can arise from cell-cell contacts locally tweaking architecture - orchestrating self-regulation during development, wound healing, and cancer progression. The new Drosophila testis-nascent-myotube-system allows dissection of contact-dependent migration in vivo at high resolution. Here, we describe a process driving gap-closure during migration: Contact-mesenchymalization via the axon guidance factor Plexin A. This is crucial for testis myotubes to migrate as a continuous sheet, allowing normal sculpting-morphogenesis. Cells must stay filopodial and dynamically ECM-tethered near cell-cell contacts to spread while collectively moving. Our data suggest Semaphorin 1B acts as a Plexin A antagonist, fine-tuning activation. Our data reveal a contact-dependent mechanism to maintain sheet-integrity during migration, driving organ-morphogenesis using a highly conserved pathway. This is relevant for understanding mesenchymal organ-sculpting and gap-closure in migratory contexts like angiogenesis.
Collapse
Affiliation(s)
- Maik C. Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jenevieve E. Norton
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
4
|
Bischoff MC, Norton JE, Munguia EA, Gurley NJ, Clark SE, Korankye R, Gyabaah EA, Encarnacion T, Serody CJ, Jones CD, Peifer M. A large reverse-genetic screen identifies numerous regulators of testis nascent myotube collective cell migration and collective organ sculpting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617659. [PMID: 39416171 PMCID: PMC11483038 DOI: 10.1101/2024.10.10.617659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. During development migrating mesenchymal cells form tissues that shape some of the body's organs. We have developed a powerful model for examining this, exploring how Drosophila testis nascent myotubes migrate onto the testis during pupal development, forming the muscles that ensheath it and also creating its characteristic spiral shape. To define genes that regulate this process, we have carried out RNAseq to define the genes expressed in myotubes during migration. Using this dataset, we curated a list of 131 ligands, receptors and cytoskeletal regulators, including all Rho-family GTPase GAPs and GEFs, as candidates. We then used the GAL4/UAS system to express 279 shRNAs targeting these genes, using the muscle specific driver dMef2>GAL4, and examined the adult testis. We identified 29 genes with diverse roles in testis morphogenesis. Some have phenotypes consistent with defects in collective cell migration, while others alter testis shape in different ways, revealing some of the underlying logic of testis morphogenesis. We followed up one of these genes in more detail-that encoding the Rho-family GEF dPix. dPix knockdown leads to a drastic reduction in migration and a substantial loss of muscle coverage. Our data suggest different isoforms of dPix play distinct roles in this process, reveal a role for its protein partner Git. We also explore whether cdc42 activity regulation or cell adhesion are among the dPix mechanisms of action. Together, our RNAseq dataset and genetic analysis will provide an important resource for the community to explore cell migration and organ morphogenesis.
Collapse
Affiliation(s)
- Maik C. Bischoff
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Jenevieve E. Norton
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Erika A. Munguia
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Noah J. Gurley
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Sarah E. Clark
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Rebecca Korankye
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Emmanuel Addai Gyabaah
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Taino Encarnacion
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Christopher J. Serody
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
| | - Mark Peifer
- Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
5
|
Paramore SV, Goodwin K, Fowler EW, Devenport D, Nelson CM. Mesenchymal Vangl1 and Vangl2 facilitate airway elongation and widening independently of the planar cell polarity complex. Development 2024; 151:dev202692. [PMID: 39225402 PMCID: PMC11385325 DOI: 10.1242/dev.202692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Adult mammalian lungs exhibit a fractal pattern, as each successive generation of airways is a fraction of the size of the parental branch. Achieving this structure likely requires precise control of airway length and diameter, as the embryonic airways initially lack the fractal scaling observed in the adult. In monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we characterized the roles of PCP complex components in airway initiation, elongation and widening during branching morphogenesis of the lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP complex function in the lung epithelium. Instead, we found a previously unreported Celsr1-independent role for the PCP complex components Vangl1 and Vangl2 in the pulmonary mesenchyme, where they are required for branch initiation, elongation and widening. Our data thus reveal an explicit function for Vangl1 and Vangl2 that is independent of the core PCP complex, suggesting a functional diversification of PCP complex components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways in the mature lung.
Collapse
Affiliation(s)
- Sarah V. Paramore
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Eric W. Fowler
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
6
|
Plummer A, Adkins C, Louf JF, Košmrlj A, Datta SS. Obstructed swelling and fracture of hydrogels. SOFT MATTER 2024; 20:1425-1437. [PMID: 38252539 DOI: 10.1039/d3sm01470c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Obstructions influence the growth and expansion of bodies in a wide range of settings-but isolating and understanding their impact can be difficult in complex environments. Here, we study obstructed growth/expansion in a model system accessible to experiments, simulations, and theory: hydrogels swelling around fixed cylindrical obstacles with varying geometries. When the obstacles are large and widely-spaced, hydrogels swell around them and remain intact. In contrast, our experiments reveal that when the obstacles are narrow and closely-spaced, hydrogels fracture as they swell. We use finite element simulations to map the magnitude and spatial distribution of stresses that build up during swelling at equilibrium in a 2D model, providing a route toward predicting when this phenomenon of self-fracturing is likely to arise. Applying lessons from indentation theory, poroelasticity, and nonlinear continuum mechanics, we also develop a theoretical framework for understanding how the maximum principal tensile and compressive stresses that develop during swelling are controlled by obstacle geometry and material parameters. These results thus help to shed light on the mechanical principles underlying growth/expansion in environments with obstructions.
Collapse
Affiliation(s)
- Abigail Plummer
- Princeton Center for Complex Materials, Princeton University, Princeton, NJ 08540, USA
| | - Caroline Adkins
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jean-François Louf
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
- Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Darrigrand JF, Salowka A, Torres-Cano A, Tapia-Rojo R, Zhu T, Garcia-Manyes S, Spagnoli FM. Acinar-ductal cell rearrangement drives branching morphogenesis of the murine pancreas in an IGF/PI3K-dependent manner. Dev Cell 2024; 59:326-338.e5. [PMID: 38237591 PMCID: PMC11805742 DOI: 10.1016/j.devcel.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
During organ formation, progenitor cells need to acquire different cell identities and organize themselves into distinct structural units. How these processes are coordinated and how tissue architecture(s) is preserved despite the dramatic cell rearrangements occurring in developing organs remain unclear. Here, we identified cellular rearrangements between acinar and ductal progenitors as a mechanism to drive branching morphogenesis in the pancreas while preserving the integrity of the acinar-ductal functional unit. Using ex vivo and in vivo mouse models, we found that pancreatic ductal cells form clefts by protruding and pulling on the acinar basement membrane, which leads to acini splitting. Newly formed acini remain connected to the bifurcated branches generated by ductal cell rearrangement. Insulin growth factor (IGF)/phosphatidylinositol 3-kinase (PI3K) pathway finely regulates this process by controlling pancreatic ductal tissue fluidity, with a simultaneous impact on branching and cell fate acquisition. Together, our results explain how acinar structure multiplication and branch bifurcation are synchronized during pancreas organogenesis.
Collapse
Affiliation(s)
- Jean-Francois Darrigrand
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK
| | - Anna Salowka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK
| | - Alejo Torres-Cano
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK
| | - Rafael Tapia-Rojo
- Department of Physics, London Centre for Nanotechnology, King's College London, London, UK
| | - Tong Zhu
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK; Single-Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK; Single-Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Francesca M Spagnoli
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, Great Maze Pond, SE1 9RT London, UK.
| |
Collapse
|
8
|
Zhang K, Aung T, Yao E, Chuang PT. Lung patterning: Is a distal-to-proximal gradient of cell allocation and fate decision a general paradigm?: A gradient of distal-to-proximal distribution and differentiation of tip progenitors produces distinct compartments in the lung. Bioessays 2024; 46:e2300083. [PMID: 38010492 DOI: 10.1002/bies.202300083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Recent studies support a model in which the progeny of SOX9+ epithelial progenitors at the distal tip of lung branches undergo cell allocation and differentiation sequentially along the distal-to-proximal axis. Concomitant with the elongation and ramification of lung branches, the descendants of the distal SOX9+ progenitors are distributed proximally, express SOX2, and differentiate into cell types in the conducting airways. Amid subsequent sacculation, the distal SOX9+ progenitors generate alveolar epithelial cells to form alveoli. Sequential cell allocation and differentiation are integrated with the branching process to generate a functional branching organ. This review focuses on the roles of SOX9+ cells as precursors for new branches, as the source of various cell types in the conducting airways, and as progenitors of the alveolar epithelium. All of these processes are controlled by multiple signaling pathways. Many mouse mutants with defective lung branching contain underlying defects in one or more steps of cell allocation and differentiation of SOX9+ progenitors. This model provides a framework to understand the molecular basis of lung phenotypes and to elucidate the molecular mechanisms of lung patterning. It builds a foundation on which comparing and contrasting the mechanisms employed by different branching organs in diverse species can be made.
Collapse
Affiliation(s)
- Kuan Zhang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Thin Aung
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| |
Collapse
|
9
|
Loffet EA, Durel JF, Nerurkar NL. Evo-Devo Mechanobiology: The Missing Link. Integr Comp Biol 2023; 63:1455-1473. [PMID: 37193661 DOI: 10.1093/icb/icad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
While the modern framework of evolutionary development (evo-devo) has been decidedly genetic, historic analyses have also considered the importance of mechanics in the evolution of form. With the aid of recent technological advancements in both quantifying and perturbing changes in the molecular and mechanical effectors of organismal shape, how molecular and genetic cues regulate the biophysical aspects of morphogenesis is becoming increasingly well studied. As a result, this is an opportune time to consider how the tissue-scale mechanics that underlie morphogenesis are acted upon through evolution to establish morphological diversity. Such a focus will enable a field of evo-devo mechanobiology that will serve to better elucidate the opaque relations between genes and forms by articulating intermediary physical mechanisms. Here, we review how the evolution of shape is measured and related to genetics, how recent strides have been made in the dissection of developmental tissue mechanics, and how we expect these areas to coalesce in evo-devo studies in the future.
Collapse
Affiliation(s)
- Elise A Loffet
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - John F Durel
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| |
Collapse
|
10
|
Mitchell NP, Cislo DJ. TubULAR: tracking in toto deformations of dynamic tissues via constrained maps. Nat Methods 2023; 20:1980-1988. [PMID: 38057529 PMCID: PMC10848277 DOI: 10.1038/s41592-023-02081-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
A common motif in biology is the arrangement of cells into tubes, which further transform into complex shapes. Traditionally, analysis of dynamic tissues has relied on inspecting static snapshots, live imaging of cross-sections or tracking isolated cells in three dimensions. However, capturing the interplay between in-plane and out-of-plane behaviors requires following the full surface as it deforms and integrating cell-scale motions into collective, tissue-scale deformations. Here, we present an analysis framework that builds in toto maps of tissue deformations by following tissue parcels in a static material frame of reference. Our approach then relates in-plane and out-of-plane behaviors and decomposes complex deformation maps into elementary contributions. The tube-like surface Lagrangian analysis resource (TubULAR) provides an open-source implementation accessible either as a standalone toolkit or as an extension of the ImSAnE package used in the developmental biology community. We demonstrate our approach by analyzing shape change in the embryonic Drosophila midgut and beating zebrafish heart. The method naturally generalizes to in vitro and synthetic systems and provides ready access to the mechanical mechanisms relating genetic patterning to organ shape change.
Collapse
Affiliation(s)
- Noah P Mitchell
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, USA.
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Dillon J Cislo
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA, USA.
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
11
|
Barbazan J, Pérez-González C, Gómez-González M, Dedenon M, Richon S, Latorre E, Serra M, Mariani P, Descroix S, Sens P, Trepat X, Vignjevic DM. Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction. Nat Commun 2023; 14:6966. [PMID: 37907483 PMCID: PMC10618488 DOI: 10.1038/s41467-023-42382-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.
Collapse
Affiliation(s)
- Jorge Barbazan
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Hospital of Santiago de Compostela (SERGAS), 15706, Santiago de Compostela, Spain
| | | | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Mathieu Dedenon
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Sophie Richon
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005, Paris, France
| | - Ernest Latorre
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain
| | - Marco Serra
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Pascale Mariani
- Institut Curie, Department of surgical oncology, Curie Institute, F-75005, Paris, France
| | - Stéphanie Descroix
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Pierre Sens
- Institut Curie, PSL Research University, CNRS UMR 168, F-75005, Paris, France
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028, Barcelona, Spain.
- Facutltat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08028, Barcelona, Spain.
| | | |
Collapse
|
12
|
Abohalaka R. Bronchial epithelial and airway smooth muscle cell interactions in health and disease. Heliyon 2023; 9:e19976. [PMID: 37809717 PMCID: PMC10559680 DOI: 10.1016/j.heliyon.2023.e19976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Chronic pulmonary diseases such as asthma, COPD, and Idiopathic pulmonary fibrosis are significant causes of mortality and morbidity worldwide. Currently, there is no radical treatment for many chronic pulmonary diseases, and the treatment options focus on relieving the symptoms and improving lung function. Therefore, efficient therapeutic agents are highly needed. Bronchial epithelial cells and airway smooth muscle cells and their crosstalk play a significant role in the pathogenesis of these diseases. Thus, targeting the interactions of these two cell types could open the door to a new generation of effective therapeutic options. However, the studies on how these two cell types interact and how their crosstalk adds up to respiratory diseases are not well established. With the rise of modern research tools and technology, such as lab-on-a-chip, organoids, co-culture techniques, and advanced immunofluorescence imaging, a substantial degree of evidence about these cell interactions emerged. Hence, this contribution aims to summarize the growing evidence of bronchial epithelial cells and airway smooth muscle cells crosstalk under normal and pathophysiological conditions. The review first discusses the impact of airway smooth muscle cells on the epithelium in inflammatory settings. Later, it examines the role of airway smooth muscle cells in the early development of bronchial epithelial cells and their recovery after injury. Then, it deliberates the effects of both healthy and stressed epithelial cells on airway smooth muscle cells, taking into account three themes; contraction, migration, and proliferation.
Collapse
Affiliation(s)
- Reshed Abohalaka
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Loffet EA, Durel JF, Kam R, Lim H, Nerurkar NL. ELASTIC FIBERS DEFINE EMBRYONIC TISSUE STIFFNESS TO ENABLE BUCKLING MORPHOGENESIS OF THE SMALL INTESTINE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549562. [PMID: 37502968 PMCID: PMC10370103 DOI: 10.1101/2023.07.18.549562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.
Collapse
Affiliation(s)
- Elise A. Loffet
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - John F. Durel
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Richard Kam
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Hyunjee Lim
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Nandan L. Nerurkar
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| |
Collapse
|
14
|
Paramore SV, Goodwin K, Devenport D, Nelson CM. Mesenchymal Vangl facilitates airway elongation and widening independently of the planar cell polarity complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547543. [PMID: 37461477 PMCID: PMC10349956 DOI: 10.1101/2023.07.03.547543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A hallmark of mammalian lungs is the fractal nature of the bronchial tree. In the adult, each successive generation of airways is a fraction of the size of the parental branch. This fractal structure is physiologically beneficial, as it minimizes the energy needed for breathing. Achieving this pattern likely requires precise control of airway length and diameter, as the branches of the embryonic airways initially lack the fractal scaling observed in those of the adult lung. In epithelial monolayers and tubes, directional growth can be regulated by the planar cell polarity (PCP) complex. Here, we comprehensively characterized the roles of PCP-complex components in airway initiation, elongation, and widening during branching morphogenesis of the murine lung. Using tissue-specific knockout mice, we surprisingly found that branching morphogenesis proceeds independently of PCP-component expression in the developing airway epithelium. Instead, we found a novel, Celsr1-independent role for the PCP component Vangl in the pulmonary mesenchyme. Specifically, mesenchymal loss of Vangl1/2 leads to defects in branch initiation, elongation, and widening. At the cellular level, we observe changes in the shape of smooth muscle cells that indicate a potential defect in collective mesenchymal rearrangements, which we hypothesize are necessary for lung morphogenesis. Our data thus reveal an explicit function for Vangl that is independent of the core PCP complex, suggesting a functional diversification of PCP components in vertebrate development. These data also reveal an essential role for the embryonic mesenchyme in generating the fractal structure of airways of the mature lung.
Collapse
Affiliation(s)
| | | | | | - Celeste M Nelson
- Department of Molecular Biology
- Department of Chemical & Biological Engineering
| |
Collapse
|
15
|
Hallatschek O, Datta SS, Drescher K, Dunkel J, Elgeti J, Waclaw B, Wingreen NS. Proliferating active matter. NATURE REVIEWS. PHYSICS 2023; 5:1-13. [PMID: 37360681 PMCID: PMC10230499 DOI: 10.1038/s42254-023-00593-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The fascinating patterns of collective motion created by autonomously driven particles have fuelled active-matter research for over two decades. So far, theoretical active-matter research has often focused on systems with a fixed number of particles. This constraint imposes strict limitations on what behaviours can and cannot emerge. However, a hallmark of life is the breaking of local cell number conservation by replication and death. Birth and death processes must be taken into account, for example, to predict the growth and evolution of a microbial biofilm, the expansion of a tumour, or the development from a fertilized egg into an embryo and beyond. In this Perspective, we argue that unique features emerge in these systems because proliferation represents a distinct form of activity: not only do the proliferating entities consume and dissipate energy, they also inject biomass and degrees of freedom capable of further self-proliferation, leading to myriad dynamic scenarios. Despite this complexity, a growing number of studies document common collective phenomena in various proliferating soft-matter systems. This generality leads us to propose proliferation as another direction of active-matter physics, worthy of a dedicated search for new dynamical universality classes. Conceptual challenges abound, from identifying control parameters and understanding large fluctuations and nonlinear feedback mechanisms to exploring the dynamics and limits of information flow in self-replicating systems. We believe that, by extending the rich conceptual framework developed for conventional active matter to proliferating active matter, researchers can have a profound impact on quantitative biology and reveal fascinating emergent physics along the way.
Collapse
Affiliation(s)
- Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, CA US
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Sujit S. Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ USA
| | | | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Jens Elgeti
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Bartek Waclaw
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry PAN, Warsaw, Poland
- School of Physics and Astronomy, The University of Edinburgh, JCMB, Edinburgh, UK
| | - Ned S. Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ USA
- Department of Molecular Biology, Princeton University, Princeton, NJ USA
| |
Collapse
|
16
|
Cassel de Camps C, Mok S, Ashby E, Li C, Lépine P, Durcan TM, Moraes C. Compressive molding of engineered tissues via thermoresponsive hydrogel devices. LAB ON A CHIP 2023; 23:2057-2067. [PMID: 36916609 DOI: 10.1039/d3lc00007a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biofabrication of tissues requires sourcing appropriate combinations of cells, and then arranging those cells into a functionally-useful construct. Recently, organoids with diverse cell populations have shown great promise as building blocks from which to assemble more complex structures. However, organoids typically adopt spherical or uncontrolled morphologies, which intrinsically limit the tissue structures that can be produced using this bioassembly technique. Here, we develop microfabricated smart hydrogel platforms in thermoresponsive poly(N-isopropylacrylamide) to compressively mold microtissues such as spheroids or organoids into customized forms, on demand. These Compressive Hydrogel Molders (CHyMs) compact at cell culture temperatures to force loaded tissues into a new shape, and then expand to release the tissues for downstream applications. As a first demonstration, breast cancer spheroids were biaxially compacted in cylindrical cavities, and uniaxially compacted in rectangular ones. Spheroid shape changes persisted after the tissues were released from the CHyMs. We then demonstrate long-term molding of spherical brain organoids in ring-shaped CHyMs over one week. Fused bridges formed only when brain organoids were encased in Matrigel, and the resulting ring-shaped organoids expressed tissue markers that correspond with expected differentiation profiles. These results demonstrate that tissues differentiate appropriately even during long-term molding in a CHyM. This platform hence provides a new tool to shape pre-made tissues as desired, via temporary compression and release, allowing an exploration of alternative organoid geometries as building blocks for bioassembly applications.
Collapse
Affiliation(s)
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Emily Ashby
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Chen Li
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
| | - Paula Lépine
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit (EDDU), Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montréal, H3A 2B4 QC, Canada
| | - Christopher Moraes
- Department of Biomedical Engineering, McGill University, Montréal, H3A 2B4 QC, Canada.
- Department of Chemical Engineering, McGill University, Montréal, H3A 0C5 QC, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, H3A 1A3 QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, H4A 3J1, QC, Canada
| |
Collapse
|
17
|
Gonçalves AN, Moura RS, Correia-Pinto J, Nogueira-Silva C. Intraluminal chloride regulates lung branching morphogenesis: involvement of PIEZO1/PIEZO2. Respir Res 2023; 24:42. [PMID: 36740669 PMCID: PMC9901166 DOI: 10.1186/s12931-023-02328-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Clinical and experimental evidence shows lung fluid volume as a modulator of fetal lung growth with important value in treating fetal lung hypoplasia. Thus, understanding the mechanisms underlying these morphological dynamics has been the topic of multiple investigations with, however, limited results, partially due to the difficulty of capturing or recapitulating these movements in the lab. In this sense, this study aims to establish an ex vivo model allowing the study of lung fluid function in branching morphogenesis and identify the subsequent molecular/ cellular mechanisms. METHODS Ex vivo lung explant culture was selected as a model to study branching morphogenesis, and intraluminal injections were performed to change the composition of lung fluid. Distinct chloride (Cl-) concentrations (5.8, 29, 143, and 715 mM) or Cl- channels inhibitors [antracene-9-carboxylic acid (A9C), cystic fibrosis transmembrane conductance regulator inhibitor172 (CFTRinh), and calcium-dependent Cl- channel inhibitorA01 (CaCCinh)] were injected into lung lumen at two timepoints, day0 (D0) and D2. At D4, morphological and molecular analyses were performed in terms of branching morphogenesis, spatial distribution (immunofluorescence), and protein quantification (western blot) of mechanoreceptors (PIEZO1 and PIEZO2), neuroendocrine (bombesin, ghrelin, and PGP9.5) and smooth muscle [alpha-smooth muscle actin (α-SMA) and myosin light chain 2 (MLC2)] markers. RESULTS For the first time, we described effective intraluminal injections at D0 and D2 and demonstrated intraluminal movements at D4 in ex vivo lung explant cultures. Through immunofluorescence assay in in vivo and ex vivo branching morphogenesis, we show that PGP9.5 colocalizes with PIEZO1 and PIEZO2 receptors. Fetal lung growth is increased at higher [Cl-], 715 mM Cl-, through the overexpression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. In contrast, intraluminal injection of CFTRinh or CaCCinh decreases fetal lung growth and the expression of PIEZO1, PIEZO2, ghrelin, bombesin, MLC2, and α-SMA. Finally, the inhibition of PIEZO1/PIEZO2 by GsMTx4 decreases branching morphogenesis and ghrelin, bombesin, MLC2, and α-SMA expression in an intraluminal injection-independent manner. CONCLUSIONS Our results identify PIEZO1/PIEZO2 expressed in neuroendocrine cells as a regulator of fetal lung growth induced by lung fluid.
Collapse
Affiliation(s)
- Ana N. Gonçalves
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- grid.10328.380000 0001 2159 175XSchool of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057 Braga, Portugal ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal ,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Gualtar, 4710-057, Braga, Portugal. .,Life and Health Sciences Research Institute/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
18
|
Cable J, Arlotta P, Parker KK, Hughes AJ, Goodwin K, Mummery CL, Kamm RD, Engle SJ, Tagle DA, Boj SF, Stanton AE, Morishita Y, Kemp ML, Norfleet DA, May EE, Lu A, Bashir R, Feinberg AW, Hull SM, Gonzalez AL, Blatchley MR, Montserrat Pulido N, Morizane R, McDevitt TC, Mishra D, Mulero-Russe A. Engineering multicellular living systems-a Keystone Symposia report. Ann N Y Acad Sci 2022; 1518:183-195. [PMID: 36177947 PMCID: PMC9771928 DOI: 10.1111/nyas.14896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ability to engineer complex multicellular systems has enormous potential to inform our understanding of biological processes and disease and alter the drug development process. Engineering living systems to emulate natural processes or to incorporate new functions relies on a detailed understanding of the biochemical, mechanical, and other cues between cells and between cells and their environment that result in the coordinated action of multicellular systems. On April 3-6, 2022, experts in the field met at the Keystone symposium "Engineering Multicellular Living Systems" to discuss recent advances in understanding how cells cooperate within a multicellular system, as well as recent efforts to engineer systems like organ-on-a-chip models, biological robots, and organoids. Given the similarities and common themes, this meeting was held in conjunction with the symposium "Organoids as Tools for Fundamental Discovery and Translation".
Collapse
Affiliation(s)
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kevin Kit Parker
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Alex J Hughes
- Department of Bioengineering, School of Engineering and Applied Science and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Christine L Mummery
- Department of Anatomy and Embryology and LUMC hiPSC Hotel, Leiden University Medical Center, Leiden, the Netherlands
| | - Roger D Kamm
- Department of Mechanical Engineering and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sandra J Engle
- Translational Biology, Biogen, Cambridge, Massachusetts, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Sylvia F Boj
- Hubrecht Organoid Technology (HUB), Utrecht, the Netherlands
| | - Alice E Stanton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yoshihiro Morishita
- Laboratory for Developmental Morphogeometry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Melissa L Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Dennis A Norfleet
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Elebeoba E May
- Department of Biomedical Engineering and HEALTH Research Institute, University of Houston, Houston, Texas, USA
- Wisconsin Institute of Discovery and Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aric Lu
- Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Draper Laboratory, Biological Engineering Division, Cambridge, Massachusetts, USA
| | - Rashid Bashir
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Holonyak Micro & Nanotechnology Laboratory, Department of Electrical and Computer Engineering and Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering and Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Michael R Blatchley
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | | | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Todd C McDevitt
- The Gladstone Institutes and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Deepak Mishra
- Department of Biological Engineering, Synthetic Biology Center, Cambridge, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adriana Mulero-Russe
- Parker H. Petit Institute for Bioengineering and Bioscience and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Paramore SV, Goodwin K, Nelson CM. How to build an epithelial tree. Phys Biol 2022; 19. [DOI: 10.1088/1478-3975/ac9e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022]
Abstract
Abstract
Nature has evolved a variety of mechanisms to build epithelial trees of diverse architectures within different organs and across species. Epithelial trees are elaborated through branch initiation and extension, and their morphogenesis ends with branch termination. Each of these steps of the branching process can be driven by the actions of epithelial cells themselves (epithelial-intrinsic mechanisms) or by the cells of their surrounding tissues (epithelial-extrinsic mechanisms). Here, we describe examples of how these mechanisms drive each stage of branching morphogenesis, drawing primarily from studies of the lung, kidney, salivary gland, mammary gland, and pancreas, all of which contain epithelial trees that form through collective cell behaviors. Much of our understanding of epithelial branching comes from experiments using mice, but we also include examples here from avian and reptilian models. Throughout, we highlight how distinct mechanisms are employed in different organs and species to build epithelial trees. We also highlight how similar morphogenetic motifs are used to carry out conserved developmental programs or repurposed to support novel ones. Understanding the unique strategies used by nature to build branched epithelia from across the tree of life can help to inspire creative solutions to problems in tissue engineering and regenerative medicine.
Collapse
|
20
|
Peak KE, Mohr-Allen SR, Gleghorn JP, Varner VD. Focal sources of FGF-10 promote the buckling morphogenesis of the embryonic airway epithelium. Biol Open 2022; 11:bio059436. [PMID: 35979841 PMCID: PMC9536751 DOI: 10.1242/bio.059436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022] Open
Abstract
During airway branching morphogenesis, focal regions of FGF-10 expression in the pulmonary mesenchyme are thought to provide a local guidance cue, which promotes chemotactically the directional outgrowth of the airway epithelium. Here, however, we show that an ectopic source of FGF-10 induces epithelial buckling morphogenesis and the formation of multiple new supernumerary buds. FGF-10-induced budding can be modulated by altered epithelial tension and luminal fluid pressure. Increased tension suppresses the formation of ectopic branches, while a collapse of the embryonic airway promotes more expansive buckling and additional FGF-10-induced supernumerary buds. Our results indicate that a focal source of FGF-10 can promote epithelial buckling and suggest that the overall branching pattern cannot be explained entirely by the templated expression of FGF-10. Both FGF-10-mediated cell behaviors and exogenous mechanical forces must be integrated to properly shape the bronchial tree.
Collapse
Affiliation(s)
- Kara E Peak
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shelby R Mohr-Allen
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
21
|
Patil LS, Varner VD. Toward Measuring the Mechanical Stresses Exerted by Branching Embryonic Airway Epithelial Explants in 3D Matrices of Matrigel. Ann Biomed Eng 2022; 50:1143-1157. [PMID: 35718813 PMCID: PMC9590229 DOI: 10.1007/s10439-022-02989-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
Abstract
Numerous organs in the bodies of animals, including the lung, kidney, and mammary gland, contain ramified networks of epithelial tubes. These structures arise during development via a process known as branching morphogenesis. Previous studies have shown that mechanical forces directly impact this process, but the patterns of mechanical stress exerted by branching embryonic epithelia are not well understood. This is, in part, owing to a lack of experimental tools. Traditional traction force microscopy assays rely on the use of compliant hydrogels with well-defined mechanical properties. Isolated embryonic epithelial explants, however, have only been shown to branch in three-dimensional matrices of reconstituted basement membrane protein, or Matrigel, a biomaterial with poorly characterized mechanical behavior, especially in the regime of large deformations. Here, to compute the traction stresses generated by branching epithelial explants, we quantified the finite-deformation constitutive behavior of gels of reconstituted basement membrane protein subjected to multi-axial mechanical loads. We then modified the mesenchyme-free assay for the ex vivo culture of isolated embryonic airway epithelial explants by suspending fluorescent microspheres within the surrounding gel and tracking their motion during culture. Surprisingly, the tracked bead motion was non-zero in regions of the gel far away from the explants, suggestive of passive swelling deformations within the matrix. To compute accurate traction stresses, these swelling deformations must be decomposed from those generated by the branching explants. We thus tracked the motion of beads suspended within cell-free matrices and quantified spatiotemporal patterns of gel swelling. Taken together, these passive swelling data can be combined with the measured mechanical properties of the gel to compute the traction forces exerted by intact embryonic epithelial explants.
Collapse
Affiliation(s)
- Lokesh S Patil
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Victor D Varner
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Hein RFC, Wu JH, Holloway EM, Frum T, Conchola AS, Tsai YH, Wu A, Fine AS, Miller AJ, Szenker-Ravi E, Yan KS, Kuo CJ, Glass I, Reversade B, Spence JR. R-SPONDIN2 + mesenchymal cells form the bud tip progenitor niche during human lung development. Dev Cell 2022; 57:1598-1614.e8. [PMID: 35679862 PMCID: PMC9283295 DOI: 10.1016/j.devcel.2022.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 01/23/2023]
Abstract
The human respiratory epithelium is derived from a progenitor cell in the distal buds of the developing lung. These "bud tip progenitors" are regulated by reciprocal signaling with surrounding mesenchyme; however, mesenchymal heterogeneity and function in the developing human lung are poorly understood. We interrogated single-cell RNA sequencing data from multiple human lung specimens and identified a mesenchymal cell population present during development that is highly enriched for expression of the WNT agonist RSPO2, and we found that the adjacent bud tip progenitors are enriched for the RSPO2 receptor LGR5. Functional experiments using organoid models, explant cultures, and FACS-isolated RSPO2+ mesenchyme show that RSPO2 is a critical niche cue that potentiates WNT signaling in bud tip progenitors to support their maintenance and multipotency.
Collapse
Affiliation(s)
- Renee F C Hein
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joshua H Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ansley S Conchola
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Angeline Wu
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alexis S Fine
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Emmanuelle Szenker-Ravi
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore
| | - Kelley S Yan
- Columbia Center for Human Development, Columbia Stem Cell Initiative, Departments of Medicine and Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Glass
- Department of Pediatrics, Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Bruno Reversade
- Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore, A(∗)STAR, Singapore 138648, Singapore; Laboratory of Human Genetics & Therapeutics, Institute of Molecular and Cell Biology (IMCB), A∗STAR, Singapore; Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Pletcher A, Shibata M. Prostate organogenesis. Development 2022; 149:275758. [DOI: 10.1242/dev.200394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Prostate organogenesis begins during embryonic development and continues through puberty when the prostate becomes an important exocrine gland of the male reproductive system. The specification and growth of the prostate is regulated by androgens and is largely a result of cell-cell communication between the epithelium and mesenchyme. The fields of developmental and cancer biology have long been interested in prostate organogenesis because of its relevance for understanding prostate diseases, and research has expanded in recent years with the advent of novel technologies, including genetic-lineage tracing, single-cell RNA sequencing and organoid culture methods, that have provided important insights into androgen regulation, epithelial cell origins and cellular heterogeneity. We discuss these findings, putting them into context with what is currently known about prostate organogenesis.
Collapse
Affiliation(s)
- Andrew Pletcher
- The George Washington University School of Medicine and Health Sciences 1 Department of Anatomy and Cell Biology , , Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences 2 , Washington, DC 20052, USA
| | - Maho Shibata
- The George Washington University School of Medicine and Health Sciences 1 Department of Anatomy and Cell Biology , , Washington, DC 20052, USA
- The George Washington University Cancer Center, The George Washington University School of Medicine and Health Sciences 2 , Washington, DC 20052, USA
| |
Collapse
|
24
|
Immunohistochemical Study of Smooth Muscle Cells and Elastin in Goose Lungs. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
There are many differences (morphological, physiological and mechanical) between the lungs of birds and the lungs of mammals. Birds have a more efficient exchange of oxygen and carbon dioxide than mammals. In this article, we studied the presence of four antibodies (actin, α-smooth muscle actin, desmin and elastin) in the lungs of geese. Smooth muscle cells (SMCs) immunoreactive to actin, α-SMA and desmin were observed in the primary and secondary bronchi and arranged as a continuous layer. In the tertiary bronchus (parabronchus), immunoreactive cells on α-SMA and desmin were observed as aggregations of smooth muscle cells in the septum tips in atrial opening. A small number of α-SMA and desmin-positive cells were observed on the periphery of the parabronchi and between the air and blood capillaries. The elastic fibres were found in the large bronchi in connection with smooth muscle bands. In the parabronchi the elastic fibres form an elastic membrane lining the parabronchial lumen. In the blood vessels, the elastic fibres form the inner and outer elastic membrane. The individual elastic membranes connect neighbouring blood vessels.
Collapse
|
25
|
Goodwin K, Jaslove JM, Tao H, Zhu M, Hopyan S, Nelson CM. Patterning the embryonic pulmonary mesenchyme. iScience 2022; 25:103838. [PMID: 35252804 PMCID: PMC8889149 DOI: 10.1016/j.isci.2022.103838] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
Smooth muscle guides the morphogenesis of several epithelia during organogenesis, including the mammalian airways. However, it remains unclear how airway smooth muscle differentiation is spatiotemporally patterned and whether it originates from transcriptionally distinct mesenchymal progenitors. Using single-cell RNA-sequencing of embryonic mouse lungs, we show that the pulmonary mesenchyme contains a continuum of cell identities, but no transcriptionally distinct progenitors. Transcriptional variability correlates with spatially distinct sub-epithelial and sub-mesothelial mesenchymal compartments that are regulated by Wnt signaling. Live-imaging and tension-sensors reveal compartment-specific migratory behaviors and cortical forces and show that sub-epithelial mesenchyme contributes to airway smooth muscle. Reconstructing differentiation trajectories reveals early activation of cytoskeletal and Wnt signaling genes. Consistently, Wnt activation induces the earliest stages of smooth muscle differentiation and local accumulation of mesenchymal F-actin, which influences epithelial morphology. Our single-cell approach uncovers the principles of pulmonary mesenchymal patterning and identifies a morphogenetically active mesenchymal layer that sculpts the airway epithelium. The embryonic lung mesenchyme is organized into spatially distinct compartments Migratory behaviors and cortical forces differ between compartments Diffusion analysis recapitulates airway smooth muscle differentiation The early stages of smooth muscle differentiation influence airway branching
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Hirotaka Tao
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Min Zhu
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Sevan Hopyan
- Program in Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Orthopaedic Surgery, Hospital for Sick Children and University of Toronto, Toronto M5G 1X8, Canada
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Corresponding author
| |
Collapse
|
26
|
Jaslove JM, Goodwin K, Sundarakrishnan A, Spurlin JW, Mao S, Košmrlj A, Nelson CM. Transmural pressure signals through retinoic acid to regulate lung branching. Development 2022; 149:274047. [PMID: 35051272 PMCID: PMC8917413 DOI: 10.1242/dev.199726] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023]
Abstract
During development, the mammalian lung undergoes several rounds of branching, the rate of which is tuned by the relative pressure of the fluid within the lumen of the lung. We carried out bioinformatics analysis of RNA-sequencing of embryonic mouse lungs cultured under physiologic or sub-physiologic transmural pressure and identified transcription factor-binding motifs near genes whose expression changes in response to pressure. Surprisingly, we found retinoic acid (RA) receptor binding sites significantly overrepresented in the promoters and enhancers of pressure-responsive genes. Consistently, increasing transmural pressure activates RA signaling, and pharmacologically inhibiting RA signaling decreases airway epithelial branching and smooth muscle wrapping. We found that pressure activates RA signaling through the mechanosensor Yap. A computational model predicts that mechanical signaling through Yap and RA affects lung branching by altering the balance between epithelial proliferation and smooth muscle wrapping, which we test experimentally. Our results reveal that transmural pressure signals through RA to balance the relative rates of epithelial growth and smooth muscle differentiation in the developing mouse lung and identify RA as a previously unreported component in the mechanotransduction machinery of embryonic tissues.
Collapse
Affiliation(s)
- Jacob M. Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Aswin Sundarakrishnan
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - James W. Spurlin
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, People's Republic of China,Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA,Princeton Institute for the Science & Technology of Materials, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA,Author for correspondence ()
| |
Collapse
|
27
|
Eicher AK, Kechele DO, Sundaram N, Berns HM, Poling HM, Haines LE, Sanchez JG, Kishimoto K, Krishnamurthy M, Han L, Zorn AM, Helmrath MA, Wells JM. Functional human gastrointestinal organoids can be engineered from three primary germ layers derived separately from pluripotent stem cells. Cell Stem Cell 2022; 29:36-51.e6. [PMID: 34856121 PMCID: PMC8741755 DOI: 10.1016/j.stem.2021.10.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/22/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Human organoid model systems lack important cell types that, in the embryo, are incorporated into organ tissues during development. We developed an organoid assembly approach starting with cells from the three primary germ layers-enteric neuroglial, mesenchymal, and epithelial precursors-that were derived separately from human pluripotent stem cells (PSCs). From these three cell types, we generated human antral and fundic gastric tissue containing differentiated glands surrounded by layers of smooth muscle containing functional enteric neurons that controlled contractions of the engineered antral tissue. Using this experimental system, we show that human enteric neural crest cells (ENCCs) promote mesenchyme development and glandular morphogenesis of antral stomach organoids. Moreover, ENCCs can act directly on the foregut to promote a posterior fate, resulting in organoids with a Brunner's gland phenotype. Thus, germ layer components that are derived separately from PSCs can be used for tissue engineering to generate complex human organoids.
Collapse
Affiliation(s)
- Alexandra K. Eicher
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Daniel O. Kechele
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - H. Matthew Berns
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Holly M. Poling
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lauren E. Haines
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - J. Guillermo Sanchez
- College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA,Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Keishi Kishimoto
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,CuSTOM-RIKEN BDR Collaborative Laboratory, CCHMC, Cincinnati, OH, 45229, USA,Laboratory for Lung Development, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, 650-0047, Japan
| | - Mansa Krishnamurthy
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Lu Han
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Aaron M. Zorn
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - Michael A. Helmrath
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA
| | - James M. Wells
- Center for Stem Cell and Organoid Medicine (CuSTOM),Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Division of Endocrinology, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH, 45229, USA,Lead Contact and Corresponding Author,Corresponding Author’s:
| |
Collapse
|
28
|
Palmer MA, Nerger BA, Goodwin K, Sudhakar A, Lemke SB, Ravindran PT, Toettcher JE, Košmrlj A, Nelson CM. Stress ball morphogenesis: How the lizard builds its lung. SCIENCE ADVANCES 2021; 7:eabk0161. [PMID: 34936466 PMCID: PMC8694616 DOI: 10.1126/sciadv.abk0161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The function of the lung is closely coupled to its structural anatomy, which varies greatly across vertebrates. Although architecturally simple, a complex pattern of airflow is thought to be achieved in the lizard lung due to its cavernous central lumen and honeycomb-shaped wall. We find that the wall of the lizard lung is generated from an initially smooth epithelial sheet, which is pushed through holes in a hexagonal smooth muscle meshwork by forces from fluid pressure, similar to a stress ball. Combining transcriptomics with time-lapse imaging reveals that the hexagonal meshwork self-assembles in response to circumferential and axial stresses downstream of pressure. A computational model predicts the pressure-driven changes in epithelial topology, which we probe using optogenetically driven contraction of 3D-printed engineered muscle. These results reveal the physical principles used to sculpt the unusual architecture of the lizard lung, which could be exploited as a novel strategy to engineer tissues.
Collapse
Affiliation(s)
- Michael A. Palmer
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Bryan A. Nerger
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Anvitha Sudhakar
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sandra B. Lemke
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | | | - Jared E. Toettcher
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08544,USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
29
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
30
|
Abstract
Cell packing - the spatial arrangement of cells - determines the shapes of organs. Recently, investigations of organ development in a variety of model organisms have uncovered cellular mechanisms that are used by epithelial tissues to change cell packing, and thereby their shapes, to generate functional architectures. Here, we review these cellular mechanisms across a wide variety of developmental processes in vertebrates and invertebrates and identify a set of common motifs in the morphogenesis toolbox that, in combination, appear to allow any change in tissue shape. We focus on tissue elongation, folding and invagination, and branching. We also highlight how these morphogenetic processes are achieved by cell-shape changes, cell rearrangements, and oriented cell division. Finally, we describe approaches that have the potential to engineer three-dimensional tissues for both basic science and translational purposes. This review provides a framework for future analyses of how tissues are shaped by the dynamics of epithelial cell packing.
Collapse
Affiliation(s)
- Sandra B Lemke
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
31
|
Trenado C, Bonilla LL, Martínez-Calvo A. Fingering instability in spreading epithelial monolayers: roles of cell polarisation, substrate friction and contractile stresses. SOFT MATTER 2021; 17:8276-8290. [PMID: 34374406 DOI: 10.1039/d1sm00626f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Collective cell migration plays a crucial role in many developmental processes that underlie morphogenesis, wound healing, or cancer progression. In such coordinated behaviours, cells are organised in coherent structures and actively migrate to serve different biological purposes. In some contexts, namely during epithelial wound healing, it is well known that a migrating free-edge monolayer develops finger-like instabilities, yet the onset is still under debate. Here, by means of theory and numerical simulations, we shed light on the main mechanisms driving the instability process, analysing the linear and nonlinear dynamics of a continuum compressible polar fluid. In particular, we assess the role of cell polarisation, substrate friction, and contractile stresses. Linear theory shows that it is crucial to analyse the perturbation transient dynamics, since we unravel a plethora of crossovers between different exponential growth rates during the linear regime. Numerical simulations suggest that cell-substrate friction could be the mechanism responsible for the formation of complex finger-like structures at the edge, since it triggers secondary fingering instabilities and tip-splitting phenomena. Finally, we obtain a critical contractile stress that depends on cell-substrate friction and the initial-to-nematic length ratio, characterising an active wetting-dewetting transition. In the dewetting scenario, the monolayer retracts and becomes stable without developing finger-like structures.
Collapse
Affiliation(s)
- Carolina Trenado
- Department of Mathematics, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
| | - Luis L Bonilla
- Department of Mathematics, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
| | - Alejandro Martínez-Calvo
- Grupo de Mecánica de Fluidos, Gregorio Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Wang S, Matsumoto K, Lish SR, Cartagena-Rivera AX, Yamada KM. Budding epithelial morphogenesis driven by cell-matrix versus cell-cell adhesion. Cell 2021; 184:3702-3716.e30. [PMID: 34133940 PMCID: PMC8287763 DOI: 10.1016/j.cell.2021.05.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/19/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023]
Abstract
Many embryonic organs undergo epithelial morphogenesis to form tree-like hierarchical structures. However, it remains unclear what drives the budding and branching of stratified epithelia, such as in the embryonic salivary gland and pancreas. Here, we performed live-organ imaging of mouse embryonic salivary glands at single-cell resolution to reveal that budding morphogenesis is driven by expansion and folding of a distinct epithelial surface cell sheet characterized by strong cell-matrix adhesions and weak cell-cell adhesions. Profiling of single-cell transcriptomes of this epithelium revealed spatial patterns of transcription underlying these cell adhesion differences. We then synthetically reconstituted budding morphogenesis by experimentally suppressing E-cadherin expression and inducing basement membrane formation in 3D spheroid cultures of engineered cells, which required β1-integrin-mediated cell-matrix adhesion for successful budding. Thus, stratified epithelial budding, the key first step of branching morphogenesis, is driven by an overall combination of strong cell-matrix adhesion and weak cell-cell adhesion by peripheral epithelial cells.
Collapse
Affiliation(s)
- Shaohe Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Kazue Matsumoto
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Samantha R Lish
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
33
|
Lang C, Conrad L, Iber D. Organ-Specific Branching Morphogenesis. Front Cell Dev Biol 2021; 9:671402. [PMID: 34150767 PMCID: PMC8212048 DOI: 10.3389/fcell.2021.671402] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
A common developmental process, called branching morphogenesis, generates the epithelial trees in a variety of organs, including the lungs, kidneys, and glands. How branching morphogenesis can create epithelial architectures of very different shapes and functions remains elusive. In this review, we compare branching morphogenesis and its regulation in lungs and kidneys and discuss the role of signaling pathways, the mesenchyme, the extracellular matrix, and the cytoskeleton as potential organ-specific determinants of branch position, orientation, and shape. Identifying the determinants of branch and organ shape and their adaptation in different organs may reveal how a highly conserved developmental process can be adapted to different structural and functional frameworks and should provide important insights into epithelial morphogenesis and developmental disorders.
Collapse
Affiliation(s)
- Christine Lang
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Lisa Conrad
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering, ETH Zürich, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
34
|
Nerger BA, Jaslove JM, Elashal HE, Mao S, Košmrlj A, Link AJ, Nelson CM. Local accumulation of extracellular matrix regulates global morphogenetic patterning in the developing mammary gland. Curr Biol 2021; 31:1903-1917.e6. [PMID: 33705716 PMCID: PMC8119325 DOI: 10.1016/j.cub.2021.02.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/23/2020] [Accepted: 02/08/2021] [Indexed: 01/19/2023]
Abstract
The tree-like pattern of the mammary epithelium is formed during puberty through a process known as branching morphogenesis. Although mammary epithelial branching is stochastic and generates an epithelial tree with a random pattern of branches, the global orientation of the developing epithelium is predictably biased along the long axis of the gland. Here, we combine analysis of pubertal mouse mammary glands, a three-dimensional (3D)-printed engineered tissue model, and computational models of morphogenesis to investigate the origin and the dynamics of the global bias in epithelial orientation during pubertal mammary development. Confocal microscopy analysis revealed that a global bias emerges in the absence of pre-aligned networks of type I collagen in the fat pad and is maintained throughout pubertal development until the widespread formation of lateral branches. Using branching and annihilating random walk simulations, we found that the angle of bifurcation of terminal end buds (TEBs) dictates both the dynamics and the extent of the global bias in epithelial orientation. Our experimental and computational data demonstrate that a local increase in stiffness from the accumulation of extracellular matrix, which constrains the angle of bifurcation of TEBs, is sufficient to pattern the global orientation of the developing mammary epithelium. These data reveal that local mechanical properties regulate the global pattern of mammary epithelial branching and may provide new insight into the global patterning of other branched epithelia.
Collapse
Affiliation(s)
- Bryan A Nerger
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Jacob M Jaslove
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Hader E Elashal
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Mao
- Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Andrej Košmrlj
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
35
|
Conrad L, Runser SVM, Fernando Gómez H, Lang CM, Dumond MS, Sapala A, Schaumann L, Michos O, Vetter R, Iber D. The biomechanical basis of biased epithelial tube elongation in lung and kidney development. Development 2021; 148:261770. [PMID: 33946098 PMCID: PMC8126414 DOI: 10.1242/dev.194209] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
During lung development, epithelial branches expand preferentially in a longitudinal direction. This bias in outgrowth has been linked to a bias in cell shape and in the cell division plane. How this bias arises is unknown. Here, we show that biased epithelial outgrowth occurs independent of the surrounding mesenchyme, of preferential turnover of the extracellular matrix at the bud tips and of FGF signalling. There is also no evidence for actin-rich filopodia at the bud tips. Rather, we find epithelial tubes to be collapsed during early lung and kidney development, and we observe fluid flow in the narrow tubes. By simulating the measured fluid flow inside segmented narrow epithelial tubes, we show that the shear stress levels on the apical surface are sufficient to explain the reported bias in cell shape and outgrowth. We use a cell-based vertex model to confirm that apical shear forces, unlike constricting forces, can give rise to both the observed bias in cell shapes and tube elongation. We conclude that shear stress may be a more general driver of biased tube elongation beyond its established role in angiogenesis. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Lisa Conrad
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Steve Vincent Maurice Runser
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Harold Fernando Gómez
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Christine Michaela Lang
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Mathilde Sabine Dumond
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Aleksandra Sapala
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Laura Schaumann
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Odyssé Michos
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Roman Vetter
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| | - Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Mattenstraße 26, 4058 Basel, Switzerland.,Swiss Institute of Bioinformatics (SIB), Mattenstraße 26, 4058 Basel, Switzerland
| |
Collapse
|
36
|
Donadon M, Santoro MM. The origin and mechanisms of smooth muscle cell development in vertebrates. Development 2021; 148:148/7/dev197384. [PMID: 33789914 DOI: 10.1242/dev.197384] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.
Collapse
Affiliation(s)
- Michael Donadon
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| | - Massimo M Santoro
- Department of Biology, University of Padua, Via U. Bassi 58B, 35121 Padua, Italy
| |
Collapse
|
37
|
Abstract
Branching morphogenesis generates epithelial trees which facilitate gas exchange, filtering, as well as secretion processes with their large surface to volume ratio. In this review, we focus on the developmental mechanisms that control the early stages of lung branching morphogenesis. Lung branching morphogenesis involves the stereotypic, recurrent definition of new branch points, subsequent epithelial budding, and lung tube elongation. We discuss current models and experimental evidence for each of these steps. Finally, we discuss the role of the mesenchyme in determining the organ-specific shape.
Collapse
Affiliation(s)
- Dagmar Iber
- Department of Biosystems, Science and Engineering (D-BSSE), ETH Zurich, Basel, Switzerland; Swiss Institute of Bioinformatics (SIB), Basel, Switzerland.
| |
Collapse
|
38
|
Ortiz-Laverde S, Rengifo C, Cobo M, Figueredo M. Proposal of an open-source computational toolbox for solving PDEs in the context of chemical reaction engineering using FEniCS and complementary components. Heliyon 2021; 7:e05772. [PMID: 33521341 PMCID: PMC7820488 DOI: 10.1016/j.heliyon.2020.e05772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022] Open
Abstract
In this contribution, an open-source computational toolbox composed of FEniCS and complementary packages is introduced to the chemical and process engineering field by addressing two case studies. First, the oxidation of o-xylene to phthalic anhydride is modelled and used as a FEniCS′ proof-of-concept based on a comparison with the software Aspen Custom Modeler (ACM). The results show a maximum absolute error of 2% and thus a good FEniCS/ACM agreement. Second, synthetic natural gas (SNG) production through CO2 methanation is covered in further detail. In this instance, a parametric study is performed for a tube bundle fixed-bed reactor employing a two-dimensional and transient pseudo-homogeneous model. An operating window for critical variables is evaluated, discussed, and successfully contrasted with the literature. Therefore, the computational toolbox methodology and the consistency of the results are validated, strengthening FEniCS and complements as an interesting alternative to solve mathematical models concerning chemical reaction engineering.
Collapse
Affiliation(s)
- Santiago Ortiz-Laverde
- Energy, Materials and Environment Laboratory, Department of Chemical Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia
| | - Camilo Rengifo
- Department of Mathematics, Physics and Statistics, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia
| | - Martha Cobo
- Energy, Materials and Environment Laboratory, Department of Chemical Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia
| | - Manuel Figueredo
- Energy, Materials and Environment Laboratory, Department of Chemical Engineering, Universidad de La Sabana, Campus Universitario Puente del Común, Km. 7 Autopista Norte, Bogotá, Colombia
| |
Collapse
|
39
|
Alisafaei F, Chen X, Leahy T, Janmey PA, Shenoy VB. Long-range mechanical signaling in biological systems. SOFT MATTER 2021; 17:241-253. [PMID: 33136113 PMCID: PMC8385661 DOI: 10.1039/d0sm01442g] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cells can respond to signals generated by other cells that are remarkably far away. Studies from at least the 1920's showed that cells move toward each other when the distance between them is on the order of a millimeter, which is many times the cell diameter. Chemical signals generated by molecules diffusing from the cell surface would move too slowly and dissipate too fast to account for these effects, suggesting that they might be physical rather than biochemical. The non-linear elastic responses of sparsely connected networks of stiff or semiflexible filament such as those that form the extracellular matrix (ECM) and the cytoskeleton have unusual properties that suggest multiple mechanisms for long-range signaling in biological tissues. These include not only direct force transmission, but also highly non-uniform local deformations, and force-generated changes in fiber alignment and density. Defining how fibrous networks respond to cell-generated forces can help design new methods to characterize abnormal tissues and can guide development of improved biomimetic materials.
Collapse
Affiliation(s)
- Farid Alisafaei
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xingyu Chen
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Leahy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA and McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA 19104, USA and Departments of Physiology, and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA. and Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
40
|
Jones MR, Chong L, Bellusci S. Fgf10/Fgfr2b Signaling Orchestrates the Symphony of Molecular, Cellular, and Physical Processes Required for Harmonious Airway Branching Morphogenesis. Front Cell Dev Biol 2021; 8:620667. [PMID: 33511132 PMCID: PMC7835514 DOI: 10.3389/fcell.2020.620667] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Airway branching morphogenesis depends on the intricate orchestration of numerous biological and physical factors connected across different spatial scales. One of the key regulatory pathways controlling airway branching is fibroblast growth factor 10 (Fgf10) signaling via its epithelial fibroblast growth factor receptor 2b (Fgfr2b). Fine reviews have been published on the molecular mechanisms, in general, involved in branching morphogenesis, including those mechanisms, in particular, connected to Fgf10/Fgfr2b signaling. However, a comprehensive review looking at all the major biological and physical factors involved in branching, at the different scales at which branching operates, and the known role of Fgf10/Fgfr2b therein, is missing. In the current review, we attempt to summarize the existing literature on airway branching morphogenesis by taking a broad approach. We focus on the biophysical and mechanical forces directly shaping epithelial bud initiation, branch elongation, and branch tip bifurcation. We then shift focus to more passive means by which branching proceeds, via extracellular matrix remodeling and the influence of the other pulmonary arborized networks: the vasculature and nerves. We end the review by briefly discussing work in computational modeling of airway branching. Throughout, we emphasize the known or speculative effects of Fgfr2b signaling at each point of discussion. It is our aim to promote an understanding of branching morphogenesis that captures the multi-scalar biological and physical nature of the phenomenon, and the interdisciplinary approach to its study.
Collapse
Affiliation(s)
- Matthew R. Jones
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Lei Chong
- National Key Clinical Specialty of Pediatric Respiratory Medicine, Discipline of Pediatric Respiratory Medicine, Institute of Pediatrics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Cardio-Pulmonary Institute and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
41
|
Goodwin K, Nelson CM. Mechanics of Development. Dev Cell 2020; 56:240-250. [PMID: 33321105 DOI: 10.1016/j.devcel.2020.11.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023]
Abstract
Mechanical forces are integral to development-from the earliest stages of embryogenesis to the construction and differentiation of complex organs. Advances in imaging and biophysical tools have allowed us to delve into the developmental mechanobiology of increasingly complex organs and organisms. Here, we focus on recent work that highlights the diversity and importance of mechanical influences during morphogenesis. Developing tissues experience intrinsic mechanical signals from active forces and changes to tissue mechanical properties as well as extrinsic mechanical signals, including constraint and compression, pressure, and shear forces. Finally, we suggest promising avenues for future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
42
|
Goodwin K, Nelson CM. Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics. Curr Top Dev Biol 2020; 143:239-280. [PMID: 33820623 DOI: 10.1016/bs.ctdb.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell RNA-sequencing (scRNA-seq) and related technologies to identify cell types and measure gene expression in space, in time, and within lineages have multiplied rapidly in recent years. As these techniques proliferate, we are seeing an increase in their application to the study of developing tissues. Here, we focus on single-cell investigations of branching morphogenesis. Branched organs are highly complex but typically develop recursively, such that a given developmental stage theoretically contains the entire spectrum of cell identities from progenitor to terminally differentiated. Therefore, branched organs are a highly attractive system for study by scRNA-seq. First, we provide an update on advances in the field of scRNA-seq analysis, focusing on spatial transcriptomics, computational reconstruction of differentiation trajectories, and integration of scRNA-seq with lineage tracing. In addition, we discuss the possibilities and limitations for applying these techniques to studying branched organs. We then discuss exciting advances made using scRNA-seq in the study of branching morphogenesis and differentiation in mammalian organs, with emphasis on the lung, kidney, and mammary gland. We propose ways that scRNA-seq could be used to address outstanding questions in each organ. Finally, we highlight the importance of physical and mechanical signals in branching morphogenesis and speculate about how scRNA-seq and related techniques could be applied to study tissue morphogenesis beyond just differentiation.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
43
|
Palmer MA, Nelson CM. Fusion of airways during avian lung development constitutes a novel mechanism for the formation of continuous lumena in multicellular epithelia. Dev Dyn 2020; 249:1318-1333. [DOI: 10.1002/dvdy.215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michael A. Palmer
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering Princeton University Princeton New Jersey USA
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| |
Collapse
|
44
|
Conway RF, Frum T, Conchola AS, Spence JR. Understanding Human Lung Development through In Vitro Model Systems. Bioessays 2020; 42:e2000006. [PMID: 32310312 PMCID: PMC7433239 DOI: 10.1002/bies.202000006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/28/2020] [Indexed: 12/19/2022]
Abstract
An abundance of information about lung development in animal models exists; however, comparatively little is known about lung development in humans. Recent advances using primary human lung tissue combined with the use of human in vitro model systems, such as human pluripotent stem cell-derived tissue, have led to a growing understanding of the mechanisms governing human lung development. They have illuminated key differences between animal models and humans, underscoring the need for continued advancements in modeling human lung development and utilizing human tissue. This review discusses the use of human tissue and the use of human in vitro model systems that have been leveraged to better understand key regulators of human lung development and that have identified uniquely human features of development. This review also examines the implementation and challenges of human model systems and discusses how they can be applied to address knowledge gaps.
Collapse
Affiliation(s)
- Renee F Conway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Tristan Frum
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Ansley S Conchola
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Cell and Molecular Biology (CMB) Training Program, University of Michigan Medical School, Ann Arbor, MI, 48104, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, 48104, USA
| |
Collapse
|
45
|
Abstract
ABSTRACT
Over the past 5 years, several studies have begun to uncover the links between the classical signal transduction pathways and the physical mechanisms that are used to sculpt branched tissues. These advances have been made, in part, thanks to innovations in live imaging and reporter animals. With modern research tools, our conceptual models of branching morphogenesis are rapidly evolving, and the differences in branching mechanisms between each organ are becoming increasingly apparent. Here, we highlight four branched epithelia that develop at different spatial scales, within different surrounding tissues and via divergent physical mechanisms. Each of these organs has evolved to employ unique branching strategies to achieve a specialized final architecture.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M. Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
46
|
Durel JF, Nerurkar NL. Mechanobiology of vertebrate gut morphogenesis. Curr Opin Genet Dev 2020; 63:45-52. [PMID: 32413823 DOI: 10.1016/j.gde.2020.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/15/2023]
Abstract
Approximately a century after D'Arcy Thompson's On Growth and Form, there continues to be widespread interest in the biophysical and mathematical basis of morphogenesis. Particularly over the past 20 years, this interest has led to great advances in our understanding of a broad range of processes in embryonic development through a quantitative, mechanically driven framework. Nowhere in vertebrate development is this more apparent than the development of endodermally derived organs. Here, we discuss recent advances in the study of gut development that have emerged primarily from mechanobiology-motivated approaches that span from gut tube morphogenesis and later organogenesis of the respiratory and gastrointestinal systems.
Collapse
Affiliation(s)
- John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, United States.
| |
Collapse
|
47
|
Young RE, Jones MK, Hines EA, Li R, Luo Y, Shi W, Verheyden JM, Sun X. Smooth Muscle Differentiation Is Essential for Airway Size, Tracheal Cartilage Segmentation, but Dispensable for Epithelial Branching. Dev Cell 2020; 53:73-85.e5. [PMID: 32142630 PMCID: PMC7540204 DOI: 10.1016/j.devcel.2020.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/10/2019] [Accepted: 01/31/2020] [Indexed: 01/11/2023]
Abstract
Airway smooth muscle is best known for its role as an airway constrictor in diseases such as asthma. However, its function in lung development is debated. A prevalent model, supported by in vitro data, posits that airway smooth muscle promotes lung branching through peristalsis and pushing intraluminal fluid to branching tips. Here, we test this model in vivo by inactivating Myocardin, which prevented airway smooth muscle differentiation. We found that Myocardin mutants show normal branching, despite the absence of peristalsis. In contrast, tracheal cartilage, vasculature, and neural innervation patterns were all disrupted. Furthermore, airway diameter is reduced in the mutant, counter to the expectation that the absence of smooth muscle constriction would lead to a more relaxed and thereby wider airway. These findings together demonstrate that during development, while airway smooth muscle is dispensable for epithelial branching, it is integral for building the tracheal architecture and promoting airway growth.
Collapse
Affiliation(s)
- Randee E Young
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary-Kayt Jones
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elizabeth A Hines
- Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rongbo Li
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Yongfeng Luo
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jamie M Verheyden
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Xin Sun
- Department of Pediatrics, University of California-San Diego, La Jolla, CA 92093, USA; Department of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
48
|
Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proc Natl Acad Sci U S A 2020; 117:7622-7632. [PMID: 32193350 DOI: 10.1073/pnas.1919607117] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During development, organisms acquire three-dimensional (3D) shapes with important physiological consequences. While basic mechanisms underlying morphogenesis are known in eukaryotes, it is often difficult to manipulate them in vivo. To circumvent this issue, here we present a study of developing Vibrio cholerae biofilms grown on agar substrates in which the spatiotemporal morphological patterns were altered by varying the agar concentration. Expanding biofilms are initially flat but later undergo a mechanical instability and become wrinkled. To gain mechanistic insights into this dynamic pattern-formation process, we developed a model that considers diffusion of nutrients and their uptake by bacteria, bacterial growth/biofilm matrix production, mechanical deformation of both the biofilm and the substrate, and the friction between them. Our model shows quantitative agreement with experimental measurements of biofilm expansion dynamics, and it accurately predicts two distinct spatiotemporal patterns observed in the experiments-the wrinkles initially appear either in the peripheral region and propagate inward (soft substrate/low friction) or in the central region and propagate outward (stiff substrate/high friction). Our results, which establish that nonuniform growth and friction are fundamental determinants of stress anisotropy and hence biofilm morphology, are broadly applicable to bacterial biofilms with similar morphologies and also provide insight into how other bacterial biofilms form distinct wrinkle patterns. We discuss the implications of forming undulated biofilm morphologies, which may enhance the availability of nutrients and signaling molecules and serve as a "bet hedging" strategy.
Collapse
|
49
|
Nerger BA, Nelson CM. Engineered extracellular matrices: emerging strategies for decoupling structural and molecular signals that regulate epithelial branching morphogenesis. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 13:103-112. [PMID: 32864528 PMCID: PMC7451493 DOI: 10.1016/j.cobme.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The extracellular matrix (ECM) is a heterogeneous mixture of proteoglycans and fibrous proteins that form the non-cellular component of tissues and organs. During normal development, homeostasis, and disease progression, the ECM provides dynamic structural and molecular signals that influence the form and function of individual cells and multicellular tissues. Here, we review recent developments in the design and fabrication of engineered ECMs and the application of these systems to study the morphogenesis of epithelial tissues. We emphasize emerging techniques for reproducing the structural and molecular complexity of native ECM, and we highlight how these techniques may be used to decouple the different signals that drive epithelial morphogenesis. Engineered models of native ECM will enable further investigation of the dynamic mechanisms by which the microenvironment influences tissue morphogenesis.
Collapse
Affiliation(s)
- Bryan A. Nerger
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
50
|
Zhu L, Xiang J, Wang Q, Wang A, Li C, Tian G, Zhang H, Chen S. Revealing the Interactions Between Diabetes, Diabetes-Related Diseases, and Cancers Based on the Network Connectivity of Their Related Genes. Front Genet 2020; 11:617136. [PMID: 33381155 PMCID: PMC7767993 DOI: 10.3389/fgene.2020.617136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022] Open
Abstract
Diabetes-related diseases (DRDs), especially cancers pose a big threat to public health. Although people have explored pathological pathways of a few common DRDs, there is a lack of systematic studies on important biological processes (BPs) connecting diabetes and its related diseases/cancers. We have proposed and compared 10 protein-protein interaction (PPI)-based computational methods to study the connections between diabetes and 254 diseases, among which a method called DIconnectivity_eDMN performs the best in the sense that it infers a disease rank (according to its relation with diabetes) most consistent with that by literature mining. DIconnectivity_eDMN takes diabetes-related genes, other disease-related genes, a PPI network, and genes in BPs as input. It first maps genes in a BP into the PPI network to construct a BP-related subnetwork, which is expanded (in the whole PPI network) by a random walk with restart (RWR) process to generate a so-called expanded modularized network (eMN). Since the numbers of known disease genes are not high, an RWR process is also performed to generate an expanded disease-related gene list. For each eMN and disease, the expanded diabetes-related genes and disease-related genes are mapped onto the eMN. The association between diabetes and the disease is measured by the reachability of their genes on all eMNs, in which the reachability is estimated by a method similar to the Kolmogorov-Smirnov (KS) test. DIconnectivity_eDMN achieves an area under receiver operating characteristic curve (AUC) of 0.71 for predicting both Type 1 DRDs and Type 2 DRDs. In addition, DIconnectivity_eDMN reveals important BPs connecting diabetes and DRDs. For example, "respiratory system development" and "regulation of mRNA metabolic process" are critical in associating Type 1 diabetes (T1D) and many Type 1 DRDs. It is also found that the average proportion of diabetes-related genes interacting with DRDs is higher than that of non-DRDs.
Collapse
Affiliation(s)
- Lijuan Zhu
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
| | - Ju Xiang
- Neuroscience Research Center, Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Qiuling Wang
- Department of Endocrinology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ailan Wang
- Geneis Beijing Co., Ltd., Beijing, China
| | - Chao Li
- Geneis Beijing Co., Ltd., Beijing, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Huajun Zhang
- College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua, China
- *Correspondence: Huajun Zhang,
| | - Size Chen
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Treatment, Guangzhou, China
- Size Chen,
| |
Collapse
|