1
|
Gilglioni EH, Bansal M, St-Pierre-Wijckmans W, Talamantes S, Kasarinaite A, Hay DC, Gurzov EN. Therapeutic potential of stem cell-derived somatic cells to treat metabolic dysfunction-associated steatotic liver disease and diabetes. Obes Rev 2025; 26:e13899. [PMID: 39861937 DOI: 10.1111/obr.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025]
Abstract
Developments in basic stem cell biology have paved the way for technology translation in human medicine. An exciting prospective use of stem cells is the ex vivo generation of hepatic and pancreatic endocrine cells for biomedical applications. This includes creating novel models 'in a dish' and developing therapeutic strategies for complex diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD) and diabetes. In this review, we explore recent advances in the generation of stem cell-derived hepatocyte-like cells and insulin-producing β-like cells. We cover the different differentiation strategies, new discoveries, and the caveats that still exist regarding their routine use. Finally, we discuss the challenges and limitations of stem cell-derived therapies as a clinical strategy to manage metabolic diseases in humans.
Collapse
Affiliation(s)
- Eduardo H Gilglioni
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Mayank Bansal
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | | | - Stephanie Talamantes
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Alvile Kasarinaite
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - David C Hay
- Institute for Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
- WELBIO Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
2
|
Aldous N, Elsayed AK, Memon B, Ijaz S, Hayat S, Abdelalim EM. Deletion of RFX6 impairs iPSC-derived islet organoid development and survival, with no impact on PDX1 +/NKX6.1 + progenitors. Diabetologia 2024; 67:2786-2803. [PMID: 39080045 PMCID: PMC11604831 DOI: 10.1007/s00125-024-06232-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
AIMS/HYPOTHESIS Homozygous mutations in RFX6 lead to neonatal diabetes accompanied by a hypoplastic pancreas, whereas heterozygous mutations cause MODY. Recent studies have also shown RFX6 variants to be linked with type 2 diabetes. Despite RFX6's known function in islet development, its specific role in diabetes pathogenesis remains unclear. Here, we aimed to understand the mechanisms underlying the impairment of pancreatic islet development and subsequent hypoplasia due to loss-of-function mutations in RFX6. METHODS We examined regulatory factor X6 (RFX6) expression during human embryonic stem cell (hESC) differentiation into pancreatic islets and re-analysed a single-cell RNA-seq dataset to identify RFX6-specific cell populations during islet development. Furthermore, induced pluripotent stem cell (iPSC) lines lacking RFX6 were generated using CRISPR/Cas9. Various approaches were then employed to explore the consequences of RFX6 loss across different developmental stages. Subsequently, we evaluated transcriptional changes resulting from RFX6 loss through RNA-seq of pancreatic progenitors (PPs) and endocrine progenitors (EPs). RESULTS RFX6 expression was detected in PDX1+ cells in the hESC-derived posterior foregut (PF). However, in the PPs, RFX6 did not co-localise with pancreatic and duodenal homeobox 1 (PDX1) or NK homeobox 1 (NKX6.1) but instead co-localised with neurogenin 3, NK2 homeobox 2 and islet hormones in the EPs and islets. Single-cell analysis revealed high RFX6 expression levels in endocrine clusters across various hESC-derived pancreatic differentiation stages. Upon differentiating iPSCs lacking RFX6 into pancreatic islets, a significant decrease in PDX1 expression at the PF stage was observed, although this did not affect PPs co-expressing PDX1 and NKX6.1. RNA-seq analysis showed the downregulation of essential genes involved in pancreatic endocrine differentiation, insulin secretion and ion transport due to RFX6 deficiency. Furthermore, RFX6 deficiency resulted in the formation of smaller islet organoids due to increased cellular apoptosis, linked to reduced catalase expression, implying a protective role for RFX6. Overexpression of RFX6 reversed defective phenotypes in RFX6-knockout PPs, EPs and islets. CONCLUSIONS/INTERPRETATION These findings suggest that pancreatic hypoplasia and reduced islet cell formation associated with RFX6 mutations are not due to alterations in PDX1+/NKX6.1+ PPs but instead result from cellular apoptosis and downregulation of pancreatic endocrine genes. DATA AVAILABILITY RNA-seq datasets have been deposited in the Zenodo repository with accession link (DOI: https://doi.org/10.5281/zenodo.10656891 ).
Collapse
Affiliation(s)
- Noura Aldous
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Ahmed K Elsayed
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar
- Stem Cell Core, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Bushra Memon
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Sadaf Ijaz
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Essam M Abdelalim
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Education City, Doha, Qatar.
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Department, Research Branch, Sidra Medicine, Doha, Qatar.
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar.
| |
Collapse
|
3
|
Barbetti F, Deeb A, Suzuki S. Neonatal diabetes mellitus around the world: Update 2024. J Diabetes Investig 2024; 15:1711-1724. [PMID: 39344692 PMCID: PMC11615689 DOI: 10.1111/jdi.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
Neonatal diabetes mellitus (NDM), defined as diabetes with an onset during the first 6 months of life, is a rare form of monogenic diabetes. The initial publications on this condition began appearing in the second half of the 1990s and quite surprisingly, the search for new NDM genes is still ongoing with great vigor. Between 2018 and early 2024, six brand new NDM-genes have been discovered (CNOT1, FICD, ONECUT1, PDIA6, YIPF5, ZNF808) and three genes known to cause different diseases were identified as NDM-genes (EIF2B1, NARS2, KCNMA1). In addition, NDM cases carrying mutations in three other genes known to give rise to diabetes during childhood have been also identified (AGPAT2, BSCL2, PIK3R1). As a consequence, the list of NDM genes now exceeds 40. This genetic heterogeneity translates into many different mechanism(s) of disease that are being investigated with state-of-the-art methodologies, such as induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESC) manipulated with the CRISPR technique of genome editing. This diversity in genetic causes and the pathophysiology of diabetes dictate the need for a variety of therapeutic approaches. The aim of this paper is to provide an overview on recent achievements in all aspects of this area of research.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Monogenic Diabetes Clinic, Endocrinology and Diabetes UnitBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Asma Deeb
- Pediatric Endocrine Division, Sheikh Shakhbout Medical City and College of Medicine and Health ScienceKhalifa UniversityAbu DhabiUAE
| | - Shigeru Suzuki
- Department of PediatricsAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
4
|
Simon NM, Kim Y, Gribnau J, Bautista DM, Dutton JR, Brem RB. Stem cell transcriptional profiles from mouse subspecies reveal cis-regulatory evolution at translation genes. Heredity (Edinb) 2024; 133:308-316. [PMID: 39164520 PMCID: PMC11527988 DOI: 10.1038/s41437-024-00715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
A key goal of evolutionary genomics is to harness molecular data to draw inferences about selective forces that have acted on genomes. The field progresses in large part through the development of advanced molecular-evolution analysis methods. Here we explored the intersection between classical sequence-based tests for selection and an empirical expression-based approach, using stem cells from Mus musculus subspecies as a model. Using a test of directional, cis-regulatory evolution across genes in pathways, we discovered a unique program of induction of translation genes in stem cells of the Southeast Asian mouse M. m. castaneus relative to its sister taxa. We then mined population-genomic sequences to pursue underlying regulatory mechanisms for this expression divergence, finding robust evidence for alleles unique to M. m. castaneus at the upstream regions of the translation genes. We interpret our data under a model of changes in lineage-specific pressures across Mus musculus in stem cells with high translational capacity. Our findings underscore the rigor of integrating expression and sequence-based methods to generate hypotheses about evolutionary events from long ago.
Collapse
Affiliation(s)
- Noah M Simon
- Biology of Aging Doctoral Program, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Yujin Kim
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joost Gribnau
- Department of Reproduction and Development, Erasmus MC, Rotterdam, PO Box 2040, CA, 3000, Netherlands
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Ibrahim H, Balboa D, Saarimäki-Vire J, Montaser H, Dyachok O, Lund PE, Omar-Hmeadi M, Kvist J, Dwivedi OP, Lithovius V, Barsby T, Chandra V, Eurola S, Ustinov J, Tuomi T, Miettinen PJ, Barg S, Tengholm A, Otonkoski T. RFX6 haploinsufficiency predisposes to diabetes through impaired beta cell function. Diabetologia 2024; 67:1642-1662. [PMID: 38743124 PMCID: PMC11343796 DOI: 10.1007/s00125-024-06163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 05/16/2024]
Abstract
AIMS/HYPOTHESIS Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).
Collapse
Affiliation(s)
- Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Om P Dwivedi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Solja Eurola
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, Helsinki, Finland
- Research Program of Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, Finland
- Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Päivi J Miettinen
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Pediatrics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
6
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR Screening Uncovers a Long-Range Enhancer for ONECUT1 in Pancreatic Differentiation and Links a Diabetes Risk Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591412. [PMID: 38746154 PMCID: PMC11092487 DOI: 10.1101/2024.04.26.591412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Functional enhancer annotation is a valuable first step for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants for investigation. However, unbiased enhancer discovery in physiologically relevant contexts remains a major challenge. To discover regulatory elements pertinent to diabetes, we conducted a CRISPR interference screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers uncovered, we focused on a long-range enhancer ∼664 kb from the ONECUT1 promoter, since coding mutations in ONECUT1 cause pancreatic hypoplasia and neonatal diabetes. Homozygous enhancer deletion in hPSCs was associated with a near-complete loss of ONECUT1 gene expression and compromised pancreatic differentiation. This enhancer contains a confidently fine-mapped type 2 diabetes associated variant (rs528350911) which disrupts a GATA motif. Introduction of the risk variant into hPSCs revealed substantially reduced binding of key pancreatic transcription factors (GATA4, GATA6 and FOXA2) on the edited allele, accompanied by a slight reduction of ONECUT1 transcription, supporting a causal role for this risk variant in metabolic disease. This work expands our knowledge about transcriptional regulation in pancreatic development through the characterization of a long-range enhancer and highlights the utility of enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
|
7
|
Sanchez JG, Rankin S, Paul E, McCauley HA, Kechele DO, Enriquez JR, Jones NH, Greeley SAW, Letourneau-Friedberg L, Zorn AM, Krishnamurthy M, Wells JM. RFX6 regulates human intestinal patterning and function upstream of PDX1. Development 2024; 151:dev202529. [PMID: 38587174 PMCID: PMC11128285 DOI: 10.1242/dev.202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.
Collapse
Affiliation(s)
- J. Guillermo Sanchez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Scott Rankin
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Emily Paul
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Heather A. McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Daniel O. Kechele
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Jacob R. Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Nana-Hawa Jones
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Siri A. W. Greeley
- Division of Endocrinology, University of Chicago, Chicago, IL 60637, USA
| | | | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
| | - Mansa Krishnamurthy
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M. Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati OH 45229, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Papazoglou AS, Karagiannidis E, Liatsos A, Bompoti A, Moysidis DV, Arvanitidis C, Tsolaki F, Tsagkaropoulos S, Theocharis S, Tagarakis G, Michaelson JS, Herrmann MD. Volumetric Tissue Imaging of Surgical Tissue Specimens Using Micro-Computed Tomography: An Emerging Digital Pathology Modality for Nondestructive, Slide-Free Microscopy-Clinical Applications of Digital Pathology in 3 Dimensions. Am J Clin Pathol 2023; 159:242-254. [PMID: 36478204 DOI: 10.1093/ajcp/aqac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Micro-computed tomography (micro-CT) is a novel, nondestructive, slide-free digital imaging modality that enables the acquisition of high-resolution, volumetric images of intact surgical tissue specimens. The aim of this systematic mapping review is to provide a comprehensive overview of the available literature on clinical applications of micro-CT tissue imaging and to assess its relevance and readiness for pathology practice. METHODS A computerized literature search was performed in the PubMed, Scopus, Web of Science, and CENTRAL databases. To gain insight into regulatory and financial considerations for performing and examining micro-CT imaging procedures in a clinical setting, additional searches were performed in medical device databases. RESULTS Our search identified 141 scientific articles published between 2000 and 2021 that described clinical applications of micro-CT tissue imaging. The number of relevant publications is progressively increasing, with the specialties of pulmonology, cardiology, otolaryngology, and oncology being most commonly concerned. The included studies were mostly performed in pathology departments. Current micro-CT devices have already been cleared for clinical use, and a Current Procedural Terminology (CPT) code exists for reimbursement of micro-CT imaging procedures. CONCLUSIONS Micro-CT tissue imaging enables accurate volumetric measurements and evaluations of entire surgical specimens at microscopic resolution across a wide range of clinical applications.
Collapse
Affiliation(s)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Liatsos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana Bompoti
- Diagnostic Imaging, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece.,LifeWatch ERIC, Sector II-II, Seville, Spain
| | - Fani Tsolaki
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, National and Kapoditrian University of Athens, Athens, Greece
| | - Georgios Tagarakis
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | - James S Michaelson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Is IIIG9 a New Protein with Exclusive Ciliary Function? Analysis of Its Potential Role in Cancer and Other Pathologies. Cells 2022; 11:cells11203327. [PMID: 36291193 PMCID: PMC9600092 DOI: 10.3390/cells11203327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The identification of new proteins that regulate the function of one of the main cellular phosphatases, protein phosphatase 1 (PP1), is essential to find possible pharmacological targets to alter phosphatase function in various cellular processes, including the initiation and development of multiple diseases. IIIG9 is a regulatory subunit of PP1 initially identified in highly polarized ciliated cells. In addition to its ciliary location in ependymal cells, we recently showed that IIIG9 has extraciliary functions that regulate the integrity of adherens junctions. In this review, we perform a detailed analysis of the expression, localization, and function of IIIG9 in adult and developing normal brains. In addition, we provide a 3D model of IIIG9 protein structure for the first time, verifying that the classic structural and conformational characteristics of the PP1 regulatory subunits are maintained. Our review is especially focused on finding evidence linking IIIG9 dysfunction with the course of some pathologies, such as ciliopathies, drug dependence, diseases based on neurological development, and the development of specific high-malignancy and -frequency brain tumors in the pediatric population. Finally, we propose that IIIG9 is a relevant regulator of PP1 function in physiological and pathological processes in the CNS.
Collapse
|
11
|
Barbetti F, Rapini N, Schiaffini R, Bizzarri C, Cianfarani S. The application of precision medicine in monogenic diabetes. Expert Rev Endocrinol Metab 2022; 17:111-129. [PMID: 35230204 DOI: 10.1080/17446651.2022.2035216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Monogenic diabetes, a form of diabetes mellitus, is caused by a mutation in a single gene and may account for 1-2% of all clinical forms of diabetes. To date, more than 40 loci have been associated with either isolated or syndromic monogenic diabetes. AREAS COVERED While the request of a genetic test is mandatory for cases with diabetes onset in the first 6 months of life, a decision may be difficult for childhood or adolescent diabetes. In an effort to assist the clinician in this task, we have grouped monogenic diabetes genes according to the age of onset (or incidental discovery) of hyperglycemia and described the additional clinical features found in syndromic diabetes. The therapeutic options available are reviewed. EXPERT OPINION Technical improvements in DNA sequencing allow for rapid, simultaneous analysis of all genes involved in monogenic diabetes, progressively shrinking the area of unsolved cases. However, the complexity of the analysis of genetic data requires close cooperation between the geneticist and the diabetologist, who should play a proactive role by providing a detailed clinical phenotype that might match a specific disease gene.
Collapse
Affiliation(s)
- Fabrizio Barbetti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Novella Rapini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Riccardo Schiaffini
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carla Bizzarri
- Diabetology and Growth Disorders Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Cianfarani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Dipartimento Pediatrico Universitario Ospedaliero, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
- Department of Women's and Children Health, Karolisnska Institute and University Hospital, Sweden
| |
Collapse
|
12
|
Passone CDGB, Vermillac G, Staels W, Besancon A, Kariyawasam D, Godot C, Lambe C, Talbotec C, Girard M, Chardot C, Berteloot L, Hachem T, Lapillonne A, Poidvin A, Storey C, Neve M, Stan C, Dugelay E, Fauret-Amsellem AL, Capri Y, Cavé H, Ybarra M, Chandra V, Scharfmann R, Bismuth E, Polak M, Carel JC, Pigneur B, Beltrand J. Mitchell-Riley Syndrome: Improving Clinical Outcomes and Searching for Functional Impact of RFX-6 Mutations. Front Endocrinol (Lausanne) 2022; 13:802351. [PMID: 35813646 PMCID: PMC9257252 DOI: 10.3389/fendo.2022.802351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS/HYPOTHESIS Caused by biallelic mutations of the gene encoding the transcription factor RFX6, the rare Mitchell-Riley syndrome (MRS) comprises neonatal diabetes, pancreatic hypoplasia, gallbladder agenesis or hypoplasia, duodenal atresia, and severe chronic diarrhea. So far, sixteen cases have been reported, all with a poor prognosis. This study discusses the multidisciplinary intensive clinical management of 4 new cases of MRS that survived over the first 2 years of life. Moreover, it demonstrates how the mutations impair the RFX6 function. METHODS Clinical records were analyzed and described in detail. The functional impact of two RFX6R181W and RFX6V506G variants was assessed by measuring their ability to transactivate insulin transcription and genes that encode the L-type calcium channels required for normal pancreatic beta-cell function. RESULTS All four patients were small for gestational age (SGA) and prenatally diagnosed with duodenal atresia. They presented with neonatal diabetes early in life and were treated with intravenous insulin therapy before switching to subcutaneous insulin pump therapy. All patients faced recurrent hypoglycemic episodes, exacerbated when parenteral nutrition (PN) was disconnected. A sensor-augmented insulin pump therapy with a predictive low-glucose suspension system was installed with good results. One patient had a homozygous c.1517T>G (p.Val506Gly) mutation, two patients had a homozygous p.Arg181Trp mutation, and one patient presented with new compound heterozygosity. The RFX6V506G and RFX6R181W mutations failed to transactivate the expression of insulin and genes that encode L-type calcium channel subunits required for normal pancreatic beta-cell function. CONCLUSIONS/INTERPRETATION Multidisciplinary and intensive disease management improved the clinical outcomes in four patients with MRS, including adjustment of parenteral/oral nutrition progression and advanced diabetes technologies. A better understanding of RFX6 function, in both intestine and pancreas cells, may break ground in new therapies, particularly regarding the use of drugs that modulate the enteroendocrine system.
Collapse
Affiliation(s)
- Caroline de Gouveia Buff Passone
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- *Correspondence: Caroline de Gouveia Buff Passone, ; orcid.org/0000-0003-2639-352X
| | - Gaëlle Vermillac
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Willem Staels
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Division of Pediatric Endocrinology, Department of Pediatrics, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Alix Besancon
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Dulanjalee Kariyawasam
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- Imagine Institute, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Godot
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Lambe
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Cécile Talbotec
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- INSERM UMR S 1139, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | - Muriel Girard
- Hepatology Unit, Hôpital Universitaire Necker Enfants Malades, Université de Paris, Inserm U1151, Centre de Référence Maladie rares Atresie des voies biliaires et cholestases génétiques et Filière de soin Filfoie, Paris, France
| | - Christophe Chardot
- Pediatric Surgery Department, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Laureline Berteloot
- Pediatric Radiology Department, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France/INSERM U1163, Institut Imagine, Paris, France
| | - Taymme Hachem
- Neonatal Intensive Care Unit, Hôpital Universitaire Necker Enfants Malades, EHU 7328 Université Paris Descartes, Paris, France
| | - Alexandre Lapillonne
- Neonatal Intensive Care Unit, Hôpital Universitaire Necker Enfants Malades, EHU 7328 Université Paris Descartes, Paris, France
| | - Amélie Poidvin
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Caroline Storey
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Mathieu Neve
- Pediatric Department Hôpital d’Enfants de Margency Croix-Rouge française, Margency, France
| | - Cosmina Stan
- Pediatric Department Hôpital d’Enfants de Margency Croix-Rouge française, Margency, France
| | - Emmanuelle Dugelay
- Department of Pediatric Gastroenterology and Nutrition, Hôpital Universitaire Robert-Debré, Paris, France
| | | | - Yline Capri
- Genetic Department, Hopital Universitaire Robert Debré, Paris, France
| | - Hélène Cavé
- Genetic Department, Hopital Universitaire Robert Debré, Paris, France
| | - Marina Ybarra
- Research Center of Sainte Justine University Hospital, Université de Montréal, Montreal, QC, Canada
| | - Vikash Chandra
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Biomedicum Stem Cell Center, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Raphaël Scharfmann
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
| | - Elise Bismuth
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Michel Polak
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Jean Claude Carel
- Université Paris Cité, Hôpital Universitaire Robert-Debré, Service d’Endocrinologie Diabétologie Pédiatrique et CRMR Prisis, Paris, France
| | - Bénédicte Pigneur
- Pediatric Gastroentherology Hepatology and Nutrition Unit, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Jacques Beltrand
- Department of Endocrinology, Metabolism and Diabetes, Inserm U1016, Cochin Institute, Paris, France
- Pediatric Endocrinology, Gynecology and Diabetology, Centre de Référence des Pathologies Gynécologiques Rares et des Maladies Endocriniennes Rares de la Croissance et du Développement, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
- Imagine Institute, Hôpital Universitaire Necker Enfants Malades, Université Paris Descartes, Paris, France
| |
Collapse
|
13
|
Burgos JI, Vallier L, Rodríguez-Seguí SA. Monogenic Diabetes Modeling: In Vitro Pancreatic Differentiation From Human Pluripotent Stem Cells Gains Momentum. Front Endocrinol (Lausanne) 2021; 12:692596. [PMID: 34295307 PMCID: PMC8290520 DOI: 10.3389/fendo.2021.692596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
The occurrence of diabetes mellitus is characterized by pancreatic β cell loss and chronic hyperglycemia. While Type 1 and Type 2 diabetes are the most common types, rarer forms involve mutations affecting a single gene. This characteristic has made monogenic diabetes an interesting disease group to model in vitro using human pluripotent stem cells (hPSCs). By altering the genotype of the original hPSCs or by deriving human induced pluripotent stem cells (hiPSCs) from patients with monogenic diabetes, changes in the outcome of the in vitro differentiation protocol can be analyzed in detail to infer the regulatory mechanisms affected by the disease-associated genes. This approach has been so far applied to a diversity of genes/diseases and uncovered new mechanisms. The focus of the present review is to discuss the latest findings obtained by modeling monogenic diabetes using hPSC-derived pancreatic cells generated in vitro. We will specifically focus on the interpretation of these studies, the advantages and limitations of the models used, and the future perspectives for improvement.
Collapse
Affiliation(s)
- Juan Ignacio Burgos
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Ludovic Vallier
- Wellcome-Medical Research Council Cambridge Stem Cell Institute and Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Santiago A. Rodríguez-Seguí
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
14
|
Heller S, Melzer MK, Azoitei N, Julier C, Kleger A. Human Pluripotent Stem Cells Go Diabetic: A Glimpse on Monogenic Variants. Front Endocrinol (Lausanne) 2021; 12:648284. [PMID: 34079523 PMCID: PMC8166226 DOI: 10.3389/fendo.2021.648284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes, as one of the major diseases in industrial countries, affects over 350 million people worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms with both types having invariable genetic influence. It is accepted that a subset of all diabetes patients, generally estimated to account for 1-2% of all diabetic cases, is attributed to mutations in single genes. As only a subset of these genes has been identified and fully characterized, there is a dramatic need to understand the pathophysiological impact of genetic determinants on β-cell function and pancreatic development but also on cell replacement therapies. Pluripotent stem cells differentiated along the pancreatic lineage provide a valuable research platform to study such genes. This review summarizes current perspectives in applying this platform to study monogenic diabetes variants.
Collapse
Affiliation(s)
- Sandra Heller
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Michael Karl Melzer
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
- Department of Urology, Ulm University Hospital, Ulm, Germany
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Cécile Julier
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR-8104, Paris, France
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|