1
|
Liu G, Wu C, Yin L, Hou L, Yin B, Qiang B, Shu P, Peng X. MiR-125/let-7 cluster orchestrates neuronal cell fate determination and cortical layer formation during neurogenesis. Biochem Biophys Res Commun 2025; 766:151815. [PMID: 40300336 DOI: 10.1016/j.bbrc.2025.151815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/06/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
MicroRNA (miRNA) clusters, defined as genomically co-localized miRNAs regulated by a shared promoter and processed from polycistronic transcripts, exhibit synergistic regulatory roles in developmental processes. Among these, the evolutionarily conserved miR-125/let-7 cluster has been identified as a key regulator of neural stem cell (NSC) dynamics. In this study, we used Dicer conditional knockout (cKO) mice to confirm the essential role of miRNAs in mouse neocortical layer formation. The miR-125/let-7 cluster is co-expressed in mice and shows significant enrichment in upper-layer (UL) neurons. Using in utero electroporation (IUE), we found that miR-125b or let-7b overexpression partially rescues cortical phenotypes in Dicer-deficient mice, restoring proper UL organization but failing to rescue laminar fate defects in deep-layer cortical neurons. Our findings demonstrate that the miR-125b/let-7b exhibits a specialized function in regulating UL neuronal fate specification in mice and promotes the differentiation of NSC. Notably, miR-125b and let-7b exhibit both overlapping and distinct regulatory functions. Collectively, these results underscore the cooperative mechanisms by which miRNA clusters orchestrate cortical development.
Collapse
Affiliation(s)
- Gaoao Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Chao Wu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Luyao Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Lin Hou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Bin Yin
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Boqin Qiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Pengcheng Shu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xiaozhong Peng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, 100005, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Jansma A, Yao Y, Wolfe J, Del Debbio L, Beentjes SV, Ponting CP, Khamseh A. High order expression dependencies finely resolve cryptic states and subtypes in single cell data. Mol Syst Biol 2025; 21:173-207. [PMID: 39748128 PMCID: PMC11790937 DOI: 10.1038/s44320-024-00074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025] Open
Abstract
Single cells are typically typed by clustering into discrete locations in reduced dimensional transcriptome space. Here we introduce Stator, a data-driven method that identifies cell (sub)types and states without relying on cells' local proximity in transcriptome space. Stator labels the same single cell multiply, not just by type and subtype, but also by state such as activation, maturity or cell cycle sub-phase, through deriving higher-order gene expression dependencies from a sparse gene-by-cell expression matrix. Stator's finer resolution is clear from analyses of mouse embryonic brain, and human healthy or diseased liver. Rather than only coarse-scale labels of cell type, Stator further resolves cell types into subtypes, and these subtypes into stages of maturity and/or cell cycle phases, and yet further into portions of these phases. Among cryptically homogeneous embryonic cells, for example, Stator finds 34 distinct radial glia states whose gene expression forecasts their future GABAergic or glutamatergic neuronal fate. Further, Stator's fine resolution of liver cancer states reveals expression programmes that predict patient survival. We provide Stator as a Nextflow pipeline and Shiny App.
Collapse
Affiliation(s)
- Abel Jansma
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Higgs Centre for Theoretical Physics, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Yuelin Yao
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
| | - Jareth Wolfe
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Luigi Del Debbio
- Higgs Centre for Theoretical Physics, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Sjoerd V Beentjes
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
- School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
| | - Ava Khamseh
- MRC Human Genetics Unit, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK.
- Higgs Centre for Theoretical Physics, School of Physics & Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
- School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK.
| |
Collapse
|
3
|
Martinez-Lozada Z, Guillem AM, Song I, Gonzalez MV, Takano H, Parikh E, Rothstein JD, Putt ME, Robinson MB. Identification of a Subpopulation of Astrocyte Progenitor Cells in the Neonatal Subventricular Zone: Evidence that Migration is Regulated by Glutamate Signaling. Neurochem Res 2025; 50:77. [PMID: 39789409 PMCID: PMC11717811 DOI: 10.1007/s11064-024-04326-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes. The eGFP mice have been used to define mechanisms of transcriptional regulation using astrocytes cultured from cortex of 1-3 day old mice. Using the same cultures, we were never able to induce tdT+ expression. We hypothesized that these cells might not have migrated into the cortex by this age. In this study, we characterized the ontogeny of tdT+ cells, performed single-cell RNA sequencing (scRNA-seq), and tracked their migration in organotypic slice cultures. At postnatal day (PND) 1, tdT+ cells were observed in the subventricular zone and striatum but not in the cortex, and they did not express eGFP. At PND7, tdT+ cells begin to appear in the cortex with their numbers increasing with age. At PND1, scRNA-seq demonstrates that the tdT+ cells are molecularly heterogeneous, with a subpopulation expressing astrocytic markers, subsequently validated with immunofluorescence. In organotypic slices, tdT+ cells migrate into the cortex, and after 7 days they express GLT1, NF1A, and eGFP. An ionotropic glutamate receptor (iGluR) antagonist reduced by 50% the distance tdT+ cells migrate from the subventricular zone into the cortex. The pan-glutamate transport inhibitor, TFB-TBOA, increased, by sixfold, the number of tdT+ cells in the cortex. In conclusion, although tdT is expressed by non-glial cells at PND1, it is also expressed by glial progenitors that migrate into the cortex postnatally. Using this fluorescent labeling, we provide novel evidence that glutamate signaling contributes to the control of glial precursor migration.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
- Department of Neuroscience, College of Psychology and Neuroscience, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA.
| | - Alain M Guillem
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
| | - Isabella Song
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
| | - Michael V Gonzalez
- Center for Cytokine Storm Treatment & Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hajime Takano
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Esha Parikh
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA
| | - Jeffrey D Rothstein
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mary E Putt
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
| |
Collapse
|
4
|
Goodman EJ, DiSabato DJ, Sheridan JF, Godbout JP. Novel microglial transcriptional signatures promote social and cognitive deficits following repeated social defeat. Commun Biol 2024; 7:1199. [PMID: 39341879 PMCID: PMC11438916 DOI: 10.1038/s42003-024-06898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Chronic stress is associated with anxiety and cognitive impairment. Repeated social defeat (RSD) in mice induces anxiety-like behavior driven by microglia and the recruitment of inflammatory monocytes to the brain. Nonetheless, it is unclear how microglia communicate with other cells to modulate the physiological and behavioral responses to stress. Using single-cell (sc)RNAseq, we identify novel, to the best of our knowledge, stress-associated microglia in the hippocampus defined by RNA profiles of cytokine/chemokine signaling, cellular stress, and phagocytosis. Microglia depletion with a CSF1R antagonist (PLX5622) attenuates the stress-associated profile of leukocytes, endothelia, and astrocytes. Furthermore, RSD-induced social withdrawal and cognitive impairment are microglia-dependent, but social avoidance is microglia-independent. Furthermore, single-nuclei (sn)RNAseq shows robust responses to RSD in hippocampal neurons that are both microglia-dependent and independent. Notably, stress-induced CREB, oxytocin, and glutamatergic signaling in neurons are microglia-dependent. Collectively, these stress-associated microglia influence transcriptional profiles in the hippocampus related to social and cognitive deficits.
Collapse
Affiliation(s)
- Ethan J Goodman
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Damon J DiSabato
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA
| | - John F Sheridan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA.
| | - Jonathan P Godbout
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, Ohio, 43210, USA.
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA.
| |
Collapse
|
5
|
Bilgic M, Wu Q, Suetsugu T, Shitamukai A, Tsunekawa Y, Shimogori T, Kadota M, Nishimura O, Kuraku S, Kiyonari H, Matsuzaki F. Truncated radial glia as a common precursor in the late corticogenesis of gyrencephalic mammals. eLife 2023; 12:RP91406. [PMID: 37988289 PMCID: PMC10662950 DOI: 10.7554/elife.91406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited. Here, we surveyed the temporal series of single-cell transcriptomes of progenitors regarding ferret corticogenesis and found a conserved diversity and temporal trajectory between human and ferret NPC, despite the large timescale difference. We found truncated RG (tRG) in ferret cortical development, a progenitor subtype previously described in humans. The combination of in silico and in vivo analyses identified that tRG differentiate into both ependymal and astrogenic cells. Via transcriptomic comparison, we predict that this is also the case in humans. Our findings suggest that tRG plays a role in the formation of adult ventricles, thereby providing the architectural bases for brain expansion.
Collapse
Affiliation(s)
- Merve Bilgic
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| | - Quan Wu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Taeko Suetsugu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, RIKEN Center for Brain ScienceWakoJapan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
6
|
Frazel PW, Labib D, Fisher T, Brosh R, Pirjanian N, Marchildon A, Boeke JD, Fossati V, Liddelow SA. Longitudinal scRNA-seq analysis in mouse and human informs optimization of rapid mouse astrocyte differentiation protocols. Nat Neurosci 2023; 26:1726-1738. [PMID: 37697111 PMCID: PMC10763608 DOI: 10.1038/s41593-023-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/08/2023] [Indexed: 09/13/2023]
Abstract
Macroglia (astrocytes and oligodendrocytes) are required for normal development and function of the central nervous system, yet many questions remain about their emergence during the development of the brain and spinal cord. Here we used single-cell/single-nucleus RNA sequencing (scRNA-seq/snRNA-seq) to analyze over 298,000 cells and nuclei during macroglia differentiation from mouse embryonic and human-induced pluripotent stem cells. We computationally identify candidate genes involved in the fate specification of glia in both species and report heterogeneous expression of astrocyte surface markers across differentiating cells. We then used our transcriptomic data to optimize a previous mouse astrocyte differentiation protocol, decreasing the overall protocol length and complexity. Finally, we used multi-omic, dual single-nuclei (sn)RNA-seq/snATAC-seq analysis to uncover potential genomic regulatory sites mediating glial differentiation. These datasets will enable future optimization of glial differentiation protocols and provide insight into human glial differentiation.
Collapse
Affiliation(s)
- Paul W Frazel
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA.
| | - David Labib
- The New York Stem Cell Foundation Research Institute, New York City, NY, USA
| | - Theodore Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York City, NY, USA
| | - Nicolette Pirjanian
- The New York Stem Cell Foundation Research Institute, New York City, NY, USA
| | - Anne Marchildon
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York City, NY, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York City, NY, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA.
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York City, NY, USA.
| |
Collapse
|
7
|
Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development—More questions than answers. Front Cell Dev Biol 2023; 11:1063843. [PMID: 37051466 PMCID: PMC10083403 DOI: 10.3389/fcell.2023.1063843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
The past 15–20 years has seen a remarkable shift in our understanding of astrocyte contributions to central nervous system (CNS) function. Astrocytes have emerged from the shadows of neuroscience and are now recognized as key elements in a broad array of CNS functions. Astrocytes comprise a substantial fraction of cells in the human CNS. Nevertheless, fundamental questions surrounding their basic biology remain poorly understood. While recent studies have revealed a diversity of essential roles in CNS function, from synapse formation and function to blood brain barrier maintenance, fundamental mechanisms of astrocyte development, including their expansion, migration, and maturation, remain to be elucidated. The coincident development of astrocytes and synapses highlights the need to better understand astrocyte development and will facilitate novel strategies for addressing neurodevelopmental and neurological dysfunction. In this review, we provide an overview of the current understanding of astrocyte development, focusing primarily on mammalian astrocytes and highlight outstanding questions that remain to be addressed. We also include an overview of Drosophila glial development, emphasizing astrocyte-like glia given their close anatomical and functional association with synapses. Drosophila offer an array of sophisticated molecular genetic tools and they remain a powerful model for elucidating fundamental cellular and molecular mechanisms governing astrocyte development. Understanding the parallels and distinctions between astrocyte development in Drosophila and vertebrates will enable investigators to leverage the strengths of each model system to gain new insights into astrocyte function.
Collapse
Affiliation(s)
- Kathryn M. Markey
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | | | - Jana Smuts
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
| | - Catherine R. von Reyn
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - A. Denise R. Garcia
- Department of Biology, Drexel University, Philadelphia, PA, United States
- Department of Neurobiology and Anatomy, Drexel University, Philadelphia, PA, United States
- *Correspondence: A. Denise R. Garcia,
| |
Collapse
|
8
|
Clavreul S, Dumas L, Loulier K. Astrocyte development in the cerebral cortex: Complexity of their origin, genesis, and maturation. Front Neurosci 2022; 16:916055. [PMID: 36177355 PMCID: PMC9513187 DOI: 10.3389/fnins.2022.916055] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
In the mammalian brain, astrocytes form a heterogeneous population at the morphological, molecular, functional, intra-, and inter-region levels. In the past, a few types of astrocytes have been first described based on their morphology and, thereafter, according to limited key molecular markers. With the advent of bulk and single-cell transcriptomics, the diversity of astrocytes is now progressively deciphered and its extent better appreciated. However, the origin of this diversity remains unresolved, even though many recent studies unraveled the specificities of astroglial development at both population and individual cell levels, particularly in the cerebral cortex. Despite the lack of specific markers for each astrocyte subtype, a better understanding of the cellular and molecular events underlying cortical astrocyte diversity is nevertheless within our reach thanks to the development of intersectional lineage tracing, microdissection, spatial mapping, and single-cell transcriptomic tools. Here we present a brief overview describing recent findings on the genesis and maturation of astrocytes and their key regulators during cerebral cortex development. All these studies have considerably advanced our knowledge of cortical astrogliogenesis, which relies on a more complex mode of development than their neuronal counterparts, that undeniably impact astrocyte diversity in the cerebral cortex.
Collapse
|