1
|
Huang J, Liao C, Yang J, Zhang L. The role of vascular and lymphatic networks in bone and joint homeostasis and pathology. Front Endocrinol (Lausanne) 2024; 15:1465816. [PMID: 39324127 PMCID: PMC11422228 DOI: 10.3389/fendo.2024.1465816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
The vascular and lymphatic systems are integral to maintaining skeletal homeostasis and responding to pathological conditions in bone and joint tissues. This review explores the interplay between blood vessels and lymphatic vessels in bones and joints, focusing on their roles in homeostasis, regeneration, and disease progression. Type H blood vessels, characterized by high expression of CD31 and endomucin, are crucial for coupling angiogenesis with osteogenesis, thus supporting bone homeostasis and repair. These vessels facilitate nutrient delivery and waste removal, and their dysfunction can lead to conditions such as ischemia and arthritis. Recent discoveries have highlighted the presence and significance of lymphatic vessels within bone tissue, challenging the traditional view that bones are devoid of lymphatics. Lymphatic vessels contribute to interstitial fluid regulation, immune cell trafficking, and tissue repair through lymphangiocrine signaling. The pathological alterations in these networks are closely linked to inflammatory joint diseases, emphasizing the need for further research into their co-regulatory mechanisms. This comprehensive review summarizes the current understanding of the structural and functional aspects of vascular and lymphatic networks in bone and joint tissues, their roles in homeostasis, and the implications of their dysfunction in disease. By elucidating the dynamic interactions between these systems, we aim to enhance the understanding of their contributions to skeletal health and disease, potentially informing the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingxiong Huang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Chengcheng Liao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Guizhou, Zunyi, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Liang Zhang
- Center of Stomatology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zhao C, Rong K, Liu P, Kong K, Li H, Zhang P, Chen X, Fu Q, Wang X. Preventing periprosthetic osteolysis in aging populations through lymphatic activation and stem cell-associated secretory phenotype inhibition. Commun Biol 2024; 7:962. [PMID: 39122919 PMCID: PMC11315686 DOI: 10.1038/s42003-024-06664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
With increases in life expectancy, the number of patients requiring joint replacement therapy and experiencing periprosthetic osteolysis, the most common complication leading to implant failure, is growing or underestimated. In this study, we found that osteolysis progression and osteoclast differentiation in the surface of the skull bone of adult mice were accompanied by significant expansion of lymphatic vessels within bones. Using recombinant VEGF-C protein to activate VEGFR3 and promote proliferation of lymphatic vessels in bone, we counteracted excessive differentiation of osteoclasts and osteolysis caused by titanium alloy particles or inflammatory cytokines LPS/TNF-α. However, this effect was not observed in aged mice because adipogenically differentiated mesenchymal stem cells (MSCs) inhibited the response of lymphatic endothelial cells to agonist proteins. The addition of the JAK inhibitor ruxolitinib restored the response of lymphatic vessels to external stimuli in aged mice to protect against osteolysis progression. These findings suggest that inhibiting SASP secretion by adipogenically differentiated MSCs while activating lymphatic vessels in bone offers a new method to prevent periprosthetic osteolysis during joint replacement follow-up.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewei Rong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengcheng Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keyu Kong
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haikuo Li
- Division of Biology & Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, USA
| | - Pu Zhang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoqing Wang
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Zhang D, Xu H, Qin C, Cai K, Zhang J, Xia X, Bi J, Zhang L, Xing L, Liang Q, Wang W. Reduced expression of semaphorin 3A in osteoclasts causes lymphatic expansion in a Gorham-Stout disease (GSD) mouse model. J Zhejiang Univ Sci B 2024; 25:38-50. [PMID: 38163665 PMCID: PMC10758210 DOI: 10.1631/jzus.b2300180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 01/03/2024]
Abstract
Gorham-Stout disease (GSD) is a sporadic chronic disease characterized by progressive bone dissolution, absorption, and disappearance along with lymphatic vessel infiltration in bone-marrow cavities. Although the osteolytic mechanism of GSD has been widely studied, the cause of lymphatic hyperplasia in GSD is rarely investigated. In this study, by comparing the RNA expression profile of osteoclasts (OCs) with that of OC precursors (OCPs) by RNA sequencing, we identified a new factor, semaphorin 3A (Sema3A), which is an osteoprotective factor involved in the lymphatic expansion of GSD. Compared to OCPs, OCs enhanced the growth, migration, and tube formation of lymphatic endothelial cells (LECs), in which the expression of Sema3A is low compared to that in OCPs. In the presence of recombinant Sema3A, the growth, migration, and tube formation of LECs were inhibited, further confirming the inhibitory effect of Sema3A on LECs in vitro. Using an LEC-induced GSD mouse model, the effect of Sema3A was examined by injecting lentivirus-expressing Sema3A into the tibiae in vivo. We found that the overexpression of Sema3A in tibiae suppressed the expansion of LECs and alleviated bone loss, whereas the injection of lentivirus expressing Sema3A short hairpin RNA (shRNA) into the tibiae caused GSD-like phenotypes. Histological staining further demonstrated that OCs decreased and osteocalcin increased after Sema3A lentiviral treatment, compared with the control. Based on the above results, we propose that reduced Sema3A in OCs is one of the mechanisms contributing to the pathogeneses of GSD and that expressing Sema3A represents a new approach for the treatment of GSD.
Collapse
Affiliation(s)
- Dongfang Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Hao Xu
- Longhua Hospital & Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai 201203, China
| | - Chi Qin
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Kangming Cai
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Jing Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Xinqiu Xia
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Jingwen Bi
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Li Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester 14642, USA
| | - Qianqian Liang
- Longhua Hospital & Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. ,
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai 201203, China. ,
| | - Wensheng Wang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
4
|
McCarter AL, Dellinger MT. Trametinib inhibits lymphatic vessel invasion of bone in a mouse model of Gorham-Stout disease. JOURNAL OF VASCULAR ANOMALIES 2023; 4:e070. [PMID: 38737531 PMCID: PMC11086970 DOI: 10.1097/jova.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Objective Gorham-Stout disease (GSD) is a rare lymphatic anomaly that can be caused by somatic activating mutations in KRAS. This discovery has led investigators to suggest that MEK inhibitors could be a novel treatment for GSD. However, the effect of MEK inhibitors on bone disease in animal models of GSD has not been investigated. We recently reported that Osx-tTA;TetO-Vegfc mice exhibit a phenotype that resembles GSD. Osx-tTA;TetO-Vegfc mice overexpress VEGF-C in bone, which stimulates the development of lymphatic vessels in bone and the gradual loss of cortical bone. The objective of this study was to characterize the effect of trametinib, an FDA-approved MEK1/2 inhibitor, on lymphangiogenesis and osteolysis in Osx-tTA;TetO-Vegfc mice. Methods Immunoblotting was performed to assess the effect of trametinib on VEGF-C-induced phosphorylation of ERK1/2, AKT, and S6 in primary human lymphatic endothelial cells (LECs). Prevention and intervention experiments were performed to determine the effect of trametinib on lymphangiogenesis and osteolysis in Osx-tTA;TetO-Vegfc mice. Results We found that trametinib blocked VEGF-C-induced phosphorylation of ERK1/2 in primary human LECs. We also found that trametinib prevented VEGF-C-induced lymphatic invasion of bone and cortical bone loss in Osx-tTA;TetO-Vegfc mice. Additionally, trametinib slowed the progression of disease in Osx-tTA;TetO-Vegfc mice with established disease. However, it did not reverse disease in Osx-tTA;TetO-Vegfc mice. Conclusion Our results show trametinib impacts bone disease in Osx-tTA;TetO-Vegfc mice. These findings further support the testing of MEK inhibitors in patients with GSD and other RAS pathway-driven complex lymphatic anomalies with bone involvement.
Collapse
Affiliation(s)
- Anna L. McCarter
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael T. Dellinger
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Solorzano E, Alejo AL, Ball HC, Robinson GT, Solorzano AL, Safadi R, Douglas J, Kelly M, Safadi FF. The Lymphatic Endothelial Cell Secretome Inhibits Osteoblast Differentiation and Bone Formation. Cells 2023; 12:2482. [PMID: 37887326 PMCID: PMC10605748 DOI: 10.3390/cells12202482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Complex lymphatic anomalies (CLAs) are a set of rare diseases with unique osteopathic profiles. Recent efforts have identified how lymphatic-specific somatic activating mutations can induce abnormal lymphatic formations that are capable of invading bone and inducing bone resorption. The abnormal bone resorption in CLA patients has been linked to overactive osteoclasts in areas with lymphatic invasions. Despite these findings, the mechanism associated with progressive bone loss in CLAs remains to be elucidated. In order to determine the role of osteoblasts in CLAs, we sought to assess osteoblast differentiation and bone formation when exposed to the lymphatic endothelial cell secretome. When treated with lymphatic endothelial cell conditioned medium (L-CM), osteoblasts exhibited a significant decrease in proliferation, differentiation, and function. Additionally, L-CM treatment also inhibited bone formation through a neonatal calvaria explant culture. These findings are the first to reveal how osteoblasts may be actively suppressed during bone lymphatic invasion in CLAs.
Collapse
Affiliation(s)
- Ernesto Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
| | - Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Gabrielle T. Robinson
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
| | - Andrea L. Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
| | - Rama Safadi
- College of Arts and Sciences, Kent State University, Kent, OH 44243, USA;
| | - Jacob Douglas
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
| | - Michael Kelly
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
- Department of Pediatric Hematology Oncology and Blood, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (G.T.R.); (A.L.S.)
- Musculoskeletal Research Group, NEOMED, Rootstown, OH 44272, USA;
- Basic and Translational Biomedicine (BTB) Graduate Program, College of Graduate Studies, NEOMED, Rootstown, OH 44272, USA;
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
6
|
Mehrara BJ, Radtke AJ, Randolph GJ, Wachter BT, Greenwel P, Rovira II, Galis ZS, Muratoglu SC. The emerging importance of lymphatics in health and disease: an NIH workshop report. J Clin Invest 2023; 133:e171582. [PMID: 37655664 PMCID: PMC10471172 DOI: 10.1172/jci171582] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
The lymphatic system (LS) is composed of lymphoid organs and a network of vessels that transport interstitial fluid, antigens, lipids, cholesterol, immune cells, and other materials in the body. Abnormal development or malfunction of the LS has been shown to play a key role in the pathophysiology of many disease states. Thus, improved understanding of the anatomical and molecular characteristics of the LS may provide approaches for disease prevention or treatment. Recent advances harnessing single-cell technologies, clinical imaging, discovery of biomarkers, and computational tools have led to the development of strategies to study the LS. This Review summarizes the outcomes of the NIH workshop entitled "Yet to be Charted: Lymphatic System in Health and Disease," held in September 2022, with emphasis on major areas for advancement. International experts showcased the current state of knowledge regarding the LS and highlighted remaining challenges and opportunities to advance the field.
Collapse
Affiliation(s)
- Babak J. Mehrara
- Department of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brianna T. Wachter
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Patricia Greenwel
- Division of Digestive Diseases & Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, and
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
7
|
González-Hernández S, Mukouyama YS. Lymphatic vasculature in the central nervous system. Front Cell Dev Biol 2023; 11:1150775. [PMID: 37091974 PMCID: PMC10119411 DOI: 10.3389/fcell.2023.1150775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
The central nervous system (CNS) is considered as an immune privilege organ, based on experiments in the mid 20th century showing that the brain fails to mount an efficient immune response against an allogeneic graft. This suggests that in addition to the presence of the blood-brain barrier (BBB), the apparent absence of classical lymphatic vasculature in the CNS parenchyma limits the capacity for an immune response. Although this view is partially overturned by the recent discovery of the lymphatic-like hybrid vessels in the Schlemm's canal in the eye and the lymphatic vasculature in the outmost layer of the meninges, the existence of lymphatic vessels in the CNS parenchyma has not been reported. Two potential mechanisms by which lymphatic vasculature may arise in the organs are: 1) sprouting and invasion of lymphatic vessels from the surrounding tissues into the parenchyma and 2) differentiation of blood endothelial cells into lymphatic endothelial cells in the parenchyma. Considering these mechanisms, we here discuss what causes the dearth of lymphatic vessels specifically in the CNS parenchyma.
Collapse
|
8
|
Fin ray branching is defined by TRAP + osteolytic tubules in zebrafish. Proc Natl Acad Sci U S A 2022; 119:e2209231119. [PMID: 36417434 PMCID: PMC9889879 DOI: 10.1073/pnas.2209231119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The shaping of bone structures relies on various cell types and signaling pathways. Here, we use the zebrafish bifurcating fin rays during regeneration to investigate bone patterning. We found that the regenerating fin rays form via two mineralization fronts that undergo an osteoblast-dependent fusion/stitching until the branchpoint, and that bifurcation is not simply the splitting of one unit into two. We identified tartrate-resistant acid phosphatase-positive osteolytic tubular structures at the branchpoints, hereafter named osteolytic tubules (OLTs). Chemical inhibition of their bone-resorbing activity strongly impairs ray bifurcation, indicating that OLTs counteract the stitching process. Furthermore, by testing different osteoactive compounds, we show that the position of the branchpoint depends on the balance between bone mineralization and resorption activities. Overall, these findings provide a unique perspective on fin ray formation and bifurcation, and reveal a key role for OLTs in defining the proximo-distal position of the branchpoint.
Collapse
|
9
|
Solorzano E, Alejo AL, Ball HC, Magoline J, Khalil Y, Kelly M, Safadi FF. Osteopathy in Complex Lymphatic Anomalies. Int J Mol Sci 2022; 23:ijms23158258. [PMID: 35897834 PMCID: PMC9332568 DOI: 10.3390/ijms23158258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Complex Lymphatic Anomalies (CLA) are lymphatic malformations with idiopathic bone and soft tissue involvement. The extent of the abnormal lymphatic presentation and boney invasion varies between subtypes of CLA. The etiology of these diseases has proven to be extremely elusive due to their rarity and irregular progression. In this review, we compiled literature on each of the four primary CLA subtypes and discuss their clinical presentation, lymphatic invasion, osseous profile, and regulatory pathways associated with abnormal bone loss caused by the lymphatic invasion. We highlight key proliferation and differentiation pathways shared between lymphatics and bone and how these systems may interact with each other to stimulate lymphangiogenesis and cause bone loss.
Collapse
Affiliation(s)
- Ernesto Solorzano
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Andrew L. Alejo
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Hope C. Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Joseph Magoline
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Yusuf Khalil
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
| | - Michael Kelly
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Department of Pediatric Hematology Oncology and Blood, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Fayez F. Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA; (E.S.); (A.L.A.); (H.C.B.); (J.M.); (Y.K.); (M.K.)
- Musculoskeletal Research Group, Northeast Ohio Medical University (NEOMED), Rootstown, OH 44272, USA
- Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44243, USA
- Correspondence: ; Tel.: +1-330-325-6619
| |
Collapse
|
10
|
Masood F, Bhattaram R, Rosenblatt MI, Kazlauskas A, Chang JH, Azar DT. Lymphatic Vessel Regression and Its Therapeutic Applications: Learning From Principles of Blood Vessel Regression. Front Physiol 2022; 13:846936. [PMID: 35392370 PMCID: PMC8980686 DOI: 10.3389/fphys.2022.846936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
Aberrant lymphatic system function has been increasingly implicated in pathologies such as lymphedema, organ transplant rejection, cardiovascular disease, obesity, and neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. While some pathologies are exacerbated by lymphatic vessel regression and dysfunction, induced lymphatic regression could be therapeutically beneficial in others. Despite its importance, our understanding of lymphatic vessel regression is far behind that of blood vessel regression. Herein, we review the current understanding of blood vessel regression to identify several hallmarks of this phenomenon that can be extended to further our understanding of lymphatic vessel regression. We also summarize current research on lymphatic vessel regression and an array of research tools and models that can be utilized to advance this field. Additionally, we discuss the roles of lymphatic vessel regression and dysfunction in select pathologies, highlighting how an improved understanding of lymphatic vessel regression may yield therapeutic insights for these disease states.
Collapse
|
11
|
Martin-Almedina S, Mortimer PS, Ostergaard P. Development and physiological functions of the lymphatic system: insights from human genetic studies of primary lymphedema. Physiol Rev 2021; 101:1809-1871. [PMID: 33507128 DOI: 10.1152/physrev.00006.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.
Collapse
Affiliation(s)
- Silvia Martin-Almedina
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| | - Peter S Mortimer
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities NHS Foundation Trust, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
12
|
Homayun-Sepehr N, McCarter AL, Helaers R, Galant C, Boon LM, Brouillard P, Vikkula M, Dellinger MT. KRAS-driven model of Gorham-Stout disease effectively treated with trametinib. JCI Insight 2021; 6:e149831. [PMID: 34156985 PMCID: PMC8410066 DOI: 10.1172/jci.insight.149831] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Gorham-Stout disease (GSD) is a sporadically occurring lymphatic disorder. Patients with GSD develop ectopic lymphatics in bone, gradually lose bone, and can have life-threatening complications, such as chylothorax. The etiology of GSD is poorly understood, and current treatments for this disease are inadequate for most patients. To explore the pathogenesis of GSD, we performed targeted high-throughput sequencing with samples from a patient with GSD and identified an activating somatic mutation in KRAS (p.G12V). To characterize the effect of hyperactive KRAS signaling on lymphatic development, we expressed an active form of KRAS (p.G12D) in murine lymphatics (iLECKras mice). We found that iLECKras mice developed lymphatics in bone, which is a hallmark of GSD. We also found that lymphatic valve development and maintenance was altered in iLECKras mice. Because most iLECKras mice developed chylothorax and died before they had significant bone disease, we analyzed the effect of trametinib (an FDA-approved MEK1/2 inhibitor) on lymphatic valve regression in iLECKras mice. Notably, we found that trametinib suppressed this phenotype in iLECKras mice. Together, our results demonstrate that somatic activating mutations in KRAS can be associated with GSD and reveal that hyperactive KRAS signaling stimulates the formation of lymphatics in bone and impairs the development of lymphatic valves. These findings provide insight into the pathogenesis of GSD and suggest that trametinib could be an effective treatment for GSD.
Collapse
Affiliation(s)
- Nassim Homayun-Sepehr
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Anna L McCarter
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Raphaël Helaers
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | | | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, European Reference Network for Rare Multisystemic Vascular Diseases, Vascular Anomalies Working Group, European Reference Centre, Brussels, Belgium
| | - Pascal Brouillard
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Division of Plastic Surgery, Cliniques universitaires Saint-Luc, University of Louvain, European Reference Network for Rare Multisystemic Vascular Diseases, Vascular Anomalies Working Group, European Reference Centre, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, University of Louvain, Brussels, Belgium
| | - Michael T Dellinger
- Division of Surgical Oncology, Department of Surgery and Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, Texas, USA.,Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
13
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
14
|
Serrano-Lopez J, Hegde S, Kumar S, Serrano J, Fang J, Wellendorf AM, Roche PA, Rangel Y, Carrington LJ, Geiger H, Grimes HL, Luther S, Maillard I, Sanchez-Garcia J, Starczynowski DT, Cancelas JA. Inflammation rapidly recruits mammalian GMP and MDP from bone marrow into regional lymphatics. eLife 2021; 10:e66190. [PMID: 33830019 PMCID: PMC8137144 DOI: 10.7554/elife.66190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Innate immune cellular effectors are actively consumed during systemic inflammation, but the systemic traffic and the mechanisms that support their replenishment remain unknown. Here, we demonstrate that acute systemic inflammation induces the emergent activation of a previously unrecognized system of rapid migration of granulocyte-macrophage progenitors and committed macrophage-dendritic progenitors, but not other progenitors or stem cells, from bone marrow (BM) to regional lymphatic capillaries. The progenitor traffic to the systemic lymphatic circulation is mediated by Ccl19/Ccr7 and is NF-κB independent, Traf6/IκB-kinase/SNAP23 activation dependent, and is responsible for the secretion of pre-stored Ccl19 by a subpopulation of CD205+/CD172a+ conventional dendritic cells type 2 and upregulation of BM myeloid progenitor Ccr7 signaling. Mature myeloid Traf6 signaling is anti-inflammatory and necessary for lymph node myeloid cell development. This report unveils the existence and the mechanistic basis of a very early direct traffic of myeloid progenitors from BM to lymphatics during inflammation.
Collapse
Affiliation(s)
- Juana Serrano-Lopez
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Shailaja Hegde
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sachin Kumar
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Josefina Serrano
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Jing Fang
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Ashley M Wellendorf
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Paul A Roche
- Center for Cancer Research, National Cancer InstituteBethesdaUnited States
- Experimental Immunology Branch, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Yamileth Rangel
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | | | - Hartmut Geiger
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Institute of Molecular Medicine, Ulm UniversityUlmGermany
| | - H Leighton Grimes
- Immunobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
| | - Sanjiv Luther
- Center for Immunity and Infection, Department of Biochemistry, University of LausanneEpalingesSwitzerland
| | - Ivan Maillard
- University of Pennsylvania Perelman School of MedicinePhiladelphiaUnited States
| | - Joaquin Sanchez-Garcia
- Hematology Department, Reina Sofía University Hospital/Maimonides Biomedical Research Institute of Córdoba (IMIBIC)/University of CórdobaCórdobaSpain
| | - Daniel T Starczynowski
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Department of Cancer Biology, University of CincinnatiCincinnatiUnited States
| | - Jose A Cancelas
- Divisions of Experimental Hematology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUnited States
- Hoxworth Blood Center, University of Cincinnati College of MedicineCincinnatiUnited States
| |
Collapse
|
15
|
McCarter AL, Khalid A, Yi Y, Monroy M, Zhao H, Rios JJ, Dellinger MT. Bone development and fracture healing is normal in mice that have a defect in the development of the lymphatic system. Lymphology 2020; 53:162-171. [PMID: 33721923 PMCID: PMC8489280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ectopic lymphatics form in bone and promote bone destruction in diseases such as Gorham-Stout disease, generalized lymphatic anomaly, and kaposiform lymphangiomatosis. However, the role lymphatics serve in normal bone development and repair is poorly understood. The objective of this study was to characterize bone development and fracture healing in mice that have a defect in the development of the lymphatic vasculature. We found that bones in wild-type adult mice and mouse embryos did not have lymphatics. We also found that bone development was normal in Vegfr3 (Chy/Chy) embryos. These mice do not have lymphatics and die shortly after birth. To determine whether lymphatics serve a role in postnatal bone development and fracture healing, we analyzed bones from Vegfr3 (wt/Chy) mice. These mice are viable and have fewer lymphatics than wild-type mice. We found that postnatal bone development and fracture healing was normal in Vegfr3 (wt/Chy) mice. Taken together, our results suggest that lymphatics do not play a major role in normal bone development or repair.
Collapse
Affiliation(s)
- Anna L. McCarter
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Aysha Khalid
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
| | - Yating Yi
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Marco Monroy
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hu Zhao
- Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Jonathan J. Rios
- Center for Pediatric Bone Biology and Translational Research, Scottish Rite for Children, Dallas, TX, USA
- McDermott Center for Human Growth and Development, Department of Pediatrics, Department of Orthopedic Surgery, and the Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael T. Dellinger
- Division of Surgical Oncology, Department of Surgery and the Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|