1
|
Li C, Zhang Y, Zhang Z, Zhang Y, Song Y, Wang L, Yuan C, Hao G, Sun N, Li H, Zhang Z, He Y, Wang S. Discovery and biological evaluation of carborane-containing derivatives as TEAD auto palmitoylation inhibitors. Bioorg Med Chem Lett 2025; 121:130155. [PMID: 40010443 DOI: 10.1016/j.bmcl.2025.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Transcriptional enhanced associate domain (TEAD) proteins are key downstream effectors of the Hippo signaling pathway that play a crucial role in various cell processes including tissue development, regeneration, cell proliferation and cancer. TEADs contain a hydrophobic auto-palmitoylation pocket that can bind palmitic acid and stabilize TEADs from being degraded. Inhibitors targeting this palmitoylation pocket typically consist of hydrophobic pharmacophores. Carboranes is a cage-shaped molecule exhibiting superior hydrophobicity compared to adamantane or phenyl groups. Herein, we incorporated carborane into known TEAD inhibitors for better interaction with the hydrophobic palmitate pocket. Compounds 1f and 1l are identified as TEAD transcription inhibitors with strong anti-proliferation and anti-migration activities toward prostate cancer cell lines. They also significantly reduced TEAD-regulated downstream gene expressions.
Collapse
Affiliation(s)
- Chaofan Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingshuang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ziyin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yirong Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuxuan Song
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linyuan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Changxian Yuan
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guanxiang Hao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Nan Sun
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongjing Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhiguang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Sinan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Nussinov R, Yavuz BR, Jang H. Tumors and their microenvironments: Learning from pediatric brain pathologies. Biochim Biophys Acta Rev Cancer 2025; 1880:189328. [PMID: 40254040 DOI: 10.1016/j.bbcan.2025.189328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Early clues to tumors and their microenvironments come from embryonic development. Here we review the literature and consider whether the embryonic brain and its pathologies can serve as a better model. Among embryonic organs, the brain is the most heterogenous and complex, with multiple lineages leading to wide spectrum of cell states and types. Its dysregulation promotes neurodevelopmental brain pathologies and pediatric tumors. Embryonic brain pathologies point to the crucial importance of spatial heterogeneity over time, akin to the tumor microenvironment. Tumors dedifferentiate through genetic mutations and epigenetic modulations; embryonic brains differentiate through epigenetic modulations. Our innovative review proposes learning developmental brain pathologies to target tumor evolution-and vice versa. We describe ways through which tumor pharmacology can learn from embryonic brains and their pathologies, and how learning tumor, and its microenvironment, can benefit targeting neurodevelopmental pathologies. Examples include pediatric low-grade versus high-grade brain tumors as in rhabdomyosarcomas and gliomas.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Whited A, Elkhalil A, Clark G, Ghose P. CDH-3/Cadherin, YAP-1/YAP and EGL-44/TEAD promote SYX-2/Syntaxin and EFF-1 fusogen-mediated phagosome closure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646655. [PMID: 40236144 PMCID: PMC11996554 DOI: 10.1101/2025.04.02.646655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Physical interactions between cells, such as cell-cell junctions, can profoundly impact cell fate. A vital cell fate for normal development and homeostasis is programmed cell death. Cells fated to die must be efficiently cleared away via phagocytosis, and defects are associated with a variety of diseased states. Whether cell-cell physical associations affect programmed cell elimination has not been well-explored. Here we describe, in vivo, a cell-cell adhesion-driven signaling pathway that ensures compartment-specific cell clearance during development. We previously described the specialized cell death program "Compartmentalized Cell Elimination" (CCE) in the C. elegans embryo. During CCE, the tail-spike cell (TSC), a polarized epithelial cell, undergoes a tripartite, ordered, and organized death sequence, allowing for the study of three distinct death modalities in a single cell setting. Prior to its demise, the TSC serves as a scaffold for the tail tip, formed by the hyp10 epithelial cell which develops along the TSC process. The hyp10 cell in turn also serves as the phagocyte for the dying TSC process. Here we present data suggesting that the physical association between the dying TSC and hyp10 phagocyte via CDH-3/cadherin mediates function of the mechanosensitive transcriptional coactivator YAP-1/YAP and its partner EGL-44/TEAD in the hyp10 phagocyte to promote localization of hyp10 SYX-2/Syntaxin around the dying TSC remnant. This pathway facilitates the phagocytic function of EFF-1/fusogen, which we have previously shown to be required for phagosome sealing during CCE. Our work sheds additional light on a poorly understood step of phagocytosis and implicates adhesive forces and signaling between cells as important in cell uptake.
Collapse
|
4
|
Gu B, Ferreira LMR, Herrera S, Brown L, Lieberman J, Sherwood RI, Meissner TB, Strominger JL. The TEA domain transcription factors TEAD1 and TEAD3 and WNT signaling determine HLA-G expression in human extravillous trophoblasts. Proc Natl Acad Sci U S A 2025; 122:e2425339122. [PMID: 40096597 PMCID: PMC11962456 DOI: 10.1073/pnas.2425339122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Maternal-fetal immune tolerance guarantees a successful pregnancy throughout gestation. HLA-G, a nonclassical human leukocyte antigen (HLA) molecule exclusively expressed in extravillous trophoblasts (EVT), is a crucial factor in establishing maternal-fetal immune tolerance by interacting with inhibitory receptors on various maternal immune cells residing in the uterus. While trophoblast-specific cis-regulatory elements impacting HLA-G transcription have been described, the identity of trans-acting factors controlling HLA-G expression in EVT remains poorly understood. Utilizing a genome-wide CRISPR-Cas9 knockout screen, we find that the WNT signaling pathway negatively regulates HLA-G expression in EVT. In addition, we identified two trophoblast-specific transcription factors, TEAD1 and TEAD3, required for HLA-G transcription in EVT in a Yes-associated protein-independent manner. Altogether, we systematically elucidated essential genes and pathways underlying HLA-G expression in EVT, shedding light on the mechanisms of maternal-fetal tolerance and potentially providing insights into controlling HLA-G expression beyond EVT to protect allogeneic cells from immune rejection.
Collapse
Affiliation(s)
- Bowen Gu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC29425
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC29425
- Cancer Biology and Immunology Program, Hollings Cancer Center, Charleston, SC29425
| | - Sebastian Herrera
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| | - Lara Brown
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine Boston Children’s Hospital, Boston, MA02115
- Department of Pediatrics, Harvard Medical School, Boston, MA02115
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital Harvard Medical School, Boston, MA02115
| | - Torsten B. Meissner
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA02215
- Department of Surgery, Harvard Medical School, Boston, MA02115
| | - Jack L. Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
| |
Collapse
|
5
|
Franklin JM, Dubocanin D, Chittenden C, Barillas A, Lee RJ, Ghosh RP, Gerton JL, Guan KL, Altemose N. Human Satellite 3 DNA encodes megabase-scale transcription factor binding platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.616524. [PMID: 39484556 PMCID: PMC11526998 DOI: 10.1101/2024.10.22.616524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Eukaryotic genomes frequently contain large arrays of tandem repeats, called satellite DNA. While some satellite DNAs participate in centromere function, others do not. For example, Human Satellite 3 (HSat3) forms the largest satellite DNA arrays in the human genome, but these multi-megabase regions were almost fully excluded from genome assemblies until recently, and their potential functions remain understudied and largely unknown. To address this, we performed a systematic screen for HSat3 binding proteins. Our work revealed that HSat3 contains millions of copies of transcription factor (TF) motifs bound by over a dozen TFs from various signaling pathways, including the growth-regulating transcription effector family TEAD1-4 from the Hippo pathway. Imaging experiments show that TEAD recruits the co-activator YAP to HSat3 regions in a cell-state specific manner. Using synthetic reporter assays, targeted repression of HSat3, inducible degradation of YAP, and super-resolution microscopy, we show that HSat3 arrays can localize YAP/TEAD inside the nucleolus, enhancing RNA Polymerase I activity. Beyond discovering a direct relationship between the Hippo pathway and ribosomal DNA regulation, this work demonstrates that satellite DNA can encode multiple transcription factor binding motifs, defining an important functional role for these enormous genomic elements.
Collapse
Affiliation(s)
| | - Danilo Dubocanin
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Cy Chittenden
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Ashlie Barillas
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Rosa Jooyoung Lee
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
| | - Rajarshi P. Ghosh
- Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | | | - Kun-Liang Guan
- Westlake University, School of Life Sciences, Hangzhou, Zhejiang, China
| | - Nicolas Altemose
- Department of Genetics, Stanford University, Palo Alto, CA 94304, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Li X, Cho YS, Han Y, Zhou M, Liu Y, Yang Y, Zhuo S, Jiang J. The Hippo pathway effector YAP inhibits NF-κB signaling and ccRCC growth by opposing ZHX2. J Biol Chem 2025; 301:108430. [PMID: 40120683 PMCID: PMC12018991 DOI: 10.1016/j.jbc.2025.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
The prevailing view in the cancer field is that Hippo (Hpo) signaling pathway functions as a tumor suppressor pathway by blocking the oncogenic potential of the pathway effectors Yes1-associated transcriptional regulator (YAP)/transcriptional coactivator with PDZ-binding motif. However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCCs). We find that, in addition to inhibiting hypoxia-inducible factor 2α, a major oncogenic driver in Von Hippel-Lindau-/- ccRCC, YAP also blocks nuclear factor κB (NF-κB) signaling in ccRCC to inhibit cancer cell growth under conditions where hypoxia-inducible factor 2α is dispensable. Mechanistically, YAP inhibits the expression of Zinc fingers and homeoboxes 2 (ZHX2), a Von Hippel-Lindau substrate and critical cofactor of NF-κB in ccRCC. Furthermore, YAP competes with ZHX2 for binding to the NF-κB subunit p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and the NF-κB subunit p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hpo kinase blocked NF-κB transcriptional program and suppressed ccRCC cell growth, which can be rescued by overexpression of ZHX2 or p65. Our study uncovers a crosstalk between the Hpo and NF-κB/ZHX2 pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hpo pathway may provide a therapeutical opportunity for ccRCC treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Math and Sciences, Tarrant County College-NE Campus, Hurst, Texas, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
7
|
Li J, Li Z, Yin J, Wang Y, Zheng D, Cai L, Wang GG. The sotos syndrome gene Nsd1 safeguards developmental gene enhancers poised for transcription by maintaining the precise deposition of histone methylation. J Biol Chem 2025; 301:108423. [PMID: 40118455 PMCID: PMC12033923 DOI: 10.1016/j.jbc.2025.108423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/27/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025] Open
Abstract
Germline haploinsufficiency of NSD1 is implicated as the etiology of Sotos syndrome; however, the underlying mechanism remains far from being clear. Here, we use mouse embryonic stem cell (mESC) differentiation as a model system to address this question. We found Nsd1 to be indispensable for the faithful differentiation of mESCs into three primary germ layers, particularly, meso-endodermal cell lineages related to the development of the heart and the skeletal system. Time-course transcriptomic profiling following the mESC differentiation revealed that Nsd1 not only facilitates the basal expression but also permits the differentiation-accompanied rapid induction of a suite of meso-endoderm lineage-specifying transcription factor genes such as T and Gata4. Mechanistically, Nsd1 directly occupies putative distal enhancers of the lineage transcription factor genes under the pluripotent cell state, where it deposits H3K36me2 to antagonize the excessive H3K27me3 and maintains the basal H3K27ac level, thereby safeguarding these gene enhancers at a primed state that responds readily to differentiation cues. In agreement, gene rescue assays using the Nsd1 KO mESCs showed that the H3K36me2 catalysis by Nsd1 requires several functional modules within Nsd1 (namely, PHD1-4, PWWP2, and SET) to a similar degree. Disruption of either one of these Nsd1 modules severely abrogated H3K36me2 in mESCs and significantly impaired appropriate induction of developmental genes upon mESC differentiation. Altogether, our study provides novel molecular insight into how the NSD1 perturbation derails normal development and causes the disease.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Zhucui Li
- Department of Biochemistry, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Jiekai Yin
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program and Department of Chemistry, University of California Riverside, Riverside, California, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Neurology and Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA.
| | - Gang Greg Wang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
8
|
Atterton C, Pelenyi A, Jones J, Currey L, Al-Khalily M, Wright L, Doonan M, Knight D, Kurniawan ND, Walters S, Thor S, Piper M. The Hippo effector TEAD1 regulates postnatal murine cerebellar development. Brain Struct Funct 2025; 230:42. [PMID: 40064689 PMCID: PMC11893647 DOI: 10.1007/s00429-025-02903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
The Hippo signalling cascade is an evolutionarily conserved pathway critical for the development of numerous organ systems and is required for the development of many parts of the mammalian nervous system, including the cerebellum. The Hippo pathway converges, via the nuclear YAP/TAZ co-transcription factors, on transcription factors of the TEA Domain (TEAD) family (TEAD1-4) and promotes the expression of pro-proliferative genes. Despite the importance of TEAD function, our understanding of spatial and temporal expression of this family is limited, as is our understanding of which TEAD family members regulate Hippo-dependent organ development. Here, we focus on TEAD1 and how this factor contributes to postnatal murine cerebellar development. We find expression of TEAD1 within cerebellar progenitor cells and glial cells, including astrocytes and Bergmann glia, as well as by some interneurons within the granular layer. The importance of TEAD1 expression for cerebellar development was investigated using a conditional ablation approach, which revealed a range of developmental deficits in Tead1 mutants, including an underdeveloped cerebellum, morphological defects in Bergmann Glia and Purkinje Neurons, as well as granule neuron migration defects. Collectively, these findings suggest a major role for TEAD1 as an effector of the Hippo pathway during cerebellar development.
Collapse
Affiliation(s)
- Cooper Atterton
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alexandra Pelenyi
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Justin Jones
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Laura Currey
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Majd Al-Khalily
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lucinda Wright
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mikki Doonan
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David Knight
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nyoman D Kurniawan
- The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shaun Walters
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
Paul S, Hagenbeek TJ, Tremblay J, Kameswaran V, Ong C, Liu C, Guarnaccia AD, Mondo JA, Hsu PL, Kljavin NM, Czech B, Smola J, Nguyen DAH, Lacap JA, Pham TH, Liang Y, Blake RA, Gerosa L, Grimmer M, Xie S, Daniel B, Yao X, Dey A. Cooperation between the Hippo and MAPK pathway activation drives acquired resistance to TEAD inhibition. Nat Commun 2025; 16:1743. [PMID: 39966375 PMCID: PMC11836325 DOI: 10.1038/s41467-025-56634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/26/2025] [Indexed: 02/20/2025] Open
Abstract
TEAD (transcriptional enhanced associate domain) transcription factors (TEAD1-4) serve as the primary effectors of the Hippo signaling pathway in various cancers. Targeted therapy leads to the emergence of resistance and the underlying mechanism of resistance to TEAD inhibition in cancers is less characterized. We uncover that upregulation of the AP-1 (activator protein-1) transcription factors, along with restored YAP (yes-associated protein) and TEAD activity, drives resistance to GNE-7883, a pan-TEAD inhibitor. Acute GNE-7883 treatment abrogates YAP-TEAD binding and attenuates FOSL1 (FOS like 1) activity. TEAD inhibitor resistant cells restore YAP and TEAD chromatin occupancy, acquire additional FOSL1 binding and exhibit increased MAPK (mitogen-activated protein kinase) pathway activity. FOSL1 is required for the chromatin binding of YAP and TEAD. This study describes a clinically relevant interplay between the Hippo and MAPK pathway and highlights the key role of MAPK pathway inhibitors in mitigating resistance to TEAD inhibition in Hippo pathway dependent cancers.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Thijs J Hagenbeek
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Julien Tremblay
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Vasumathi Kameswaran
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Christy Ong
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Chad Liu
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Alissa D Guarnaccia
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - James A Mondo
- Roche Informatics, Hoffman-La Roche Canada, Mississauga, ON, Canada
| | - Peter L Hsu
- Department of Structural Biology, Genentech Inc, South San Francisco, CA, USA
| | - Noelyn M Kljavin
- Department of Research Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bartosz Czech
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Janina Smola
- Roche Global IT Solution Centre, Roche, Warsaw, Poland
| | - Dieu An H Nguyen
- Department of Early Discovery Biochemistry, Genentech Inc, South San Francisco, CA, USA
| | - Jennifer A Lacap
- Department of Translational Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Trang H Pham
- Department of Translational Medicine, Genentech Inc, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Robert A Blake
- Department of Biochemical and Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA
| | - Luca Gerosa
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Matthew Grimmer
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA
| | - Shiqi Xie
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA
| | - Bence Daniel
- Department of Proteomic and Genomic Technologies, Genentech Inc, South San Francisco, CA, USA
| | - Xiaosai Yao
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
- gRED Computational Sciences, Genentech Inc, South San Francisco, CA, USA.
| | - Anwesha Dey
- Department of Discovery Oncology, Genentech Inc, South San Francisco, CA, USA.
| |
Collapse
|
10
|
Li X, Cho YS, Han Y, Zhou M, Liu Y, Yang Y, Zhuo S, Jiang J. The Hippo pathway effector YAP inhibits NF-κB signaling and ccRCC growth by opposing ZHX2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.21.600079. [PMID: 38979373 PMCID: PMC11230290 DOI: 10.1101/2024.06.21.600079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The prevailing view in the cancer field is that Hippo signaling pathway functions as a tumor suppressor pathway by blocking the oncogenic potential of the pathway effectors Yes1 associated transcriptional regulator (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ). However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCC). We find that, in additional to inhibiting hypoxia-inducible factor 2α (HIF2α), a major oncogenic driver in Von Hippel-Lindau (VHL)-/- ccRCC, YAP also blocks nuclear factor κB (NF-κB ) signaling in ccRCC to inhibit cancer cell growth under conditions where HIF2α is dispensable. Mechanistically, YAP inhibits the expression of Zinc fingers and homeoboxes 2 (ZHX2), a VHL substrate and critical co-factor of NF-κB in ccRCC. Furthermore, YAP competes with ZHX2 for binding to the NF-κB subunit p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and the NF-κB subunit p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hippo kinase blocked NF-κB transcriptional program and suppressed ccRCC cancer cell growth, which can be rescued by overexpression of ZHX2 or p65. Our study uncovers a crosstalk between the Hippo and NF-κB/ZHX2 pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hippo pathway may provide a therapeutical opportunity for ccRCC treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Math and Sciences, Tarrant County College-NE Campus, 828 W Harwood Rd, Hurst, TX 76054, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
- Harvard Stem Cell Institute, 188 Longwood Ave. Boston, MA 02215, USA
- Dana-Farber/Harvard Cancer Center, 188 Longwood Ave. Boston, MA 02215, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Ave. Boston, MA 02215, USA
- Harvard Stem Cell Institute, 188 Longwood Ave. Boston, MA 02215, USA
- Dana-Farber/Harvard Cancer Center, 188 Longwood Ave. Boston, MA 02215, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
11
|
Zheng G, Yan Z, Zou J, Zou X, Chai K, Zhang G. AR and YAP crosstalk: impacts on therapeutic strategies in prostate cancer. Front Oncol 2025; 15:1520808. [PMID: 39963114 PMCID: PMC11830605 DOI: 10.3389/fonc.2025.1520808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Prostate cancer ranks as one of the most common types of cancer affecting men worldwide, and its progression is shaped by a diverse array of influencing factors. The AR signaling pathway plays a pivotal role in the pathogenesis of prostate cancer. While existing anti-androgen treatments show initial efficacy, they ultimately do not succeed in halting the advancement to CRPC. Recent studies have identified alterations in the Hippo-YAP signaling pathway within prostate cancer, highlighting intricate crosstalk with the AR signaling pathway. In this review, we examine the interactions and underlying mechanisms between AR and YAP, the key molecules in these two signaling pathways. AR regulates the stability and function of YAP by modulating its transcription, translation, and phosphorylation status, while YAP exerts both promotional and inhibitory regulatory effects on AR. Based on these findings, this paper investigates their significant roles in the onset, progression, and therapeutic resistance of prostate cancer, and discusses the clinical potential of YAP in prostate cancer treatment.
Collapse
Affiliation(s)
- Guansong Zheng
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Zhaojie Yan
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
12
|
Porter RS, An S, Gavilan MC, Nagai M, Murata-Nakamura Y, Zhou B, Bonefas KM, Dionne O, Manuel JM, St-Germain J, Gascon S, Kim J, Browning L, Laurent B, Cho US, Iwase S. Coordinated neuron-specific splicing events restrict nucleosome engagement of the LSD1 histone demethylase complex. Cell Rep 2025; 44:115213. [PMID: 39817906 PMCID: PMC11864812 DOI: 10.1016/j.celrep.2024.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
Chromatin regulatory proteins are expressed broadly and assumed to exert the same intrinsic function across cell types. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Among them are two components of a histone demethylase complex: LSD1 H3K4 demethylase and the H3K4me0-reader PHF21A. We found that neuronal LSD1 splicing reduces the enzymes' affinity to the nucleosome. Meanwhile, neuronal PHF21A splicing significantly attenuates histone H3 binding and further ablates the DNA-binding function exerted by an AT-hook motif. Furthermore, in vitro reconstitution of the canonical and neuronal PHF21A-LSD1 complexes, combined with in vivo methylation mapping, identified the neuronal complex as a hypomorphic H3K4 demethylating machinery. The neuronal PHF21A, albeit with its weaker nucleosome binding, is necessary for normal gene expression and the H3K4 landscape in the developing brain. Thus, ubiquitously expressed chromatin regulatory complexes can exert neuron-specific functions via alternative splicing of their subunits.
Collapse
Affiliation(s)
- Robert S Porter
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sojin An
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria C Gavilan
- Genetics and Genomics Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Masayoshi Nagai
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yumie Murata-Nakamura
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bo Zhou
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Olivier Dionne
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jeru Manoj Manuel
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Joannie St-Germain
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Suzanne Gascon
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacqueline Kim
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Liam Browning
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benoit Laurent
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Valdes P, Caldwell AB, Liu Q, Fitzgerald MQ, Ramachandran S, Karch CM, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familial Alzheimer's disease. Alzheimers Res Ther 2025; 17:5. [PMID: 39754192 PMCID: PMC11699654 DOI: 10.1186/s13195-024-01659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP. METHODS We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1A79V, PSEN2N141I, and APPV717I and mechanistically characterized by integrating RNA-seq and ATAC-seq. RESULTS We identified common disease endotypes, such as dedifferentiation, dysregulation of synaptic signaling, repression of mitochondrial function and metabolism, and inflammation. We ascertained the master transcriptional regulators associated with these endotypes, including REST, ASCL1, and ZIC family members (activation), and NRF1 (repression). CONCLUSIONS FAD mutations share common regulatory changes within endotypes with varying severity, resulting in reversion to a less-differentiated state. The regulatory mechanisms described offer potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Phoebe Valdes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Q Fitzgerald
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: N. Bud Grossman Center for Memory Research and Care, Department of Neurology, University of Minnesota, GRECC, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Baniulyte G, McCann AA, Woodstock DL, Sammons MA. Crosstalk between paralogs and isoforms influences p63-dependent regulatory element activity. Nucleic Acids Res 2024; 52:13812-13831. [PMID: 39565223 DOI: 10.1093/nar/gkae1143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The p53 family of transcription factors (p53, p63 and p73) regulate diverse organismal processes including tumor suppression, maintenance of genome integrity and the development of skin and limbs. Crosstalk between transcription factors with highly similar DNA binding profiles, like those in the p53 family, can dramatically alter gene regulation. While p53 is primarily associated with transcriptional activation, p63 mediates both activation and repression. The specific mechanisms controlling p63-dependent gene regulatory activity are not well understood. Here, we use massively parallel reporter assays (MPRA) to investigate how local DNA sequence context influences p63-dependent transcriptional activity. Most regulatory elements with a p63 response element motif (p63RE) activate transcription, although binding of the p63 paralog, p53, drives a substantial proportion of that activity. p63RE sequence content and co-enrichment with other known activating and repressing transcription factors, including lineage-specific factors, correlates with differential p63RE-mediated activities. p63 isoforms dramatically alter transcriptional behavior, primarily shifting inactive regulatory elements towards high p63-dependent activity. Our analysis provides novel insight into how local sequence and cellular context influences p63-dependent behaviors and highlights the key, yet still understudied, role of transcription factor paralogs and isoforms in controlling gene regulatory element activity.
Collapse
Affiliation(s)
- Gabriele Baniulyte
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Abby A McCann
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Dana L Woodstock
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave, Albany, NY 12222, USA
| |
Collapse
|
15
|
Pelenyi A, Atterton C, Jones J, Currey L, Al-Khalily M, Wright L, Kurniawan ND, Thor S, Piper M. Expression of the Hippo pathway effector, TEAD1, within the developing murine forebrain. Gene Expr Patterns 2024; 54:119384. [PMID: 39557142 DOI: 10.1016/j.gep.2024.119384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The Hippo pathway is a critical regulator of animal development. Activation of the Hippo pathway causes a cascade of phosphorylation events that culminate in the phosphorylation of the transcriptional co-factors YAP and TAZ, which limits their entry into the nucleus. When the Hippo pathway is 'off', however, YAP and TAZ can enter the nucleus, where they interact with the transcription factors of the TEA Domain (TEAD) family to regulate transcriptional activity. Despite the importance of the Hippo pathway for development, including within the nervous system, the expression of the TEAD family remains poorly defined in mammals. Here, we mapped the expression of TEAD1 in the developing mouse brain. We find that TEAD1 expression is confined to progenitor cells during embryonic development, namely radial glia and intermediate progenitor cells. TEAD1 expression is not evident in post-mitotic neurons of the cortical plate. We also identify expression of TEAD1 in developing and mature ependymal cells of the lateral and third ventricle, including within the subcommissural organ, as well as by cells within the choroid plexuses and the forebrain neurogenic niches. Finally, we find that adult mice conditionally heterozygous for Tead1 in the central nervous system exhibit a significantly smaller brain. Collectively, these findings reveal a specific pattern of expression for TEAD1 during telencephalic development and implicate this factor in regulating neural progenitor cell proliferation.
Collapse
Affiliation(s)
- Alexandra Pelenyi
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Cooper Atterton
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Justin Jones
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Laura Currey
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Majd Al-Khalily
- The Centre for Advanced Imaging, The University of Queensland, QLD, 4072, Australia
| | - Lucinda Wright
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Nyoman D Kurniawan
- The Centre for Advanced Imaging, The University of Queensland, QLD, 4072, Australia
| | - Stefan Thor
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia
| | - Michael Piper
- The School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, QLD, 4072, Australia; The Queensland Brain Institute, The University of Queensland, QLD, 4072, Australia.
| |
Collapse
|
16
|
Perez AA, Goronzy IN, Blanco MR, Yeh BT, Guo JK, Lopes CS, Ettlin O, Burr A, Guttman M. ChIP-DIP maps binding of hundreds of proteins to DNA simultaneously and identifies diverse gene regulatory elements. Nat Genet 2024; 56:2827-2841. [PMID: 39587360 DOI: 10.1038/s41588-024-02000-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Gene expression is controlled by dynamic localization of thousands of regulatory proteins to precise genomic regions. Understanding this cell type-specific process has been a longstanding goal yet remains challenging because DNA-protein mapping methods generally study one protein at a time. Here, to address this, we developed chromatin immunoprecipitation done in parallel (ChIP-DIP) to generate genome-wide maps of hundreds of diverse regulatory proteins in a single experiment. ChIP-DIP produces highly accurate maps within large pools (>160 proteins) for all classes of DNA-associated proteins, including modified histones, chromatin regulators and transcription factors and across multiple conditions simultaneously. First, we used ChIP-DIP to measure temporal chromatin dynamics in primary dendritic cells following LPS stimulation. Next, we explored quantitative combinations of histone modifications that define distinct classes of regulatory elements and characterized their functional activity in human and mouse cell lines. Overall, ChIP-DIP generates context-specific protein localization maps at consortium scale within any molecular biology laboratory and experimental system.
Collapse
Affiliation(s)
- Andrew A Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Mario R Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Benjamin T Yeh
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carolina S Lopes
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Olivia Ettlin
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Alex Burr
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
17
|
Koroleva OA, Kurkin AV, Shtil AA. The Hippo pathway as an antitumor target: time to focus on. Expert Opin Investig Drugs 2024; 33:1177-1185. [PMID: 39592955 DOI: 10.1080/13543784.2024.2432395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
INTRODUCTION The Hippo signaling governs the expression of genes critically important for cell proliferation and survival. The components of this pathway are considered antitumor drug targets. However, the design of Hippo inhibitors is a challenge given the complexity of the network and redundancy of its elements. AREAS COVERED We review the current state-of-the-art in the structure of the Hippo pathway, the microenvironment-induced extracellular cues, the strategies to design pharmacological instruments for inactivation of the Hippo signaling using small molecular weight modulators, as well as the results of initial clinical trials. EXPERT OPINION One special characteristic of the Hippo signaling is the adverse role of phosphorylation: opposite to classical kinase cascades that activate the transcription factors, the Hippo kinases retain their partners in a transcriptionally inactive state. Therefore, approaches for pharmacological or genetic inhibition of Hippo protein kinases are counterproductive. The developing alternatives such as disruption of protein-protein interactions or PROTAC techniques are straightforward for preventing the Hippo signaling in cancer therapy.
Collapse
Affiliation(s)
- Olga A Koroleva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander V Kurkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Alexander A Shtil
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
- Institute of Carcinogenesis, Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| |
Collapse
|
18
|
Chène P. Direct Inhibition of the YAP : TEAD Interaction: An Unprecedented Drug Discovery Challenge. ChemMedChem 2024; 19:e202400361. [PMID: 38863297 DOI: 10.1002/cmdc.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The Hippo pathway, which is key in organ morphogenesis, is frequently deregulated in cancer. The TEAD (TEA domain family member) transcription factors are the most distal elements of this pathway, and their activity is regulated by proteins such as YAP (Yes-associated protein). The identification of inhibitors of the YAP : TEAD interaction is one approach to develop novel anticancer drugs: the first clinical candidate (IAG933) preventing the association between these two proteins by direct competition has just been reported. The discovery of this molecule was particularly challenging because the interface between these two proteins is large (~3500 Å2 buried in complex formation) and made up of distinct contact areas. The most critical of these involves an omega-loop (Ω-loop), a secondary structure element rarely found in protein-protein interactions. This review summarizes how the knowledge gained from structure-function studies of the interaction between the Ω-loop of YAP and TEAD was used to devise the strategy to identify potent low-molecular weight compounds that show a pronounced anti-tumor effect.
Collapse
Affiliation(s)
- Patrick Chène
- Disease Area Oncology, Biomedical Research, CH-4056, Basel, Switzerland
- Novartis, WSJ 386 4.13.06, CH-4002, Basel, Switzerland
| |
Collapse
|
19
|
Hikasa H, Kawahara K, Inui M, Yasuki Y, Yamashita K, Otsubo K, Kitajima S, Nishio M, Arima K, Endo M, Taira M, Suzuki A. A highly sensitive reporter system to monitor endogenous YAP1/TAZ activity and its application in various human cells. Cancer Sci 2024; 115:3370-3383. [PMID: 39155534 PMCID: PMC11447953 DOI: 10.1111/cas.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
The activation of yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ) has been implicated in both regeneration and tumorigenesis, thus representing a double-edged sword in tissue homeostasis. However, how the activity of YAP1/TAZ is regulated or what leads to its dysregulation in these processes remains unknown. To explore the upstream stimuli modulating the cellular activity of YAP1/TAZ, we developed a highly sensitive YAP1/TAZ/TEAD-responsive DNA element (YRE) and incorporated it into a lentivirus-based reporter cell system to allow for sensitive and specific monitoring of the endogenous activity of YAP1/TAZ in terms of luciferase activity in vitro and Venus fluorescence in vivo. Furthermore, by replacing YRE with TCF- and NF-κB-binding DNA elements, we demonstrated the applicability of this reporter system to other pathways such as Wnt/β-catenin/TCF- and IL-1β/NF-κB-mediated signaling, respectively. The practicality of this system was evaluated by performing cell-based reporter screening of a chemical compound library consisting of 364 known inhibitors, using reporter-introduced cells capable of quantifying YAP1/TAZ- and β-catenin-mediated transcription activities, which led to the identification of multiple inhibitors, including previously known as well as novel modulators of these signaling pathways. We further confirmed that novel YAP1/TAZ modulators, such as potassium ionophores, Janus kinase inhibitors, platelet-derived growth factor receptor inhibitors, and genotoxic stress inducers, alter the protein level or phosphorylation of endogenous YAP1/TAZ and the expression of their target genes. Thus, this reporter system provides a powerful tool to monitor endogenous signaling activities of interest (even in living cells) and search for modulators in various cellular contexts.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kohichi Kawahara
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masako Inui
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Yukichika Yasuki
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Keita Yamashita
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kohei Otsubo
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shojiro Kitajima
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Miki Nishio
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazunari Arima
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Masanori Taira
- Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
20
|
Mesrouze Y, Chène P. Study of the TEAD-binding domain of the VGLL1, VGLL2 and VGLL3 proteins from vertebrates. Arch Biochem Biophys 2024; 760:110136. [PMID: 39182750 DOI: 10.1016/j.abb.2024.110136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
The TEAD transcription factors are the final effectors of the Hippo pathway, and to exert their transcriptional activity they need to interact with other proteins. The three paralogous vestigial-like proteins VGLL1, VGLL2 and VGLL3 bind to TEAD via a conserved short linear sequence, the Tondu motif. The TEAD-binding domain of human VGLL2 contains in addition an Ω-loop, which is also present in Vg (vestigial) from arthropods and the YAP proteins, another family of TEAD interactors. In this report, using the available structural data, we study the amino acid sequence of the TEAD-binding domain of more than 2400 putative VGLL proteins from vertebrates. This analysis shows a strong link between sequence conservation and functional role for the residues from the Tondu motif. It also reveals that one protein sequence containing both a Tondu motif and an Ω-loop is present in most (if not all) vertebrate species. This suggests that there is a selective pressure to keep a VGLL paralog with a functional Ω-loop in vertebrates. Finally, this study identifies, particularly in mammals, variants of VGLL2 and VGLL3 with an altered TEAD-binding domain suggesting that they may have a different biological function than their homologs.
Collapse
Affiliation(s)
- Yannick Mesrouze
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland.
| |
Collapse
|
21
|
Secchia S, Beilinson V, Chen X, Yang ZF, Wayman JA, Dhaliwal J, Jurickova I, Angerman E, Denson LA, Miraldi ER, Weirauch MT, Ikegami K. Nutrient starvation activates ECM remodeling gene enhancers associated with inflammatory bowel disease risk in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611754. [PMID: 39314475 PMCID: PMC11418948 DOI: 10.1101/2024.09.06.611754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Nutrient deprivation induces a reversible cell cycle arrest state termed quiescence, which often accompanies transcriptional silencing and chromatin compaction. Paradoxically, nutrient deprivation is associated with activated fibroblast states in pathological microenvironments in which fibroblasts drive extracellular matrix (ECM) remodeling to alter tissue environments. The relationship between nutrient deprivation and fibroblast activation remains unclear. Here, we report that serum deprivation extensively activates transcription of ECM remodeling genes in cultured fibroblasts, despite the induction of quiescence. Starvation-induced transcriptional activation accompanied large-scale histone acetylation of putative distal enhancers, but not promoters. The starvation-activated putative enhancers were enriched for non-coding genetic risk variants associated with inflammatory bowel disease (IBD), suggesting that the starvation-activated gene regulatory network may contribute to fibroblast activation in IBD. Indeed, the starvation-activated gene PLAU, encoding uPA serine protease for plasminogen and ECM, was upregulated in inflammatory fibroblasts in the intestines of IBD patients. Furthermore, the starvation-activated putative enhancer at PLAU, which harbors an IBD risk variant, gained chromatin accessibility in IBD patient fibroblasts. This study implicates nutrient deprivation in transcriptional activation of ECM remodeling genes in fibroblasts and suggests nutrient deprivation as a potential mechanism for pathological fibroblast activation in IBD.
Collapse
Affiliation(s)
- Stefano Secchia
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
- Department of Biology, Lund University, Lund, 22362, Sweden
- Present address: Institute of Human Biology, Basel, Switzerland
| | - Vera Beilinson
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA
- Present address: California Institute of Technology, Pasadena, California, USA
| | - Xiaoting Chen
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zi F Yang
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joseph A Wayman
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jasbir Dhaliwal
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ingrid Jurickova
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Elizabeth Angerman
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Emily R Miraldi
- Division of Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Division of Allergy and Immunology, CCHMC Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kohta Ikegami
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
22
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
23
|
Roca E, Aujayeb A, Astoul P. Diagnosis of Pleural Mesothelioma: Is Everything Solved at the Present Time? Curr Oncol 2024; 31:4968-4983. [PMID: 39329996 PMCID: PMC11430569 DOI: 10.3390/curroncol31090368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024] Open
Abstract
Ranked high in worldwide growing health issues, pleural diseases affect approximately one million people globally per year and are often correlated with a poor prognosis. Among these pleural diseases, malignant pleural mesothelioma (PM), a neoplastic disease mainly due to asbestos exposure, still remains a diagnostic challenge. Timely diagnosis is imperative to define the most suitable therapeutic approach for the patient, but the choice of diagnostic modalities depends on operator experience and local facilities while bearing in mind the yield of each diagnostic procedure. Since the analysis of pleural fluid cytology is not sufficient in differentiating historical features in PM, histopathological and morphological features obtained via tissue biopsies are fundamental. The quality of biopsy samples is crucial and often requires highly qualified expertise. Since adequate tissue biopsy is essential, medical or video-assisted thoracoscopy (MT or VATS) is proposed as the most suitable approach, with the former being a physician-led procedure. Indeed, MT is the diagnostic gold standard for malignant pleural pathologies. Moreover, this medical or surgical approach can allow diagnostic and therapeutic procedures: it provides the possibility of video-assisted biopsies, the drainage of high volumes of pleural fluid and the administration of sterile calibrated talcum powder under visual control in order to achieve pleurodesis, placement of indwelling pleural catheters if required and in a near future potential intrapleural therapy. In this context, dedicated diagnostic pathways remain a crucial need, especially to quickly and properly diagnose PM. Lastly, the interdisciplinary approach and multidisciplinary collaboration should always be implemented in order to direct the patient to the best customised diagnostic and therapeutic pathway. At the present time, the diagnosis of PM remains an unsolved problem despite MDT (multidisciplinary team) meetings, mainly because of the lack of standardised diagnostic work-up. This review aims to provide an overview of diagnostic procedures in order to propose a clear strategy.
Collapse
Affiliation(s)
- Elisa Roca
- Thoracic Oncology, Lung Unit, P. Pederzoli Hospital, Peschiera Del Garda, VR, Italy;
| | - Avinash Aujayeb
- Respiratory Department, Northumbria Health Care NHS Foundation Trust, Care of Gail Hewitt, Newcastle NE23 6NZ, UK;
| | - Philippe Astoul
- Department of Thoracic Oncology, Pleural Diseases and Interventional Pulmonology, North Hospital, Aix-Marseille University, Chemin des Bourrely, 13005 Marseille, France
- La Timone Campus, Aix-Marseille University, 13005 Marseille, France
| |
Collapse
|
24
|
Thor S. Indirect neurogenesis in space and time. Nat Rev Neurosci 2024; 25:519-534. [PMID: 38951687 DOI: 10.1038/s41583-024-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.
Collapse
Affiliation(s)
- Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
25
|
Ren Y, Zhou L, Li X, Zhu X, Zhang Z, Sun X, Xue X, Dai C. Taz/Tead1 Promotes Alternative Macrophage Activation and Kidney Fibrosis via Transcriptional Upregulation of Smad3. J Immunol Res 2024; 2024:9512251. [PMID: 39108258 PMCID: PMC11303051 DOI: 10.1155/2024/9512251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024] Open
Abstract
Macrophage alternative activation is involved in kidney fibrosis. Previous researches have documented that the transcriptional regulators Yes-associated protein (Yap)/transcriptional coactivator with PDZ-binding motif (Taz) are linked to organ fibrosis. However, limited knowledge exists regarding the function and mechanisms of their downstream molecules in regulating macrophage activation and kidney fibrosis. In this paper, we observed that the Hippo pathway was suppressed in macrophages derived from fibrotic kidneys in mice. Knockout of Taz or Tead1 in macrophages inhibited the alternative activation of macrophages and reduced kidney fibrosis. Additionally, by using bone marrow-derived macrophages (BMDMs), we investigated that knockout of Taz or Tead1 in macrophages impeded both cell proliferation and migration. Moreover, deletion of Tead1 reduces p-Smad3 and Smad3 abundance in macrophages. And chromatin immunoprecipitation (ChIP) assays showed that Tead1 could directly bind to the promoter region of Smad3. Collectively, these results indicate that Tead1 knockout in macrophages could reduce TGFβ1-induced phosphorylation Smad3 via transcriptional downregulation of Smad3, thus suppressing macrophage alternative activation and IRI-induced kidney fibrosis.
Collapse
Affiliation(s)
- Yizhi Ren
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Lu Zhou
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xinyuan Li
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xingwen Zhu
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Zhiheng Zhang
- School of StomatologyXuzhou Medical University, No. 209 Tongshan Road, Xuzhou 221000, Jiangsu, China
| | - Xiaoli Sun
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Xian Xue
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| | - Chunsun Dai
- Department of Clinical GeneticsThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
- Center for kidney diseasesThe 2nd Affiliated HospitalNanjing Medical University, 262 North Zhongshan Road, Nanjing 210003, Jiangsu, China
| |
Collapse
|
26
|
Chapeau EA, Sansregret L, Galli GG, Chène P, Wartmann M, Mourikis TP, Jaaks P, Baltschukat S, Barbosa IAM, Bauer D, Brachmann SM, Delaunay C, Estadieu C, Faris JE, Furet P, Harlfinger S, Hueber A, Jiménez Núñez E, Kodack DP, Mandon E, Martin T, Mesrouze Y, Romanet V, Scheufler C, Sellner H, Stamm C, Sterker D, Tordella L, Hofmann F, Soldermann N, Schmelzle T. Direct and selective pharmacological disruption of the YAP-TEAD interface by IAG933 inhibits Hippo-dependent and RAS-MAPK-altered cancers. NATURE CANCER 2024; 5:1102-1120. [PMID: 38565920 PMCID: PMC11286534 DOI: 10.1038/s43018-024-00754-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The YAP-TEAD protein-protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP-TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP-TEAD protein-protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Daniel Bauer
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | - Pascal Furet
- Novartis BioMedical Research, Basel, Switzerland
| | - Stefanie Harlfinger
- Novartis BioMedical Research, Basel, Switzerland
- AstraZeneca, Oncology R&D, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | - Francesco Hofmann
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Group, R&D Medical Care, Toulouse, France
| | | | | |
Collapse
|
27
|
Bertoli E, De Carlo E, Bortolot M, Stanzione B, Del Conte A, Spina M, Bearz A. Targeted Therapy in Mesotheliomas: Uphill All the Way. Cancers (Basel) 2024; 16:1971. [PMID: 38893092 PMCID: PMC11171080 DOI: 10.3390/cancers16111971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Mesothelioma (MM) is an aggressive and lethal disease with few therapeutic opportunities. Platinum-pemetrexed chemotherapy is the backbone of first-line treatment for MM. The introduction of immunotherapy (IO) has been the only novelty of the last decades, allowing an increase in survival compared to standard chemotherapy (CT). However, IO is not approved for epithelioid histology in many countries. Therefore, therapy for relapsed MM remains an unmet clinical need, and the prognosis of MM remains poor, with an average survival of only 18 months. Increasing evidence reveals MM complexity and heterogeneity, of which histological classification fails to explain. Thus, scientific focus on possibly new molecular markers or cellular targets is increasing, together with the search for target therapies directed towards them. The molecular landscape of MM is characterized by inactivating tumor suppressor alterations, the most common of which is found in CDKN2A, BAP1, MTAP, and NF2. In addition, cellular targets such as mesothelin or metabolic enzymes such as ASS1 could be potentially amenable to specific therapies. This review examines the major targets and relative attempts of therapeutic approaches to provide an overview of the potential prospects for treating this rare neoplasm.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Martina Bortolot
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
- Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.B.); (E.D.C.); (M.B.); (B.S.); (A.D.C.); (M.S.)
| |
Collapse
|
28
|
Sayeed K, Parameswaran S, Beucler MJ, Edsall LE, VonHandorf A, Crowther A, Donmez O, Hass M, Richards S, Forney C, Wright J, Leong MML, Murray-Nerger LA, Gewurz BE, Kaufman KM, Harley JB, Zhao B, Miller WE, Kottyan LC, Weirauch MT. Human cytomegalovirus infection coopts chromatin organization to diminish TEAD1 transcription factor activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588762. [PMID: 38645179 PMCID: PMC11030363 DOI: 10.1101/2024.04.12.588762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMV's established roles in these processes.
Collapse
Affiliation(s)
- Khund Sayeed
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew J. Beucler
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Lee E. Edsall
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Audrey Crowther
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Omer Donmez
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew Hass
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Scott Richards
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jay Wright
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Laura A. Murray-Nerger
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ben E. Gewurz
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kenneth M. Kaufman
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - John B. Harley
- Research Service, Cincinnati VA Medical Center, Cincinnati, OH 45229, USA
| | - Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - William E. Miller
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Leah C. Kottyan
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, 45229, USA
| |
Collapse
|
29
|
Innis SM, Cabot RA. Chromatin profiling and state predictions reveal insights into epigenetic regulation during early porcine development. Epigenetics Chromatin 2024; 17:16. [PMID: 38773546 PMCID: PMC11106951 DOI: 10.1186/s13072-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Given their physiological similarities to humans, pigs are increasingly used as model organisms in human-oriented biomedical studies. Additionally, their value to animal agriculture across the globe has led to the development of numerous studies to investigate how to improve livestock welfare and production efficiency. As such, pigs are uniquely poised as compelling models that can yield findings with potential implications in both human and animal contexts. Despite this, many gaps remain in our knowledge about the foundational mechanisms that govern gene expression in swine across different developmental stages, particularly in early development. To address some of these gaps, we profiled the histone marks H3K4me3, H3K27ac, and H3K27me3 and the SWI/SNF central ATPase BRG1 in two porcine cell lines representing discrete early developmental time points and used the resulting information to construct predicted chromatin state maps for these cells. We combined this approach with analysis of publicly available RNA-seq data to examine the relationship between epigenetic status and gene expression in these cell types. RESULTS In porcine fetal fibroblast (PFF) and trophectoderm cells (PTr2), we saw expected patterns of enrichment for each of the profiled epigenetic features relative to specific genomic regions. H3K4me3 was primarily enriched at and around global gene promoters, H3K27ac was enriched in promoter and intergenic regions, H3K27me3 had broad stretches of enrichment across the genome and narrower enrichment patterns in and around the promoter regions of some genes, and BRG1 primarily had detectable enrichment at and around promoter regions and in intergenic stretches, with many instances of H3K27ac co-enrichment. We used this information to perform genome-wide chromatin state predictions for 10 different states using ChromHMM. Using the predicted chromatin state maps, we identified a subset of genomic regions marked by broad H3K4me3 enrichment, and annotation of these regions revealed that they were highly associated with essential developmental processes and consisted largely of expressed genes. We then compared the identities of the genes marked by these regions to genes identified as cell-type-specific using transcriptome data and saw that a subset of broad H3K4me3-marked genes was also specifically expressed in either PFF or PTr2 cells. CONCLUSIONS These findings enhance our understanding of the epigenetic landscape present in early swine development and provide insight into how variabilities in chromatin state are linked to cell identity. Furthermore, this data captures foundational epigenetic details in two valuable porcine cell lines and contributes to the growing body of knowledge surrounding the epigenetic landscape in this species.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan A Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
30
|
Guo R, Dong X, Chen F, Ji T, He Q, Zhang J, Sheng Y, Liu Y, Yang S, Liang W, Song Y, Fang K, Zhang L, Hu G, Yao H. TEAD2 initiates ground-state pluripotency by mediating chromatin looping. EMBO J 2024; 43:1965-1989. [PMID: 38605224 PMCID: PMC11099042 DOI: 10.1038/s44318-024-00086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/13/2024] Open
Abstract
The transition of mouse embryonic stem cells (ESCs) between serum/LIF and 2i(MEK and GSK3 kinase inhibitor)/LIF culture conditions serves as a valuable model for exploring the mechanisms underlying ground and confused pluripotent states. Regulatory networks comprising core and ancillary pluripotency factors drive the gene expression programs defining stable naïve pluripotency. In our study, we systematically screened factors essential for ESC pluripotency, identifying TEAD2 as an ancillary factor maintaining ground-state pluripotency in 2i/LIF ESCs and facilitating the transition from serum/LIF to 2i/LIF ESCs. TEAD2 exhibits increased binding to chromatin in 2i/LIF ESCs, targeting active chromatin regions to regulate the expression of 2i-specific genes. In addition, TEAD2 facilitates the expression of 2i-specific genes by mediating enhancer-promoter interactions during the serum/LIF to 2i/LIF transition. Notably, deletion of Tead2 results in reduction of a specific set of enhancer-promoter interactions without significantly affecting binding of chromatin architecture proteins, CCCTC-binding factor (CTCF), and Yin Yang 1 (YY1). In summary, our findings highlight a novel prominent role of TEAD2 in orchestrating higher-order chromatin structures of 2i-specific genes to sustain ground-state pluripotency.
Collapse
Affiliation(s)
- Rong Guo
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaotao Dong
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- School of Basic Medical Science, Henan University, Kaifeng, China
| | - Feng Chen
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Tianrong Ji
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiannan He
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yingliang Sheng
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanjiang Liu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shengxiong Yang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Weifang Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Yawei Song
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ke Fang
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Gongcheng Hu
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hongjie Yao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Center for Health Research, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
31
|
Xu S, Yuan Z, Jiang C, Chen W, Li Q, Chen T. DNMT3A Cooperates with YAP/TAZ to Drive Gallbladder Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308531. [PMID: 38380551 PMCID: PMC11040361 DOI: 10.1002/advs.202308531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Indexed: 02/22/2024]
Abstract
Gallbladder cancer (GBC) is an extremely lethal malignancy with aggressive behaviors, including liver or distant metastasis; however, the underlying mechanisms driving the metastasis of GBC remain poorly understood. In this study, it is found that DNA methyltransferase DNMT3A is highly expressed in GBC tumor tissues compared to matched adjacent normal tissues. Clinicopathological analysis shows that DNMT3A is positively correlated with liver metastasis and poor overall survival outcomes in patients with GBC. Functional analysis confirms that DNMT3A promotes the metastasis of GBC cells in a manner dependent on its DNA methyltransferase activity. Mechanistically, DNMT3A interacts with and is recruited by YAP/TAZ to recognize and access the CpG island within the CDH1 promoter and generates hypermethylation of the CDH1 promoter, which leads to transcriptional silencing of CDH1 and accelerated epithelial-to-mesenchymal transition. Using tissue microarrays, the association between the expression of DNMT3A, YAP/TAZ, and CDH1 is confirmed, which affects the metastatic ability of GBC. These results reveal a novel mechanism through which DNMT3A recruitment by YAP/TAZ guides DNA methylation to drive GBC metastasis and provide insights into the treatment of GBC metastasis by targeting the functional connection between DNMT3A and YAP/TAZ.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Qiwei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200125, China
| |
Collapse
|
32
|
Rashidiani S, Mamo G, Farkas B, Szabadi A, Farkas B, Uszkai V, Császár A, Brandt B, Kovács K, Pap M, Rauch TA. Integrative Epigenetic and Molecular Analysis Reveals a Novel Promoter for a New Isoform of the Transcription Factor TEAD4. Int J Mol Sci 2024; 25:2223. [PMID: 38396900 PMCID: PMC10888684 DOI: 10.3390/ijms25042223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
TEAD4 is a transcription factor that plays a crucial role in the Hippo pathway by regulating the expression of genes related to proliferation and apoptosis. It is also involved in the maintenance and differentiation of the trophectoderm during pre- and post-implantation embryonic development. An alternative promoter for the TEAD4 gene was identified through epigenetic profile analysis, and a new transcript from the intronic region of TEAD4 was discovered using the 5'RACE method. The transcript of the novel promoter encodes a TEAD4 isoform (TEAD4-ΔN) that lacks the DNA-binding domain but retains the C-terminal protein-protein interaction domain. Gene expression studies, including end-point PCR and Western blotting, showed that full-length TEAD4 was present in all investigated tissues. However, TEAD4-ΔN was only detectable in certain cell types. The TEAD4-ΔN promoter is conserved throughout evolution and demonstrates transcriptional activity in transient-expression experiments. Our study reveals that TEAD4 interacts with the alternative promoter and increases the expression of the truncated isoform. DNA methylation plays a crucial function in the restricted expression of the TEAD4-ΔN isoform in specific tissues, including the umbilical cord and the placenta. The data presented indicate that the DNA-methylation status of the TEAD4-ΔN promoter plays a critical role in regulating organ size, cancer development, and placenta differentiation.
Collapse
Affiliation(s)
- Shima Rashidiani
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| | - Gizaw Mamo
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| | - Benjámin Farkas
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| | - András Szabadi
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, 7623 Pécs, Hungary
| | - Bálint Farkas
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Veronika Uszkai
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
| | - András Császár
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
| | - Barbara Brandt
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary (M.P.)
| | - Kálmán Kovács
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, 7624 Pécs, Hungary; (B.F.); (V.U.); (A.C.)
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary (M.P.)
| | - Tibor A. Rauch
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary; (S.R.); (G.M.); (B.F.); (A.S.)
| |
Collapse
|
33
|
McNeill MC, Li Mow Chee F, Ebrahimighaei R, Sala-Newby GB, Newby AC, Hathway T, Annaiah AS, Joseph S, Carrabba M, Bond M. Substrate stiffness promotes vascular smooth muscle cell calcification by reducing the levels of nuclear actin monomers. J Mol Cell Cardiol 2024; 187:65-79. [PMID: 38181546 DOI: 10.1016/j.yjmcc.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.
Collapse
Affiliation(s)
- M C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - F Li Mow Chee
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - R Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - G B Sala-Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - T Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A S Annaiah
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - S Joseph
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - M Carrabba
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - M Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
34
|
Dror I, Chitiashvili T, Tan SYX, Cano CT, Sahakyan A, Markaki Y, Chronis C, Collier AJ, Deng W, Liang G, Sun Y, Afasizheva A, Miller J, Xiao W, Black DL, Ding F, Plath K. XIST directly regulates X-linked and autosomal genes in naive human pluripotent cells. Cell 2024; 187:110-129.e31. [PMID: 38181737 PMCID: PMC10783549 DOI: 10.1016/j.cell.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/01/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
X chromosome inactivation (XCI) serves as a paradigm for RNA-mediated regulation of gene expression, wherein the long non-coding RNA XIST spreads across the X chromosome in cis to mediate gene silencing chromosome-wide. In female naive human pluripotent stem cells (hPSCs), XIST is in a dispersed configuration, and XCI does not occur, raising questions about XIST's function. We found that XIST spreads across the X chromosome and induces dampening of X-linked gene expression in naive hPSCs. Surprisingly, XIST also targets specific autosomal regions, where it induces repressive chromatin changes and gene expression dampening. Thereby, XIST equalizes X-linked gene dosage between male and female cells while inducing differences in autosomes. The dispersed Xist configuration and autosomal localization also occur transiently during XCI initiation in mouse PSCs. Together, our study identifies XIST as the regulator of X chromosome dampening, uncovers an evolutionarily conserved trans-acting role of XIST/Xist, and reveals a correlation between XIST/Xist dispersal and autosomal targeting.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tsotne Chitiashvili
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shawn Y X Tan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Clara T Cano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yolanda Markaki
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Structural and Chemical Biology & Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Constantinos Chronis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Amanda J Collier
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weixian Deng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Guohao Liang
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Yu Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anna Afasizheva
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jarrett Miller
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Fangyuan Ding
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Ma F, Tsou PS, Gharaee-Kermani M, Plazyo O, Xing X, Kirma J, Wasikowski R, Hile GA, Harms PW, Jiang Y, Xing E, Nakamura M, Ochocki D, Brodie WD, Pillai S, Maverakis E, Pellegrini M, Modlin RL, Varga J, Tsoi LC, Lafyatis R, Kahlenberg JM, Billi AC, Khanna D, Gudjonsson JE. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat Commun 2024; 15:210. [PMID: 38172207 PMCID: PMC10764940 DOI: 10.1038/s41467-023-44645-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Systemic sclerosis (SSc) is a devastating autoimmune disease characterized by excessive production and accumulation of extracellular matrix, leading to fibrosis of skin and other internal organs. However, the main cellular participants in SSc skin fibrosis remain incompletely understood. Here using differentiation trajectories at a single cell level, we demonstrate a dual source of extracellular matrix deposition in SSc skin from both myofibroblasts and endothelial-to-mesenchymal-transitioning cells (EndoMT). We further define a central role of Hippo pathway effectors in differentiation and homeostasis of myofibroblast and EndoMT, respectively, and show that myofibroblasts and EndoMTs function as central communication hubs that drive key pro-fibrotic signaling pathways in SSc. Together, our data help characterize myofibroblast differentiation and EndoMT phenotypes in SSc skin, and hint that modulation of the Hippo pathway may contribute in reversing the pro-fibrotic phenotypes in myofibroblasts and EndoMTs.
Collapse
Affiliation(s)
- Feiyang Ma
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Olesya Plazyo
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Xianying Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Kirma
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachael Wasikowski
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Grace A Hile
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yanyun Jiang
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Enze Xing
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mio Nakamura
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Danielle Ochocki
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - William D Brodie
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shiv Pillai
- Ragon Institute, Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Matteo Pellegrini
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert L Modlin
- Dept of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Division of Dermatology, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - John Varga
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Robert Lafyatis
- Division of Rheumatology, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Michelle Kahlenberg
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Dinesh Khanna
- Division of Rheumatology, Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA.
| | | |
Collapse
|
36
|
Deng Y, Patel N, Ding S, Zhang H. Mechanism study of serum extracellular nano-vesicles miR-412-3p targeting regulation of TEAD1 in promoting malignant biological behavior of sub-centimeter lung nodules. Cancer Biomark 2024; 41:69-82. [PMID: 39269825 PMCID: PMC11495320 DOI: 10.3233/cbm-240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVE To investigate the impact and potential mechanisms of serum extracellular nano-vesicles (sEVs) miR-412-3p released from sub-centimeter lung nodules with a diameter of ⩽ 10 mm on the malignant biological function of micro-nodular lung cancer (mnLC). METHODS A total of 87 participants were included and divided into a mnLC group (n= 30), a benign lung nodule (BLN) group (n= 27), and a healthy people control group (n= 30). Transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and Western blot (WB) were used to measure the morphological characteristics and surface markers of sEVs. In vitro analysis, real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8 cell proliferation assay, clone formation assay, Transwell, stem cell sphere-forming assay, and WB assay were conducted to verify the effect of miR-412-3p/TEAD1 signaling axis on the biological function of lung cancer cells through, respectively. Further validation was conducted using the serum sEVs of the participants. RESULTS The expression level of sEVs-miR-412-3p in the mnLC group was significantly higher than that in the BLN and healthy groups (P< 0.01). In lung cancer cell lines, miR-412-3p can negatively regulate the targeted gene TEAD1. The miR-412-3p/TEAD1 signaling axis is involved in promoting the EMT signaling pathway and regulating the malignant biological functions of lung cancer cell proliferation, migration, and stemness (P< 0.05). In addition, sEVs in the mnLC group significantly promoted lung cancer cell proliferation, migration, and stemness compared to the BLN and healthy groups, inhibited the expression of E-cadherin and TEAD1 in lung cancer cells, and promoted the expression of N-cadherin and Vimentin (P< 0.05). CONCLUSION sEVs-miR-412-3p could promote the biological process of EMT, and lead to the occurrence of malignant biological behavior in sub-centimeter lung nodules. This provides evidence for the miR-412-3p/TEAD1 signaling axis as a potential therapeutic target for mnLC.
Collapse
Affiliation(s)
- Yuxia Deng
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Nishant Patel
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Ding
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
37
|
Huang Y, Huo Y, Huang L, Zhang L, Zheng Y, Zhang N, Yang M. Super-enhancers: Implications in gastric cancer. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108489. [PMID: 38355091 DOI: 10.1016/j.mrrev.2024.108489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Gastric cancer (GC) is the fifth most prevalent malignancy and the third leading cause of cancer-related mortality globally. Despite intensive efforts to enhance the efficiencies of various therapeutics (chemotherapy, surgical interventions, molecular-targeted therapies, immunotherapies), the prognosis for patients with GC remains poor. This might be predominantly due to the limited understanding of the complicated etiology of GC. Importantly, epigenetic modifications and alterations are crucial during GC development. Super-enhancers (SEs) are a large cluster of adjacent enhancers that greatly activate transcription. SEs sustain cell-specific identity by enhancing the transcription of specific oncogenes. In this review, we systematically summarize how SEs are involved in GC development, including the SE landscape in GC, the SE target genes in GC, and the interventions related to SE functions for treating GC.
Collapse
Affiliation(s)
- Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Yanfei Huo
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Long Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
38
|
Behrmann A, Zhong D, Li L, Xie S, Mead M, Sabaeifard P, Goodarzi M, Lemoff A, Kozlitina J, Towler DA. Wnt16 Promotes Vascular Smooth Muscle Contractile Phenotype and Function via Taz (Wwtr1) Activation in Male LDLR-/- Mice. Endocrinology 2023; 165:bqad192. [PMID: 38123514 PMCID: PMC10765280 DOI: 10.1210/endocr/bqad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFβ. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalian Zhong
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangkui Xie
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Mead
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Kozlitina
- McDermott Center for Human Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight A Towler
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
39
|
Perez AA, Goronzy IN, Blanco MR, Guo JK, Guttman M. ChIP-DIP: A multiplexed method for mapping hundreds of proteins to DNA uncovers diverse regulatory elements controlling gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571730. [PMID: 38187704 PMCID: PMC10769186 DOI: 10.1101/2023.12.14.571730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Gene expression is controlled by the dynamic localization of thousands of distinct regulatory proteins to precise regions of DNA. Understanding this cell-type specific process has been a goal of molecular biology for decades yet remains challenging because most current DNA-protein mapping methods study one protein at a time. To overcome this, we developed ChIP-DIP (ChIP Done In Parallel), a split-pool based method that enables simultaneous, genome-wide mapping of hundreds of diverse regulatory proteins in a single experiment. We demonstrate that ChIP-DIP generates highly accurate maps for all classes of DNA-associated proteins, including histone modifications, chromatin regulators, transcription factors, and RNA Polymerases. Using these data, we explore quantitative combinations of protein localization on genomic DNA to define distinct classes of regulatory elements and their functional activity. Our data demonstrate that ChIP-DIP enables the generation of 'consortium level', context-specific protein localization maps within any molecular biology lab.
Collapse
|
40
|
Luna-Zurita L, Flores-Garza BG, Grivas D, Siguero-Álvarez M, de la Pompa JL. Cooperative Response to Endocardial Notch Reveals Interaction With Hippo Pathway. Circ Res 2023; 133:1022-1039. [PMID: 37961886 PMCID: PMC10699509 DOI: 10.1161/circresaha.123.323474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The endocardium is a crucial signaling center for cardiac valve development and maturation. Genetic analysis has identified several human endocardial genes whose inactivation leads to bicuspid aortic valve formation and calcific aortic valve disease, but knowledge is very limited about the role played in valve development and disease by noncoding endocardial regulatory regions and upstream factors. METHODS We manipulated Notch signaling in mouse embryonic endocardial cells by short-term and long-term coculture with OP9 stromal cells expressing Notch ligands and inhibition of Notch activity. We examined the transcriptional profile and chromatin accessibility landscape for each condition, integrated transcriptomic, transcription factor occupancy, chromatin accessibility, and proteomic datasets. We generated in vitro and in vivo models with CRISPR-Cas9-edited deletions of various noncoding regulatory elements and validated their regulatory potential. RESULTS We identified primary and secondary transcriptional responses to Notch ligands in the mouse embryonic endocardium, and a NOTCH-dependent transcriptional signature in valve development and disease. By defining the changes in the chromatin accessibility landscape and integrating with the landscape in developing mouse endocardium and adult human valves, we identify potential noncoding regulatory elements, validated selected candidates, propose interacting cofactors, and define the timeframe of their regulatory activity. Additionally, we found cooperative transcriptional repression with Hippo pathway by inhibiting nuclear Yap (Yes-associated protein) activity in the endocardium during cardiac valve development. CONCLUSIONS Sequential Notch-dependent transcriptional regulation in the embryonic endocardium involves multiple factors. Notch activates certain noncoding elements through these factors and simultaneously suppresses elements that could hinder cardiac valve development and homeostasis. Biorxviv: https://www.biorxiv.org/content/10.1101/2023.03.23.533882v1.full.
Collapse
Affiliation(s)
- Luis Luna-Zurita
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - Brenda Giselle Flores-Garza
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - Dimitrios Grivas
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Developmental Biology, Centre for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Greece (D.G.)
| | - Marcos Siguero-Álvarez
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| | - José Luis de la Pompa
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
- Ciber CV, Madrid, Spain (L.L.-Z., B.G.F.-G., D.G., M.S.-A., J.L.d.l.P.)
| |
Collapse
|
41
|
Agostini V, Tessier A, Djaziri N, Khonsari RH, Galliani E, Kurihara Y, Honda M, Kurihara H, Hidaka K, Tuncbilek G, Picard A, Konas E, Amiel J, Gordon CT. Biallelic truncating variants in VGLL2 cause syngnathia in humans. J Med Genet 2023; 60:1084-1091. [PMID: 37666660 DOI: 10.1136/jmg-2022-109059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/24/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Syngnathia is an ultrarare craniofacial malformation characterised by an inability to open the mouth due to congenital fusion of the upper and lower jaws. The genetic causes of isolated bony syngnathia are unknown. METHODS We used whole exome and Sanger sequencing and microsatellite analysis in six patients (from four families) presenting with syngnathia. We used CRISPR/Cas9 genome editing to generate vgll2a and vgll4l germline mutant zebrafish, and performed craniofacial cartilage analysis in homozygous mutants. RESULTS We identified homozygous truncating variants in vestigial-like family member 2 (VGLL2) in all six patients. Two alleles were identified: one in families of Turkish origin and the other in families of Moroccan origin, suggesting a founder effect for each. A shared haplotype was confirmed for the Turkish patients. The VGLL family of genes encode cofactors of TEAD transcriptional regulators. Vgll2 is regionally expressed in the pharyngeal arches of model vertebrate embryos, and morpholino-based knockdown of vgll2a in zebrafish has been reported to cause defects in development of pharyngeal arch cartilages. However, we did not observe craniofacial anomalies in vgll2a or vgll4l homozygous mutant zebrafish nor in fish with double knockout of vgll2a and vgll4l. In Vgll2 -/- mice, which are known to present a skeletal muscle phenotype, we did not identify defects of the craniofacial skeleton. CONCLUSION Our results suggest that although loss of VGLL2 leads to a striking jaw phenotype in humans, other vertebrates may have the capacity to compensate for its absence during craniofacial development.
Collapse
Affiliation(s)
- Valeria Agostini
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France
| | - Aude Tessier
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France
| | - Nabila Djaziri
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France
| | - Roman Hossein Khonsari
- Service de Chirurgie Maxillofaciale et Chirurgie Plastique, Centre de référence Fentes et Malformations Faciales (MAFACE), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Eva Galliani
- Service de Chirurgie Maxillofaciale et Chirurgie Plastique, Centre de référence Fentes et Malformations Faciales (MAFACE), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Yukiko Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiko Honda
- Department of Biochemistry, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kyoko Hidaka
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | | | - Arnaud Picard
- Service de Chirurgie Maxillofaciale et Chirurgie Plastique, Centre de référence Fentes et Malformations Faciales (MAFACE), Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | | | - Jeanne Amiel
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Christopher T Gordon
- Laboratory of embryology and genetics of human malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine and Université Paris Cité, Paris, France
| |
Collapse
|
42
|
Torre D, Francoeur NJ, Kalma Y, Gross Carmel I, Melo BS, Deikus G, Allette K, Flohr R, Fridrikh M, Vlachos K, Madrid K, Shah H, Wang YC, Sridhar SH, Smith ML, Eliyahu E, Azem F, Amir H, Mayshar Y, Marazzi I, Guccione E, Schadt E, Ben-Yosef D, Sebra R. Isoform-resolved transcriptome of the human preimplantation embryo. Nat Commun 2023; 14:6902. [PMID: 37903791 PMCID: PMC10616205 DOI: 10.1038/s41467-023-42558-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 10/15/2023] [Indexed: 11/01/2023] Open
Abstract
Human preimplantation development involves extensive remodeling of RNA expression and splicing. However, its transcriptome has been compiled using short-read sequencing data, which fails to capture most full-length mRNAs. Here, we generate an isoform-resolved transcriptome of early human development by performing long- and short-read RNA sequencing on 73 embryos spanning the zygote to blastocyst stages. We identify 110,212 unannotated isoforms transcribed from known genes, including highly conserved protein-coding loci and key developmental regulators. We further identify 17,964 isoforms from 5,239 unannotated genes, which are largely non-coding, primate-specific, and highly associated with transposable elements. These isoforms are widely supported by the integration of published multi-omics datasets, including single-cell 8CLC and blastoid studies. Alternative splicing and gene co-expression network analyses further reveal that embryonic genome activation is associated with splicing disruption and transient upregulation of gene modules. Together, these findings show that the human embryo transcriptome is far more complex than currently known, and will act as a valuable resource to empower future studies exploring development.
Collapse
Affiliation(s)
- Denis Torre
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Yael Kalma
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Ilana Gross Carmel
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Betsaida S Melo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kimaada Allette
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ron Flohr
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel
| | - Maya Fridrikh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shwetha H Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, 40202, USA
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Foad Azem
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Hadar Amir
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ivan Marazzi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, University of California, Irvine, CA, 92697, USA
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT); Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dalit Ben-Yosef
- Fertility and IVF Institute, Tel-Aviv Sourasky Medical Center, Affiliated to Tel Aviv University, Tel Aviv, 64239, Israel.
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978, Israel.
- CORAL - Center Of Regeneration and Longevity, Tel-Aviv Sourasky Medical Center, Tel Aviv, 64239, Israel.
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
43
|
Kofler M, Kapus A. Nuclear Import and Export of YAP and TAZ. Cancers (Basel) 2023; 15:4956. [PMID: 37894323 PMCID: PMC10605228 DOI: 10.3390/cancers15204956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Yes-associated Protein (YAP) and its paralog Transcriptional Coactivator with PDZ-binding Motif (TAZ) are major regulators of gene transcription/expression, primarily controlled by the Hippo pathway and the cytoskeleton. Integrating an array of chemical and mechanical signals, they impact growth, differentiation, and regeneration. Accordingly, they also play key roles in tumorigenesis and metastasis formation. Their activity is primarily regulated by their localization, that is, Hippo pathway- and/or cytoskeleton-controlled cytosolic or nuclear sequestration. While many details of such prevailing retention models have been elucidated, much less is known about their actual nuclear traffic: import and export. Although their size is not far from the cutoff for passive diffusion through the nuclear pore complex (NPC), and they do not contain any classic nuclear localization (NLS) or nuclear export signal (NES), evidence has been accumulating that their shuttling involves mediated and thus regulatable/targetable processes. The aim of this review is to summarize emerging information/concepts about their nucleocytoplasmic shuttling, encompassing the relevant structural requirements (NLS, NES), nuclear transport receptors (NTRs, karyophererins), and NPC components, along with the potential transport mechanisms and their regulation. While dissecting retention vs. transport is often challenging, the emerging picture suggests that YAP/TAZ shuttles across the NPC via multiple, non-exclusive, mediated mechanisms, constituting a novel and intriguing facet of YAP/TAZ biology.
Collapse
Affiliation(s)
- Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada;
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
44
|
Fang Q, Wei Y, Zhang Y, Cao W, Yan L, Kong M, Zhu Y, Xu Y, Guo L, Zhang L, Wang W, Yu Y, Sun J, Yang J. Stem cells as potential therapeutics for hearing loss. Front Neurosci 2023; 17:1259889. [PMID: 37746148 PMCID: PMC10512725 DOI: 10.3389/fnins.2023.1259889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Hearing impairment is a global health problem. Stem cell therapy has become a cutting-edge approach to tissue regeneration. In this review, the recent advances in stem cell therapy for hearing loss have been discussed. Nanomaterials can modulate the stem cell microenvironment to augment the therapeutic effects further. The potential of combining nanomaterials with stem cells for repairing and regenerating damaged inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) has also been discussed. Stem cell-derived exosomes can contribute to the repair and regeneration of damaged tissue, and the research progress on exosome-based hearing loss treatment has been summarized as well. Despite stem cell therapy's technical and practical limitations, the findings reported so far are promising and warrant further investigation for eventual clinical translation.
Collapse
Affiliation(s)
- Qiaojun Fang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjie Wei
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuhua Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Cao
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lin Yan
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengdie Kong
- School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yongjun Zhu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Xu
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lingna Guo
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weiqing Wang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yafeng Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jingwu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianming Yang
- Department of Otolaryngology-Head and Neck Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
45
|
Saha S, Singh P, Dutta A, Vaidya H, Negi PC, Sengupta S, Seth S, Basak T. A Comprehensive Insight and Mechanistic Understanding of the Lipidomic Alterations Associated With DCM. JACC. ASIA 2023; 3:539-555. [PMID: 37614533 PMCID: PMC10442885 DOI: 10.1016/j.jacasi.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 08/25/2023]
Abstract
Dilated cardiomyopathy (DCM) is one of the major causes of heart failure characterized by the enlargement of the left ventricular cavity and contractile dysfunction of the myocardium. Lipids are the major sources of energy for the myocardium. Impairment of lipid homeostasis has a potential role in the pathogenesis of DCM. In this review, we have summarized the role of different lipids in the progression of DCM that can be considered as potential biomarkers. Further, we have also explained the mechanistic pathways followed by the lipid molecules in disease progression along with the cardioprotective role of certain lipids. As the global epidemiological status of DCM is alarming, it is high time to define some disease-specific biomarkers with greater prognostic value. We are proposing an adaptation of a system lipidomics-based approach to profile DCM patients in order to achieve a better diagnosis and prognosis of the disease.
Collapse
Affiliation(s)
- Shubham Saha
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Praveen Singh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Abhi Dutta
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| | - Hiteshi Vaidya
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Prakash Chand Negi
- Department of Cardiology, Indira Gandhi Medical College & Hospital, Shimla, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sandeep Seth
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering. IIT-Mandi, Mandi, India
- BioX Center, Indian Institute of Technology-Mandi, Mandi, India
| |
Collapse
|
46
|
Palamaris K, Levidou G, Kordali K, Masaoutis C, Rontogianni D, Theocharis S. Searching for Novel Biomarkers in Thymic Epithelial Tumors: Immunohistochemical Evaluation of Hippo Pathway Components in a Cohort of Thymic Epithelial Tumors. Biomedicines 2023; 11:1876. [PMID: 37509515 PMCID: PMC10377518 DOI: 10.3390/biomedicines11071876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Given the pivotal role of the Hippo pathway in different facets of tumorigenesis, which has been vigorously established in multiple heterogenous malignancies, we attempted to evaluate its potential utility as a prognostic-predictive biomarker in thymic epithelial tumors (TETs). For this purpose, we performed a comprehensive immunohistochemical analysis of four Hippo cascade components (YAP, TAZ, TEAD4 and LATS1) in a sizeable cohort of TETs and attempted to identify possible correlations of their H-score with various clinicopathological parameters. TAZ and TEAD4 displayed both cytoplasmic and nuclear immunoreactivity in almost equal frequency, with their cytoplasmic H-score being strongly associated with more aggressive high-grade tumors (type B3, thymic carcinoma) and more advanced pathological stages. On the other hand, a primarily nuclear staining pattern was encountered in both YAP and LATS1, with the YAP nuclear H-score being higher in more indolent (type A) and earlier stage tumors. Interestingly, none of the four examined factors displayed any statistically significant correlation with patient overall (OS) or disease-free survival (DFS). In summary, our results provide some initial insight into the expression profile of these core Hippo pathway components in thymic neoplasms and point towards some clear associations with tumor characteristics, which are of paramount translational-clinical research with profound implications in therapeutic targeting of this pathway in the context of precision medicine.
Collapse
Affiliation(s)
- Kostas Palamaris
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Levidou
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Katerina Kordali
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitra Rontogianni
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
47
|
Song Y, Fioramonti M, Bouvencourt G, Dubois C, Blanpain C, Van Keymeulen A. Cell type and stage specific transcriptional, chromatin and cell-cell communication landscapes in the mammary gland. Heliyon 2023; 9:e17842. [PMID: 37456014 PMCID: PMC10339025 DOI: 10.1016/j.heliyon.2023.e17842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
The mammary gland (MG) is composed of three main epithelial lineages, the basal cells (BC), the estrogen receptor (ER) positive luminal cells (ER+ LC), and the ER negative LC (ER- LC). Defining the cell identity of each lineage and how it is modulated throughout the different stages of life is important to understand how these cells function and communicate throughout life. Here, we used transgenic mice specifically labelling ER+ LC combined to cell surface markers to isolate with high purity the 3 distinct cell lineages of the mammary gland and defined their expression profiles and chromatin landscapes by performing bulk RNAseq and ATACseq of these isolated populations in puberty, adulthood and mid-pregnancy. Our analysis identified conserved genes, ligands and transcription factor (TF) associated with a specific lineage throughout life as well as genes, ligands and TFs specific for a particular stage of the MG. In summary, our study identified genes and TF network associated with the identity, function and cell-cell communication of the different epithelial lineages of the MG at different stages of life.
Collapse
Affiliation(s)
- Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
48
|
Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT. Transfer learning enables predictions in network biology. Nature 2023; 618:616-624. [PMID: 37258680 PMCID: PMC10949956 DOI: 10.1038/s41586-023-06139-9] [Citation(s) in RCA: 242] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
Collapse
Affiliation(s)
- Christina V Theodoris
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School Genetics Training Program, Boston, USA.
| | - Ling Xiao
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Anant Chopra
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zeina R Al Sayed
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
49
|
Yang S, Huang F, Zhang F, Sheng X, Fan W, Dissanayaka WL. Emerging Roles of YAP/TAZ in Tooth and Surrounding: from Development to Regeneration. Stem Cell Rev Rep 2023:10.1007/s12015-023-10551-z. [PMID: 37178226 DOI: 10.1007/s12015-023-10551-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Yes associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are ubiquitous transcriptional co-activators that control organ development, homeostasis, and tissue regeneration. Current in vivo evidence suggests that YAP/TAZ regulates enamel knot formation during murine tooth development, and is indispensable for dental progenitor cell renewal to support constant incisor growth. Being a critical sensor for cellular mechano-transduction, YAP/TAZ lays at the center of the complex molecular network that integrates mechanical cues from the dental pulp chamber and surrounding periodontal tissue into biochemical signals, dictating in vitro cell proliferation, differentiation, stemness maintenance, and migration of dental stem cells. Moreover, YAP/TAZ-mediated cell-microenvironment interactions also display essential regulatory roles during biomaterial-guided dental tissue repair and engineering in some animal models. Here, we review recent advances in YAP/TAZ functions in tooth development, dental pulp, and periodontal physiology, as well as dental tissue regeneration. We also highlight several promising strategies that harness YAP/TAZ activation for promoting dental tissue regeneration.
Collapse
Affiliation(s)
- Shengyan Yang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fuping Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xinyue Sheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
50
|
Sekido Y, Sato T. NF2 alteration in mesothelioma. FRONTIERS IN TOXICOLOGY 2023; 5:1161995. [PMID: 37180489 PMCID: PMC10168293 DOI: 10.3389/ftox.2023.1161995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
The NF2 tumor suppressor gene is a frequent somatically mutated gene in mesothelioma, with 30%-40% mesotheliomas showing NF2 inactivation. NF2 encodes merlin, a member of the ezrin, radixin, and moesin (ERM) family of proteins that regulate cytoskeleton and cell signaling. Recent genome analysis revealed that NF2 alteration may be a late event in mesothelioma development, suggesting that NF2 mutation confers a more aggressive phenotype to mesothelioma cells and may not be directly caused by asbestos exposure. The Hippo tumor-suppressive and mTOR prooncogenic signaling pathways are crucial cell-signaling cascades regulated by merlin. Although the exact role and timing of NF2 inactivation in mesothelioma cells remain to be elucidated, targeting the NF2/merlin-Hippo pathway may be a new therapeutic strategy for patients with mesothelioma.
Collapse
Affiliation(s)
- Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Molecular and Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiro Sato
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| |
Collapse
|