1
|
Zhang Y, Qing J, Li Y, Gao X, Lu D, Wang Y, Gu L, Zhang H, Li Z, Wang X, Zhou Y, Zhang P. PRMT7-Mediated PTEN Activation Enhances Bone Regeneration in Female Mice. Int J Mol Sci 2025; 26:2981. [PMID: 40243588 PMCID: PMC11988880 DOI: 10.3390/ijms26072981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Epigenetic regulation provides new insights into the mechanisms of osteogenic differentiation and identifies potential targets for treating bone-related diseases. However, the specific regulatory networks and mechanisms involved still need further investigation. In this study, we identify PRMT7 as a novel epigenetic regulator of mesenchymal stem cells (MSCs) osteogenic commitment. Conditional knockout of Prmt7 in mice reveals a significant impairment in osteogenesis and bone regeneration, specifically in females, affecting both femurs and mandibles, with no noticeable effect in males. Mechanistically, PRMT7 modulates MSCs osteogenic differentiation by activating PTEN. Specifically, PRMT7 enhances PTEN transcription by increasing H3R2me1 levels at the PTEN promoter. Additionally, PRMT7 interacts with the PTEN protein and stabilizes nuclear PTEN, revealing an unprecedented pathway. Notably, overexpression of PTEN alleviates the osteogenic deficits observed in Prmt7-deficient mice. This research establishes PRMT7 as a potential therapeutic target for promoting bone formation/regeneration and offers novel molecular insights into the PRMT7-PTEN regulatory axis, underscoring its significance in bone biology and regenerative medicine.
Collapse
Affiliation(s)
- Yingfei Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Jia Qing
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yang Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xin Gao
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Dazhuang Lu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yiyang Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Lanxin Gu
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Hui Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Zechuan Li
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Xu Wang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University Hospital of Stomatology, Beijing 100081, China; (Y.Z.); (J.Q.); (Y.L.); (X.G.); (D.L.); (Y.W.); (L.G.); (H.Z.); (Z.L.); (X.W.)
- National Clinical Research Center for Oral Diseases, Peking University Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
2
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko F, Kibona H, Aboud S, Patel K, Mining S. Exploring therapeutic applications of PTEN, TMPRSS2:ERG fusion, and tumour molecular subtypes in prostate cancer management. Front Oncol 2025; 15:1521204. [PMID: 40165885 PMCID: PMC11956161 DOI: 10.3389/fonc.2025.1521204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Prostate cancer is defined by the suppression of genes that suppress tumours and the activation of proto-oncogenes. These are the hallmarks of prostate cancer, and they have been linked to numerous genomic variations, which lead to unfavourable treatment outcomes. Prostate cancer can be categorised into various risk groups of tumour molecular subtypes grounded in the idea of genomic structural variations connected to TMPRSS2:ERG fusion and loss of PTEN. Research suggests that certain genomic alterations may be more prevalent or exhibit different patterns in prostate cancer tumours across populations. Studies have reported a higher frequency of PTEN loss and TMPRSS2:ERG fusion in prostate tumours of Black/African American men, which may contribute to the more aggressive nature of the disease in this population. Thus, therapeutically important information can be obtained from these structural variations, including correlations with poor prognosis and disease severity. Methods Peer-reviewed articles from 1998 to 2024 were sourced from PubMed and Google Scholar. During the review process, the following search terms were employed: "Tumour suppressor genes OR variations OR alterations OR oncogenes OR diagnostics OR ethnicity OR biomarkers OR prostate cancer genomics OR prostate cancer structural variations OR tumour and molecular subtypes OR therapeutic implications OR immunotherapy OR immunogenetics." Results There was a total of 13,012 results for our search query: 5,903 publications from Google Scholar with the patent and citation unchecked filer options, and 7127 articles from PubMed with the abstract, free full text, and full-text options selected. Unpublished works were not involved. Except for four articles published between 1998 and 1999, all other selected articles published in 2000 and later were considered. However, papers with irrelevant information or redundant or duplicate content were not chosen for this review. Thus, 134 met the inclusion criteria and were ultimately retained for this review. Conclusion This review extracted 134 relevant articles about genomic structure variations in prostate cancer. Our findings demonstrate the importance of PTEN and TMPRSS2:ERG fusion and tumour molecular subtyping in prostate cancer precision medicine.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Nazima Dharsee
- Clinical Research, Training and Consultancy Unit, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Fidelice Mafumiko
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
| | - Herry Kibona
- Department of Urology, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Said Aboud
- Head Office, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Simeon Mining
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| |
Collapse
|
3
|
Yang J, Yang H, Wang F, Dai Y, Deng Y, Shi K, Zhu Z, Liu X, Ma X, Gao Y. Bioinformatics identification based on causal association inference using multi-omics reveals the underlying mechanism of Gui-Zhi-Shao-Yao-Zhi-Mu decoction in modulating rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156332. [PMID: 39736250 DOI: 10.1016/j.phymed.2024.156332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/01/2025]
Abstract
OBJECT Rheumatoid arthritis (RA) is a prevalent and currently incurable autoimmune disease. Existing conventional medical treatments are limited in their efficacy, prolonged disease may lead to bone destruction, joint deformity, and loss of related functions, which places a huge burden on RA patients and their families. For millennia, the use of traditional Chinese medicine (TCM), exemplified by the Gui-Zhi-Shao-Yao-Zhi-Mu decoction (GZSYZM), has been demonstrated to offer distinct therapeutic advantages in the management of RA. Exploring the potential mechanism of GZSYZM in the treatment of RA is a hot topic in the field of TCM. METHOD High-throughput sequencing data of RA at bulk level and single cell level and Chinese Materia Medica target-related databases were used as data sources. Ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry was employed for the identification of the most relevant compounds to the active ingredients present in the GZSYZM granules. Potential disease genes were identified using a combination of differential expression analysis and weighted gene co-expression network analysis, and the "Chinese Materia Medica-Ingredient-Target" network was constructed to obtain candidate drug target genes. The GZSYZM-RA hub genes were then identified based on Molecular Complex Detection algorithm. To explore the associations and potential mechanisms between the GZSYZM-RA hub gene set and RA, Mendelian randomization (MR) analysis and Bayesian co-localization analysis were used to further identify the GZSYZM-RA core genes that were causally associated with RA. A nomogram was constructed based on a multifactorial logistic regression model using the GZSYZM-RA core genes as predictors of RA. To evaluate its diagnostic value, receiver operating characteristic (ROC) curves, calibration curves, and decision curves were plotted. The potential downstream regulatory mechanisms of the gene of interest in GZSYZM in RA therapy were finally investigated using single- gene set enrichment analysis and molecular docking. The aim was to model the optimal conformation of its target protein receptor binding to the small molecule ligand in GZSYZM to identify the key constituents. RESULT Functional enrichment analysis revealed that the GZSYZM-RA hub gene set is enriched in several autoimmune-related mechanistic pathways, with a particular emphasis on the phosphoinositide 3 kinase (PI3K)‑serine/threonine kinase (AKT) signaling pathway. AUCell scores demonstrated active expression of the GZSYZM-RA hub gene set with the PI3K-AKT signaling pathway on monocytes, especially non-classical monocytes. Immunol infiltration analysis based on the CIBERSORT algorithm also showed a strong correlation between several genes in the GZSYZM-RA hub gene set and monocytes by calculating Spearman's rank correlation coefficients. MR analysis with co-localization analysis further identified seven core genes (CASP8, PPARG, IKBKB, PPARA, IFNG, MYC, and STAT3) causally associated with RA. Diagnostic value for clinical decision making was demonstrated by a multivariable logistic regression model constructed with GZSYZM-RA core genes. Molecular docking analysis indicates that CASP8 and GZSYZM have high docking scores, with three key constituents (quercetin, kaempferol, and diosmetin) exhibiting strong binding affinities. CONCLUSION GZSYZM may regulate the abnormal over-proliferation and apoptotic imbalance of fibroblast-like synoviocytes in RA patients by inhibiting signaling of the PI3K-AKT signaling pathway while activating CASP8-mediated pro-apoptotic effects. And it may be effective in directly or indirectly inhibiting monocyte-to-osteoclast differentiation, ultimately improving the poor prognosis of joint destruction in RA patients.
Collapse
Affiliation(s)
- Jiayue Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Heng Yang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Fumin Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yao Dai
- The Fourth Clinical Medical College of Xinjiang Medical University, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University Graduate School, Xinjiang Medical University, Xinjiang Uygur Autonomous Region 830054, China; Chinese Medicine Hospital of Gao County, Yibin 645150, China
| | - Yuxuan Deng
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Kaiyun Shi
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Baiyun District, Guangzhou 510405, China
| | - Zehua Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Xinkun Liu
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yongxiang Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| |
Collapse
|
4
|
Prever L, Squillero G, Hirsch E, Gulluni F. Linking phosphoinositide function to mitosis. Cell Rep 2024; 43:114273. [PMID: 38843397 DOI: 10.1016/j.celrep.2024.114273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.
Collapse
Affiliation(s)
- Lorenzo Prever
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Gabriele Squillero
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy
| | - Emilio Hirsch
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| | - Federico Gulluni
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", Via Nizza 52, 10126 Turin, Italy.
| |
Collapse
|
5
|
Kundu R, Kumar S, Chandra A, Datta A. Cell-Permeable Fluorescent Sensors Enable Rapid Live Cell Visualization of Plasma Membrane and Nuclear PIP3 Pools. JACS AU 2024; 4:1004-1017. [PMID: 38559732 PMCID: PMC10976597 DOI: 10.1021/jacsau.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024]
Abstract
Phosphoinositides, phospholipids that are key cell-signal mediators, are present at very low levels in cellular membranes and within nuclei. Phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), a phosphoinositide barely present in resting cell membranes, is produced when cells receive either growth, proliferation, or movement signals. Aberrant PIP3 levels are associated with the formation of cancers. PIP3 pools are also present in the nucleus, specifically in the nucleolus. However, questions related to the organization and function of this lipid in such membraneless intranuclear structures remain unanswered. Therefore, chemical sensors for tracking cellular PIP3 are invaluable not only for timing signal initiation in membranes but also for identifying the organization and function of membraneless nuclear PIP3 pools. Because PIP3 is present in the inner leaflet of cell membranes and in the nucleus, cell-permeable, rapid-response fluorescent sensors would be ideal. We have designed two peptide-based, water-soluble, cell-permeable, ratiometric PIP3 sensors named as MFR-K17H and DAN-NG-H12G. MFR-K17H rapidly entered into the cell cytoplasm, distinctly reporting rapid (<1 min) time scales of growth factor-stimulated PIP3 generation and depletion within cell membranes in living cells. Importantly, MFR-K17H lighted up inherently high levels of PIP3 in triple-negative breast cancer cell membranes, implying future applications in the detection of enhanced PIP3 levels in cancerous cells. On the other hand, DAN-NG-H12G targeted intranuclear PIP3 pools, revealing that within membraneless structures, PIP3 resided in a hydrophobic environment. Together, both probes form a unique orthogonally targeted combination of cell-permeable, ratiometric probes that, unlike previous cell-impermeable protein-based sensors, are easy to apply and provide an unprecedented handle into PIP3-mediated cellular processes.
Collapse
Affiliation(s)
- Rajasree Kundu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Sahil Kumar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Amitava Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Ankona Datta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
6
|
Chi ES, Stivison EA, Blind RD. SF-1 Induces Nuclear PIP2. Biomolecules 2023; 13:1509. [PMID: 37892191 PMCID: PMC10604688 DOI: 10.3390/biom13101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan cell nuclei contain non-membrane pools of the phosphoinositide lipid PI(4,5)P2 (PIP2), but how this hydrophobic lipid exists within the aqueous nucleoplasm remains unclear. Steroidogenic Factor-1 (NR5A1, SF-1) is a nuclear receptor that binds PIP2 in vitro, and a co-crystal structure of the complex suggests the acyl chains of PIP2 are hidden in the hydrophobic core of the SF-1 protein while the PIP2 headgroup is solvent-exposed. This binding mode explains how SF-1 can solubilize nuclear PIP2; however, cellular evidence that SF-1 expression associates with nuclear PIP2 has been lacking. Here, we examined if tetracycline induction of SF-1 expression would associate with nuclear accumulation of PIP2, using antibodies directed against the PIP2 headgroup. Indeed, tetracycline induction of wild-type SF-1 induced a signal in the nucleus of HEK cells that cross-reacts with PIP2 antibodies, but did not cross-react with antibodies against the lower abundance phosphoinositide PI(3,4,5)P3 (PIP3). The nuclear PIP2 signal co-localized with FLAG-tagged SF-1 in the nuclear compartment. To determine if the nuclear PIP2 signal was dependent on the ability of SF-1 to bind PIP2, we examined a "pocket mutant" of SF-1 (A270W, L345F) shown to be deficient in phospholipid binding by mass spectrometry. Tetracycline induction of this pocket mutant SF-1 in HEK cells failed to induce a detectable PIP2 antibody cross-reactive signal, despite similar Tet-induced expression levels of the wild-type and pocket mutant SF-1 proteins in these cells. Together, these data are the first to suggest that expression of SF-1 induces a PIP2 antibody cross-reactive signal in the nucleus, consistent with X-ray crystallographic and biochemical evidence suggesting SF-1 binds PIP2 in human cells.
Collapse
Affiliation(s)
| | | | - Raymond D. Blind
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Loh ZN, Wang ME, Wan C, Asara JM, Ji Z, Chen M. Nuclear PTEN Regulates Thymidylate Biosynthesis in Human Prostate Cancer Cell Lines. Metabolites 2023; 13:939. [PMID: 37623882 PMCID: PMC10456368 DOI: 10.3390/metabo13080939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor governs a variety of biological processes, including metabolism, by acting on distinct molecular targets in different subcellular compartments. In the cytosol, inactive PTEN can be recruited to the plasma membrane where it dimerizes and functions as a lipid phosphatase to regulate metabolic processes mediated by the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin complex 1 (mTORC1) pathway. However, the metabolic regulation of PTEN in the nucleus remains undefined. Here, using a gain-of-function approach to targeting PTEN to the plasma membrane and nucleus, we show that nuclear PTEN contributes to pyrimidine metabolism, in particular de novo thymidylate (dTMP) biosynthesis. PTEN appears to regulate dTMP biosynthesis through interaction with methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), a key enzyme that generates 5,10-methylenetetrahydrofolate, a cofactor required for thymidylate synthase (TYMS) to catalyze deoxyuridylate (dUMP) into dTMP. Our findings reveal a nuclear function for PTEN in controlling dTMP biosynthesis and may also have implications for targeting nuclear-excluded PTEN prostate cancer cells with antifolate drugs.
Collapse
Affiliation(s)
- Zoe N. Loh
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Mu-En Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Changxin Wan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Zhicheng Ji
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| |
Collapse
|
8
|
Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, Neri I, Casalin I, Ramazzotti G, Follo MY, Ratti S, Manzoli L, Gehlot S, Divecha N, Fiume R. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules 2023; 13:1049. [PMID: 37509085 PMCID: PMC10377365 DOI: 10.3390/biom13071049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.
Collapse
Affiliation(s)
- Magdalena C Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Antonietta Fazio
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Maria Vittoria Marvi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Leto
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Foteini-Dionysia Koufi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Neri
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Irene Casalin
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Ramazzotti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sonakshi Gehlot
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
9
|
Palmieri M, Catimel B, Mouradov D, Sakthianandeswaren A, Kapp E, Ang CS, Williamson NA, Nowell CJ, Christie M, Desai J, Gibbs P, Burgess AW, Sieber OM. PI3K-alpha translocation mediates nuclear PtdIns(3,4,5)P 3 effector signaling in colorectal cancer. Mol Cell Proteomics 2023; 22:100529. [PMID: 36931626 PMCID: PMC10130476 DOI: 10.1016/j.mcpro.2023.100529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The canonical view of phosphatidylinositol 3-kinase alpha (PI3Kα) signaling describes PtdIns(3,4,5)P3 generation and activation of downstream effectors at the plasma membrane or at microtubule-bound endosomes. Here, we show that colorectal cancer (CRC) cell lines exhibit a diverse plasma membrane-nuclear distribution of PI3Kα, controlling corresponding levels of subcellular PtdIns(3,4,5)P3 pools. PI3Kα nuclear translocation was mediated by the importin β-dependent nuclear import pathway. By PtdIns(3,4,5)P3 affinity capture mass spectrometry done in the presence of SDS on CRC cell lines with PI3Kα nuclear localization, we identified 867 potential nuclear PtdIns(3,4,5)P3 effector proteins. Nuclear PtdIns(3,4,5)P3 interactome proteins were characterized by non-canonical PtdIns(3,4,5)P3 binding domains and showed overrepresentation for nuclear membrane, nucleolus and nuclear speckles. The nuclear PtdIns(3,4,5)P3 interactome was enriched for proteins related to RNA metabolism, with splicing reporter assays and SC-35 foci staining suggesting a role of EGF-stimulated nuclear PI3Kα signaling in modulating pre-mRNA splicing. In patient tumors, nuclear p110α staining was associated with lower T stage and mucinous histology. These results indicate that PI3Kα translocation mediates nuclear PtdIns(3,4,5)P3 effector signaling in human CRC, modulating signaling responses.
Collapse
Affiliation(s)
- Michelle Palmieri
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Bruno Catimel
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Dmitri Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Anuratha Sakthianandeswaren
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Eugene Kapp
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Cameron J Nowell
- Monash Institute for Pharmaceutical Science, Parkville, Victoria, 3052, Australia
| | - Michael Christie
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Pathology, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Jayesh Desai
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Department of Medical Oncology, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Medical Oncology, Western Health, Footscray, Victoria, 3011, Australia
| | - Antony W Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Oliver M Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3052, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, 3050, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
10
|
Wang YH, Sheetz MP. When PIP 2 Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front Cell Dev Biol 2022; 10:903994. [PMID: 35646908 PMCID: PMC9136457 DOI: 10.3389/fcell.2022.903994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms that maintain genome stability are critical for preventing tumor progression. In the past decades, many strategies were developed for cancer treatment to disrupt the DNA repair machinery or alter repair pathway selection. Evidence indicates that alterations in nuclear phosphoinositide lipids occur rapidly in response to genotoxic stresses. This implies that nuclear phosphoinositides are an upstream element involved in DNA damage signaling. Phosphoinositides constitute a new signaling interface for DNA repair pathway selection and hence a new opportunity for developing cancer treatment strategies. However, our understanding of the underlying mechanisms by which nuclear phosphoinositides regulate DNA damage repair, and particularly the dynamics of those processes, is rather limited. This is partly because there are a limited number of techniques that can monitor changes in the location and/or abundance of nuclear phosphoinositide lipids in real time and in live cells. This review summarizes our current knowledge regarding the roles of nuclear phosphoinositides in DNA damage response with an emphasis on the dynamics of these processes. Based upon recent findings, there is a novel model for p53's role with nuclear phosphoinositides in DNA damage response that provides new targets for synthetic lethality of tumors.
Collapse
Affiliation(s)
| | - Michael P. Sheetz
- Biochemistry and Molecular Biology Dept., University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
11
|
Morovicz AP, Mazloumi Gavgani F, Jacobsen RG, Skuseth Slinning M, Turcu DC, Lewis AE. Phosphoinositide 3-kinase signalling in the nucleolus. Adv Biol Regul 2021; 83:100843. [PMID: 34920983 DOI: 10.1016/j.jbior.2021.100843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/26/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) signalling pathway plays key roles in many cellular processes and is altered in many diseases. The function and mode of action of the pathway have mostly been elucidated in the cytoplasm. However, many of the components of the PI3K pathway are also present in the nucleus at specific sub-nuclear sites including nuclear speckles, nuclear lipid islets and the nucleolus. Nucleoli are membrane-less subnuclear structures where ribosome biogenesis occurs. Processes leading to ribosome biogenesis are tightly regulated to maintain protein translation capacity of cells. This review focuses on nucleolar PI3K signalling and how it regulates rRNA synthesis, as well as on the identification of downstream phosphatidylinositol (3,4,5)trisphosphate effector proteins.
Collapse
Affiliation(s)
| | | | - Rhîan G Jacobsen
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway
| | | | - Diana C Turcu
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway
| | - Aurélia E Lewis
- Department of Biological Sciences, University of Bergen, 5008, Bergen, Norway.
| |
Collapse
|
12
|
Larijani B, Pytowski L, Vaux DJ. The enigma of phosphoinositides and their derivatives: Their role in regulation of subcellular compartment morphology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183780. [PMID: 34547252 DOI: 10.1016/j.bbamem.2021.183780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
The general segregation of a molecular class, lipids, from the pathways of cellular communication, via endo-membranes, has resulted in the over-simplification and misconceptions in deciphering cell signalling mechanisms. Mechanisms in signal transduction and protein activation require targeting of proteins to membranous compartments with a specific localised morphology and dynamics that are dependent on their lipid composition. Many posttranslational events define cellular behaviours and without the active role of membranous compartments these events lead to various dysregulations of the signalling pathways. We summarise the key findings, using tools such as the rapalogue dimerisation, in the structural roles and signalling of the inter-related phosphoinositide lipids and their derivative, diacylglycerol, in the regulation of nuclear envelope biogenesis and other subcellular compartments such as the nucleoplasmic reticulum.
Collapse
Affiliation(s)
- Banafshé Larijani
- Centre for Therapeutic Innovation & Cell Biophysics Laboratory, Department of Pharmacy and Pharmacology & Department of Physics, University of Bath, Bath BA2 7AY, UK.
| | - Lior Pytowski
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
13
|
PTEN suppresses tumorigenesis by directly dephosphorylating Akt. Signal Transduct Target Ther 2021; 6:262. [PMID: 34248141 PMCID: PMC8273154 DOI: 10.1038/s41392-021-00571-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
|
14
|
Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics 2021; 20:100102. [PMID: 34048982 PMCID: PMC8255942 DOI: 10.1016/j.mcpro.2021.100102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Polyphosphoinositides (PPIns) play essential roles as lipid signaling molecules, and many of their functions have been elucidated in the cytoplasm. However, PPIns are also intranuclear where they contribute to chromatin remodeling, transcription, and mRNA splicing. The PPIn, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3), has been mapped to the nucleus and nucleoli, but its role remains unclear in this subcellular compartment. To gain further insights into the nuclear functions of PtdIns(3,4,5)P3, we applied a previously developed quantitative MS-based approach to identify the targets of PtdIns(3,4,5)P3 from isolated nuclei. We identified 179 potential PtdIns(3,4,5)P3-interacting partners, and gene ontology analysis for the biological functions of this dataset revealed an enrichment in RNA processing/splicing, cytokinesis, protein folding, and DNA repair. Interestingly, about half of these interactors were common to nucleolar protein datasets, some of which had dual functions in rRNA processes and DNA repair, including poly(ADP-ribose) polymerase 1 (PARP1, now referred as ADP-ribosyltransferase 1). PARP1 was found to interact directly with PPIn via three polybasic regions in the DNA-binding domain and the linker located N-terminal of the catalytic region. PARP1 was shown to bind to PtdIns(3,4,5)P3 as well as phosphatidylinositol 3,4-bisphosphate in vitro and to colocalize with PtdIns(3,4,5)P3 in the nucleolus and with phosphatidylinositol 3,4-bisphosphate in nucleoplasmic foci. In conclusion, the PtdIns(3,4,5)P3 interactome reported here will serve as a resource to further investigate the molecular mechanisms underlying PtdIns(3,4,5)P3-mediated interactions in the nucleus and nucleolus. Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) localizes to nucleoli. PtdIns(3,4,5)P3 interactomics from isolated nuclei identifies nucleolar proteins. PARP1 interacts directly with polyphosphoinositides via several polybasic regions. PARP1 colocalizes with PtdIns(3,4,5)P3 in the nucleolus.
Collapse
|
15
|
He T, Zhang X, Hao J, Ding S. Phosphatase and Tensin Homolog in Non-neoplastic Digestive Disease: More Than Just Tumor Suppressor. Front Physiol 2021; 12:684529. [PMID: 34140896 PMCID: PMC8204087 DOI: 10.3389/fphys.2021.684529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
The Phosphatase and tensin homolog (PTEN) gene is one of the most important tumor suppressor genes, which acts through its unique protein phosphatase and lipid phosphatase activity. PTEN protein is widely distributed and exhibits complex biological functions and regulatory modes. It is involved in the regulation of cell morphology, proliferation, differentiation, adhesion, and migration through a variety of signaling pathways. The role of PTEN in malignant tumors of the digestive system is well documented. Recent studies have indicated that PTEN may be closely related to many other benign processes in digestive organs. Emerging evidence suggests that PTEN is a potential therapeutic target in the context of several non-neoplastic diseases of the digestive tract. The recent discovery of PTEN isoforms is expected to help unravel more biological effects of PTEN in non-neoplastic digestive diseases.
Collapse
Affiliation(s)
- Tianyu He
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Xiaoyun Zhang
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianyu Hao
- Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Lete MG, Tripathi A, Chandran V, Bankaitis VA, McDermott MI. Lipid transfer proteins and instructive regulation of lipid kinase activities: Implications for inositol lipid signaling and disease. Adv Biol Regul 2020; 78:100740. [PMID: 32992233 PMCID: PMC7986245 DOI: 10.1016/j.jbior.2020.100740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 05/17/2023]
Abstract
Cellular membranes are critical platforms for intracellular signaling that involve complex interfaces between lipids and proteins, and a web of interactions between a multitude of lipid metabolic pathways. Membrane lipids impart structural and functional information in this regulatory circuit that encompass biophysical parameters such as membrane thickness and fluidity, as well as chaperoning the interactions of protein binding partners. Phosphatidylinositol and its phosphorylated derivatives, the phosphoinositides, play key roles in intracellular membrane signaling, and these involvements are translated into an impressively diverse set of biological outcomes. The phosphatidylinositol transfer proteins (PITPs) are key regulators of phosphoinositide signaling. Found in a diverse array of organisms from plants, yeast and apicomplexan parasites to mammals, PITPs were initially proposed to be simple transporters of lipids between intracellular membranes. It now appears increasingly unlikely that the soluble versions of these proteins perform such functions within the cell. Rather, these serve to facilitate the activity of intrinsically biologically insufficient inositol lipid kinases and, in so doing, promote diversification of the biological outcomes of phosphoinositide signaling. The central engine for execution of such functions is the lipid exchange cycle that is a fundamental property of PITPs. How PITPs execute lipid exchange remains very poorly understood. Molecular dynamics simulation approaches are now providing the first atomistic insights into how PITPs, and potentially other lipid-exchange/transfer proteins, operate.
Collapse
Affiliation(s)
- Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Institute Biofisika (UPV/EHU, CSIC) and University of the Basque Country, Leioa, Spain
| | - Ashutosh Tripathi
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vijay Chandran
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77840, USA
| | - Mark I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Sciences Center, College Station, TX, 77843-1114, USA.
| |
Collapse
|
17
|
Jin C, Jia L, Tang Z, Zheng Y. Long non-coding RNA MIR22HG promotes osteogenic differentiation of bone marrow mesenchymal stem cells via PTEN/ AKT pathway. Cell Death Dis 2020; 11:601. [PMID: 32732881 PMCID: PMC7393093 DOI: 10.1038/s41419-020-02813-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023]
Abstract
Osteoporosis is a prevalent metabolic bone disease characterized by low bone mineral density and degenerative disorders of bone tissues. Previous studies showed the abnormal osteogenic differentiation of endogenous bone marrow mesenchymal stem cells (BMSCs) contributes to the development of osteoporosis. However, the underlying mechanisms by which BMSCs undergo osteogenic differentiation remain largely unexplored. Recently, long non-coding RNAs have been discovered to play important roles in regulating BMSC osteogenesis. In this study, we first showed MIR22HG, which has been demonstrated to be involved in the progression of several cancer types, played an important role in regulating BMSC osteogenesis. We found the expression of MIR22HG was significantly decreased in mouse BMSCs from the osteoporotic mice and it was upregulated during the osteogenic differentiation of human BMSCs. Overexpression of MIR22HG in human BMSCs enhanced osteogenic differentiation, whereas MIR22HG knockdown inhibited osteogenic differentiation both in vitro and in vivo. Mechanistically, MIR22HG promoted osteogenic differentiation by downregulating phosphatase and tensin homolog (PTEN) and therefore activating AKT signaling. Moreover, we found MIR22HG overexpression promoted osteoclastogenesis of RAW264.7 cells, which indicated that MIR22HG played a significant role in bone metabolism and could be a therapeutic target for osteoporosis and other bone-related diseases.
Collapse
Affiliation(s)
- Chanyuan Jin
- The Second Clinical Division of Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Lingfei Jia
- Central Laboratory, Peking University School and Hospital of Stomatology, 100081, Beijing, China.,Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Zhihui Tang
- The Second Clinical Division of Peking University School and Hospital of Stomatology, 100081, Beijing, China.
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081, Beijing, China.
| |
Collapse
|
18
|
Super-Resolution Localisation of Nuclear PI(4)P and Identification of Its Interacting Proteome. Cells 2020; 9:cells9051191. [PMID: 32403279 PMCID: PMC7291030 DOI: 10.3390/cells9051191] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides are glycerol-based phospholipids, and they play essential roles in cellular signalling, membrane and cytoskeletal dynamics, cell movement, and the modulation of ion channels and transporters. Phosphoinositides are also associated with fundamental nuclear processes through their nuclear protein-binding partners, even though membranes do not exist inside of the nucleus. Phosphatidylinositol 4-phosphate (PI(4)P) is one of the most abundant cellular phosphoinositides; however, its functions in the nucleus are still poorly understood. In this study, we describe PI(4)P localisation in the cell nucleus by super-resolution light and electron microscopy, and employ immunoprecipitation with a specific anti-PI(4)P antibody and subsequent mass spectrometry analysis to determine PI(4)P’s interaction partners. We show that PI(4)P is present at the nuclear envelope, in nuclear lamina, in nuclear speckles and in nucleoli and also forms multiple small foci in the nucleoplasm. Nuclear PI(4)P undergoes re-localisation to the cytoplasm during cell division; it does not localise to chromosomes, nucleolar organising regions or mitotic interchromatin granules. When PI(4)P and PI(4,5)P2 are compared, they have different nuclear localisations during interphase and mitosis, pointing to their functional differences in the cell nucleus. Mass spectrometry identified hundreds of proteins, including 12 potentially novel PI(4)P interactors, most of them functioning in vital nuclear processes such as pre-mRNA splicing, transcription or nuclear transport, thus extending the current knowledge of PI(4)P’s interaction partners. Based on these data, we propose that PI(4)P also plays a role in essential nuclear processes as a part of protein–lipid complexes. Altogether, these observations provide a novel insight into the role of PI(4)P in nuclear functions and provide a direction for further investigation.
Collapse
|
19
|
Ho J, Cruise ES, Dowling RJO, Stambolic V. PTEN Nuclear Functions. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036079. [PMID: 31712221 DOI: 10.1101/cshperspect.a036079] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For years, clinical and basic researchers have been aware of the presence of PTEN in the nucleus in cell culture, animal models, and both healthy and diseased human tissues. Despite the early recognition of nuclear PTEN, the understanding of the mechanisms of its nuclear localization, function in the nucleus, and importance in biology and human disease has been lacking. Over the last decade, emerging concepts for the complex involvement of nuclear PTEN in a variety of processes, including genome maintenance and DNA repair, cell-cycle control, gene expression, and DNA replication, are illuminating what could prove to be the key path toward a full understanding of PTEN function in health and disease. Dysregulation of nuclear PTEN is now considered an important aspect of the etiology of many pathologic conditions, prompting reconsideration of the therapeutic approaches aimed at countering the consequences of PTEN deficiency. This new knowledge is fueling the development of innovative therapeutic modalities for a broad spectrum of human conditions, from cancer and metabolic diseases, to neurological disorders and autism.
Collapse
Affiliation(s)
- Jason Ho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward S Cruise
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ryan J O Dowling
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
20
|
Skelton PD, Stan RV, Luikart BW. The Role of PTEN in Neurodevelopment. MOLECULAR NEUROPSYCHIATRY 2020; 5:60-71. [PMID: 32399470 PMCID: PMC7206585 DOI: 10.1159/000504782] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
PTEN is a lipid and protein phosphatase that regulates cell growth and survival. Mutations to PTEN are highly penetrant for autism spectrum disorder (ASD). Here, we briefly review the evidence linking PTEN mutations to ASD and the mouse models that have been used to study the role of PTEN in neurodevelopment. We then focus on the cellular phenotypes associated with PTEN loss in neurons, highlighting the role PTEN plays in neuronal proliferation, migration, survival, morphology, and plasticity.
Collapse
Affiliation(s)
- Patrick D. Skelton
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Radu V. Stan
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Bryan W. Luikart
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
21
|
Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes. Cells 2020; 9:cells9030697. [PMID: 32178280 PMCID: PMC7140618 DOI: 10.3390/cells9030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
Collapse
|
22
|
Chen M, Wen T, Horn HT, Chandrahas VK, Thapa N, Choi S, Cryns VL, Anderson RA. The nuclear phosphoinositide response to stress. Cell Cycle 2020; 19:268-289. [PMID: 31902273 PMCID: PMC7028212 DOI: 10.1080/15384101.2019.1711316] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence reveals that nuclear phosphoinositides (PIs) serve as central signaling hubs that control a multitude of nuclear processes by regulating the activity of nuclear proteins. In response to cellular stressors, PIs accumulate in the nucleus and multiple PI isomers are synthesized by the actions of PI-metabolizing enzymes, kinases, phosphatases and phospholipases. By directly interacting with effector proteins, phosphoinositide signals transduce changes in cellular functions. Here we describe nuclear phosphoinositide signaling in multiple sub-nuclear compartments and summarize the literature that demonstrates roles for specific kinases, phosphatases, and phospholipases in the orchestration of nuclear phosphoinositide signaling in response to cellular stress. Additionally, we discuss the specific PI-protein complexes through which these lipids execute their functions by regulating the configuration, stability, and transcription activity of their effector proteins. Overall, our review provides a detailed landscape of the current understanding of the nuclear PI-protein interactome and its role in shaping the coordinated response to cellular stress.
Collapse
Affiliation(s)
- Mo Chen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tianmu Wen
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Hudson T. Horn
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Narendra Thapa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Suyong Choi
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L. Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Richard A. Anderson
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
23
|
Nuclear Phosphoinositides-Versatile Regulators of Genome Functions. Cells 2019; 8:cells8070649. [PMID: 31261688 PMCID: PMC6678639 DOI: 10.3390/cells8070649] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2’s role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets—recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide–protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.
Collapse
|
24
|
Steinbach N, Hasson D, Mathur D, Stratikopoulos EE, Sachidanandam R, Bernstein E, Parsons RE. PTEN interacts with the transcription machinery on chromatin and regulates RNA polymerase II-mediated transcription. Nucleic Acids Res 2019; 47:5573-5586. [PMID: 31169889 PMCID: PMC6582409 DOI: 10.1093/nar/gkz272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 03/11/2019] [Accepted: 04/18/2019] [Indexed: 11/22/2022] Open
Abstract
Regulation of RNA polymerase II (RNAPII)-mediated transcription controls cellular phenotypes such as cancer. Phosphatase and tensin homologue deleted on chromosome ten (PTEN), one of the most commonly altered tumor suppressors in cancer, affects transcription via its role in antagonizing the PI3K/AKT signaling pathway. Using co-immunoprecipitations and proximal ligation assays we provide evidence that PTEN interacts with AFF4, RNAPII, CDK9, cyclin T1, XPB and CDK7. Using ChIP-seq, we show that PTEN co-localizes with RNAPII and binds to chromatin in promoter and putative enhancer regions identified by histone modifications. Furthermore, we show that loss of PTEN affects RNAPII occupancy in gene bodies and further correlates with gene expression changes. Interestingly, PTEN binds to promoters and negatively regulates the expression of genes involved in transcription including AFF4 and POL2RA, which encodes a subunit of RNAPII. Loss of PTEN also increased cells' sensitivity to transcription inhibition via small molecules, which could provide a strategy to target PTEN-deficient cancers. Overall, our work describes a previously unappreciated role of nuclear PTEN, which by interacting with the transcription machinery in the context of chromatin exerts an additional layer of regulatory control on RNAPII-mediated transcription.
Collapse
Affiliation(s)
- Nicole Steinbach
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Dan Hasson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Deepti Mathur
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Elias E Stratikopoulos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Ravi Sachidanandam
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1470 Author afMadison Avenue, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| |
Collapse
|
25
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 2019; 72:7-21. [PMID: 31003946 DOI: 10.1016/j.jbior.2019.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 01/01/2023]
Abstract
Biomolecular interactions between proteins and polyphosphoinositides (PPIn) are essential in the regulation of the vast majority of cellular processes. Consequently, alteration of these interactions is implicated in the development of many diseases. PPIn are phosphorylated derivatives of phosphatidylinositol and consist of seven species with different phosphate combinations. PPIn signal by recruiting proteins via canonical domains or short polybasic motifs. Although their actions are predominantly documented on cytoplasmic membranes, six of the seven PPIn are present within the nucleus together with the PPIn kinases, phosphatases and phospholipases that regulate their turnover. Importantly, the contribution of nuclear PPIn in the regulation of nuclear processes has led to an increased recognition of their importance compared to their more accepted cytoplasmic roles. This review summarises our knowledge on the identification and functional characterisation of nuclear PPIn-effector proteins as well as their mode of interactions, which tend to favour polybasic motifs.
Collapse
|
27
|
Bryant JM, Blind RD. Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. J Lipid Res 2018; 60:299-311. [PMID: 30201631 DOI: 10.1194/jlr.r088518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide membrane signaling is critical for normal physiology, playing well-known roles in diverse human pathologies. The basic mechanisms governing phosphoinositide signaling within the nucleus, however, have remained deeply enigmatic owing to their presence outside the nuclear membranes. Over 40% of nuclear phosphoinositides can exist in this non-membrane state, held soluble in the nucleoplasm by nuclear proteins that remain largely unidentified. Recently, two nuclear proteins responsible for solubilizing phosphoinositides were identified, steroidogenic factor-1 (SF-1; NR5A1) and liver receptor homolog-1 (LRH-1; NR5A2), along with two enzymes that directly remodel these phosphoinositide/protein complexes, phosphatase and tensin homolog (PTEN; MMAC) and inositol polyphosphate multikinase (IPMK; ipk2). These new footholds now permit the assignment of physiological functions for nuclear phosphoinositides in human diseases, such as endometriosis, nonalcoholic fatty liver disease/steatohepatitis, glioblastoma, and hepatocellular carcinoma. The unique nature of nuclear phosphoinositide signaling affords extraordinary clinical opportunities for new biomarkers, diagnostics, and therapeutics. Thus, phosphoinositide biology within the nucleus may represent the next generation of low-hanging fruit for new drugs, not unlike what has occurred for membrane phosphatidylinositol 3-kinase drug development. This review connects recent basic science discoveries in nuclear phosphoinositide signaling to clinical pathologies, with the hope of inspiring development of new therapies.
Collapse
Affiliation(s)
- Jamal M Bryant
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Raymond D Blind
- Departments of Pharmacology, Biochemistry, and Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
28
|
Naderali E, Khaki AA, Rad JS, Ali-Hemmati A, Rahmati M, Charoudeh HN. Regulation and modulation of PTEN activity. Mol Biol Rep 2018; 45:2869-2881. [PMID: 30145641 DOI: 10.1007/s11033-018-4321-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/20/2018] [Indexed: 01/04/2023]
Abstract
PTEN (Phosphatase and tensin homolog deleted on chromosome ten) is a tumor suppressor that is frequently mutated in most human cancers. PTEN is a lipid and protein phosphatase that antagonizes PI3K/AKT pathway through lipid phosphatase activity at the plasma membrane. More recent studies showed that, in addition to the putative role of PTEN as a PI(3,4,5)P3 3-phosphatase, it is a PI(3,4)P2 3-phosphatase during stimulation of class I PI3K signaling pathway by growth factor. Although PTEN tumor suppressor function via it's lipid phosphatase activity occurs primarily in the plasma membrane, it can also be found in the nucleus, in cytoplasmic organelles and extracellular space. PTEN has also shown phosphatase independent functions in the nucleus. PTEN can exit from the cell through exosomal export or secretion and has a tumor suppressor function in adjacent cells. PTEN has a critical role in growth, the cell cycle, protein synthesis, survival, DNA repair and migration. Understanding the regulation of PTEN function, activity, stability, localization and its dysregulation outcomes and also the intracellular and extracellular role of PTEN and paracrine role of PTEN-L in tumor cells as an exogenous therapeutic agent can help to improve clinical conceptualization and treatment of cancer.
Collapse
Affiliation(s)
- Elahe Naderali
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afshin Khaki
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani Rad
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ali-Hemmati
- Department of Anatomical sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Department of Clinical Biochemistry Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjatollah Nozad Charoudeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Cell Therapy Research Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran.
| |
Collapse
|
29
|
Fricano-Kugler CJ, Getz SA, Williams MR, Zurawel AA, DeSpenza T, Frazel PW, Li M, O’Malley AJ, Moen EL, Luikart BW. Nuclear Excluded Autism-Associated Phosphatase and Tensin Homolog Mutations Dysregulate Neuronal Growth. Biol Psychiatry 2018; 84:265-277. [PMID: 29373119 PMCID: PMC5984669 DOI: 10.1016/j.biopsych.2017.11.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/01/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Phosphatase and tensin homolog (PTEN) negatively regulates downstream protein kinase B signaling, resulting in decreased cellular growth and proliferation. PTEN is mutated in a subset of children with autism spectrum disorder (ASD); however, the mechanism by which specific point mutations alter PTEN function is largely unknown. Here, we assessed how ASD-associated single-nucleotide variations in PTEN (ASD-PTEN) affect function. METHODS We used viral-mediated molecular substitution of human PTEN into Pten knockout mouse neurons and assessed neuronal morphology to determine the functional impact of ASD-PTEN. We employed molecular cloning to examine how PTEN's stability, subcellular localization, and catalytic activity affect neuronal growth. RESULTS We identified a set of ASD-PTEN mutations displaying altered lipid phosphatase function and subcellular localization. We demonstrated that wild-type PTEN can rescue the neuronal hypertrophy, while PTEN H93R, F241S, D252G, W274L, N276S, and D326N failed to rescue this hypertrophy. A subset of these mutations lacked nuclear localization, prompting us to examine the role of nuclear PTEN in regulating neuronal growth. We found that nuclear PTEN alone is sufficient to regulate soma size. Furthermore, forced localization of the D252G and W274L mutations into the nucleus partially restores regulation of soma size. CONCLUSIONS ASD-PTEN mutations display decreased stability, catalytic activity, and/or altered subcellular localization. Mutations lacking nuclear localization uncover a novel mechanism whereby lipid phosphatase activity in the nucleus can regulate mammalian target of rapamycin signaling and neuronal growth.
Collapse
Affiliation(s)
- Catherine J. Fricano-Kugler
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Stephanie A. Getz
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Michael R. Williams
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Ashley A. Zurawel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Tyrone DeSpenza
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Paul W. Frazel
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Meijie Li
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| | - Alistair J. O’Malley
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA,Department of Biomedical Data Science, The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Erika L. Moen
- The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Bryan W. Luikart
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756,Corresponding Author-
| |
Collapse
|
30
|
Kwok ZH, Roche V, Chew XH, Fadieieva A, Tay Y. A non-canonical tumor suppressive role for the long non-coding RNA MALAT1 in colon and breast cancers. Int J Cancer 2018; 143:668-678. [PMID: 29574704 DOI: 10.1002/ijc.31386] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/18/2018] [Accepted: 03/01/2018] [Indexed: 12/18/2022]
Abstract
Long noncoding RNAs (lncRNAs) constitute one of the largest classes of transcripts and have been widely implicated in various diseases such as cancer. Increasing evidence suggests that several lncRNAs are dysregulated and play critical roles in tumorigenesis. LncRNAs can be regulated by key oncogenes and tumor suppressors, adding complexity to the intricate crosstalk between protein coding genes and the noncoding transcriptome. In our study, we investigated the effect that dysregulation of the key tumor suppressor PTEN has on the noncoding transcriptome. We identified the lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) as a target of PTEN and find that this regulation is conserved in both human and mouse as well as with both chronic and acute PTEN dysregulation. We show that this regulation is at least in part microRNA (miRNA)-dependent, and characterize the miRNAs that may be mediating this crosstalk. In summary, we establish and characterize a non-canonical PTEN-microRNA-MALAT1 axis that regulates tumorigenesis and describe for the first time that the MALAT1 lncRNA possesses novel tumor suppressive properties in colon and breast cancers.
Collapse
Affiliation(s)
- Zhi Hao Kwok
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Veronique Roche
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Anastasiia Fadieieva
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
31
|
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19:547-562. [DOI: 10.1038/s41580-018-0015-0] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Sulkowski PL, Scanlon SE, Oeck S, Glazer PM. PTEN Regulates Nonhomologous End Joining By Epigenetic Induction of NHEJ1/XLF. Mol Cancer Res 2018; 16:1241-1254. [PMID: 29739874 DOI: 10.1158/1541-7786.mcr-17-0581] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
Abstract
DNA double-strand breaks (DSB) are the most cytotoxic DNA lesions, and up to 90% of DSBs require repair by nonhomologous end joining (NHEJ). Functional and genomic analyses of patient-derived melanomas revealed that PTEN loss is associated with NHEJ deficiency. In PTEN-null melanomas, PTEN complementation rescued the NHEJ defect; conversely, suppression of PTEN compromised NHEJ. Mechanistic studies revealed that PTEN promotes NHEJ through direct induction of expression of XRCC4-like factor (NHEJ1/XLF), which functions in DNA end bridging and ligation. PTEN was found to occupy the NHEJ1 gene promoter and to recruit the histone acetyltransferases, PCAF and CBP, inducing XLF expression. This recruitment activity was found to be independent of its phosphatase activity, but dependent on K128, a site of regulatory acetylation on PTEN. These findings define a novel function for PTEN in regulating NHEJ DSB repair, and therefore may assist in the design of individualized strategies for cancer therapy.Implications: PTEN is the second most frequently lost tumor suppressor gene. Here it is demonstrated that PTEN has a direct and novel regulatory role in NHEJ, a key DNA repair pathway in response to radiation and chemotherapy. Mol Cancer Res; 16(8); 1241-54. ©2018 AACR.
Collapse
Affiliation(s)
| | - Susan E Scanlon
- Department of Experimental Pathology, Yale University, New Haven, Connecticut
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale University, New Haven, Connecticut.,Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Peter M Glazer
- Department of Genetics, Yale University, New Haven, Connecticut. .,Department of Therapeutic Radiology, Yale University, New Haven, Connecticut
| |
Collapse
|
33
|
Igarashi A, Itoh K, Yamada T, Adachi Y, Kato T, Murata D, Sesaki H, Iijima M. Nuclear PTEN deficiency causes microcephaly with decreased neuronal soma size and increased seizure susceptibility. J Biol Chem 2018; 293:9292-9300. [PMID: 29735527 DOI: 10.1074/jbc.ra118.002356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/20/2018] [Indexed: 12/25/2022] Open
Abstract
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development.
Collapse
Affiliation(s)
- Atsushi Igarashi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Kie Itoh
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tatsuya Yamada
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yoshihiro Adachi
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Takashi Kato
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Daisuke Murata
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Hiromi Sesaki
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Miho Iijima
- From the Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
34
|
Szymonowicz K, Oeck S, Malewicz NM, Jendrossek V. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers (Basel) 2018; 10:cancers10030078. [PMID: 29562639 PMCID: PMC5876653 DOI: 10.3390/cancers10030078] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt’s activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nathalie M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| |
Collapse
|
35
|
Jamaspishvili T, Berman DM, Ross AE, Scher HI, De Marzo AM, Squire JA, Lotan TL. Clinical implications of PTEN loss in prostate cancer. Nat Rev Urol 2018; 15:222-234. [PMID: 29460925 DOI: 10.1038/nrurol.2018.9] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genomic aberrations of the PTEN tumour suppressor gene are among the most common in prostate cancer. Inactivation of PTEN by deletion or mutation is identified in ∼20% of primary prostate tumour samples at radical prostatectomy and in as many as 50% of castration-resistant tumours. Loss of phosphatase and tensin homologue (PTEN) function leads to activation of the PI3K-AKT (phosphoinositide 3-kinase-RAC-alpha serine/threonine-protein kinase) pathway and is strongly associated with adverse oncological outcomes, making PTEN a potentially useful genomic marker to distinguish indolent from aggressive disease in patients with clinically localized tumours. At the other end of the disease spectrum, therapeutic compounds targeting nodes in the PI3K-AKT-mTOR (mechanistic target of rapamycin) signalling pathway are being tested in clinical trials for patients with metastatic castration-resistant prostate cancer. Knowledge of PTEN status might be helpful to identify patients who are more likely to benefit from these therapies. To enable the use of PTEN status as a prognostic and predictive biomarker, analytically validated assays have been developed for reliable and reproducible detection of PTEN loss in tumour tissue and in blood liquid biopsies. The use of clinical-grade assays in tumour tissue has shown a robust correlation between loss of PTEN and its protein as well as a strong association between PTEN loss and adverse pathological features and oncological outcomes. In advanced disease, assessing PTEN status in liquid biopsies shows promise in predicting response to targeted therapy. Finally, studies have shown that PTEN might have additional functions that are independent of the PI3K-AKT pathway, including those affecting tumour growth through modulation of the immune response and tumour microenvironment.
Collapse
Affiliation(s)
- Tamara Jamaspishvili
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David M Berman
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ashley E Ross
- Department of Urology, Johns Hopkins University, Baltimore, MD, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Squire
- Department of Pathology and Legal Medicine, University of Sao Paulo, Campus Universitario Monte Alegre, Ribeirão Preto, Brazil
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
36
|
Gulluni F, Martini M, Hirsch E. Cytokinetic Abscission: Phosphoinositides and ESCRTs Direct the Final Cut. J Cell Biochem 2017; 118:3561-3568. [PMID: 28419521 DOI: 10.1002/jcb.26066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 01/23/2023]
Abstract
Cytokinetic abscission involves the fine and regulated recruitment of membrane remodeling proteins that participate in the abscission of the intracellular bridge that connects the two dividing cells. This essential process is mediated by the concomitant activity of the endosomal sorting complex required for transport (ESCRT) and the vesicular trafficking directed to the midbody. Phosphoinositides (PtdIns), produced at plasma membrane, and endosomes, act as molecular intermediates by recruiting effector proteins involved in multiple cellular processes, such as intracellular signaling, endo- and exo-cytosis, and membrane remodeling events. Emerging evidences suggest that PtdIns have an active role in recruiting key elements that control the stability and the remodeling of the cytoskeleton from the furrow ingression to the abscission, at the end of cytokinesis. Accordingly, a possible concomitant and coordinated activity between PtdIns production and ESCRT machinery assembly could also exist and recent findings are pointing the attention on poorly understood ESCRT subunits potentially able to associate with PtdIns rich membranes. Although further studies are required to link PtdIns to ESCRT machinery during abscission, this might represent a promising field of study. J. Cell. Biochem. 118: 3561-3568, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Federico Gulluni
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Prostate cancer, PI3K, PTEN and prognosis. Clin Sci (Lond) 2017; 131:197-210. [PMID: 28057891 DOI: 10.1042/cs20160026] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/12/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Loss of function of the PTEN tumour suppressor, resulting in dysregulated activation of the phosphoinositide 3-kinase (PI3K) signalling network, is recognized as one of the most common driving events in prostate cancer development. The observed mechanisms of PTEN loss are diverse, but both homozygous and heterozygous genomic deletions including PTEN are frequent, and often accompanied by loss of detectable protein as assessed by immunohistochemistry (IHC). The occurrence of PTEN loss is highest in aggressive metastatic disease and this has driven the development of PTEN as a prognostic biomarker, either alone or in combination with other factors, to distinguish indolent tumours from those likely to progress. Here, we discuss these factors and the consequences of PTEN loss, in the context of its role as a lipid phosphatase, as well as current efforts to use available inhibitors of specific components of the PI3K/PTEN/TOR signalling network in prostate cancer treatment.
Collapse
|
38
|
Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol 2017; 233:107-123. [PMID: 28256711 DOI: 10.1002/jcp.25886] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022]
Abstract
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear-driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.
Collapse
Affiliation(s)
- Bree L Hamann
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Raymond D Blind
- Division of Diabetes Endocrinology and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee.,Departments of Medicine, Biochemistry and Pharmacology, Division of Diabetes Endocrinology and Metabolism, The Vanderbilt Diabetes Research and Training Center and the Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| |
Collapse
|
39
|
Moniz LS, Surinova S, Ghazaly E, Velasco LG, Haider S, Rodríguez-Prados JC, Berenjeno IM, Chelala C, Vanhaesebroeck B. Phosphoproteomic comparison of Pik3ca and Pten signalling identifies the nucleotidase NT5C as a novel AKT substrate. Sci Rep 2017; 7:39985. [PMID: 28059163 PMCID: PMC5216349 DOI: 10.1038/srep39985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022] Open
Abstract
To identify novel effectors and processes regulated by PI3K pathway activation, we performed an unbiased phosphoproteomic screen comparing two common events of PI3K deregulation in cancer: oncogenic Pik3ca mutation (Pik3caH1047R) and deletion of Pten. Using mouse embryonic fibroblast (MEF) models that generate inducible, low-level pathway activation as observed in cancer, we quantified 7566 unique phosphopeptides from 3279 proteins. A number of proteins were found to be differentially-regulated by Pik3caH1047R and Pten loss, suggesting unique roles for these two events in processes such as vesicular trafficking, DNA damage repair and RNA splicing. We also identified novel PI3K effectors that were commonly-regulated, including putative AKT substrates. Validation of one of these hits, confirmed NT5C (5',3'-Nucleotidase, Cytosolic) as a novel AKT substrate, with an unexpected role in actin cytoskeleton regulation via an interaction with the ARP2/3 complex. This study has produced a comprehensive data resource and identified a new link between PI3K pathway activation and actin regulation.
Collapse
Affiliation(s)
- Larissa S. Moniz
- UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street London WC1E 6DD, UK
| | - Silvia Surinova
- UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street London WC1E 6DD, UK
| | - Essam Ghazaly
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Lorena Gonzalez Velasco
- UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street London WC1E 6DD, UK
| | - Syed Haider
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | - Inma M. Berenjeno
- UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street London WC1E 6DD, UK
| | - Claude Chelala
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Bart Vanhaesebroeck
- UCL Cancer Institute, Paul O’Gorman Building, University College London, 72 Huntley Street London WC1E 6DD, UK
| |
Collapse
|
40
|
A polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem J 2016; 473:2033-47. [PMID: 27118868 PMCID: PMC4941749 DOI: 10.1042/bcj20160274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/26/2016] [Indexed: 12/29/2022]
Abstract
We reveal the identification of a polybasic motif necessary for polyphosphoinositide interaction and nucleolar targeting of ErbB3 binding protein 1 (EBP1). EBP1 interacts directly with phosphatidylinositol(3,4,5)-triphosphate and their association is detected in the nucleolus, implying regulatory roles of nucleolar processes. Polyphosphoinositides (PPIns) are present in the nucleus where they participate in crucial nuclear processes, such as chromatin remodelling, transcription and mRNA processing. In a previous interactomics study, aimed to gain further insight into nuclear PPIns functions, we identified ErbB3 binding protein 1 (EBP1) as a potential nuclear PPIn-binding protein in a lipid pull-down screen. EBP1 is a ubiquitous and conserved protein, located in both the cytoplasm and nucleolus, and associated with cell proliferation and survival. In the present study, we show that EBP1 binds directly to several PPIns via two distinct PPIn-binding sites consisting of clusters of lysine residues and positioned at the N- and C-termini of the protein. Using interaction mutants, we show that the C-terminal PPIn-binding motif contributes the most to the localization of EBP1 in the nucleolus. Importantly, a K372N point mutation, located within the C-terminal motif and found in endometrial tumours, is sufficient to alter the nucleolar targeting of EBP1. Our study reveals also the presence of the class I phosphoinositide 3-kinase (PI3K) catalytic subunit p110β and its product PtdIns(3,4,5)P3 together with EBP1 in the nucleolus. Using NMR, we further demonstrate an association between EBP1 and PtdIns(3,4,5)P3 via both electrostatic and hydrophobic interactions. Taken together, these results show that EBP1 interacts directly with PPIns and associate with PtdIns(3,4,5)P3 in the nucleolus. The presence of p110β and PtdIns(3,4,5)P3 in the nucleolus indicates their potential role in regulating nucleolar processes, at least via EBP1.
Collapse
|
41
|
Jain MV, Shareef A, Likus W, Cieślar-Pobuda A, Ghavami S, Łos MJ. Inhibition of miR301 enhances Akt-mediated cell proliferation by accumulation of PTEN in nucleus and its effects on cell-cycle regulatory proteins. Oncotarget 2016; 7:20953-65. [PMID: 26967567 PMCID: PMC4991504 DOI: 10.18632/oncotarget.7996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/18/2016] [Indexed: 02/07/2023] Open
Abstract
Micro-RNAs (miRs) represent an innovative class of genes that act as regulators of gene expression. Recently, the aberrant expression of several miRs has been associated with different types of cancers. In this study, we show that miR301 inhibition influences PI3K-Akt pathway activity. Akt overexpression in MCF7 and MDAMB468 cells caused downregulation of miR301 expression. This effect was confirmed by co-transfection of miR301-modulators in the presence of Akt. Cells overexpressing miR301-inhibitor and Akt, exhibited increased migration and proliferation. Experimental results also confirmed PI3K, PTEN and FoxF2 as regulatory targets for miR301. Furthermore, Akt expression in conjunction with miR301-inhibitor increased nuclear accumulation of PTEN, thus preventing it from downregulating the PI3K-signalling. In summary, our data emphasize the importance of miR301 inhibition on PI3K-Akt pathway-mediated cellular functions. Hence, it opens new avenues for the development of new anti-cancer agents preferentially targeting PI3K-Akt pathway.
Collapse
Affiliation(s)
- Mayur V. Jain
- Department of Clinical & Experimental Medicine, Division of Cell Biology Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | - Ahmad Shareef
- Department of Clinical & Experimental Medicine, Division of Cell Biology Integrative Regenerative Medicine Center (IGEN), Linköping University, Linköping, Sweden
| | - Wirginia Likus
- Department of Human Anatomy, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Artur Cieślar-Pobuda
- Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, Szczecin, Poland
- LinkoCare Life Sciences AB, Linköping, Sweden
| |
Collapse
|
42
|
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation.
Collapse
|
43
|
Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol 2016; 145:485-96. [DOI: 10.1007/s00418-016-1409-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 01/09/2023]
|
44
|
Abstract
Discovered in 1997, PTEN remains one of the most studied tumor suppressors. In this issue of Methods in Molecular Biology, we assembled a series of papers describing various clinical and experimental approaches to studying PTEN function. Due to its broad expression, regulated subcellular localization, and intriguing phosphatase activity, methodologies aimed at PTEN study have often been developed in the context of mutations affecting various aspects of its regulation, found in patients burdened with PTEN loss-driven tumors. PTEN's extensive posttranslational modifications and dynamic localization pose unique challenges for studying PTEN features in isolation and necessitate considerable development of experimental systems to enable controlled characterization. Nevertheless, ongoing efforts towards the development of PTEN knockout and knock-in animals and cell lines, antibodies, and enzymatic assays have facilitated a huge body of work, which continues to unravel the fascinating biology of PTEN.
Collapse
|
45
|
Abstract
PTEN subcellular localization is fundamental in the execution of the distinct PTEN biological activities, including not only its PI(3,4,5)P3 phosphatase activity when associated to membranes but also its subcellular compartment-specific interactions with regulatory and effector proteins, including those exerted in the nucleus. As a consequence, PTEN subcellular localization is tightly regulated in vivo by both intrinsic and extrinsic mechanisms. The plasma membrane/nucleus/cytoplasm partitioning of PTEN has been the focus of several studies, both from a mechanistic and from a disease-association point of view. Here, we summarize the current knowledge on PTEN plasma membrane/nucleus/cytoplasm distribution, and present subcellular fractionation, immunofluorescence, and immunohistochemical methods to study the distribution and shuttling of PTEN between these subcellular compartments.
Collapse
Affiliation(s)
- Anabel Gil
- Centro de Investigación Príncipe Felipe, Valencia, 46013, Spain
- Department of Hematology and Medical Oncology, Biomedical Research Institute INCLIVA, Valencia, 46010, Spain
| | - José I López
- Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, 48903, Spain
- Biocruces Health Research Institute, Plaza de Cruces s/n, Barakaldo, Bizkaia, 48903, Spain
| | - Rafael Pulido
- Centro de Investigación Príncipe Felipe, Valencia, 46013, Spain.
- Biocruces Health Research Institute, Plaza de Cruces s/n, Barakaldo, Bizkaia, 48903, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
46
|
Wang X, Huang H, Young KH. The PTEN tumor suppressor gene and its role in lymphoma pathogenesis. Aging (Albany NY) 2015; 7:1032-1049. [PMID: 26655726 PMCID: PMC4712330 DOI: 10.18632/aging.100855] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/02/2015] [Indexed: 01/04/2023]
Abstract
The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ken H. Young
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA
- The University of Texas Graduate School of Biomedical Science, Houston, TX 77230, USA
| |
Collapse
|
47
|
Localizing the lipid products of PI3Kγ in neutrophils. Adv Biol Regul 2015; 60:36-45. [PMID: 26596865 PMCID: PMC4739120 DOI: 10.1016/j.jbior.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/07/2015] [Accepted: 10/07/2015] [Indexed: 11/23/2022]
Abstract
Class I phosphoinositide 3-kinases (PI3Ks) are important regulators of neutrophil migration in response to a range of chemoattractants. Their primary lipid products PtdIns(3,4,5)P3 and PtdIns(3,4)P2 preferentially accumulate near to the leading edge of migrating cells and are thought to act as an important cue organizing molecular and morphological polarization. We have investigated the distribution and accumulation of these lipids independently in mouse neutrophils using eGFP-PH reportersand electron microscopy (EM). We found that authentic mouse neutrophils rapidly polarized their Class I PI3K signalling, as read-out by eGFP-PH reporters, both at the up-gradient leading edge in response to local stimulation with fMLP as well as spontaneously and randomly in response to uniform stimulation. EM studies revealed these events occurred at the plasma membrane, were dominated by accumulation of PtdIns(3,4,5)P3, but not PtdIns(3,4)P2, and were dependent on PI3Kγ and its upstream activation by both Ras and Gβγs.
Collapse
|
48
|
Jethwa N, Chung GHC, Lete MG, Alonso A, Byrne RD, Calleja V, Larijani B. Endomembrane PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. J Cell Sci 2015; 128:3456-65. [PMID: 26240177 DOI: 10.1242/jcs.172775] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022] Open
Abstract
PKB/Akt activation is a common step in tumour growth, proliferation and survival. Akt activation is understood to occur at the plasma membrane of cells in response to growth factor stimulation and local production of the phosphoinositide lipid phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] following phosphoinositide 3-kinase (PI3K) activation. The metabolism and turnover of phosphoinositides is complex--they act as signalling molecules as well as structural components of biological membranes. The localisation and significance of internal pools of PtdIns(3,4,5)P3 has long been speculated upon. By using transfected and recombinant protein probes for PtdIns(3,4,5)P3, we show that PtdIns(3,4,5)P3 is enriched in the nuclear envelope and early endosomes. By exploiting an inducible dimerisation device to recruit Akt to these compartments, we demonstrate that Akt can be locally activated in a PtdIns(3,4,5)P3-dependent manner and has the potential to phosphorylate compartmentally localised downstream substrates. This could be an important mechanism to regulate Akt isoform substrate specificity or influence the timing and duration of PI3K pathway signalling. Defects in phosphoinositide metabolism and localisation are known to contribute to cancer, suggesting that interactions at subcellular compartments might be worthwhile targets for therapeutic intervention.
Collapse
Affiliation(s)
- Nirmal Jethwa
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK
| | - Gary H C Chung
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK
| | - Marta G Lete
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Unidad de Biofísica (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Alicia Alonso
- Unidad de Biofísica (CSIC, UPV/EHU), Universidad del País Vasco, Barrio Sarriena s/n, Leioa 48940, Spain
| | - Richard D Byrne
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Signalling Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Véronique Calleja
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Protein Phosphorylation Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Banafshé Larijani
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK Cell Biophysics Laboratory, Ikerbasque Basque Foundation for Science, Unidad de Biofísica (CSIC, UPV/EHU) and Research Centre for Experimental Marine Biology and Biotechnology (PiE), University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| |
Collapse
|
49
|
PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat Commun 2015; 6:7935. [PMID: 26228240 PMCID: PMC5426521 DOI: 10.1038/ncomms8935] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/26/2015] [Indexed: 12/17/2022] Open
Abstract
Coordinated activity of VEGF and Notch signals guides the endothelial cell (EC) specification into tip and stalk cells during angiogenesis. Notch activation in stalk cells leads to proliferation arrest via an unknown mechanism. By using gain- and loss-of-function gene-targeting approaches, here we show that PTEN is crucial for blocking stalk cell proliferation downstream of Notch, and this is critical for mouse vessel development. Endothelial deletion of PTEN results in vascular hyperplasia due to a failure to mediate Notch-induced proliferation arrest. Conversely, overexpression of PTEN reduces vascular density and abrogates the increase in EC proliferation induced by Notch blockade. PTEN is a lipid/protein phosphatase that also has nuclear phosphatase-independent functions. We show that both the catalytic and non-catalytic APC/C-Fzr1/Cdh1-mediated activities of PTEN are required for stalk cells' proliferative arrest. These findings define a Notch–PTEN signalling axis as an orchestrator of vessel density and implicate the PTEN-APC/C-Fzr1/Cdh1 hub in angiogenesis. During the formation of vascular sprouts, Notch activation inhibits proliferation of the stalk ECs via unknown mechanism. Here the authors show that PTEN represents a critical mediator of Notch anti-proliferative response in stalk cells via its phosphatase-dependent and -independent activity.
Collapse
|
50
|
Bermúdez Brito M, Goulielmaki E, Papakonstanti EA. Focus on PTEN Regulation. Front Oncol 2015; 5:166. [PMID: 26284192 PMCID: PMC4515857 DOI: 10.3389/fonc.2015.00166] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
The role of phosphatase and tensin homolog on chromosome 10 (PTEN) as a tumor suppressor has been for a long time attributed to its lipid phosphatase activity against PI(3,4,5)P3, the phospholipid product of the class I PI3Ks. Besides its traditional role as a lipid phosphatase at the plasma membrane, a wealth of data has shown that PTEN can function independently of its phosphatase activity and that PTEN also exists and plays a role in the nucleus, in cytoplasmic organelles, and extracellularly. Accumulating evidence has shed light on diverse physiological functions of PTEN, which are accompanied by a complex regulation of its expression and activity. PTEN levels and function are regulated transcriptionally, post-transcriptionally, and post-translationally. PTEN is also sensitive to regulation by its interacting proteins and its localization. Herein, we summarize the current knowledge on mechanisms that regulate the expression and enzymatic activity of PTEN and its role in human diseases.
Collapse
Affiliation(s)
- Miriam Bermúdez Brito
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | - Evangelia Goulielmaki
- Department of Biochemistry, School of Medicine, University of Crete , Heraklion , Greece
| | | |
Collapse
|