1
|
Kim H, Yi X, Xue H, Yue G, Zhu J, Eh T, Wang S, Jin LH. Extracts ofHylotelephiumerythrostictum (miq.) H. Ohba ameliorate intestinal injury by scavenging ROS and inhibiting multiple signaling pathways in Drosophila. BMC Complement Med Ther 2024; 24:397. [PMID: 39543569 PMCID: PMC11566468 DOI: 10.1186/s12906-024-04686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND The intestinal epithelial barrier is the first line of defense against pathogens and noxious substances entering the body from the outside world. Through proliferation and differentiation, intestinal stem cells play vital roles in tissue regeneration, repair, and the maintenance of intestinal homeostasis. Inflammatory bowel disease (IBD) is caused by the disruption of intestinal homeostasis through the invasion of toxic compounds and pathogenic microorganisms. Hylotelephium erythrostictum (Miq.) H. Ohba (H. erythrostictum) is a plant with diverse pharmacological properties, including antioxidant, anti-inflammatory, antidiabetic, and antirheumatic properties. However, the roles of H. erythrostictum and its bioactive compounds in the treatment of intestinal injury are unknown. METHODS We examined the protective effects of H. erythrostictum water extract (HEWE) and H. erythrostictum butanol extract (HEBE) on Drosophila intestinal injury caused by dextran sodium sulfate (DSS) or Erwinia carotovoracarotovora 15 (Ecc15). RESULTS Our findings demonstrated that both HEWE and HEBE significantly prolonged the lifespan of flies fed toxic compounds, reduced cell mortality, and maintained intestinal integrity and gut acid‒base homeostasis. Furthermore, both HEWE and HEBE eliminated DSS-induced ROS accumulation, alleviated the increases in antimicrobial peptides(AMPs) and intestinal lipid droplets caused by Ecc15 infection, and prevented excessive ISC proliferation and differentiation by inhibiting the JNK, EGFR, and JAK/STAT pathways. In addition, they reversed the significant changes in the proportions of the gut microbiota induced by DSS. The bioactive compounds contained in H. erythrostictum extracts have sufficient potential for use as natural therapeutic agents for the treatment of IBD in humans. CONCLUSION Our results suggest that HEWE and HEBE are highly effective in reducing intestinal inflammation and thus have the potential to be viable therapeutic agents for the treatment of gut inflammation. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hyonil Kim
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
- College of LifeScience, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Xinyu Yi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Hongmei Xue
- Women and Children's Hospital, Peking University People's Hospital, Qingdao University, Qingdao, China
| | - Guanhua Yue
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Jiahua Zhu
- Department of Basic Medical, Shenyang Medical College, Shenyang, China
| | - Tongju Eh
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China
- College of LifeScience, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Sihong Wang
- Analysis and Test Center, Yanbian University, Yanji, 133002, Jilin Province, PR China.
| | - Li Hua Jin
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
2
|
Solà-Ginés M, Miró L, Bellver-Sanchis A, Griñán-Ferré C, Pallàs M, Pérez-Bosque A, Moretó M, Pont L, Benavente F, Barbosa J, Rodríguez C, Polo J. Nutritional, molecular, and functional properties of a novel enzymatically hydrolyzed porcine plasma product. PLoS One 2024; 19:e0301504. [PMID: 38728303 PMCID: PMC11086891 DOI: 10.1371/journal.pone.0301504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
In the present study, an enzymatically hydrolyzed porcine plasma (EHPP) was nutritionally and molecularly characterized. EHPP molecular characterization showed, in contrast to spray-dried plasma (SDP), many peptides with relative molecular masses (Mr) below 8,000, constituting 73% of the protein relative abundance. IIAPPER, a well-known bioactive peptide with anti-inflammatory and antioxidant properties, was identified. In vivo functionality of EHPP was tested in C. elegans and two different mouse models of intestinal inflammation. In C. elegans subjected to lipopolysaccharide exposure, EHPP displayed a substantial anti-inflammatory effect, enhancing survival and motility by 40% and 21.5%, respectively. Similarly, in mice challenged with Staphylococcus aureus enterotoxin B or Escherichia coli O42, EHPP and SDP supplementation (8%) increased body weight and average daily gain while reducing the percentage of regulatory Th lymphocytes. Furthermore, both products mitigated the increase of pro-inflammatory cytokines expression associated with these challenged mouse models. In contrast, some significant differences were observed in markers such as Il-6 and Tnf-α, suggesting that the products may present different action mechanisms. In conclusion, EHPP demonstrated similar beneficial health effects to SDP, potentially attributable to the immunomodulatory and antioxidant activity of its characteristic low Mr bioactive peptides.
Collapse
Affiliation(s)
| | - Lluïsa Miró
- APC Europe S.L.U., Granollers, Spain
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Aina Bellver-Sanchis
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Mercè Pallàs
- Departament de Farmacologia, Toxicologia i Química Terapèutica (Secció de Farmacologia) Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Neurociències (CIBERNED), Universitat de Barcelona, Barcelona, Spain
| | - Anna Pérez-Bosque
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Miquel Moretó
- Departament de Bioquímica i Fisiologia (Secció de Fisiologia), Facultat de Farmàcia i Ciències de l’Alimentació and Institut de Nutrició i Seguretat Alimentària, Universitat de Barcelona (INSA·UB), Barcelona, Spain
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Programe, Generalitat de Catalunya, Barcelona, Spain
| | | | - José Barbosa
- Serra Húnter Programe, Generalitat de Catalunya, Barcelona, Spain
| | | | | |
Collapse
|
3
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
4
|
Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y, Lin X, Li B, He J. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front Pharmacol 2022; 13:1072715. [PMID: 36545307 PMCID: PMC9760693 DOI: 10.3389/fphar.2022.1072715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and life-treating inflammatory disease that can occur in multiple parts of the human intestine and has become a worldwide problem with a continually increasing incidence. Because of its mild early symptoms, most of them will not attract people's attention and may cause more serious consequences. There is an urgent need for new therapeutics to prevent disease progression. Natural products have a variety of active ingredients, diverse biological activities, and low toxicity or side effects, which are the new options for preventing and treating the intestinal inflammatory diseases. Because of multiple genetic models, less ethical concerns, conserved signaling pathways with mammals, and low maintenance costs, the fruit fly Drosophila melanogaster has become a suitable model for studying mechanism and treatment strategy of IBD. Here, we review the advantages of fly model as screening platform in drug discovery, describe the conserved molecular pathways as therapetic targets for IBD between mammals and flies, dissect the feasibility of Drosophila model in IBD research, and summarize the natural products for IBD treatment using flies. This review comprehensively elaborates that the benefit of flies as a perfact model to evaluate the therapeutic potential of phytochemicals against IBD.
Collapse
Affiliation(s)
- Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dan Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Botong Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Jianzheng He,
| |
Collapse
|
5
|
Bets VD, Achasova KM, Borisova MA, Kozhevnikova EN, Litvinova EA. Role of Mucin 2 Glycoprotein and L-Fucose in Interaction of Immunity and Microbiome within the Experimental Model of Inflammatory Bowel Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:301-318. [PMID: 35527372 DOI: 10.1134/s0006297922040010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Many factors underlie the development of inflammatory bowel disease (IBD) in humans. In particular, imbalance of microbiota and thinning of the mucosal layer in the large intestine play a huge role. Pathogenic microorganisms also exacerbate the course of diseases. In this research the role of mucin 2 deficiency in the formation of intestinal microflora in the experimental model using the Muc2 gene knockout mice in the presence of Helicobacter spp. was investigated. Also, restorative and anti-inflammatory effect of the dietary L-fucose in the Muc2-/- mice on microflora and immunity was evaluated. For this purpose, bacterial diversity in feces was studied in the animals before and after antibiotic therapy and role of the dietary L-fucose in their recovery was assessed. To determine the effect of bacterial imbalance and fucose on the immune system, mRNA levels of the genes encoding pro-inflammatory cytokines (Tnf, Il1a, Il1b, Il6) and transcription factors of T cells (Foxp3 - Treg, Rorc - Th17, Tbx21 - Th1) were determined in the colon tissue of the Muc2-/- mice. Significant elimination of bacteria due to antibiotic therapy caused decrease of the fucose levels in the intestine and facilitated reduction of the regulatory T cell transcription factor (Foxp3). When the dietary L-fucose was added to antibiotics, the level of bacterial DNA of Bacteroides spp. in the feces of the Muc2-/- mice was partially restored. T regulatory cells are involved in the regulation of inflammation in the Muc2-/- mice. Antibiotics reduced the number of regulatory T cell but did not decrease the inflammatory response to infection. Fucose, as a component of mucin 2, helped to maintain the level of Bacteroides spp. during antibiotic therapy of the Muc2-/- mice and restored biochemical parameters, but did not affect the inflammatory response.
Collapse
Affiliation(s)
- Victoria D Bets
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia
| | - Kseniya M Achasova
- Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mariya A Borisova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena N Kozhevnikova
- Novosibirsk State Agrarian University, Novosibirsk, 630039, Russia.,Research Institute of Neurosciences and Medicine, Novosibirsk, 630117, Russia.,Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | |
Collapse
|
6
|
Markus J, Landry T, Stevens Z, Scott H, Llanos P, Debatis M, Armento A, Klausner M, Ayehunie S. Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cell Dev Biol Anim 2020; 57:160-173. [PMID: 33237403 PMCID: PMC7687576 DOI: 10.1007/s11626-020-00526-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023]
Abstract
The gastrointestinal tract (GIT), in particular, the small intestine, plays a significant role in food digestion, fluid and electrolyte transport, drug absorption and metabolism, and nutrient uptake. As the longest portion of the GIT, the small intestine also plays a vital role in protecting the host against pathogenic or opportunistic microbial invasion. However, establishing polarized intestinal tissue models in vitro that reflect the architecture and physiology of the gut has been a challenge for decades and the lack of translational models that predict human responses has impeded research in the drug absorption, metabolism, and drug-induced gastrointestinal toxicity space. Often, animals fail to recapitulate human physiology and do not predict human outcomes. Also, certain human pathogens are species specific and do not infect other hosts. Concerns such as variability of results, a low throughput format, and ethical considerations further complicate the use of animals for predicting the safety and efficacy xenobiotics in humans. These limitations necessitate the development of in vitro 3D human intestinal tissue models that recapitulate in vivo–like microenvironment and provide more physiologically relevant cellular responses so that they can better predict the safety and efficacy of pharmaceuticals and toxicants. Over the past decade, much progress has been made in the development of in vitro intestinal models (organoids and 3D-organotypic tissues) using either inducible pluripotent or adult stem cells. Among the models, the MatTek’s intestinal tissue model (EpiIntestinal™ Ashland, MA) has been used extensively by the pharmaceutical industry to study drug permeation, metabolism, drug-induced GI toxicity, pathogen infections, inflammation, wound healing, and as a predictive model for a clinical adverse outcome (diarrhea) to pharmaceutical drugs. In this paper, our review will focus on the potential of in vitro small intestinal tissues as preclinical research tool and as alternative to the use of animals.
Collapse
Affiliation(s)
- Jan Markus
- In Vitro Life Science Laboratories, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kumar A, Baruah A, Tomioka M, Iino Y, Kalita MC, Khan M. Caenorhabditis elegans: a model to understand host-microbe interactions. Cell Mol Life Sci 2020; 77:1229-1249. [PMID: 31584128 PMCID: PMC11104810 DOI: 10.1007/s00018-019-03319-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Host-microbe interactions within the gut are fundamental to all higher organisms. Caenorhabditis elegans has been in use as a surrogate model to understand the conserved mechanisms in host-microbe interactions. Morphological and functional similarities of C. elegans gut with the human have allowed the mechanistic investigation of gut microbes and their effects on metabolism, development, reproduction, behavior, pathogenesis, immune responses and lifespan. Recent reports suggest their suitability for functional investigations of human gut bacteria, such as gut microbiota of healthy and diseased individuals. Our knowledge on the gut microbial diversity of C. elegans in their natural environment and the effect of host genetics on their core gut microbiota is important. Caenorhabditis elegans, as a model, is continuously bridging the gap in our understanding the role of genetics, environment, and dietary factors on physiology of the host.
Collapse
Affiliation(s)
- Arun Kumar
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India
| | - Aiswarya Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Masahiro Tomioka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Mohan C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India
| | - Mojibur Khan
- Molecular Biology and Microbial Biotechnology Laboratory, Division of Life Sciences, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, 781035, India.
| |
Collapse
|
8
|
Grosu IA, Pistol GC, Marin DE, Cişmileanu A, Palade LM, Ţăranu I. Effects of Dietary Grape Seed Meal Bioactive Compounds on the Colonic Microbiota of Weaned Piglets With Dextran Sodium Sulfate-Induced Colitis Used as an Inflammatory Model. Front Vet Sci 2020; 7:31. [PMID: 32161762 PMCID: PMC7054226 DOI: 10.3389/fvets.2020.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022] Open
Abstract
Microbiota affects host health and plays an important role in dysbiosis. The study examined the effect of diet including grape seed meal (GSM) with its mixture of bioactive compounds on the large intestine microbiota and short-chain fatty acid synthesis in weaned piglets treated with dextran sodium sulfate (DSS) as a model for inflammatory bowel diseases. Twenty-two piglets were included in four experimental groups based on their diet: control, DSS (1 g/kg/b.w.+control diet), GSM (8% grape seed meal inclusion in control diet), and DSS+GSM (1 g/kg/b.w., 8% grape seed meal in control diet). After 30 days, the colon content was isolated and used for microbiota sequencing on an Illumina MiSeq platform. QIIME 1.9.1 pipeline was used to process the raw sequences. Both GSM and DSS alone and in combination affected the diversity indices and Firmicutes:Bacteroidetes ratio, with significantly higher values in the DSS-afflicted piglets for Proteobacteria phylum, Roseburia, Megasphera and CF231 genus, and lower values for Lactobacillus. GSM with high-fiber, polyphenol and polyunsaturated fatty acid (PUFA) content increased the production of butyrate and isobutyrate, stimulated the growth of beneficial genera like Prevotella and Megasphaera, while countering the relative abundance of Roseburia, reducing it to half of the DSS value and contributing to the management of the DSS effects.
Collapse
Affiliation(s)
- Iulian A Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Gina C Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Daniela E Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Ana Cişmileanu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Laurenţiu M Palade
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| | - Ionelia Ţăranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Balotesti, Romania
| |
Collapse
|
9
|
Juritsch AF, Moreau R. Rapid removal of dextran sulfate sodium from tissue RNA preparations for measurement of inflammation biomarkers. Anal Biochem 2019; 579:18-24. [PMID: 31112717 DOI: 10.1016/j.ab.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022]
Abstract
Dextran sulfate sodium (DSS) present in the tissues of DSS-treated laboratory animals inhibits quantitative real-time qPCR (RT-qPCR) and thus may be source of experimental errors. A recent systematic review concluded that the reporting of experimental method was insufficient in a majority of DSS studies and contributed to the poor reproducibility of experiments. Here we compared two DSS cleanup protocols applied to mouse tissue RNA preparations based on silica membrane spin column and lithium chloride precipitation. In absence of cleanup, exogenous DSS significantly inhibited reverse transcription and cDNA amplification at concentrations of 5 × 10-3 g/L and above during the quantification of IL8 mRNA levels in THP-1 macrophages. Silica membrane spin columns removed DSS from mouse RNA preparations and eliminated DSS-induced inhibition of qPCR. Mouse RNA isolated from DSS-treated tissues and purified with silica membrane spin columns was suitable for RT-qPCR and assessment of inflammatory biomarkers.
Collapse
Affiliation(s)
- Anthony F Juritsch
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition & Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
10
|
Akagi K, Wilson KA, Katewa SD, Ortega M, Simons J, Hilsabeck TA, Kapuria S, Sharma A, Jasper H, Kapahi P. Dietary restriction improves intestinal cellular fitness to enhance gut barrier function and lifespan in D. melanogaster. PLoS Genet 2018; 14:e1007777. [PMID: 30383748 PMCID: PMC6233930 DOI: 10.1371/journal.pgen.1007777] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/13/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Loss of gut integrity is linked to various human diseases including inflammatory bowel disease. However, the mechanisms that lead to loss of barrier function remain poorly understood. Using D. melanogaster, we demonstrate that dietary restriction (DR) slows the age-related decline in intestinal integrity by enhancing enterocyte cellular fitness through up-regulation of dMyc in the intestinal epithelium. Reduction of dMyc in enterocytes induced cell death, which leads to increased gut permeability and reduced lifespan upon DR. Genetic mosaic and epistasis analyses suggest that cell competition, whereby neighboring cells eliminate unfit cells by apoptosis, mediates cell death in enterocytes with reduced levels of dMyc. We observed that enterocyte apoptosis was necessary for the increased gut permeability and shortened lifespan upon loss of dMyc. Furthermore, moderate activation of dMyc in the post-mitotic enteroblasts and enterocytes was sufficient to extend health-span on rich nutrient diets. We propose that dMyc acts as a barometer of enterocyte cell fitness impacting intestinal barrier function in response to changes in diet and age.
Collapse
Affiliation(s)
- Kazutaka Akagi
- Aging Homeostasis Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Subhash D. Katewa
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Mauricio Ortega
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Jesse Simons
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Tyler A. Hilsabeck
- Buck Institute for Research on Aging, Novato, California, United States of America
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States of America
| | - Subir Kapuria
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Amit Sharma
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
| |
Collapse
|
11
|
Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Engel SR, Kadin JA, Kaufman TC, Kishore R, Laulederkind SJF, Lewis SE, Moxon SAT, Richardson JE, Smith C. Model organism data evolving in support of translational medicine. Lab Anim (NY) 2018; 47:277-289. [PMID: 30224793 PMCID: PMC6322546 DOI: 10.1038/s41684-018-0150-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.
Collapse
Affiliation(s)
- Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | | | | | - Ranjana Kishore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stanley J F Laulederkind
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Suzanna E Lewis
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sierra A T Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|
12
|
Roig J, Saiz ML, Galiano A, Trelis M, Cantalapiedra F, Monteagudo C, Giner E, Giner RM, Recio MC, Bernal D, Sánchez-Madrid F, Marcilla A. Extracellular Vesicles From the Helminth Fasciola hepatica Prevent DSS-Induced Acute Ulcerative Colitis in a T-Lymphocyte Independent Mode. Front Microbiol 2018; 9:1036. [PMID: 29875750 PMCID: PMC5974114 DOI: 10.3389/fmicb.2018.01036] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/01/2018] [Indexed: 12/26/2022] Open
Abstract
The complexity of the pathogenesis of inflammatory bowel disease (ulcerative colitis and Crohn's disease) has led to the quest of empirically drug therapies, combining immunosuppressant agents, biological therapy and modulators of the microbiota. Helminth parasites have been proposed as an alternative treatment of these diseases based on the hygiene hypothesis, but ethical and medical problems arise. Recent reports have proved the utility of parasite materials, mainly excretory/secretory products as therapeutic agents. The identification of extracellular vesicles on those secreted products opens a new field of investigation, since they exert potent immunomodulating effects. To assess the effect of extracellular vesicles produced by helminth parasites to treat ulcerative colitis, we have analyzed whether extracellular vesicles produced by the parasitic helminth Fasciola hepatica can prevent colitis induced by chemical agents in a mouse model. Adult parasites were cultured in vitro and secreted extracellular vesicles were purified and used for immunizing both wild type C57BL/6 and RAG1-/- mice. Control and immunized mice groups were treated with dextran sulfate sodium 7 days after last immunization to promote experimental colitis. The severity of colitis was assessed by disease activity index and histopathological scores. Mucosal cytokine expression was evaluated by ELISA. The activation of NF-kB, COX-2, and MAPK were evaluated by immunoblotting. Administration of extracellular vesicles from F. hepatica ameliorates the pathological symptoms reducing the amount of pro-inflammatory cytokines and interfering with both MAPK and NF-kB pathways. Interestingly, the observed effects do not seem to be mediated by T-cells. Our results indicate that extracellular vesicles from parasitic helminths can modulate immune responses in dextran sulfate sodium (DSS)-induced colitis, exerting a protective effect that should be mediated by other cells distinct from B- and T-lymphocytes.
Collapse
Affiliation(s)
- Javier Roig
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Burjassot, Spain
| | - Maria L Saiz
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alicia Galiano
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain
| | - Maria Trelis
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, Burjassot, Spain
| | - Fernando Cantalapiedra
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Veterinari de Salut Pública, Centre de Salut Pública de Manises, Burjassot, Spain
| | | | - Elisa Giner
- Departament de Farmacologia, Universitat de València, Burjassot, Spain
| | - Rosa M Giner
- Departament de Farmacologia, Universitat de València, Burjassot, Spain
| | - M C Recio
- Departament de Farmacologia, Universitat de València, Burjassot, Spain
| | - Dolores Bernal
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Francisco Sánchez-Madrid
- Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Burjassot, Spain.,Immunology Service, Hospital de La Princesa, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Antonio Marcilla
- Àrea de Parasitologia, Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Burjassot, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe, Universitat de València, Burjassot, Spain
| |
Collapse
|
13
|
Targeting the PXR-TLR4 signaling pathway to reduce intestinal inflammation in an experimental model of necrotizing enterocolitis. Pediatr Res 2018; 83:1031-1040. [PMID: 29360809 PMCID: PMC5959752 DOI: 10.1038/pr.2018.14] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
BackgroundThere is substantial evidence that signaling through Toll-like receptor 4 (TLR4) contributes to the pathogenesis of necrotizing enterocolitis (NEC). Pregnane X receptor (PXR), a xenobiotic sensor and signaling intermediate for certain host-bacterial metabolites, has been shown to negatively regulate TLR4 signaling. Here we investigated the relationship between PXR and TLR4 in the developing murine intestine and explored the capacity of PXR to modulate inflammatory pathways involved in experimental NEC.MethodsWild-type and PXR-/- mice were studied at various time points of development in an experimental model of NEC. In addition, we studied the ability of the secondary bile acid lithocholic acid (LCA), a known PXR agonist in liver, to activate intestinal PXR and reduce NEC-related intestinal inflammation.ResultsWe found a reciprocal relationship between the developmental expression of PXR and TLR4 in wild-type murine intestine, with PXR acting to reduce TLR4 expression by decreasing TLR4 mRNA stability. In addition, PXR-/- mice exhibited a remarkably heightened severity of disease in experimental NEC. Moreover, LCA attenuated intestinal proinflammatory responses in the early stages of experimental NEC.ConclusionThese findings provide proactive insights into the regulation of TLR4 in the developing intestine. Targeting PXR may be a novel approach for NEC prevention.
Collapse
|
14
|
DNA duplication is essential for the repair of gastrointestinal perforation in the insect midgut. Sci Rep 2016; 6:19142. [PMID: 26754166 PMCID: PMC4709577 DOI: 10.1038/srep19142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 11/15/2022] Open
Abstract
Invertebrate animals have the capacity of repairing wounds in the skin and gut via different mechanisms. Gastrointestinal perforation, a hole in the human gastrointestinal system, is a serious condition, and surgery is necessary to repair the perforation to prevent an abdominal abscess or sepsis. Here we report the repair of gastrointestinal perforation made by a needle-puncture wound in the silkworm larval midgut. Following insect gut perforation, only a weak immune response was observed because the growth of Escherichia coli alone was partially inhibited by plasma collected at 6 h after needle puncture of the larval midgut. However, circulating hemocytes did aggregate over the needle-puncture wound to form a scab. While, cell division and apoptosis were not observed at the wound site, the needle puncture significantly enhanced DNA duplication in cells surrounding the wound, which was essential to repair the midgut perforation. Due to the repair capacity and limited immune response caused by needle puncture to the midgut, this approach was successfully used for the injection of small compounds (ethanol in this study) into the insect midgut. Consequently, this needle-puncture wounding of the insect gut can be developed for screening compounds for use as gut chemotherapeutics in the future.
Collapse
|
15
|
Jiminez JA, Uwiera TC, Douglas Inglis G, Uwiera RRE. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog 2015; 7:29. [PMID: 26561503 PMCID: PMC4641401 DOI: 10.1186/s13099-015-0076-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/22/2015] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic inflammatory diseases of the intestine impart a significant and negative impact on the health and well-being of human and non-human mammalian animals. Understanding the underlying mechanisms of inflammatory disease is mandatory to develop effective treatment and prevention strategies. As inflammatory disease etiologies are multifactorial, the use of appropriate animal models and associated metrics of disease are essential. In this regard, animal models used alone or in combination to study acute and chronic inflammatory disease of the mammalian intestine paired with commonly used inflammation-inducing agents are reviewed. This includes both chemical and biological incitants of inflammation, and both non-mammalian (i.e. nematodes, insects, and fish) and mammalian (i.e. rodents, rabbits, pigs, ruminants, dogs, and non-human primates) models of intestinal inflammation including germ-free, gnotobiotic, as well as surgical, and genetically modified animals. Importantly, chemical and biological incitants induce inflammation via a multitude of mechanisms, and intestinal inflammation and injury can vary greatly according to the incitant and animal model used, allowing studies to ascertain both long-term and short-term effects of inflammation. Thus, researchers and clinicians should be aware of the relative strengths and limitations of the various animal models used to study acute and chronic inflammatory diseases of the mammalian intestine, and the scope and relevance of outcomes achievable based on this knowledge. The ability to induce inflammation to mimic common human diseases is an important factor of a successful animal model, however other mechanisms of disease such as the amount of infective agent to induce disease, invasion mechanisms, and the effect various physiologic changes can have on inducing damage are also important features. In many cases, the use of multiple animal models in combination with both chemical and biological incitants is necessary to answer the specific question being addressed regarding intestinal disease. Some incitants can induce acute responses in certain animal models while others can be used to induce chronic responses; this review aims to illustrate the strengths and weaknesses in each animal model and to guide the choice of an appropriate acute or chronic incitant to facilitate intestinal disease.
Collapse
Affiliation(s)
- Janelle A. Jiminez
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Trina C. Uwiera
- />Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB Canada
| | - G. Douglas Inglis
- />Agriculture and Agri-Food Canada Research Centre, Lethbridge, AB Canada
| | - Richard R. E. Uwiera
- />Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
16
|
Quaglio AEV, Castilho ACS, Di Stasi LC. Experimental evidence of heparanase, Hsp70 and NF-κB gene expression on the response of anti-inflammatory drugs in TNBS-induced colonic inflammation. Life Sci 2015; 141:179-87. [PMID: 26434698 DOI: 10.1016/j.lfs.2015.09.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
AIM Etiopathogenesis of inflammatory bowel disease is unclear and results from a complex interplay of genetic, microbial, environmental and immune factors. Elucidating the mechanisms that drive IBD depends on the detailed characterization of human inflammatory mediators in animal models. Therefore, we studied how intestinal inflammation affects heparanase, NF-κB and Hsp70 gene expression in rats, and if current intestinal anti-inflammatory drugs (sulphasalazine, prednisolone and azathioprine) act on these expressions. Moreover, we investigated the relationships among these genes with colonic cytokines levels (IL-1β, TNF-α, IL-6, INF-γ and IL-10) and oxidative stress that have fundamental role in IBD. MATERIAL AND METHODS Macroscopic parameters (diarrhea, extension of lesion, colonic weight/length ratio and damage score), biochemical markers (myeloperoxidase and alkaline phosphatase activities, and glutathione, IL-1β, TNF-α, IL-6, INF-γ and IL-10 levels), gene expressions (heparanase, NF-κB and Hsp70), and microscopic evaluations (optic, electronic scanning and transmission microscopic) were performed in rats. KEY FINDINGS Expression of heparanase, Hsp70 and NF-κB and oxidative stress were increased by inflammatory process and differentially modulated by sulphasalazine, prednisolone and azathioprine treatments. Protective effects of drugs were also related to differential modulation of cytokine changes induced by inflammatory process, showing different mechanisms to control inflammation. SIGNIFICANCE Heparanase, NF-κB and Hsp70 gene expression participate in the inflammatory response induced by TNBS and represent pharmacological targets of the intestinal anti-inflammatory drugs. In addition, current drugs used to treat IBD (sulphasalazine, prednisolone and azathioprine) differentially modulate heparanase, NF-κB and Hsp70 gene expression, cytokine production and oxidative stress.
Collapse
Affiliation(s)
- Ana E V Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo CEP 18618-000, Brazil
| | - Anthony C S Castilho
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo CEP 18618-000, Brazil
| | - Luiz C Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University - UNESP, Botucatu, São Paulo CEP 18618-000, Brazil.
| |
Collapse
|
17
|
Quaglio AEV, Castilho ACS, Di Stasi LC. Experimental evidence of MAP kinase gene expression on the response of intestinal anti-inflammatory drugs. Life Sci 2015; 136:60-6. [PMID: 26141991 DOI: 10.1016/j.lfs.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/13/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
AIM The etiopathogenesis of inflammatory bowel disease (IBD) is unclear and further understanding of the mechanisms that regulate intestinal barrier integrity and function could give insight into its pathophysiology and mode of action of current drugs used to treat human IBD. Therefore, we investigated how intestinal inflammation affects Map kinase gene expression in rats, and if current intestinal anti-inflammatory drugs (sulphasalazine, prednisolone and azathioprine) act on these expressions. MATERIAL AND METHODS Macroscopic parameters of lesion, biochemical markers (myeloperoxidase, alkaline phosphatase and glutathione), gene expression of 13Map kinases, and histologic evaluations (optic, electronic scanning and transmission microscopy) were performed in rats with colonic inflammation induced by trinitrobenzenesulphonic (TNBS) acid. KEY FINDINGS The colonic inflammation was characterized by a significant increase in the expression of Mapk1, Mapk3 and Mapk9 accompanied by a significant reduction in the expression ofMapk6. Alterations inMapk expression induced by TNBS were differentially counteracted after treatment with sulphasalazine, prednisolone and azathioprine. Protective effects were also related to the significant reduction of oxidative stress, which was related to increase Mapk1/3 expressions, which were reduced after pharmacological treatment. SIGNIFICANCE Mapk1, Mapk3,Mapk6 and Mapk9 gene expressionswere affected by colonic inflammation induced by TNBS in rats and counteracted by sulphasalazine, prednisolone and azathioprine treatments, suggesting that these genes participate in the pharmacological response produced for these drugs.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Anthony Cesar Souza Castilho
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz Claudio Di Stasi
- Laboratory of Phytomedicines, Pharmacology and Biotechnology (PhytoPharmaTech), Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil
| |
Collapse
|
18
|
Esmat S, El Nady M, Elfekki M, Elsherif Y, Naga M. Epidemiological and clinical characteristics of inflammatory bowel diseases in Cairo, Egypt. World J Gastroenterol 2014; 20:814-821. [PMID: 24574754 PMCID: PMC3921490 DOI: 10.3748/wjg.v20.i3.814] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To study the natural history, patterns and clinical characteristics of inflammatory bowel diseases (IBD) in Egypt. METHODS We designed a case-series study in the gastroenterology centre of the Internal Medicine department of Cairo University, which is a tertiary care referral centre in Egypt. We included all patients in whom the diagnosis of ulcerative colitis (UC) or Crohn's disease (CD) was confirmed by clinical, laboratory, endoscopic, histological and/or radiological criteria over the 15 year period from 1995 to 2009, and we studied their sociodemographic and clinical characteristics. Endoscopic examinations were performed by 2 senior experts. This hospital centre serves patients from Cairo, as well as patients referred from all other parts of Egypt. Our centre received 24156 patients over the described time period for gastro-intestinal consultations and/or interventions. RESULTS A total of 157 patients with established IBD were included in this study. Of these, 135 patients were diagnosed with UC (86% of the total), and 22 patients, with CD (14% of the total). The mean ages at diagnosis were 27.3 and 29.7, respectively. Strikingly, we noticed a marked increase in the frequency of both UC and CD diagnoses during the most recent 10 years of the 15 year period studied. Regarding the gender distribution, the male:female ratio was 1:1.15 for UC and 2.6:1 for CD. The mean duration of follow up for patients with UC was 6.2 ± 5.18 years, while the mean duration of follow up for patients with CD was 5.52 ± 2.83 years. For patients with UC we found no correlation between the severity of the disease and the presence of extraintestinal manifestations. Eleven patients had surgical interventions during the studied years: 4 cases of total colectomy and 7 cases of anal surgery. CONCLUSION We observed a ratio of 6:1 for UC to CD in our series. The incidence of IBD seems to be rising in Egypt.
Collapse
|
19
|
Wang L, Kounatidis I, Ligoxygakis P. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol 2014; 3:113. [PMID: 24409421 PMCID: PMC3885817 DOI: 10.3389/fcimb.2013.00113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/21/2013] [Indexed: 01/07/2023] Open
Abstract
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.
Collapse
Affiliation(s)
- Lihui Wang
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Ilias Kounatidis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| | - Petros Ligoxygakis
- Laboratory of Genes and Development, Department of Biochemistry, University of Oxford Oxford, UK
| |
Collapse
|
20
|
Enteric neural disruption in necrotizing enterocolitis occurs in association with myenteric glial cell CCL20 expression. J Pediatr Gastroenterol Nutr 2013; 57:788-93. [PMID: 24280992 DOI: 10.1097/mpg.0b013e3182a86fd4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE The aetiology of necrotising enterocolitis (NEC) is unknown, but luminal factors and epithelial leakiness appear critical triggers of an inflammatory cascade. A separate finding has been suggested in mouse models, in which disruption of glial cells in the myenteric plexus induced a severe NEC-like lesion. We have thus looked for evidence of neuroglial abnormality in NEC. METHODS We studied full-thickness resected specimens from 20 preterm infants with acute NEC and from 13 control infants undergoing resection for other indications. Immunohistochemical analysis was performed for immunological (CD3, syndecan-1, human leucocyte antigen-DR), neural (glial fibrillary acidic protein [GFAP], nerve growth factor receptor, neurofilament protein, neuron-specific enolase), and functional markers (Ki67), and for potential inflammatory regulators (interleukin-12, transforming growth factor-β, CCL20, CCR6). RESULTS Expression of the chemokine CCL20 and its receptor CCR6 was significantly upregulated in myenteric plexus in NEC, with CCL20 strongly expressed by glial cells. In 9 of 20 cases with NEC, myenteric plexus architecture and GFAP+ glial cells were normal, with preserved submucosal and mucosal innervation; however, 11 cases showed disrupted myenteric plexus architecture, reduced GFAP expression, and loss of submucosal and mucosal innervation. Persistent abnormalities were identified in the 2 infants who had ongoing inflammation at ileostomy closure. CONCLUSIONS Our findings identified heterogeneity among patients with NEC. Approximately half showed evidence of marked neural abnormality extending from the deeper layers of the intestine, associated with glial activation and myenteric plexus disruption. The factors that may activate enteric glia in this manner, potentially including bacterial products or viruses, remain to be determined.
Collapse
|
21
|
Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. Drug Des Devel Ther 2013; 7:1341-57. [PMID: 24250223 PMCID: PMC3829622 DOI: 10.2147/dddt.s40107] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The specific pathogenesis underlying inflammatory bowel disease is complex, and it is even more difficult to decipher the pathophysiology to explain for the similarities and differences between two of its major subtypes, Crohn's disease and ulcerative colitis (UC). Animal models are indispensable to pry into mechanistic details that will facilitate better preclinical drug/therapy design to target specific components involved in the disease pathogenesis. This review focuses on common animal models that are particularly useful for the study of UC and its therapeutic strategy. Recent reports of the latest compounds, therapeutic strategies, and approaches tested on UC animal models are also discussed.
Collapse
Affiliation(s)
- Daren Low
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deanna D Nguyen
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for the Study of inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Center for the Study of inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Low D, Nguyen DD, Mizoguchi E. Animal models of ulcerative colitis and their application in drug research. DRUG DESIGN DEVELOPMENT AND THERAPY 2013. [PMID: 24250223 DOI: 10.2147/dddt.s40107.ecollection] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The specific pathogenesis underlying inflammatory bowel disease is complex, and it is even more difficult to decipher the pathophysiology to explain for the similarities and differences between two of its major subtypes, Crohn's disease and ulcerative colitis (UC). Animal models are indispensable to pry into mechanistic details that will facilitate better preclinical drug/therapy design to target specific components involved in the disease pathogenesis. This review focuses on common animal models that are particularly useful for the study of UC and its therapeutic strategy. Recent reports of the latest compounds, therapeutic strategies, and approaches tested on UC animal models are also discussed.
Collapse
Affiliation(s)
- Daren Low
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
23
|
Cabreiro F, Gems D. Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO Mol Med 2013; 5:1300-10. [PMID: 23913848 PMCID: PMC3799487 DOI: 10.1002/emmm.201100972] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/07/2013] [Accepted: 06/12/2013] [Indexed: 12/24/2022] Open
Abstract
Many animal species live in close association with commensal and symbiotic microbes (microbiota). Recent studies have revealed that the status of gastrointestinal tract microbiota can influence nutrition-related syndromes such as obesity and type-2 diabetes, and perhaps aging. These morbidities have a profound impact in terms of individual suffering, and are an increasing economic burden to modern societies. Several theories have been proposed for the influence of microbiota on host metabolism, but these largely remain to be proven. In this article we discuss how microbiota may be manipulated (via pharmacology, diet, or gene manipulation) in order to alter metabolism, immunity, health and aging in the host. The nematode Caenorhabditis elegans in combination with one microbial species is an excellent, defined model system to investigate the mechanisms of host–microbiota interactions, particularly given the combined power of worm and microbial genetics. We also discuss the multifaceted nature of the worm–microbe relationship, which likely encompasses predation, commensalism, pathogenicity and necromeny.
Collapse
Affiliation(s)
- Filipe Cabreiro
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | |
Collapse
|
24
|
Dothel G, Vasina V, Barbara G, De Ponti F. Animal models of chemically induced intestinal inflammation: predictivity and ethical issues. Pharmacol Ther 2013; 139:71-86. [PMID: 23563278 DOI: 10.1016/j.pharmthera.2013.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 02/08/2023]
Abstract
The debate about the ethical and scientific issues regarding the use of animals in research is mainly focused on these questions: a) whether preclinical studies in animals are still ethically acceptable; b) whether it is possible to establish more soundly their predictivity; c) what measures should be taken to reduce the clinical attrition often due to biased preclinical assessment of potential efficacy of new drugs. This review aims at a critical revision of animal models of chemically induced intestinal inflammation in drug development. These models, notwithstanding differences among species, still represent a major source of information about biological systems and can have undisputable translational value, provided that appropriate measures are taken to ensure that experiments are both scientifically and ethically justified. These measures include: a) more stringent application to preclinical experiments of standards used in clinical studies (such as sample size, randomization, inclusion/exclusion criteria, blinding); b) selection of the animal model after careful pathophysiological scrutiny bearing in mind inherent limitations of each model (e.g. acute self-limiting vs chronic disease, animal species, role of the intestinal immune system and microbiome); and c) experimental design duly considering the specific pharmacological profile of each agent to be screened (such as bioavailability, route of administration, full consideration of the pharmacological spectrum). In this perspective, the new European legislation is an opportunity to fully apply these standards so that in vivo animal models can provide an invaluable mean to study complex physiological and biochemical interactions, which cannot be completely simulated in silico and/or in vitro.
Collapse
Affiliation(s)
- Giovanni Dothel
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
25
|
The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol 2012; 107:1452-9. [PMID: 23034604 DOI: 10.1038/ajg.2012.93] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One hypothesis for the etiology of inflammatory bowel disease is that an altered or pathogenic microbiota causes inflammation in a genetically susceptible individual. Understanding the microbiota's role in the pathogenesis of the disease could lead to new IBD treatments aimed at shifting the bacteria in the gut back to eubiosis. Probiotics have some efficacy in the treatment of ulcerative colitis (UC), but our current repertoire is limited in potency. Fecal microbiota therapy (FMT) is an emerging treatment for several gastrointestinal and metabolic disorders. It has demonstrated efficacy in treating refractory Clostridium difficile infection, and there are case reports of FMT successfully treating UC. Further clinical studies are justified, and could be complemented by mouse models of fecal transplantation, in which variables can be controlled and manipulated.
Collapse
|
26
|
Rose WA, Sakamoto K, Leifer CA. Multifunctional role of dextran sulfate sodium for in vivo modeling of intestinal diseases. BMC Immunol 2012; 13:41. [PMID: 22853702 PMCID: PMC3488029 DOI: 10.1186/1471-2172-13-41] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/06/2012] [Indexed: 12/15/2022] Open
Abstract
Background Inflammatory bowel diseases (IBDs) are chronic, relapsing disorders that affect the gastrointestinal tract of millions of people and continue to increase in incidence each year. While several factors have been associated with development of IBDs, the exact etiology is unknown. Research using animal models of IBDs is beginning to provide insights into how the different factors contribute to disease development. Oral administration of dextran sulfate sodium (DSS) to mice induces a reproducible experimental colitis that models several intestinal lesions associated with IBDs. The murine DSS colitis model can also be adapted to quantify intestinal repair following injury. Understanding the mechanistic basis behind intestinal repair is critical to development of new therapeutics for IBDs because of their chronic relapsing nature. Results The murine DSS colitis model was adapted to provide a system enabling the quantification of severe intestinal injury with impaired wound healing or mild intestinal injury with rapid restoration of mucosal integrity, by altering DSS concentrations and including a recovery phase. We showed that through a novel format for presentation of the clinical disease data, the temporal progression of intestinal lesions can be quantified on an individual mouse basis. Additionally, parameters for quantification of DSS-induced alterations in epithelial cell populations are included to provide insights into mechanisms underlying the development of these lesions. For example, the use of the two different model systems showed that toll-like receptor 9, a nucleic acid-sensing pattern recognition receptor, is important for protection only following mild intestinal damage and suggests that this model is superior for identifying proteins necessary for intestinal repair. Conclusions We showed that using a murine DSS-induced experimental colitis model system, and presenting data in a longitudinal manner on a per mouse basis, enhanced the usefulness of this model, and provided novel insights into the role of an innate immune receptor in intestinal repair. By elucidating the mechanistic basis of intestinal injury and repair, we can begin to understand the etiology of IBDs, enabling development of novel therapeutics or prophylactics.
Collapse
Affiliation(s)
- William A Rose
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
27
|
Guts, germs and glucose: understanding the effects of prematurity on the interaction between bacteria and nutrient absorption across the intestine. Br J Nutr 2011; 108:571-3. [PMID: 22136881 DOI: 10.1017/s0007114511006416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|