1
|
Xie L, Jakutis G, Dooley CM, Guenther S, Kontarakis Z, Howard SP, Juan T, Stainier DYR. Induction of a transcriptional adaptation response by RNA destabilization events. EMBO Rep 2025; 26:2262-2279. [PMID: 40128410 PMCID: PMC12069562 DOI: 10.1038/s44319-025-00427-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025] Open
Abstract
Transcriptional adaptation (TA) is a cellular process whereby mRNA-destabilizing mutations are associated with the transcriptional upregulation of so-called adapting genes. The nature of the TA-triggering factor(s) remains unclear, namely whether an mRNA-borne premature termination codon or the subsequent mRNA decay process, and/or its products, elicits TA. Here, working with mouse Actg1, we first establish two types of perturbations that lead to mRNA destabilization: Cas9-induced mutations predicted to lead to mutant mRNA decay, and Cas13d-mediated mRNA cleavage. We find that both types of perturbations are effective in degrading Actg1 mRNA, and that they both upregulate Actg2. Notably, increased chromatin accessibility at the Actg2 locus was observed only in the Cas9-induced mutant cells but not in the Cas13d-targeted cells, suggesting that chromatin remodeling is not required for Actg2 upregulation. We further show that ribozyme-mediated Actg1 pre-mRNA cleavage also leads to a robust upregulation of Actg2, and that this upregulation is again independent of chromatin remodeling. Together, these data highlight the critical role of RNA destabilization events as a trigger for TA, or at least a TA-like response.
Collapse
Affiliation(s)
- Lihan Xie
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany
| | - Gabrielius Jakutis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany
| | - Christopher M Dooley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany
| | - Zacharias Kontarakis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany
- Genome Engineering and Measurement Laboratory (GEML), Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
- Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, 8057, Switzerland
| | - Sarah P Howard
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Giessen, Frankfurt, Germany.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75 185, Sweden.
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Giessen, Frankfurt, Germany.
| |
Collapse
|
2
|
Falcucci L, Dooley CM, Adamoski D, Juan T, Martinez J, Georgieva AM, Mamchaoui K, Cirzi C, Stainier DYR. Transcriptional adaptation upregulates utrophin in Duchenne muscular dystrophy. Nature 2025; 639:493-502. [PMID: 39939773 PMCID: PMC11903304 DOI: 10.1038/s41586-024-08539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/17/2024] [Indexed: 02/14/2025]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle-degenerating disease caused by mutations in the DMD gene, which encodes the dystrophin protein1,2. Utrophin (UTRN), the genetic and functional paralogue of DMD, is upregulated in some DMD patients3-5. To further investigate this UTRN upregulation, we first developed an inducible messenger RNA (mRNA) degradation system for DMD by introducing a premature termination codon (PTC) in one of its alternatively spliced exons. Inclusion of the PTC-containing exon triggers DMD mutant mRNA decay and UTRN upregulation. Notably, blocking nonsense-mediated mRNA decay results in the reversal of UTRN upregulation, whereas overexpressing DMD does not. Furthermore, overexpressing DMDPTC minigenes in wild-type cells causes UTRN upregulation, as does a wild-type DMD minigene containing a self-cleaving ribozyme. To place these findings in a therapeutic context, we used splice-switching antisense oligonucleotides (ASOs) to induce the skipping of out-of-frame exons of DMD, aiming to introduce PTCs. We found that these ASOs cause UTRN upregulation. In addition, when using an ASO to restore the DMD reading frame in myotubes derived from a DMDΔE52 patient, an actual DMD treatment, UTRN upregulation was reduced. Altogether, these results indicate that an mRNA decay-based mechanism called transcriptional adaptation6-8 plays a key role in UTRN upregulation in DMDPTC patients, and they highlight an unexplored therapeutic application of ASOs, as well as ribozymes, in inducing genetic compensation via transcriptional adaptation.
Collapse
Affiliation(s)
- Lara Falcucci
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Christopher M Dooley
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Douglas Adamoski
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Justin Martinez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Angelina M Georgieva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Cansu Cirzi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Excellence Cluster Cardio-Pulmonary Institute, Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
3
|
Juvik B, Falcucci L, Lundegaard PR, Stainier DYR. A new hypothesis to explain disease dominance. Trends Genet 2025; 41:187-193. [PMID: 39788833 DOI: 10.1016/j.tig.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
The onset and progression of dominant diseases are thought to result from haploinsufficiency or dominant negative effects. Here, we propose transcriptional adaptation (TA), a newly identified response to mRNA decay, as an additional cause of some dominant diseases. TA modulates the expression of so-called adapting genes, likely via mRNA decay products, resulting in genetic compensation or a worsening of the phenotype. Recent studies have challenged the current concepts of haploinsufficiency or poison proteins as the mechanisms underlying certain dominant diseases, including Brugada syndrome, hypertrophic cardiomyopathy, and frontotemporal lobar degeneration. We hypothesize that for these and other dominant diseases, when the underlying mutation leads to mRNA decay, the phenotype is due at least partly to the dysregulation of gene expression via TA.
Collapse
Affiliation(s)
- Brian Juvik
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany
| | - Lara Falcucci
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany
| | - Pia R Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany.
| |
Collapse
|
4
|
Mead TJ, Bhutada S, Peruzzi N, Adegboye J, Seifert DE, Cahill E, Drinko J, Donnellan E, Guggiliam A, Popovic Z, Griffin B, Tran-Lundmark K, Apte SS. ADAMTS7, a target in atherosclerosis, cooperates with its homolog ADAMTS12 to protect against myxomatous valve degeneration. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100288. [PMID: 40115634 PMCID: PMC11925103 DOI: 10.1016/j.jmccpl.2025.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/23/2025]
Abstract
The physiological roles of the metalloprotease-proteoglycan ADAMTS7, a drug target in atherosclerosis and vascular restenosis, and its homolog ADAMTS12, are undefined in the cardiovascular system. The objective of the present work was to investigate their roles in mice with genetic inactivation of both proteases and in relation to the resulting valve defects, to define their proteolytic activities in the matrisome. Here, we demonstrate that Adamts7 and Adamts12 are co-expressed in heart valves and each buffers inactivation of the other by compensatory upregulation. Leaflets of Adamts7 -/-;Adamts12 -/- aortic valves, but not the respective single mutants, were abnormally shaped at birth, with progressively severe disorganization and enlargement occurring thereafter. Doppler echocardiography showed that Adamts7 -/-;Adamts12 -/- mice had stenotic and regurgitant aortic valves. We investigated ADAMTS7 and ADAMTS12 substrates relevant to the valve matrisome in secretome libraries from Adamts7 -/-;Adamts12 -/- cells using the N-terminomics technique Terminal Amine Isotopic Labeling of Substrates (TAILS). Although ADAMTS7 and ADAMTS12 shared several extracellular matrix (ECM) substrates, cleavage sites and sequence preference for each protease were distinct. Adamts7 -/-;Adamts12 -/- valve leaflets showed accumulation of several of the identified ECM substrates, including periostin, a matricellular protein crucial for cardiac valve homeostasis. We conclude that the myxomatous degeneration in Adamts7 -/-;Adamts12 -/- valve leaflets reflects a complex disturbance of ECM proteostasis with accumulation of multiple ADAMTS7 and ADAMTS12 ECM substrates, and perturbation of regulatory pathways with roots in ECM, such as TGFβ signaling, which was increased in the mutant valves.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Niccolò Peruzzi
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Janet Adegboye
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deborah E Seifert
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Elisabeth Cahill
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Jeanne Drinko
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Eoin Donnellan
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Anu Guggiliam
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Zoran Popovic
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Griffin
- Department of Cardiovascular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Karin Tran-Lundmark
- Department of Experimental Medical Science and Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| |
Collapse
|
5
|
Kuse R, Ishii K. Mutations in the 5' untranslated region fine-tune translational control of heterologously expressed genes. Genes Genet Syst 2025; 100:n/a. [PMID: 39662905 DOI: 10.1266/ggs.24-00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Strict control of the expression levels of heterologously introduced protein-coding genes is important for the functional analysis of the protein of interest and its effective use in new situations. For this purpose, various promoters with different expression strengths, codon optimization, and expression stimulation by low-molecular-weight compounds are commonly used. However, methods to control protein expression levels by combining regulation of translation efficiency have not been studied in detail. We previously observed relatively high basal expression of Cre when it was heterologously expressed in fission yeast. Here, we used a fission yeast strain that is susceptible to centromere disruption, and thus highly sensitive to Cre levels, and report successful fine-tuning of heterologous Cre expression by modulating the Cre translation efficiency. To inhibit Cre translation initiation, we generated two mutations in the 5' untranslated region of the Cre mRNAs, both of which interfered with the scanning process of start codon recognition, mediated by specialized ribosomal subunits. These mutations successfully reduced the levels of exogenously expressed Cre to different degrees in fission yeast. Combining them with promoters of different strengths allowed us to conduct centromere disruption experiments in fission yeast. Our data indicate that modification of translational control is an additional tool in heterologous gene expression.
Collapse
Affiliation(s)
- Riku Kuse
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology
| | - Kojiro Ishii
- Laboratory of Chromosome Function and Regulation, Graduate School of Engineering, Kochi University of Technology
| |
Collapse
|
6
|
Pinto J, Balarezo-Cisneros LN, Delneri D. Exploring adaptation routes to cold temperatures in the Saccharomyces genus. PLoS Genet 2025; 21:e1011199. [PMID: 39970180 PMCID: PMC11875353 DOI: 10.1371/journal.pgen.1011199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The identification of traits that affect adaptation of microbial species to external abiotic factors, such as temperature, is key for our understanding of how biodiversity originates and can be maintained in a constantly changing environment. The Saccharomyces genus, which includes eight species with different thermotolerant profiles, represent an ideal experimental platform to study the impact of adaptive alleles in different genetic backgrounds. Previous studies identified a group of adaptive genes for maintenance of growth at lower temperatures. Here, we carried out a genus-wide assessment of the role of genes partially responsible for cold-adaptation in all eight Saccharomyces species for six candidate genes. We showed that the cold tolerance trait of S. kudriavzevii and S. eubayanus is likely to have evolved from different routes, involving genes important for the conservation of redox-balance, and for the long-chain fatty acid metabolism, respectively. For several loci, temperature- and species-dependent epistasis was detected, underscoring the plasticity and complexity of the genetic interactions. The natural isolates of S. kudriavzevii, S. jurei and S. mikatae had a significantly higher expression of the genes involved in the redox balance compared to S. cerevisiae, suggesting a role at transcriptional level. To distinguish the effects of gene expression from allelic variation, we independently replaced either the promoters or the coding sequences (CDS) of two genes in four yeast species with those derived from S. kudriavzevii. Our data consistently showed a significant fitness improvement at cold temperatures in the strains carrying the S. kudriavzevii promoter, while growth was lower upon CDS swapping. These results suggest that transcriptional strength plays a bigger role in growth maintenance at cold temperatures over the CDS and supports a model of adaptation centred on stochastic tuning of the expression network.
Collapse
Affiliation(s)
- Javier Pinto
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Laura Natalia Balarezo-Cisneros
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Faculty of Biology Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Teicher G, Riffe RM, Barnaby W, Martin G, Clayton BE, Trapani JG, Downes GB. Marigold: a machine learning-based web app for zebrafish pose tracking. BMC Bioinformatics 2025; 26:30. [PMID: 39875867 PMCID: PMC11773884 DOI: 10.1186/s12859-025-06042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise. Here, we introduce Marigold, a free and open source web app for high-throughput behavioral analysis of embryonic and larval zebrafish. RESULTS Marigold features an intuitive graphical user interface, tracks up to 10 user-defined keypoints, supports both single- and multiwell formats, and exports a range of kinematic parameters in addition to publication-quality data visualizations. By leveraging a highly efficient, custom-designed neural network architecture, Marigold achieves reasonable training and inference speeds even on modestly powered computers lacking a discrete graphics processing unit. Notably, as a web app, Marigold does not require any installation and runs within popular web browsers on ChromeOS, Linux, macOS, and Windows. To demonstrate Marigold's utility, we used two sets of biological experiments. First, we examined novel aspects of the touch-evoked escape response in techno trousers (tnt) mutant embryos, which contain a previously described loss-of-function mutation in the gene encoding Eaat2b, a glial glutamate transporter. We identified differences and interactions between touch location (head vs. tail) and genotype. Second, we investigated the effects of feeding on larval visuomotor behavior at 5 and 7 days post-fertilization (dpf). We found differences in the number and vigor of swimming bouts between fed and unfed fish at both time points, as well as interactions between developmental stage and feeding regimen. CONCLUSIONS In both biological experiments presented here, the use of Marigold facilitated novel behavioral findings. Marigold's ease of use, robust pose tracking, amenability to diverse experimental paradigms, and flexibility regarding hardware requirements make it a powerful tool for analyzing zebrafish behavior, especially in low-resource settings such as course-based undergraduate research experiences. Marigold is available at: https://downeslab.github.io/marigold/ .
Collapse
Affiliation(s)
- Gregory Teicher
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
| | - R Madison Riffe
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Wayne Barnaby
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Gabrielle Martin
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Benjamin E Clayton
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Josef G Trapani
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
- Biology Department, Amherst College, Amherst, MA, USA
- Neuroscience Program, Amherst College, Amherst, MA, USA
| | - Gerald B Downes
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA.
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
8
|
Dong J, Willner I. Photochemically Triggered, Transient, and Oscillatory Transcription Machineries Guide Temporal Modulation of Fibrinogenesis. J Am Chem Soc 2025; 147:2216-2227. [PMID: 39740143 PMCID: PMC11744759 DOI: 10.1021/jacs.4c16829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Photochemically triggered, transient, and temporally oscillatory-modulated transcription machineries are introduced. The resulting dynamic transcription circuits are implemented to guide photochemically triggered, transient, and oscillatory modulation of thrombin toward temporal control over fibrinogenesis. One system describes the assembly of a reaction module leading to the photochemically triggered formation of an active transcription machinery that, in the presence of RNase H, guides the transient activation of thrombin toward fibrinogenesis. A second system introduces photochemical triggering of a reaction circuit consisting of two coupled transcription machineries, leading to the temporally oscillatory formation and depletion of an intermediate reaction product. The concept is applied to develop a photochemically triggered transcription circuit that, in the presence of RNase H, leads to the oscillatory generation of an intermediate anti-thrombin aptamer-modified product. The oscillating aptamer-modified product induces the rhythmic inhibition of thrombin, accompanied by the cyclic activation and deactivation of the fibrinogenesis process. The operation of the transient and oscillatory-modulated transcription machinery reaction circuits is accompanied by computational kinetic models, allowing to predict the dynamic behaviors of the system under different auxiliary conditions. The phototriggered transient transcription machinery and oscillatory circuit-guided fibrinogenesis is examined under physiological-like conditions and within a human plasma environment.
Collapse
Affiliation(s)
- Jiantong Dong
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
9
|
Farahani RM. Neural differentiation in perspective: mitochondria as early programmers. Front Neurosci 2025; 18:1529855. [PMID: 39844856 PMCID: PMC11751005 DOI: 10.3389/fnins.2024.1529855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Neural differentiation during development of the nervous system has been extensively studied for decades. These efforts have culminated in the generation of a detailed map of developmental events that appear to be associated with emergence of committed cells in the nervous system. In this review the landscape of neural differentiation is revisited by focusing on abiotic signals that play a role in induction of neural differentiation. Evidence is presented regarding a chimeric landscape whereby abiotic signals generated by mitochondria orchestrate early events during neural differentiation. This early stage, characterised by mitochondrial hyperactivity, in turn triggers a late stage of differentiation by reprogramming the activity of biotic signals.
Collapse
Affiliation(s)
- Ramin M. Farahani
- IDR/Research and Education Network, Westmead, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
10
|
Lalit F, Jose A. Selecting genes for analysis using historically contingent progress: from RNA changes to protein-protein interactions. Nucleic Acids Res 2025; 53:gkae1246. [PMID: 39788543 PMCID: PMC11717427 DOI: 10.1093/nar/gkae1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Progress in biology has generated numerous lists of genes that share some property. But advancing from these lists of genes to understanding their roles is slow and unsystematic. Here we use RNA silencing in Caenorhabditis elegans to illustrate an approach for prioritizing genes for detailed study given limited resources. The partially subjective relationships between genes forged by both deduced functional relatedness and biased progress in the field were captured as mutual information and used to cluster genes that were frequently identified yet remain understudied. Some proteins encoded by these understudied genes are predicted to physically interact with known regulators of RNA silencing, suggesting feedback regulation. Predicted interactions with proteins that act in other processes and the clustering of studied genes among the most frequently perturbed suggest regulatory links connecting RNA silencing to other processes like the cell cycle and asymmetric cell division. Thus, among the gene products altered when a process is perturbed could be regulators of that process acting to restore homeostasis, which provides a way to use RNA sequencing to identify candidate protein-protein interactions. Together, the analysis of perturbed transcripts and potential interactions of the proteins they encode could help prioritize candidate regulators of any process.
Collapse
Affiliation(s)
- Farhaan Lalit
- University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| | - Antony M Jose
- University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA
| |
Collapse
|
11
|
Psutkova V, Nickl P, Brezinova V, Machonova O, Machon O. Transcription factor Meis1b regulates craniofacial morphogenesis in zebrafish. Dev Dyn 2025; 254:40-60. [PMID: 39087648 DOI: 10.1002/dvdy.731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Meis family of transcription factors operates in Pbx-Meis-Hox regulatory network controlling development of various tissues including eye, limbs, heart, hindbrain or craniofacial skeletal elements originating from the neural crest. Although studies in mouse provide abundant information about Meis factors function in embryogenesis, little is known about their role in zebrafish. RESULTS We generated zebrafish lines carrying null mutations in meis1a, meis1b, meis2a, and meis2b genes. Only meis1b mutants are lethal at larval stage around 13 dpf whereas the other mutant lines are viable and fertile. We focused on development of neural crest-derived craniofacial structures such as tendons, cranial nerves, cartilage and accompanying muscles. Meis1b mutants displayed morphogenetic abnormalities in the cartilage originating from the first and second pharyngeal arches. Meckel's cartilage was shorter and wider with fused anterior symphysis and abnormal chondrocyte organization. This resulted in impaired tendons and muscle fiber connections while tenocyte development was not largely affected. CONCLUSIONS Loss-of-function mutation in meis1b affects cartilage morphology in the lower jaw that leads to disrupted organization of muscles and tendons.
Collapse
Affiliation(s)
- Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Nickl
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Veronika Brezinova
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Machonova
- Laboratory of Cell Differentiation, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
12
|
Su Z, Fang M, Smolnikov A, Vafaee F, Dinger ME, Oates EC. Post-transcriptional regulation supports the homeostatic expression of mature RNA. Brief Bioinform 2024; 26:bbaf027. [PMID: 39913622 PMCID: PMC11801271 DOI: 10.1093/bib/bbaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 02/05/2025] [Indexed: 02/09/2025] Open
Abstract
Gene expression regulation is a sophisticated, multi-stage process, and its robustness is critical to normal cell function and the survival of an organism. Previous studies indicate that differential gene expression at the RNA level is typically attenuated at the protein level through translational regulation. However, how post-transcriptional regulation (PTR) influences expression change during the RNA maturation process remains unclear. In this study, we investigated this by quantifying the magnitude of expression change in precursor RNA and mature RNA across a vast range of different biological conditions. We analyzed bulk tissue RNA sequencing data from 4689 samples, including healthy and diseased tissues from human, chimpanzee, rhesus macaque, and murine sources. We demonstrated that PTR tends to support homeostatic expression of mature RNA by amplifying normal tissue-specific expression of precursor RNA, while reducing expression change of precursor RNA in disease contexts. Our study provides insight into the general influence of PTR on gene expression homeostasis. Our analysis also suggests that intronic reads in RNA-seq studies may contain under-utilized information about disease associations. Additionally, our findings may assist in identifying new disease biomarkers and more effective ways of altering gene expression as a therapeutic strategy.
Collapse
Affiliation(s)
- Zheng Su
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Mingyan Fang
- BGI Research, Building 1, Future Science and Technology Innovation Mansion, No. 59, Science and Technology 3rd Road, East Lake High-tech Development Zone, Wuhan City, Hubei Province, 430074, China
- BGI Australia, L6, CBCRC, QIMR Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Andrei Smolnikov
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, F22 Life, Earth and Environmental Sciences (LEES) Building, Camperdown NSW 2050, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, The University of New South Wales, Biological Sciences North Building (D26), Upper Kensington Campus, Sydney, New South Wales 2052, Australia
- Department of Neurology, Sydney Children’s Hospital, High St, Randwick NSW 2031, Australia
| |
Collapse
|
13
|
Jiang B, Xiao C, Liu L. Progressive transcriptomic shifts in evolved yeast strains following gene knockout. iScience 2024; 27:111219. [PMID: 39559754 PMCID: PMC11570485 DOI: 10.1016/j.isci.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Gene knockout disrupts cellular homeostasis, altering gene expression, and phenotypes. We investigated whether cells return to their pre-knockout transcriptomic state through adaptive evolution experiments on hap4Δ and ade1Δ yeast strains. Analysis revealed that genes with higher expression levels and more physical interaction partners in wild-type strains were more likely to be restored, suggesting that genes of significant functional importance have increased resilience to genetic perturbations. However, as the experiment progressed, most initially restored genes became unrestored. Over 60% of differentially expressed genes in knockout strains remained unrestored in evolved strains. Evolved strains exhibited distinct transcriptomic states, diverging from the original strain over time. Ribosome biogenesis components exhibited systematic sequential changes during the evolution. Our findings suggest the knockout strain transcriptomes struggle to return to the original state even after 28 days of culture. Instead, compensatory mechanisms lead to distinct suboptimal states, highlighting the complex transcriptomic dynamics following genetic perturbations.
Collapse
Affiliation(s)
- Bei Jiang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chuyao Xiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Nansha District, Guangzhou 511400, China
- Institute of Life Sciences, Fudan University, Shanghai 200433, China
| | - Li Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Henderson DJ, Alqahtani A, Chaudhry B, Cook A, Eley L, Houyel L, Hughes M, Keavney B, de la Pompa JL, Sled J, Spielmann N, Teboul L, Zaffran S, Mill P, Liu KJ. Beyond genomic studies of congenital heart defects through systematic modelling and phenotyping. Dis Model Mech 2024; 17:dmm050913. [PMID: 39575509 PMCID: PMC11603121 DOI: 10.1242/dmm.050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/29/2024] [Indexed: 12/01/2024] Open
Abstract
Congenital heart defects (CHDs), the most common congenital anomalies, are considered to have a significant genetic component. However, despite considerable efforts to identify pathogenic genes in patients with CHDs, few gene variants have been proven as causal. The complexity of the genetic architecture underlying human CHDs likely contributes to this poor genetic discovery rate. However, several other factors are likely to contribute. For example, the level of patient phenotyping required for clinical care may be insufficient for research studies focused on mechanistic discovery. Although several hundred mouse gene knockouts have been described with CHDs, these are generally not phenotyped and described in the same way as CHDs in patients, and thus are not readily comparable. Moreover, most patients with CHDs carry variants of uncertain significance of crucial cardiac genes, further complicating comparisons between humans and mouse mutants. In spite of major advances in cardiac developmental biology over the past 25 years, these advances have not been well communicated to geneticists and cardiologists. As a consequence, the latest data from developmental biology are not always used in the design and interpretation of studies aimed at discovering the genetic causes of CHDs. In this Special Article, while considering other in vitro and in vivo models, we create a coherent framework for accurately modelling and phenotyping human CHDs in mice, thereby enhancing the translation of genetic and genomic studies into the causes of CHDs in patients.
Collapse
Affiliation(s)
- Deborah J. Henderson
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Andrew Cook
- University College London, Zayed Centre for Research, London WC1N 1DZ, UK
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne NE1 3BZ, UK
| | - Lucile Houyel
- Congenital and Pediatric Cardiology Unit, M3C-Necker, Hôpital Universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Marina Hughes
- Cardiology Department, Norfolk and Norwich University Hospital, Norwich NR4 7UY, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Ciber de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - John Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto M5G 1XS, Canada. Department of Medical Biophysics, University of Toronto, Toronto M5G 1XS, Canada
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich (GmbH), German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell, Oxfordshire OX11 0RD, UK
| | - Stephane Zaffran
- Aix Marseille Université, INSERM, Marseille Medical Genetics, U1251, 13005 Marseille, France
| | - Pleasantine Mill
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- MRC Human Genetics Unit, Institute for Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen J. Liu
- MRC National Mouse Genetics Network, Congenital Anomalies Cluster, Harwell, OX11 0RD, UK
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
15
|
Wu Z, Yan C, Xing K, Liu Y, Zhang C, Li H, Sun Y, Zhang J. Membrane-bound trehalase enhances cadmium tolerance by regulating cell apoptosis in Neocaridina denticulata sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173798. [PMID: 38844236 DOI: 10.1016/j.scitotenv.2024.173798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Trehalase gene is mainly expressed in the digestive circulatory system for regulating energy metabolism and chitin synthesis in insects, but it is significantly expressed in gill for immunomodulation in shrimp. However, its function in regulating immunity, particularly metal resistance in crustaceans has yet to be elucidated. In this study, one Tre2 gene (NdTre2) was isolated from Neocaridina denticulata sinensis. It could bind to Cd2+ and inhibit its toxicity. Spatiotemporal expression analysis showed that the expression of NdTre2 was highest in the gill and significantly reduced at 12 h after Cd2+ stimulation. The transcriptomic analysis of the gill after NdTre2 knockdown showed that the expression of genes synthetizing 20E was up-regulated and the increased 20E could further induce apoptosis by activating the intrinsic mitochondrial pathway, exogenous death receptor-ligand pathway, and MAPK pathway. In vitro, overexpressing NdTre2 enhanced the tolerance of E. coli in Cd2+ environment. In summary, these results indicate that NdTre2 plays an essential role in regulating immunity and chitin metabolism in N. denticulata sinensis.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Kefan Xing
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Chunyu Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Huimin Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
16
|
Tomizawa SI, Fellows R, Ono M, Kuroha K, Dočkal I, Kobayashi Y, Minamizawa K, Natsume K, Nakajima K, Hoshi I, Matsuda S, Seki M, Suzuki Y, Aoto K, Saitsu H, Ohbo K. The non-canonical bivalent gene Wfdc15a controls spermatogenic protease and immune homeostasis. Development 2024; 151:dev202834. [PMID: 39222051 DOI: 10.1242/dev.202834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Male infertility can be caused by chromosomal abnormalities, mutations and epigenetic defects. Epigenetic modifiers pre-program hundreds of spermatogenic genes in spermatogonial stem cells (SSCs) for expression later in spermatids, but it remains mostly unclear whether and how those genes are involved in fertility. Here, we report that Wfdc15a, a WFDC family protease inhibitor pre-programmed by KMT2B, is essential for spermatogenesis. We found that Wfdc15a is a non-canonical bivalent gene carrying both H3K4me3 and facultative H3K9me3 in SSCs, but is later activated along with the loss of H3K9me3 and acquisition of H3K27ac during meiosis. We show that WFDC15A deficiency causes defective spermiogenesis at the beginning of spermatid elongation. Notably, depletion of WFDC15A causes substantial disturbance of the testicular protease-antiprotease network and leads to an orchitis-like inflammatory response associated with TNFα expression in round spermatids. Together, our results reveal a unique epigenetic program regulating innate immunity crucial for fertility.
Collapse
Affiliation(s)
- Shin-Ichi Tomizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Rachel Fellows
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Michio Ono
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kazushige Kuroha
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ivana Dočkal
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Yuki Kobayashi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Keisuke Minamizawa
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Koji Natsume
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Kuniko Nakajima
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Ikue Hoshi
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Shion Matsuda
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Kazushi Aoto
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Central Laboratory, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuyuki Ohbo
- Department of Histology and Cell Biology, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| |
Collapse
|
17
|
Mead TJ, Bhutada S, Foulcer SJ, Peruzzi N, Nelson CM, Seifert DE, Larkin J, Tran-Lundmark K, Filmus J, Apte SS. Combined genetic-pharmacologic inactivation of tightly linked ADAMTS proteases in temporally specific windows uncovers distinct roles for versican proteolysis and glypican-6 in cardiac development. Matrix Biol 2024; 131:1-16. [PMID: 38750698 PMCID: PMC11526477 DOI: 10.1016/j.matbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Extracellular matrix remodeling mechanisms are understudied in cardiac development and congenital heart defects. We show that matrix-degrading metalloproteases ADAMTS1 and ADAMTS5, are extensively co-expressed during mouse cardiac development. The mouse mutants of each gene have mild cardiac anomalies, however, their combined genetic inactivation to elicit cooperative roles is precluded by tight gene linkage. Therefore, we coupled Adamts1 inactivation with pharmacologic ADAMTS5 blockade to uncover stage-specific cooperative roles and investigated their potential substrates in mouse cardiac development. ADAMTS5 blockade was achieved in Adamts1 null mouse embryos using an activity-blocking monoclonal antibody during distinct developmental windows spanning myocardial compaction or cardiac septation and outflow tract rotation. Synchrotron imaging, RNA in situ hybridization, immunofluorescence microscopy and electron microscopy were used to determine the impact on cardiac development and compared to Gpc6 and ADAMTS-cleavage resistant versican mutants. Mass spectrometry-based N-terminomics was used to seek relevant substrates. Combined inactivation of ADAMTS1 and ADAMTS5 prior to 12.5 days of gestation led to dramatic accumulation of versican-rich cardiac jelly and inhibited formation of compact and trabecular myocardium, which was also observed in mice with ADAMTS cleavage-resistant versican. Combined inactivation after 12.5 days impaired outflow tract development and ventricular septal closure, generating a tetralogy of Fallot-like defect. N-terminomics of combined ADAMTS knockout and control hearts identified a cleaved glypican-6 peptide only in the controls. ADAMTS1 and ADAMTS5 expression in cells was associated with specific glypican-6 cleavages. Paradoxically, combined ADAMTS1 and ADAMTS5 inactivation reduced cardiac glypican-6 and outflow tract Gpc6 transcription. Notably, Gpc6-/- hearts demonstrated similar rotational defects as combined ADAMTS inactivated hearts and both had reduced hedgehog signaling. Thus, versican proteolysis in cardiac jelly at the canonical Glu441-Ala442 site is cooperatively mediated by ADAMTS1 and ADAMTS5 and required for proper ventricular cardiomyogenesis, whereas, reduced glypican-6 after combined ADAMTS inactivation impairs hedgehog signaling, leading to outflow tract malrotation.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA; Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA; University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Sumit Bhutada
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Simon J Foulcer
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Courtney M Nelson
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Deborah E Seifert
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Karin Tran-Lundmark
- Department of Experimental Medical Science, and Wallenberg Center for Molecular Medicine Lund University and The Pediatric Heart Center, Skane University Hospital, Lund, Sweden
| | - Jorge Filmus
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
18
|
Pomreinke AP, Müller P. Zebrafish nampt-a mutants are viable despite perturbed primitive hematopoiesis. Hereditas 2024; 161:14. [PMID: 38685093 PMCID: PMC11057069 DOI: 10.1186/s41065-024-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Nicotinamide phosphoribosyltransferase (Nampt) is required for recycling NAD+ in numerous cellular contexts. Morpholino-based knockdown of zebrafish nampt-a has been shown to cause abnormal development and defective hematopoiesis concomitant with decreased NAD+ levels. However, surprisingly, nampt-a mutant zebrafish were recently found to be viable, suggesting a discrepancy between the phenotypes in knockdown and knockout conditions. Here, we address this discrepancy by directly comparing loss-of-function approaches that result in identical defective transcripts in morphants and mutants. RESULTS Using CRISPR/Cas9-mediated mutagenesis, we generated nampt-a mutant lines that carry the same mis-spliced mRNA as nampt-a morphants. Despite reduced NAD+ levels and perturbed expression of specific blood markers, nampt-a mutants did not display obvious developmental defects and were found to be viable. In contrast, injection of nampt-a morpholinos into wild-type or mutant nampt-a embryos caused aberrant phenotypes. Moreover, nampt-a morpholinos caused additional reduction of blood-related markers in nampt-a mutants, suggesting that the defects observed in nampt-a morphants can be partially attributed to off-target effects of the morpholinos. CONCLUSIONS Our findings show that zebrafish nampt-a mutants are viable despite reduced NAD+ levels and a perturbed hematopoietic gene expression program, indicating strong robustness of primitive hematopoiesis during early embryogenesis.
Collapse
Affiliation(s)
- Autumn Penecilla Pomreinke
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
- University of Hohenheim, Stuttgart, Germany
| | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany.
- University of Konstanz, Konstanz, Germany.
| |
Collapse
|
19
|
Shi H, Williams MJ, Satas G, Weiner AC, McPherson A, Shah SP. Allele-specific transcriptional effects of subclonal copy number alterations enable genotype-phenotype mapping in cancer cells. Nat Commun 2024; 15:2482. [PMID: 38509111 PMCID: PMC10954741 DOI: 10.1038/s41467-024-46710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
Subclonal copy number alterations are a prevalent feature in tumors with high chromosomal instability and result in heterogeneous cancer cell populations with distinct phenotypes. However, the extent to which subclonal copy number alterations contribute to clone-specific phenotypes remains poorly understood. We develop TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population. TreeAlign accurately encodes dosage effects from subclonal copy number alterations, the impact of allelic imbalance on allele-specific transcription, and obviates the need to define genotypic clones from a phylogeny a priori, leading to highly granular definitions of clones with distinct expression programs. These improvements enable clone-clone gene expression comparisons with higher resolution and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
Collapse
Affiliation(s)
- Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Marc J Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gryte Satas
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam C Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
20
|
Duell J, Leipold AM, Appenzeller S, Fuhr V, Rauert-Wunderlich H, Da Via M, Dietrich O, Toussaint C, Imdahl F, Eisele F, Afrin N, Grundheber L, Einsele H, Weinhold N, Rosenwald A, Topp MS, Saliba AE, Rasche L. Sequential antigen loss and branching evolution in lymphoma after CD19- and CD20-targeted T-cell-redirecting therapy. Blood 2024; 143:685-696. [PMID: 37976456 PMCID: PMC10900140 DOI: 10.1182/blood.2023021672] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
ABSTRACT CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell-engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.
Collapse
Affiliation(s)
- Johannes Duell
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander M. Leipold
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Silke Appenzeller
- Core Unit Bioinformatics, Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Viktoria Fuhr
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Matteo Da Via
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oliver Dietrich
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
| | - Florian Eisele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Nazia Afrin
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Lars Grundheber
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Max S. Topp
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Center for Infection Research, Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Institute of Molecular Infection Biology, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine 2, University Hospital of Würzburg, Würzburg, Germany
- Mildred Scheel Early Career Center, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Camacho-Macorra C, Tabanera N, Sánchez-Bustamante E, Bovolenta P, Cardozo MJ. Maternal vgll4a regulates zebrafish epiboly through Yap1 activity. Front Cell Dev Biol 2024; 12:1362695. [PMID: 38444829 PMCID: PMC10912589 DOI: 10.3389/fcell.2024.1362695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
Gastrulation in zebrafish embryos commences with the morphogenetic rearrangement of blastodermal cells, which undergo a coordinated spreading from the animal pole to wrap around the egg at the vegetal pole. This rearrangement, known as epiboly, relies on the orchestrated activity of maternal transcripts present in the egg, compensating for the gradual activation of the zygotic genome. Epiboly involves the mechano-transducer activity of yap1 but what are the regulators of yap1 activity and whether these are maternally or zygotically derived remain elusive. Our study reveals the crucial role of maternal vgll4a, a proposed Yap1 competitor, during zebrafish epiboly. In embryos lacking maternal/zygotic vgll4a (MZvgll4a), the progression of epiboly and blastopore closure is delayed. This delay is associated with the ruffled appearance of the sliding epithelial cells, decreased expression of yap1-downstream targets and transient impairment of the actomyosin ring at the syncytial layer. Our study also shows that, rather than competing with yap1, vgll4a modulates the levels of the E-cadherin/β-catenin adhesion complex at the blastomeres' plasma membrane and hence their actin cortex distribution. Taking these results together, we propose that maternal vgll4a acts at epiboly initiation upstream of yap1 and the E-cadherin/β-catenin adhesion complex, contributing to a proper balance between tissue tension/cohesion and contractility, thereby promoting a timely epiboly progression.
Collapse
Affiliation(s)
- Carlos Camacho-Macorra
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Noemí Tabanera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Sánchez-Bustamante
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Marcos J Cardozo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
22
|
McFaline-Figueroa JL, Srivatsan S, Hill AJ, Gasperini M, Jackson DL, Saunders L, Domcke S, Regalado SG, Lazarchuck P, Alvarez S, Monnat RJ, Shendure J, Trapnell C. Multiplex single-cell chemical genomics reveals the kinase dependence of the response to targeted therapy. CELL GENOMICS 2024; 4:100487. [PMID: 38278156 PMCID: PMC10879025 DOI: 10.1016/j.xgen.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
Chemical genetic screens are a powerful tool for exploring how cancer cells' response to drugs is shaped by their mutations, yet they lack a molecular view of the contribution of individual genes to the response to exposure. Here, we present sci-Plex-Gene-by-Environment (sci-Plex-GxE), a platform for combined single-cell genetic and chemical screening at scale. We highlight the advantages of large-scale, unbiased screening by defining the contribution of each of 522 human kinases to the response of glioblastoma to different drugs designed to abrogate signaling from the receptor tyrosine kinase pathway. In total, we probed 14,121 gene-by-environment combinations across 1,052,205 single-cell transcriptomes. We identify an expression signature characteristic of compensatory adaptive signaling regulated in a MEK/MAPK-dependent manner. Further analyses aimed at preventing adaptation revealed promising combination therapies, including dual MEK and CDC7/CDK9 or nuclear factor κB (NF-κB) inhibitors, as potent means of preventing transcriptional adaptation of glioblastoma to targeted therapy.
Collapse
Affiliation(s)
- José L McFaline-Figueroa
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrew J Hill
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Molly Gasperini
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lauren Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Silvia Domcke
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Paul Lazarchuck
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Sarai Alvarez
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Raymond J Monnat
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
| |
Collapse
|
23
|
Raman R, Antony M, Nivelle R, Lavergne A, Zappia J, Guerrero-Limón G, Caetano da Silva C, Kumari P, Sojan JM, Degueldre C, Bahri MA, Ostertag A, Collet C, Cohen-Solal M, Plenevaux A, Henrotin Y, Renn J, Muller M. The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis. Biomolecules 2024; 14:139. [PMID: 38397376 PMCID: PMC10886564 DOI: 10.3390/biom14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Mishal Antony
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Arnaud Lavergne
- GIGA Genomics Platform, B34, GIGA Institute, University of Liège, 4000 Liège, Belgium;
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Caroline Caetano da Silva
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Priyanka Kumari
- Laboratory of Pharmaceutical and Analytical Chemistry, Department of Pharmacy, CIRM, Sart Tilman, 4000 Liège, Belgium;
| | - Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Christian Degueldre
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Mohamed Ali Bahri
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Agnes Ostertag
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Corinne Collet
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
- UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, F-75019 Paris, France
| | - Martine Cohen-Solal
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Alain Plenevaux
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Jörg Renn
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| |
Collapse
|
24
|
Hejlesen R, Kjær-Sørensen K, Fago A, Oxvig C. Generation and validation of a myoglobin knockout zebrafish model. Transgenic Res 2023; 32:537-546. [PMID: 37847464 PMCID: PMC10713697 DOI: 10.1007/s11248-023-00369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/20/2023] [Indexed: 10/18/2023]
Abstract
Previous studies using myoglobin (Mb) knockout mice and knockdown zebrafish have presented conflicting results about in vivo phenotypes resulting from the loss of this conserved and highly expressed protein, and therefore a new well-characterized knockout model is warranted. We here describe the generation of three distinct zebrafish mb knockout lines using the CRISPR/Cas system. None of the three lines exhibited any morphological phenotypes, changes in length, or lethality during embryonic and larval development. The adult homozygous knockout mb(Auzf13.2) zebrafish line were absent of Mb protein, had an almost complete degradation of mb mRNA, and showed no changes in viability, length, or heart size. Furthermore, transcriptomic analysis of adult heart tissue showed that mb knockout did not cause altered expression of other genes. Lastly, no off-targeting was observed in 36 screened loci. In conclusion, we have generated three mb knockout lines with indistinguishable phenotypes during embryonic and larval development and validated one of these lines, mb(Auzf13.2), to have no signs of genetic compensation or off-target effects in the adult heart. These findings suggests that the mb(Auzf13.2) shows promise as a candidate for investigating the biological role of Mb in zebrafish.
Collapse
Affiliation(s)
- Rasmus Hejlesen
- Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Department of Biology, Zoophysiology, Aarhus University, Aarhus, Denmark.
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Child JR, Hofler AC, Chen Q, Yang BH, Kristofich J, Zheng T, Hannigan MM, Elles AL, Reid DW, Nicchitta CV. Examining SRP pathway function in mRNA localization to the endoplasmic reticulum. RNA (NEW YORK, N.Y.) 2023; 29:1703-1724. [PMID: 37643813 PMCID: PMC10578483 DOI: 10.1261/rna.079643.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Signal recognition particle (SRP) pathway function in protein translocation across the endoplasmic reticulum (ER) is well established; its role in RNA localization to the ER remains, however, unclear. In current models, mRNAs undergo translation- and SRP-dependent trafficking to the ER, with ER localization mediated via interactions between SRP-bound translating ribosomes and the ER-resident SRP receptor (SR), a heterodimeric complex comprising SRA, the SRP-binding subunit, and SRB, an integral membrane ER protein. To study SRP pathway function in RNA localization, SR knockout (KO) mammalian cell lines were generated and the consequences of SR KO on steady-state and dynamic mRNA localization examined. CRISPR/Cas9-mediated SRPRB KO resulted in profound destabilization of SRA. Pairing siRNA silencing of SRPRA in SRPRB KO cells yielded viable SR KO cells. Steady-state mRNA compositions and ER-localization patterns in parental and SR KO cells were determined by cell fractionation and deep sequencing. Notably, steady-state cytosol and ER mRNA compositions and partitioning patterns were largely unaltered by loss of SR expression. To examine SRP pathway function in RNA localization dynamics, the subcellular trafficking itineraries of newly exported mRNAs were determined by 4-thiouridine (4SU) pulse-labeling/4SU-seq/cell fractionation. Newly exported mRNAs were distinguished by high ER enrichment, with ER localization being SR-independent. Intriguingly, under conditions of translation initiation inhibition, the ER was the default localization site for all newly exported mRNAs. These data demonstrate that mRNA localization to the ER can be uncoupled from the SRP pathway function and reopen questions regarding the mechanism of RNA localization to the ER.
Collapse
Affiliation(s)
- Jessica R Child
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Alex C Hofler
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Qiang Chen
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Brenda H Yang
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - JohnCarlo Kristofich
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Tianli Zheng
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Molly M Hannigan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Andrew L Elles
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - David W Reid
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Christopher V Nicchitta
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
26
|
Welker JM, Serobyan V, Zaker Esfahani E, Stainier DYR. Partial sequence identity in a 25-nucleotide long element is sufficient for transcriptional adaptation in the Caenorhabditis elegans act-5/act-3 model. PLoS Genet 2023; 19:e1010806. [PMID: 37384903 DOI: 10.1371/journal.pgen.1010806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023] Open
Abstract
Genetic robustness can be achieved via several mechanisms including transcriptional adaptation (TA), a sequence similarity-driven process whereby mutant mRNA degradation products modulate, directly or indirectly, the expression of so-called adapting genes. To identify the sequences required for this process, we utilized a transgenic approach in Caenorhabditis elegans, combining an overexpression construct for a mutant gene (act-5) and a fluorescent reporter for the corresponding adapting gene (act-3). Analyzing a series of modifications for each construct, we identified, in the 5' regulatory region of the act-3 locus, a 25-base pair (bp) element which exhibits 60% identity with a sequence in the act-5 mRNA and which, in the context of a minimal promoter, is sufficient to induce ectopic expression of the fluorescent reporter. The 25 nucleotide (nt) element in the act-5 mRNA lies between the premature termination codon (PTC) and the next exon/exon junction, suggesting the importance of this region of the mutant mRNA for TA. Additionally, we found that single-stranded RNA injections of this 25 nt element from act-5 into the intestine of wild-type larvae led to higher levels of adapting gene (act-3) mRNA. Different models have been proposed to underlie the modulation of gene expression during TA including chromatin remodeling, the inhibition of antisense RNAs, the release of transcriptional pausing, and the suppression of premature transcription termination, and our data clearly show the importance of the regulatory region of the adapting gene in this particular act-5/act-3 TA model. Our findings also suggest that RNA fragments can modulate the expression of loci exhibiting limited sequence similarity, possibly a critical observation when designing RNA based therapies.
Collapse
Affiliation(s)
- Jordan M Welker
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Vahan Serobyan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Elhamalsadat Zaker Esfahani
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| |
Collapse
|
27
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Intrahippocampal Inoculation of Aβ 1-42 Peptide in Rat as a Model of Alzheimer's Disease Identified MicroRNA-146a-5p as Blood Marker with Anti-Inflammatory Function in Astrocyte Cells. Cells 2023; 12:cells12050694. [PMID: 36899831 PMCID: PMC10000752 DOI: 10.3390/cells12050694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Circulating microRNAs (miRNAs) have aroused a lot of interest as reliable blood diagnostic biomarkers of Alzheimer's disease (AD). Here, we investigated the panel of expressed blood miRNAs in response to aggregated Aβ1-42 peptides infused in the hippocampus of adult rats to mimic events of the early onset of non-familial AD disorder. Aβ1-42 peptides in the hippocampus led to cognitive impairments associated with an astrogliosis and downregulation of circulating miRNA-146a-5p, -29a-3p, -29c-3p, -125b-5p, and-191-5p. We established the kinetics of expression of selected miRNAs and found differences with those detected in the APPswe/PS1dE9 transgenic mouse model. Of note, miRNA-146a-5p was exclusively dysregulated in the Aβ-induced AD model. The treatment of primary astrocytes with Aβ1-42 peptides led to miRNA-146a-5p upregulation though the activation of the NF-κB signaling pathway, which in turn downregulated IRAK-1 but not TRAF-6 expression. As a consequence, no induction of IL-1β, IL-6, or TNF-α was detected. Astrocytes treated with a miRNA-146-5p inhibitor rescued IRAK-1 and changed TRAF-6 steady-state levels that correlated with the induction of IL-6, IL-1β, and CXCL1 production, indicating that miRNA-146a-5p operates anti-inflammatory functions through a NF-κB pathway negative feedback loop. Overall, we report a panel of circulating miRNAs that correlated with Aβ1-42 peptides' presence in the hippocampus and provide mechanistic insights into miRNA-146a-5p biological function in the development of the early stage of sporadic AD.
Collapse
|
29
|
Stress resilience is established during development and is regulated by complement factors. Cell Rep 2023; 42:111973. [PMID: 36640352 DOI: 10.1016/j.celrep.2022.111973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Individuals in a population respond differently to stressful situations. While resilient individuals recover efficiently, others are susceptible to the same stressors. However, it remains challenging to determine if resilience is established as a trait during development or acquired later in life. Using a behavioral paradigm in zebrafish larvae, we show that resilience is a stable and heritable trait, which is determined and exhibited early in life. Resilient larvae show unique stress-induced transcriptional response, and larvae with mutations in resilience-associated genes, such as neuropeptide Y and miR218, are less resilient. Transcriptome analysis shows that resilient larvae downregulate multiple factors of the innate immune complement cascade in response to stress. Perturbation of critical complement factors leads to an increase in resilience. We conclude that resilience is established as a stable trait early during development and that neuropeptides and the complement pathway play positive and negative roles in determining resilience, respectively.
Collapse
|
30
|
Shi H, Williams MJ, Satas G, Weiner AC, McPherson A, Shah SP. Exploiting allele-specific transcriptional effects of subclonal copy number alterations for genotype-phenotype mapping in cancer cell populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523464. [PMID: 36711951 PMCID: PMC9882029 DOI: 10.1101/2023.01.10.523464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Somatic copy number alterations drive aberrant gene expression in cancer cells. In tumors with high levels of chromosomal instability, subclonal copy number alterations (CNAs) are a prevalent feature which often result in heterogeneous cancer cell populations with distinct phenotypes1. However, the extent to which subclonal CNAs contribute to clone-specific phenotypes remains poorly understood, in part due to the lack of methods to quantify how CNAs influence gene expression at a subclone level. We developed TreeAlign, which computationally integrates independently sampled single-cell DNA and RNA sequencing data from the same cell population and explicitly models gene dosage effects from subclonal alterations. We show through quantitative benchmarking data and application to human cancer data with single cell DNA and RNA libraries that TreeAlign accurately encodes clone-specific transcriptional effects of subclonal CNAs, the impact of allelic imbalance on allele-specific transcription, and obviates the need to arbitrarily define genotypic clones from a phylogenetic tree a priori. Combined, these advances lead to highly granular definitions of clones with distinct copy-number driven expression programs with increased resolution and accuracy over competing methods. The resulting improvement in assignment of transcriptional phenotypes to genomic clones enables clone-clone gene expression comparisons and explicit inference of genes that are mechanistically altered through CNAs, and identification of expression programs that are genomically independent. Our approach sets the stage for dissecting the relative contribution of fixed genomic alterations and dynamic epigenetic processes on gene expression programs in cancer.
Collapse
Affiliation(s)
- Hongyu Shi
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Marc J. Williams
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gryte Satas
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam C. Weiner
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P. Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
31
|
Bearce EA, Irons ZH, O'Hara-Smith JR, Kuhns CJ, Fisher SI, Crow WE, Grimes DT. Urotensin II-related peptides, Urp1 and Urp2, control zebrafish spine morphology. eLife 2022; 11:e83883. [PMID: 36453722 PMCID: PMC9836392 DOI: 10.7554/elife.83883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
The spine provides structure and support to the body, yet how it develops its characteristic morphology as the organism grows is little understood. This is underscored by the commonality of conditions in which the spine curves abnormally such as scoliosis, kyphosis, and lordosis. Understanding the origin of these spinal curves has been challenging in part due to the lack of appropriate animal models. Recently, zebrafish have emerged as promising tools with which to understand the origin of spinal curves. Using zebrafish, we demonstrate that the urotensin II-related peptides (URPs), Urp1 and Urp2, are essential for maintaining spine morphology. Urp1 and Urp2 are 10-amino acid cyclic peptides expressed by neurons lining the central canal of the spinal cord. Upon combined genetic loss of Urp1 and Urp2, adolescent-onset planar curves manifested in the caudal region of the spine. Highly similar curves were caused by mutation of Uts2r3, an URP receptor. Quantitative comparisons revealed that urotensin-associated curves were distinct from other zebrafish spinal curve mutants in curve position and direction. Last, we found that the Reissner fiber, a proteinaceous thread that sits in the central canal and has been implicated in the control of spine morphology, breaks down prior to curve formation in mutants with perturbed cilia motility but was unaffected by loss of Uts2r3. This suggests a Reissner fiber-independent mechanism of curvature in urotensin-deficient mutants. Overall, our results show that Urp1 and Urp2 control zebrafish spine morphology and establish new animal models of spine deformity.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Zoe H Irons
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | | | - Colin J Kuhns
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Sophie I Fisher
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - William E Crow
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of OregonEugeneUnited States
| |
Collapse
|
32
|
Chander V, Mahmoud M, Hu J, Dardas Z, Grochowski CM, Dawood M, Khayat MM, Li H, Li S, Jhangiani S, Korchina V, Shen H, Weissenberger G, Meng Q, Gingras MC, Muzny DM, Doddapaneni H, Posey JE, Lupski JR, Sabo A, Murdock DR, Sedlazeck FJ, Gibbs RA. Long read sequencing and expression studies of AHDC1 deletions in Xia-Gibbs syndrome reveal a novel genetic regulatory mechanism. Hum Mutat 2022; 43:2033-2053. [PMID: 36054313 PMCID: PMC10167679 DOI: 10.1002/humu.24461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023]
Abstract
Xia-Gibbs syndrome (XGS; MIM# 615829) is a rare mendelian disorder characterized by Development Delay (DD), intellectual disability (ID), and hypotonia. Individuals with XGS typically harbor de novo protein-truncating mutations in the AT-Hook DNA binding motif containing 1 (AHDC1) gene, although some missense mutations can also cause XGS. Large de novo heterozygous deletions that encompass the AHDC1 gene have also been ascribed as diagnostic for the disorder, without substantial evidence to support their pathogenicity. We analyzed 19 individuals with large contiguous deletions involving AHDC1, along with other genes. One individual bore the smallest known contiguous AHDC1 deletion (∼350 Kb), encompassing eight other genes within chr1p36.11 (Feline Gardner-Rasheed, IFI6, FAM76A, STX12, PPP1R8, THEMIS2, RPA2, SMPDL3B) and terminating within the first intron of AHDC1. The breakpoint junctions and phase of the deletion were identified using both short and long read sequencing (Oxford Nanopore). Quantification of RNA expression patterns in whole blood revealed that AHDC1 exhibited a mono-allelic expression pattern with no deficiency in overall AHDC1 expression levels, in contrast to the other deleted genes, which exhibited a 50% reduction in mRNA expression. These results suggest that AHDC1 expression in this individual is compensated by a novel regulatory mechanism and advances understanding of mutational and regulatory mechanisms in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Varuna Chander
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Medhat Mahmoud
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jianhong Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Zain Dardas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Moez Dawood
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Michael M. Khayat
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - He Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shoudong Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Viktoriya Korchina
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Hua Shen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Qingchang Meng
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Marie-Claude Gingras
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R. Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - David R. Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fritz J. Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Computer Science, Rice University, Houston, Texas, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
33
|
Bolkhovitinov L, Weselman BT, Shaw GA, Dong C, Giribhattanavar J, Saha MS. Tissue Rotation of the Xenopus Anterior-Posterior Neural Axis Reveals Profound but Transient Plasticity at the Mid-Gastrula Stage. J Dev Biol 2022; 10:38. [PMID: 36135371 PMCID: PMC9503425 DOI: 10.3390/jdb10030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The establishment of anterior-posterior (AP) regional identity is an essential step in the appropriate development of the vertebrate central nervous system. An important aspect of AP neural axis formation is the inherent plasticity that allows developing cells to respond to and recover from the various perturbations that embryos continually face during the course of development. While the mechanisms governing the regionalization of the nervous system have been extensively studied, relatively less is known about the nature and limits of early neural plasticity of the anterior-posterior neural axis. This study aims to characterize the degree of neural axis plasticity in Xenopus laevis by investigating the response of embryos to a 180-degree rotation of their AP neural axis during gastrula stages by assessing the expression of regional marker genes using in situ hybridization. Our results reveal the presence of a narrow window of time between the mid- and late gastrula stage, during which embryos are able undergo significant recovery following a 180-degree rotation of their neural axis and eventually express appropriate regional marker genes including Otx, Engrailed, and Krox. By the late gastrula stage, embryos show misregulation of regional marker genes following neural axis rotation, suggesting that this profound axial plasticity is a transient phenomenon that is lost by late gastrula stages.
Collapse
Affiliation(s)
- Lyuba Bolkhovitinov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard University, Boston, MA 02114, USA
| | - Bryan T. Weselman
- School of Medicine, Georgetown University, Washington, DC 20007, USA
| | - Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Chen Dong
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA
| |
Collapse
|
34
|
Boger M, Bennewitz K, Wohlfart DP, Hausser I, Sticht C, Poschet G, Kroll J. Comparative Morphological, Metabolic and Transcriptome Analyses in elmo1−/−, elmo2−/−, and elmo3−/− Zebrafish Mutants Identified a Functional Non-Redundancy of the Elmo Proteins. Front Cell Dev Biol 2022; 10:918529. [PMID: 35874819 PMCID: PMC9304559 DOI: 10.3389/fcell.2022.918529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The ELMO protein family consists of the homologues ELMO1, ELMO2 and ELMO3. Several studies have shown that the individual ELMO proteins are involved in a variety of cellular and developmental processes. However, it has poorly been understood whether the Elmo proteins show similar functions and act redundantly. To address this question, elmo1−/−, elmo2−/− and elmo3−/− zebrafish were generated and a comprehensive comparison of the phenotypic changes in organ morphology, transcriptome and metabolome was performed in these mutants. The results showed decreased fasting and increased postprandial blood glucose levels in adult elmo1−/−, as well as a decreased vascular formation in the adult retina in elmo1−/−, but an increased vascular formation in the adult elmo3−/− retina. The phenotypical comparison provided few similarities, as increased Bowman space areas in adult elmo1−/− and elmo2−/− kidneys, an increased hyaloid vessel diameter in elmo1−/− and elmo3−/− and a transcriptional downregulation of the vascular development in elmo1−/−, elmo2−/−, and elmo3−/− zebrafish larvae. Besides this, elmo1−/−, elmo2−/−, and elmo3−/− zebrafish exhibited several distinct changes in the vascular and glomerular structure and in the metabolome and the transcriptome. Especially, elmo3−/− zebrafish showed extensive differences in the larval transcriptome and an impaired survivability. Together, the data demonstrated that the three zebrafish Elmo proteins regulate not only similar but also divergent biological processes and mechanisms and show a low functional redundancy.
Collapse
Affiliation(s)
- Mike Boger
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - David Philipp Wohlfart
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ingrid Hausser
- Institute of Pathology IPH, EM Lab, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- *Correspondence: Jens Kroll,
| |
Collapse
|
35
|
Voisard P, Diofano F, Glazier AA, Rottbauer W, Just S. CRISPR/Cas9-Mediated Constitutive Loss of VCP (Valosin-Containing Protein) Impairs Proteostasis and Leads to Defective Striated Muscle Structure and Function In Vivo. Int J Mol Sci 2022; 23:ijms23126722. [PMID: 35743185 PMCID: PMC9223409 DOI: 10.3390/ijms23126722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Valosin-containing protein (VCP) acts as a key regulator of cellular protein homeostasis by coordinating protein turnover and quality control. Mutations in VCP lead to (cardio-)myopathy and neurodegenerative diseases such as inclusion body myopathy with Paget’s disease of the bone and frontotemporal dementia (IBMPFD) or amyotrophic lateral sclerosis (ALS). To date, due to embryonic lethality, no constitutive VCP knockout animal model exists. Here, we generated a constitutive CRISPR/Cas9-induced vcp knockout zebrafish model. Similar to the phenotype of vcp morphant knockdown zebrafish embryos, we found that vcp-null embryos displayed significantly impaired cardiac and skeletal muscle function. By ultrastructural analysis of skeletal muscle cells and cardiomyocytes, we observed severely disrupted myofibrillar organization and accumulation of inclusion bodies as well as mitochondrial degeneration. vcp knockout was associated with a significant accumulation of ubiquitinated proteins, suggesting impaired proteasomal function. Additionally, markers of unfolded protein response (UPR)/ER-stress and autophagy-related mTOR signaling were elevated in vcp-deficient embryos, demonstrating impaired proteostasis in VCP-null zebrafish. In conclusion, our findings demonstrate the successful generation of a stable constitutive vcp knockout zebrafish line that will enable characterization of the detailed mechanistic underpinnings of vcp loss, particularly the impact of disturbed protein homeostasis on organ development and function in vivo.
Collapse
Affiliation(s)
- Philipp Voisard
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Federica Diofano
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Amelia A. Glazier
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany; (P.V.); (F.D.); (A.A.G.)
- Correspondence: ; Tel.: +49-731-500-45118; Fax: +49-731-500-45159
| |
Collapse
|
36
|
Yoon B, Yeung P, Santistevan N, Bluhm LE, Kawasaki K, Kueper J, Dubielzig R, VanOudenhove J, Cotney J, Liao EC, Grinblat Y. Zebrafish models of alx-linked frontonasal dysplasia reveal a role for Alx1 and Alx3 in the anterior segment and vasculature of the developing eye. Biol Open 2022; 11:bio059189. [PMID: 35142342 PMCID: PMC9167625 DOI: 10.1242/bio.059189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular and genetic mechanisms that coordinate formation of facial sensory structures with surrounding skeletal and soft tissue elements remain poorly understood. Alx1, a homeobox transcription factor, is a key regulator of midfacial morphogenesis. ALX1 mutations in humans are linked to severe congenital anomalies of the facial skeleton (frontonasal dysplasia, FND) with malformation or absence of eyes and orbital contents (micro- and anophthalmia). Zebrafish with loss-of-function alx1 mutations develop with craniofacial and ocular defects of variable penetrance, likely due to compensatory upregulation in expression of a paralogous gene, alx3. Here we show that zebrafish alx1;alx3 mutants develop with highly penetrant cranial and ocular defects that resemble human ALX1-linked FND. alx1 and alx3 are expressed in anterior cranial neural crest (aCNC), which gives rise to the anterior neurocranium (ANC), anterior segment structures of the eye and vascular pericytes. Consistent with a functional requirement for alx genes in aCNC, alx1; alx3 mutants develop with nearly absent ANC and grossly aberrant hyaloid vasculature and ocular anterior segment, but normal retina. In vivo lineage labeling identified a requirement for alx1 and alx3 during aCNC migration, and transcriptomic analysis suggested oxidative stress response as a key target mechanism of this function. Oxidative stress is a hallmark of fetal alcohol toxicity, and we found increased penetrance of facial and ocular malformations in alx1 mutants exposed to ethanol, consistent with a protective role for alx1 against ethanol toxicity. Collectively, these data demonstrate a conserved role for zebrafish alx genes in controlling ocular and facial development, and a novel role in protecting these key midfacial structures from ethanol toxicity during embryogenesis. These data also reveal novel roles for alx genes in ocular anterior segment formation and vascular development and suggest that retinal deficits in alx mutants may be secondary to aberrant ocular vascularization and anterior segment defects. This study establishes robust zebrafish models for interrogating conserved genetic mechanisms that coordinate facial and ocular development, and for exploring gene--environment interactions relevant to fetal alcohol syndrome.
Collapse
Affiliation(s)
- Baul Yoon
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Pan Yeung
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Nicholas Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren E. Bluhm
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Kenta Kawasaki
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Janina Kueper
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
- Institute of Human Genetics, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Richard Dubielzig
- Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Eric C. Liao
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
37
|
Nakajima H, Fujita S, Kakae M, Nagayasu K, Oh-Hora M, Shirakawa H, Kaneko S. Orai2 channel regulates prostaglandin E 2 production in TNFα/IL1α-stimulated astrocytes. Glia 2022; 70:1666-1680. [PMID: 35506586 DOI: 10.1002/glia.24188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/04/2023]
Abstract
Astrocytes are glial cells that serve homeostatic functions in the central nervous system (CNS). Recent research, however, suggests that under pathological conditions, astrocytes are stimulated by various factors and actively participate in CNS inflammation. In the present study, we found that astrocytes upregulate various inflammatory factors including prostaglandin E2 (PGE2 ) by co-stimulation with tumor necrosis factor-alpha (TNFα) and interleukin-1alpha (IL1α). These TNFα/IL1α-stimulated astrocytes also showed increased Ca2+ release from the endoplasmic reticulum (ER) and increased expression of Orai2, a member of the store-operated calcium channel (SOCC) family. To reveal the role of Orai2, we used astrocytes in which Orai2 was knocked-down (KD) or knocked-out (KO). The expression of the prostaglandin E synthase Ptges and the production of PGE2 were higher in Orai2-KD astrocytes than in WT astrocytes when stimulated with TNFα and IL1α. Orai2-KO astrocytes also showed increased expression of Ptges and increased PGE2 production. The expression of Ptgs2, another PGE2 synthetic enzyme, was also upregulated in Orai2-KO astrocytes. Moreover, Orai2-KO astrocytes showed increased store-operated calcium entry (SOCE) and increased Orai1 expression. These results suggest that Orai2 is upregulated in TNFα/IL1α-stimulated astrocytes and reduces PGE2 production to some extent, modulating CNS inflammation. Our findings may aid in understanding how astrocytes are associated with inflammatory responses, and the identification of new targets that modulate astrocytic reactivity.
Collapse
Affiliation(s)
- Hiroki Nakajima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Sayaka Fujita
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masatsugu Oh-Hora
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyusyu University, Fukuoka, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
38
|
Mead TJ, Martin DR, Wang LW, Cain SA, Gulec C, Cahill E, Mauch J, Reinhardt D, Lo C, Baldock C, Apte SS. Proteolysis of fibrillin-2 microfibrils is essential for normal skeletal development. eLife 2022; 11:71142. [PMID: 35503090 PMCID: PMC9064305 DOI: 10.7554/elife.71142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Daniel R Martin
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Lauren W Wang
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Stuart A Cain
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Cagri Gulec
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elisabeth Cahill
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Joseph Mauch
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Dieter Reinhardt
- Faculty of Medicine and Health Sciences and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| |
Collapse
|
39
|
Pace NP, Mintoff D, Borg I. The Genomic Architecture of Hidradenitis Suppurativa-A Systematic Review. Front Genet 2022; 13:861241. [PMID: 35401657 PMCID: PMC8986338 DOI: 10.3389/fgene.2022.861241] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Hidradenitis suppurativa is a chronic, suppurative condition of the pilosebaceous unit manifesting as painful nodules, abscesses, and sinus tracts mostly in, but not limited to, intertriginous skin. Great strides have been made at elucidating the pathophysiology of hidradenitis suppurativa, which appears to be the product of hyperkeratinization and inflammation brought about by environmental factors and a genetic predisposition. The identification of familial hidradenitis suppurativa has sparked research aimed at identifying underlying pathogenic variants in patients who harbor them. The objective of this review is to provide a broad overview of the role of genetics in various aspects of hidradenitis suppurativa, specifically the pathophysiology, diagnosis, and clinical application.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Dillon Mintoff
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
| | - Isabella Borg
- Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
- Department of Pathology, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
40
|
Yildirim K, Winkler B, Pogodalla N, Mackensen S, Baldenius M, Garcia L, Naffin E, Rodrigues S, Klämbt C. Redundant functions of the SLC5A transporters Rumpel, Bumpel, and Kumpel in ensheathing glial cells. Biol Open 2021; 11:274028. [PMID: 34897385 PMCID: PMC8790523 DOI: 10.1242/bio.059128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022] Open
Abstract
Neuronal processing is energy demanding, and relies on sugar metabolism. To nurture the Drosophila nervous system, the blood-brain barrier forming glial cells take up trehalose from the hemolymph and then distribute the metabolic products further to all neurons. This function is provided by glucose and lactate transporters of the solute carrier (SLC) 5A family. Here we identified three SLC5A genes that are specifically expressed in overlapping sets of CNS glial cells, rumpel, bumpel and kumpel. We generated mutants in all genes and all mutants are viable and fertile, lacking discernible phenotypes. Loss of rumpel causes subtle locomotor phenotypes and flies display increased daytime sleep. In addition, in bumpel kumpel double mutants, and to an even greater extent in rumpel bumpel kumpel triple mutants, oogenesis is disrupted at the onset of the vitollegenic phase. This indicates a partially redundant functions between these genes. Rescue experiments exploring this effect indicate that oogenesis can be affected by CNS glial cells. Moreover, expression of heterologous mammalian SLC5A transporters, with known transport properties, suggest that Bumpel and/or Kumpel transport glucose or lactate. Overall, our results imply a redundancy in SLC5A nutrient sensing functions in Drosophila glial cells, affecting ovarian development and behavior.
Collapse
Affiliation(s)
- Kerem Yildirim
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany.,Centre for Organismal Studies (COS) Heidelberg, University of Heidelberg, Im Neuenheimer Feld 230, 9120 Heidelberg, Germany
| | - Bente Winkler
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Nicole Pogodalla
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Steffi Mackensen
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Marie Baldenius
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Luis Garcia
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Silke Rodrigues
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institute for Neuro- and Behavioral Biology, University of Münster, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
41
|
Oltrabella F, Jackson-Crawford A, Yan G, Rixham S, Starborg T, Lowe M. IPIP27A cooperates with OCRL to support endocytic traffic in the zebrafish pronephric tubule. Hum Mol Genet 2021; 31:1183-1196. [PMID: 34673953 DOI: 10.1093/hmg/ddab307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023] Open
Abstract
Endocytosis is a fundamentally important process through which material is internalized into cells from the extracellular environment. In the renal proximal tubule, endocytosis of the abundant scavenger receptor megalin and its co-receptor cubilin play a vital role in retrieving low molecular weight proteins from the renal filtrate. Although we know much about megalin and its ligands, the machinery and mechanisms by which the receptor is trafficked through the endosomal system remain poorly defined. In this study, we show that Ipip27A, an interacting partner of the Lowe syndrome protein OCRL, is required for endocytic traffic of megalin within the proximal renal tubule of zebrafish larvae. Knockout of Ipip27A phenocopies the endocytic phenotype seen upon loss of OCRL, with a deficit in uptake of both fluid-phase and protein cargo, which is accompanied by a reduction in megalin abundance and altered endosome morphology. Rescue and co-depletion experiments indicate that Ipip27A functions together with OCRL to support proximal tubule endocytosis. The results therefore identify Ipip27A as a new player in endocytic traffic in the proximal tubule in vivo and support the view that defective endocytosis underlies the renal tubulopathy in Lowe syndrome and Dent-2 disease.
Collapse
Affiliation(s)
- Francesca Oltrabella
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Medical Scientific Liaison - Nephrology, Astellas Pharma, Via Dante, 20123 Milano, Italy
| | - Anthony Jackson-Crawford
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Department of Blood Sciences, Grange University Hospital, Llanyravon, Gwent, NP44 8YN
| | - Guanhua Yan
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Sarah Rixham
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tobias Starborg
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.,Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
42
|
Ttc30a affects tubulin modifications in a model for ciliary chondrodysplasia with polycystic kidney disease. Proc Natl Acad Sci U S A 2021; 118:2106770118. [PMID: 34548398 PMCID: PMC8488674 DOI: 10.1073/pnas.2106770118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia are tubulin-based cellular appendages, and their dysfunction has been linked to a variety of genetic diseases. Ciliary chondrodysplasia is one such condition that can co-occur with cystic kidney disease and other organ manifestations. We modeled skeletal ciliopathies by mutating two established disease genes in Xenopus tropicalis frogs. Bioinformatic analysis identified ttc30a as a ciliopathy network component, and targeting it replicated skeletal malformations and renal cysts as seen in patients and the amphibian models. A loss of Ttc30a affected cilia by altering posttranslational tubulin modifications. Our findings identify TTC30A/B as a component of ciliary segmentation essential for cartilage differentiation and renal tubulogenesis. These findings may lead to novel therapeutic targets in treating ciliary skeletopathies and cystic kidney disease. Skeletal ciliopathies (e.g., Jeune syndrome, short rib polydactyly syndrome, and Sensenbrenner syndrome) are frequently associated with nephronophthisis-like cystic kidney disease and other organ manifestations. Despite recent progress in genetic mapping of causative loci, a common molecular mechanism of cartilage defects and cystic kidneys has remained elusive. Targeting two ciliary chondrodysplasia loci (ift80 and ift172) by CRISPR/Cas9 mutagenesis, we established models for skeletal ciliopathies in Xenopus tropicalis. Froglets exhibited severe limb deformities, polydactyly, and cystic kidneys, closely matching the phenotype of affected patients. A data mining–based in silico screen found ttc30a to be related to known skeletal ciliopathy genes. CRISPR/Cas9 targeting replicated limb malformations and renal cysts identical to the models of established disease genes. Loss of Ttc30a impaired embryonic renal excretion and ciliogenesis because of altered posttranslational tubulin acetylation, glycylation, and defective axoneme compartmentalization. Ttc30a/b transcripts are enriched in chondrocytes and osteocytes of single-cell RNA-sequenced embryonic mouse limbs. We identify TTC30A/B as an essential node in the network of ciliary chondrodysplasia and nephronophthisis-like disease proteins and suggest that tubulin modifications and cilia segmentation contribute to skeletal and renal ciliopathy manifestations of ciliopathies in a cell type–specific manner. These findings have implications for potential therapeutic strategies.
Collapse
|
43
|
Xiao S, Suo W, Zhang J, Zhang X, Yin Y, Guo X, Zheng Y. Mga Spn is a negative regulator of capsule and phosphorylcholine biosynthesis and influences the virulence of Streptococcus pneumoniae D39. Virulence 2021; 12:2366-2381. [PMID: 34506260 PMCID: PMC8437459 DOI: 10.1080/21505594.2021.1972539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Global transcriptional regulators are prevalent in gram-positive pathogens. The transcriptional regulators of the Mga/AtxA family regulate target gene expression by directly binding to the promoter regions, that results in the coordinated expression of virulence factors. The spd_1587 gene of Streptococcus pneumoniae strain D39 encodes MgaSpn, which shares sequence similarity with global transcriptional regulators of the Mga/AtxA family. In this study, we demonstrated that MgaSpn regulates the biosynthesis of the capsule and phosphorylcholine, which play key roles in disease severity in S. pneumoniae infections. MgaSpn directly binds to the cps and lic1 promoters and affects the biosynthesis of the capsule and phosphorylcholine. MgaSpn binds to two specific sites on the promoter of cps, one of which contains the −35 box of the promoter, with high affinity. Consistently, low-molecular-weight capsule components were observed in the mgaSpn-null mutant strain. Moreover, we found that phosphorylcholine content was notably increased in the unencapsulated mgaSpn mutant strain. The mgaSpn null mutant caused more severe systemic disease than the parental strain D39. These findings indicate that the pneumococcal MgaSpn protein can inhibit capsule and phosphorylcholine production, thereby affecting the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Shengnan Xiao
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Weicai Suo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jinghui Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinlin Guo
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yuqiang Zheng
- Department of Medicine Laboratory, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders; and Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| |
Collapse
|
44
|
Jakutis G, Stainier DYR. Genotype-Phenotype Relationships in the Context of Transcriptional Adaptation and Genetic Robustness. Annu Rev Genet 2021; 55:71-91. [PMID: 34314597 DOI: 10.1146/annurev-genet-071719-020342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic manipulations with a robust and predictable outcome are critical to investigate gene function, as well as for therapeutic genome engineering. For many years, knockdown approaches and reagents including RNA interference and antisense oligonucleotides dominated functional studies; however, with the advent of precise genome editing technologies, CRISPR-based knockout systems have become the state-of-the-art tools for such studies. These technologies have helped decipher the role of thousands of genes in development and disease. Their use has also revealed how limited our understanding of genotype-phenotype relationships is. The recent discovery that certain mutations can trigger the transcriptional modulation of other genes, a phenomenon called transcriptional adaptation, has provided an additional explanation for the contradicting phenotypes observed in knockdown versus knockout models and increased awareness about the use of each of these approaches. In this review, we first cover the strengths and limitations of different gene perturbation strategies. Then we highlight the diverse ways in which the genotype-phenotype relationship can be discordant between these different strategies. Finally, we review the genetic robustness mechanisms that can lead to such discrepancies, paying special attention to the recently discovered phenomenon of transcriptional adaptation. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gabrielius Jakutis
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany;
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany; .,German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, 60590 Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
| |
Collapse
|
45
|
Cardenas-Rodriguez M, Austin-Tse C, Bergboer JGM, Molinari E, Sugano Y, Bachmann-Gagescu R, Sayer JA, Drummond IA. Genetic compensation for cilia defects in cep290 mutants by upregulation of cilia-associated small GTPases. J Cell Sci 2021; 134:jcs258568. [PMID: 34155518 PMCID: PMC8325957 DOI: 10.1242/jcs.258568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in CEP290 (also known as NPHP6), a large multidomain coiled coil protein, are associated with multiple cilia-associated syndromes. Over 130 CEP290 mutations have been linked to a wide spectrum of human ciliopathies, raising the question of how mutations in a single gene cause different disease syndromes. In zebrafish, the expressivity of cep290 deficiencies were linked to the type of genetic ablation: acute cep290 morpholino knockdown caused severe cilia-related phenotypes, whereas deficiencies in a CRISPR/Cas9 genetic mutant were restricted to photoreceptor defects. Here, we show that milder phenotypes in genetic mutants were associated with the upregulation of genes encoding the cilia-associated small GTPases arl3, arl13b and unc119b. Upregulation of UNC119b was also observed in urine-derived renal epithelial cells from human Joubert syndrome CEP290 patients. Ectopic expression of arl3, arl13b and unc119b in cep290 morphant zebrafish embryos rescued Kupffer's vesicle cilia and partially rescued photoreceptor outer segment defects. The results suggest that genetic compensation by upregulation of genes involved in a common subcellular process, lipidated protein trafficking to cilia, may be a conserved mechanism contributing to genotype-phenotype variations observed in CEP290 deficiencies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Magdalena Cardenas-Rodriguez
- Department of Medicine, Nephrology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Christina Austin-Tse
- Department of Pathology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | | | - Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
| | - Yuya Sugano
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | - John A. Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE1 3BZ, UK
- Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle NE7 7DN, UK
| | - Iain A. Drummond
- Department of Medicine, Nephrology Division, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
- Davis Center for Regenerative Biology and Aging, Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, ME 04609, USA
| |
Collapse
|
46
|
Douek AM, Amiri Khabooshan M, Henry J, Stamatis SA, Kreuder F, Ramm G, Änkö ML, Wlodkowic D, Kaslin J. An Engineered sgsh Mutant Zebrafish Recapitulates Molecular and Behavioural Pathobiology of Sanfilippo Syndrome A/MPS IIIA. Int J Mol Sci 2021; 22:ijms22115948. [PMID: 34073041 PMCID: PMC8197930 DOI: 10.3390/ijms22115948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA, Sanfilippo syndrome type A), a paediatric neurological lysosomal storage disease, is caused by impaired function of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH) resulting in impaired catabolism of heparan sulfate glycosaminoglycan (HS GAG) and its accumulation in tissues. MPS IIIA represents a significant proportion of childhood dementias. This condition generally leads to patient death in the teenage years, yet no effective therapy exists for MPS IIIA and a complete understanding of the mechanisms of MPS IIIA pathogenesis is lacking. Here, we employ targeted CRISPR/Cas9 mutagenesis to generate a model of MPS IIIA in the zebrafish, a model organism with strong genetic tractability and amenity for high-throughput screening. The sgshΔex5-6 zebrafish mutant exhibits a complete absence of Sgsh enzymatic activity, leading to progressive accumulation of HS degradation products with age. sgshΔex5-6 zebrafish faithfully recapitulate diverse CNS-specific features of MPS IIIA, including neuronal lysosomal overabundance, complex behavioural phenotypes, and profound, lifelong neuroinflammation. We further demonstrate that neuroinflammation in sgshΔex5-6 zebrafish is largely dependent on interleukin-1β and can be attenuated via the pharmacological inhibition of Caspase-1, which partially rescues behavioural abnormalities in sgshΔex5-6 mutant larvae in a context-dependent manner. We expect the sgshΔex5-6 zebrafish mutant to be a valuable resource in gaining a better understanding of MPS IIIA pathobiology towards the development of timely and effective therapeutic interventions.
Collapse
Affiliation(s)
- Alon M. Douek
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Mitra Amiri Khabooshan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Jason Henry
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Sebastian-Alexander Stamatis
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Florian Kreuder
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, VIC 3800, Australia;
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Minna-Liisa Änkö
- Centre for Reproductive Health and Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Donald Wlodkowic
- Neurotoxicology Lab, School of Science (Biosciences), RMIT University, Bundoora, VIC 3083, Australia; (J.H.); (D.W.)
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; (A.M.D.); (M.A.K.); (S.-A.S.); (F.K.)
- Correspondence: ; Tel.: +61-3-9902-9613; Fax: +61-3-9902-9729
| |
Collapse
|
47
|
Salanga CM, Salanga MC. Genotype to Phenotype: CRISPR Gene Editing Reveals Genetic Compensation as a Mechanism for Phenotypic Disjunction of Morphants and Mutants. Int J Mol Sci 2021; 22:ijms22073472. [PMID: 33801686 PMCID: PMC8036752 DOI: 10.3390/ijms22073472] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
Forward genetic screens have shown the consequences of deleterious mutations; however, they are best suited for model organisms with fast reproductive rates and large broods. Furthermore, investigators must faithfully identify changes in phenotype, even if subtle, to realize the full benefit of the screen. Reverse genetic approaches also probe genotype to phenotype relationships, except that the genetic targets are predefined. Until recently, reverse genetic approaches relied on non-genomic gene silencing or the relatively inefficient, homology-dependent gene targeting for loss-of-function generation. Fortunately, the flexibility and simplicity of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has revolutionized reverse genetics, allowing for the precise mutagenesis of virtually any gene in any organism at will. The successful integration of insertions/deletions (INDELs) and nonsense mutations that would, at face value, produce the expected loss-of-function phenotype, have been shown to have little to no effect, even if other methods of gene silencing demonstrate robust loss-of-function consequences. The disjunction between outcomes has raised important questions about our understanding of genotype to phenotype and highlights the capacity for compensation in the central dogma. This review describes recent studies in which genomic compensation appears to be at play, discusses the possible compensation mechanisms, and considers elements important for robust gene loss-of-function studies.
Collapse
Affiliation(s)
- Cristy M. Salanga
- Office of the Vice President for Research, Northern Arizona University, Flagstaff, AZ 86011, USA;
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Correspondence:
| |
Collapse
|
48
|
Czimer D, Porok K, Csete D, Gyüre Z, Lavró V, Fülöp K, Chen Z, Gyergyák H, Tusnády GE, Burgess SM, Mócsai A, Váradi A, Varga M. A New Zebrafish Model for Pseudoxanthoma Elasticum. Front Cell Dev Biol 2021; 9:628699. [PMID: 33768091 PMCID: PMC7985086 DOI: 10.3389/fcell.2021.628699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/16/2021] [Indexed: 11/30/2022] Open
Abstract
Calcification of various tissues is a significant health issue associated with aging, cancer and autoimmune diseases. There are both environmental and genetic factors behind this phenomenon and understanding them is essential for the development of efficient therapeutic approaches. Pseudoxanthoma elasticum (PXE) is a rare genetic disease, a prototype for calcification disorders, resulting from the dysfunction of ABCC6, a transport protein found in the membranes of cells. It is identified by excess calcification in a variety of tissues (e.g., eyes, skin, arteries) and currently it has no cure, known treatments target the symptoms only. Preclinical studies of PXE have been successful in mice, proving the usefulness of animal models for the study of the disease. Here, we present a new zebrafish (Danio rerio) model for PXE. By resolving some ambiguous assemblies in the zebrafish genome, we show that there are two functional and one non-functional paralogs for ABCC6 in zebrafish (abcc6a, abcc6b.1, and abcc6b.2, respectively). We created single and double mutants for the functional paralogs and characterized their calcification defects with a combination of techniques. Zebrafish deficient in abcc6a show defects in their vertebral calcification and also display ectopic calcification foci in their soft tissues. Our results also suggest that the impairment of abcc6b.1 does not affect this biological process.
Collapse
Affiliation(s)
- Dávid Czimer
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Klaudia Porok
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Csete
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsolt Gyüre
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Viktória Lavró
- Division of Biosciences, University College London, London, United Kingdom
| | - Krisztina Fülöp
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zelin Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hella Gyergyák
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor E. Tusnády
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, United States
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Váradi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
49
|
Tromp A, Mowry B, Giacomotto J. Neurexins in autism and schizophrenia-a review of patient mutations, mouse models and potential future directions. Mol Psychiatry 2021; 26:747-760. [PMID: 33191396 DOI: 10.1038/s41380-020-00944-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Mutations in the family of neurexins (NRXN1, NRXN2 and NRXN3) have been repeatedly identified in patients with autism spectrum disorder (ASD) and schizophrenia (SCZ). However, it remains unclear how these DNA variants affect neurexin functions and thereby predispose to these neurodevelopmental disorders. Understanding both the wild-type and pathologic roles of these genes in the brain could help unveil biological mechanisms underlying mental disorders. In this regard, numerous studies have focused on generating relevant loss-of-function (LOF) mammalian models. Although this has increased our knowledge about their normal functions, the potential pathologic role(s) of these human variants remains elusive. Indeed, after reviewing the literature, it seems apparent that a traditional LOF-genetic approach based on complete LOF might not be sufficient to unveil the role of these human mutations. First, these genes present a very complex transcriptome and total-LOF of all isoforms may not be the cause of toxicity in patients, particularly given evidence that causative variants act through haploinsufficiency. Moreover, human DNA variants may not all lead to LOF but potentially to intricate transcriptome changes that could also include the generation of aberrant isoforms acting as a gain-of-function (GOF). Furthermore, their transcriptomic complexity most likely renders them prone to genetic compensation when one tries to manipulate them using traditional site-directed mutagenesis approaches, and this could act differently from model to model leading to heterogeneous and conflicting phenotypes. This review compiles the relevant literature on variants identified in human studies and on the mouse models currently deployed, and offers suggestions for future research.
Collapse
Affiliation(s)
- Alisha Tromp
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Bryan Mowry
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.
- Queensland Centre for Mental Health Research, Brisbane, QLD, Australia.
| |
Collapse
|
50
|
Parab S, Quick RE, Matsuoka RL. Endothelial cell-type-specific molecular requirements for angiogenesis drive fenestrated vessel development in the brain. eLife 2021; 10:64295. [PMID: 33459592 PMCID: PMC7840183 DOI: 10.7554/elife.64295] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/17/2021] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cells (vECs) in the brain exhibit structural and functional heterogeneity. Fenestrated, permeable brain vasculature mediates neuroendocrine function, body-fluid regulation, and neural immune responses; however, its vascular formation remains poorly understood. Here, we show that specific combinations of vascular endothelial growth factors (Vegfs) are required to selectively drive fenestrated vessel formation in the zebrafish myelencephalic choroid plexus (mCP). We found that the combined, but not individual, loss of Vegfab, Vegfc, and Vegfd causes severely impaired mCP vascularization with little effect on neighboring non-fenestrated brain vessel formation, demonstrating fenestrated-vEC-specific angiogenic requirements. This Vegfs-mediated vessel-selective patterning also involves Ccbe1. Expression analyses, cell-type-specific ablation, and paracrine activity-deficient vegfc mutant characterization suggest that vEC-autonomous Vegfc and meningeal fibroblast-derived Vegfab and Vegfd are critical for mCP vascularization. These results define molecular cues and cell types critical for directing fenestrated CP vascularization and indicate that vECs’ distinct molecular requirements for angiogenesis underlie brain vessel heterogeneity.
Collapse
Affiliation(s)
- Sweta Parab
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| | - Rachael E Quick
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| | - Ryota L Matsuoka
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, United States.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, United States
| |
Collapse
|