1
|
Schluga PHDC, Larangote D, de Melo AM, Lobermayer GK, Torrejón D, de Oliveira LS, Alvarenga VG, Vivas-Ruiz DE, Veiga SS, Sanchez EF, Gremski LH. A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine-Glycine-Aspartic Acid (RGD)-Containing Molecules. Toxins (Basel) 2024; 16:486. [PMID: 39591241 PMCID: PMC11597958 DOI: 10.3390/toxins16110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics.
Collapse
Affiliation(s)
- Pedro Henrique de Caires Schluga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Debora Larangote
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Ana Maria de Melo
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Guilherme Kamienski Lobermayer
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Luciana Souza de Oliveira
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Valeria Gonçalves Alvarenga
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Dan Erick Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Silvio Sanches Veiga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Eladio Flores Sanchez
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Luiza Helena Gremski
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| |
Collapse
|
2
|
Feinberg K, Tajdaran K, Mirmoeini K, Daeschler SC, Henriquez MA, Stevens KE, Mulenga CM, Hussain A, Hamrah P, Ali A, Gordon T, Borschel GH. The Role of Sensory Innervation in Homeostatic and Injury-Induced Corneal Epithelial Renewal. Int J Mol Sci 2023; 24:12615. [PMID: 37628793 PMCID: PMC10454376 DOI: 10.3390/ijms241612615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The cornea is the window through which we see the world. Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide. In this report, we review the currently available therapeutic solutions for NK and discuss the progress in our understanding of how the sensory nerves induce corneal epithelial renewal.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kiana Tajdaran
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaveh Mirmoeini
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simeon C. Daeschler
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Hospital, Department of Plastic and Hand Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Mario A. Henriquez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katelyn E. Stevens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chilando M. Mulenga
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arif Hussain
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Asim Ali
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Tessa Gordon
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gregory H. Borschel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Di Donato M, Giovannelli P, Migliaccio A, Castoria G. The nerve growth factor-delivered signals in prostate cancer and its associated microenvironment: when the dialogue replaces the monologue. Cell Biosci 2023; 13:60. [PMID: 36941697 PMCID: PMC10029315 DOI: 10.1186/s13578-023-01008-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/06/2023] [Indexed: 03/22/2023] Open
Abstract
Prostate cancer (PC) represents the most diagnosed and the second most lethal cancer in men worldwide. Its development and progression occur in concert with alterations in the surrounding tumor microenvironment (TME), made up of stromal cells and extracellular matrix (ECM) that dynamically interact with epithelial PC cells affecting their growth and invasiveness. PC cells, in turn, can functionally sculpt the TME through the secretion of various factors, including neurotrophins. Among them, the nerve growth factor (NGF) that is released by both epithelial PC cells and carcinoma-associated fibroblasts (CAFs) triggers the activation of various intracellular signaling cascades, thereby promoting the acquisition of a metastatic phenotype. After many years of investigation, it is indeed well established that aberrations and/or derangement of NGF signaling are involved not only in neurological disorders, but also in the pathogenesis of human proliferative diseases, including PC. Another key feature of cancer progression is the nerve outgrowth in TME and the concept of nerve dependence related to perineural invasion is currently emerging. NGF released by cancer cells can be a driver of tumor neurogenesis and nerves infiltrated in TME release neurotransmitters, which might stimulate the growth and sustainment of tumor cells.In this review, we aim to provide a snapshot of NGF action in the interactions between TME, nerves and PC cells. Understanding the molecular basis of this dialogue might expand the arsenal of therapeutic strategies against this widespread disease.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy.
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
4
|
Ciechanowska A, Rojewska E, Piotrowska A, Barut J, Pawlik K, Ciapała K, Kreiner G, Mika J. New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes modulation under neuropathic pain conditions - evidence from animal studies. Front Immunol 2022; 13:1058204. [PMID: 36618360 PMCID: PMC9814969 DOI: 10.3389/fimmu.2022.1058204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland,*Correspondence: Joanna Mika, ,
| |
Collapse
|
5
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
6
|
Omar NA, Kumar J, Teoh SL. Neurotrophin-3 and neurotrophin-4: The unsung heroes that lies behind the meninges. Neuropeptides 2022; 92:102226. [PMID: 35030377 DOI: 10.1016/j.npep.2022.102226] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022]
Abstract
Neurotrophin is a growth factor that regulates the development and repair of the nervous system. From all factors, two pioneer groups, the nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF), have been widely explored for their role in disease pathogenesis and potential use as therapeutic agents. Nonetheless, neurotrophin-3 (NT3) and neurotrophin-4 (NT4) also have promising potential, albeit less popular than their counterparts. This review focuses on the latter two factors and their roles in the pathogenesis of brain disorders and potential therapies. An extensive literature search of NT3 and NT4 with their receptors, the TrkB and TrkC on the nervous system were extracted and analyzed. We found that NT3 and NT4 are not only involved in the pathogenesis of some neurodegenerative diseases, but also have promising therapeutic potential on injury- and vascular-related nervous system disease, neuropsychiatry, neurodegeneration and peripheral nerve diseases. In conclusion, the role of NT3 and NT4 should be further emphasized, and more studies could be explored on the potential use of these neurotrophins in the human study.
Collapse
Affiliation(s)
- Noor Azzizah Omar
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia; Department of Medical Sciences, Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Jaya Kumar
- Department of Physiology, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia.
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical Centre, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Zhang Q, Li Y, Zhuo Y. Synaptic or Non-synaptic? Different Intercellular Interactions with Retinal Ganglion Cells in Optic Nerve Regeneration. Mol Neurobiol 2022; 59:3052-3072. [PMID: 35266115 PMCID: PMC9016027 DOI: 10.1007/s12035-022-02781-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/24/2022] [Indexed: 12/31/2022]
Abstract
Axons of adult neurons in the mammalian central nervous system generally fail to regenerate by themselves, and few if any therapeutic options exist to reverse this situation. Due to a weak intrinsic potential for axon growth and the presence of strong extrinsic inhibitors, retinal ganglion cells (RGCs) cannot regenerate their axons spontaneously after optic nerve injury and eventually undergo apoptosis, resulting in permanent visual dysfunction. Regarding the extracellular environment, research to date has generally focused on glial cells and inflammatory cells, while few studies have discussed the potentially significant role of interneurons that make direct connections with RGCs as part of the complex retinal circuitry. In this study, we provide a novel angle to summarize these extracellular influences following optic nerve injury as "intercellular interactions" with RGCs and classify these interactions as synaptic and non-synaptic. By discussing current knowledge of non-synaptic (glial cells and inflammatory cells) and synaptic (mostly amacrine cells and bipolar cells) interactions, we hope to accentuate the previously neglected but significant effects of pre-synaptic interneurons and bring unique insights into future pursuit of optic nerve regeneration and visual function recovery.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yiqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Sousa GC, Fernandes MV, Cruz FF, Antunes MA, da Silva CM, Takyia C, Battaglini D, Samary CS, Robba C, Pelosi P, Rocco PRM, Silva PL. Comparative effects of dexmedetomidine and propofol on brain and lung damage in experimental acute ischemic stroke. Sci Rep 2021; 11:23133. [PMID: 34848804 PMCID: PMC8633001 DOI: 10.1038/s41598-021-02608-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
Acute ischemic stroke is associated with pulmonary complications, and often dexmedetomidine and propofol are used to decrease cerebral metabolic rate. However, it is unknown the immunomodulatory actions of dexmedetomidine and propofol on brain and lungs during acute ischemic stroke. The effects of dexmedetomidine and propofol were compared on perilesional brain tissue and lung damage after acute ischemic stroke in rats. Further, the mean amount of both sedatives was directly evaluated on alveolar macrophages and lung endothelial cells primarily extracted 24-h after acute ischemic stroke. In twenty-five Wistar rats, ischemic stroke was induced and after 24-h treated with sodium thiopental (STROKE), dexmedetomidine and propofol. Dexmedetomidine, compared to STROKE, reduced diffuse alveolar damage score [median(interquartile range); 12(7.8–15.3) vs. 19.5(18–24), p = 0.007)], bronchoconstriction index [2.28(2.08–2.36) vs. 2.64(2.53–2.77), p = 0.006], and TNF-α expression (p = 0.0003), while propofol increased VCAM-1 expression compared to STROKE (p = 0.0004). In perilesional brain tissue, dexmedetomidine, compared to STROKE, decreased TNF-α (p = 0.010), while propofol increased VCAM-1 compared to STROKE (p = 0.024). In alveolar macrophages and endothelial cells, dexmedetomidine decreased IL-6 and IL-1β compared to STROKE (p = 0.002, and p = 0.040, respectively), and reduced IL-1β compared to propofol (p = 0.014). Dexmedetomidine, but not propofol, induced brain and lung protection in experimental acute ischemic stroke.
Collapse
Affiliation(s)
- Giselle C Sousa
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Anesthesiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Carla M da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Imunopathology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Takyia
- Laboratory of Imunopathology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise Battaglini
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Chiara Robba
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil. .,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Dobryakova YV, Spivak YS, Zaichenko MI, Koryagina AA, Markevich VA, Stepanichev MY, Bolshakov AP. Intrahippocampal Adeno-Associated Virus-Mediated Overexpression of Nerve Growth Factor Reverses 192IgG-Saporin-Induced Impairments of Hippocampal Plasticity and Behavior. Front Neurosci 2021; 15:745050. [PMID: 34867156 PMCID: PMC8634591 DOI: 10.3389/fnins.2021.745050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
One of the aspects of Alzheimer disease is loss of cholinergic neurons in the basal forebrain, which leads to development of cognitive impairment. Here, we used a model of cholinergic deficit caused by immunotoxin 192IgG-saporin to study possible beneficial effects of adeno-associated virus (AAV)-mediated overexpression of nerve growth factor (NGF) in the hippocampus of rats with cholinergic deficit. Suspension of recombinant AAV carrying control cassette or cassette with NGF was injected into both hippocampi of control rats or rats with cholinergic deficit induced by intraseptal injection of 192IgG-saporin. Analysis of choline acetyltransferase (ChAT) immunostaining showed that NGF overexpression in the hippocampus did not prevent strong loss of ChAT-positive neurons in the septal area caused by the immunotoxin. Induction of cholinergic deficit in the hippocampus led to impairments in Y-maze and beam-walking test but did not affect behavioral indices in the T-maze, open field test, and inhibitory avoidance training. NGF overexpression in the rats with cholinergic deficit restored normal animal behavior in Y-maze and beam-walking test. Recording of field excitatory postsynaptic potentials in vivo in the hippocampal CA1 area showed that induction of cholinergic deficit decreased magnitude of long-term potentiation (LTP) and prevented a decrease in paired-pulse ratio after LTP induction, and NGF overexpression reversed these negative changes in hippocampal synaptic characteristics. The beneficial effect of NGF was not associated with compensatory changes in the number of cells that express NGF receptors TrkA and NGFR in the hippocampus and medial septal area. NGF overexpression also did not prevent a 192IgG-saporin-induced decrease in the activity of acetylcholine esterase in the hippocampus. We conclude that NGF overexpression in the hippocampus under conditions of cholinergic deficit induces beneficial effects which are not related to maintenance of cholinergic function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexey P. Bolshakov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
10
|
Godin SK, Wagner J, Huang P, Bree D. The role of peripheral nerve signaling in endometriosis. FASEB Bioadv 2021; 3:802-813. [PMID: 34632315 PMCID: PMC8493968 DOI: 10.1096/fba.2021-00063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022] Open
Abstract
A hallmark of endometriosis - a chronic debilitating condition whose causes are poorly understood - is neuronal innervation of lesions. Recent evidence demonstrates that the peripheral nervous system plays an important role in the pathophysiology of this disease. Sensory nerves, which surround and innervate endometriotic lesions, not only drive the chronic and debilitating pain associated with endometriosis but also contribute to a pro-growth phenotype by secreting neurotrophic factors and interacting with surrounding immune cells. The diverse array of contributions that neurons play in endometriosis indicate that it should be considered as a nerve-centric disease. This review is focused on the emerging field of exoneural biology and how it applies to the field of endometriosis, in particular the role that peripheral nerves play in driving and maintaining endometriotic lesions. A better understanding of the mechanisms of neuronal contribution to endometriosis, as well as their interactions with accompanying stromal and immune cells, will unearth novel disease-relevant pathways and targets, providing additional, more selective therapeutic horizons.
Collapse
|
11
|
Xu S, Zhang T, Cao Z, Zhong W, Zhang C, Li H, Song J. Integrin-α9β1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front Immunol 2021; 12:638400. [PMID: 33790909 PMCID: PMC8005531 DOI: 10.3389/fimmu.2021.638400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins refer to heterodimers consisting of subunits α and β. They serve as receptors on cell membranes and interact with extracellular ligands to mediate intracellular molecular signals. One of the least-studied members of the integrin family is integrin-α9β1, which is widely distributed in various human tissues and organs. Integrin-α9β1 regulates the physiological state of cells through a variety of complex signaling pathways to participate in the specific pathological processes of some intractable diseases. In recent years, an increasing amount of research has focused on the role of α9β1 in the molecular mechanisms of different refractory diseases and its promising potential as a therapeutic target. Accordingly, this review introduces and summarizes recent research related to integrin-α9β1, describes the synergistic functions of α9β1 and its corresponding ligands in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly, highlights the potential of α9β1 as a distinctive target for the treatment of these intractable diseases.
Collapse
Affiliation(s)
- Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
12
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
13
|
Rubin L, Stabler CT, Schumacher-Klinger A, Marcinkiewicz C, Lelkes PI, Lazarovici P. Neurotrophic factors and their receptors in lung development and implications in lung diseases. Cytokine Growth Factor Rev 2021; 59:84-94. [PMID: 33589358 DOI: 10.1016/j.cytogfr.2021.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Although lung innervation has been described by many studies in humans and rodents, the regulation of the respiratory system induced by neurotrophins is not fully understood. Here, we review current knowledge on the role of neurotrophins and the expression and function of their receptors in neurogenesis, vasculogenesis and during the embryonic development of the respiratory tree and highlight key implications relevant to respiratory diseases.
Collapse
Affiliation(s)
- Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Adi Schumacher-Klinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
14
|
Mang D, Roy SR, Hoh HH, Wu X, Zhang J, Jin C, Zhang Y. Self-Assembly of Integrin Ligands on the Apical Membrane Inhibits the Migration of Glioma Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3750-3757. [PMID: 32191038 DOI: 10.1021/acs.langmuir.0c00291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malignant brain cancer remains challenging in treatment due to the highly invasive quality of gliomas. Inspired by the upregulated expression of integrin β1 subunits in tumors, we designed and synthesized an integrin-targeting self-assembling ligand based on a laminin-derived peptide that selectively forms nanofibrous microdomains on the apical membrane of glioma cells, inhibiting their migration and invasion.
Collapse
Affiliation(s)
- Dingze Mang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Sona Rani Roy
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Hong Huat Hoh
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Xia Wu
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Jiahao Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Chengzhi Jin
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| | - Ye Zhang
- Bioinspired Soft Matter Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna son, Okinawa 904-0495, Japan
| |
Collapse
|
15
|
Idini M, Wieringa P, Rocchiccioli S, Nieddu G, Ucciferri N, Formato M, Lepedda A, Moroni L. Glycosaminoglycan functionalization of electrospun scaffolds enhances Schwann cell activity. Acta Biomater 2019; 96:188-202. [PMID: 31265920 DOI: 10.1016/j.actbio.2019.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Nerve fibers of the peripheral nervous system (PNS) have a remarkable ability to regenerate up to an almost complete recovery of normal function following a crush or a Sunderland Type II injury. This process is governed by glial cells, known as Schwann cells, through their unique capacity to dedifferentiate into cells that drive the healing process. Despite that many progresses have occurred in restorative medicine and microsurgery, the regenerative process after a severe lesion of a major nerve trunk (e.g., Sunderland Types III-V) is often incomplete and functional recovery is unsatisfactory. In this aspect, it is known that glycosaminoglycans (GAGs) of the extracellular matrix are involved in proliferation, synaptogenesis, neural plasticity, and regeneration of the PNS. Here, we developed poly(caprolactone) (PCL) fibrous scaffolds functionalized with GAGs, which allowed us to assess their influence on the adhesion, proliferation, and differentiation of Schwann cells. We found that both aligned and random fiber scaffolds functionalized with GAGs resulted in increased cell proliferation on day 1. In addition, aligned functionalized scaffolds also resulted in increased GAG presence on day 1, probably because of cell extracellular matrix (ECM) formation and an increased syndecan-4 expression on day 7. A different modification and activation of Schwann cells in the presence of GAG versus no-GAG scaffolds was underlined by proteomic comparative analysis, where a general downregulation of the expression of intracellular/structural and synthetic proteins was shown on day 7 for GAG-functionalized scaffolds with regard to the nonfunctionalized ones. In conclusion, we have shown that GAG-functionalized scaffolds are effective in modulating Schwann cell behavior in terms of adhesion, proliferation, and differentiation and should be considered in strategies to improve PNS repair. STATEMENT OF SIGNIFICANCE: Nerve fibers functional recovery following a severe trauma of the Peripheral Nervous System (PNS) still represents a huge challenge for neurosurgery nowadays. In this respect, tissue engineering is committed to develop new constructs able to guide Schwann cells by mimicking the natural extracellular matrix environment. To this purpose, we successfully fabricated polycaprolactone (PCL) scaffolds with two well-defined fiber deposition patterns, functionalized with glycosaminoglycans (GAGs) and assessed for their potential as support for Schwann cells adhesion, growth and differentiation, by both classical biochemistry and LC-MS-based proteomic profiling. By this way, we showed that PCL-GAGs scaffolds could represent a promising artificial substrate that closely mimics the recently established pattern of Schwann cells migration into the regenerating nerve and, therefore, it should be considered in strategies to improve PNS repair.
Collapse
Affiliation(s)
- Michela Idini
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gabriele Nieddu
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Nadia Ucciferri
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marilena Formato
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Antonio Lepedda
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy
| | - Lorenzo Moroni
- Dipartimento di Scienze Biomediche University of Sassari, Viale S. Pietro 43/B, 07100 Sassari, Italy; Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER Maastricht, The Netherlands.
| |
Collapse
|
16
|
Wang Y, Zhang X, Tian J, Shan J, Hu Y, Zhai Y, Guo J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth. FASEB J 2019; 33:6311-6326. [PMID: 30768370 DOI: 10.1096/fj.201801949rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal polarization depends on the interaction of intracellular chemical and mechanical activities in which the cytoplasmic protein, talin, plays a pivotal role during neurite growth. To better understand the mechanism underlying talin function in neuronal polarization, we overexpressed several truncated forms of talin and found that the presence of the rod domain within the overexpressed talin is required for its positive effect on neurite elongation because the neurite number only increased when the talin head region was overexpressed. The tension in the talin rod was recognized using a Förster resonance energy transfer-based tension probe. Nerve growth factor treatment resulted in inward tension of talin elicited by microfilament force and outward osmotic pressure. By contrast, the glial scar-inhibitor aggrecan weakened these forces, suggesting that interactions between inward pull forces in the talin rod and outward osmotic pressure participate in neuronal polarization. Integrin activation is also involved in up-regulation of talin tension and osmotic pressure. Aggrecan stimuli resulted in up-regulation of docking protein 1 (DOK1), leading to the down-regulation of integrin activity and attenuation of the intracellular mechanical force. Our study suggests interactions between the intracellular inward tension in talin and the outward osmotic pressure as the effective channel for promoting neurite outgrowth, which can be up-regulated by integrin activation and down-regulated by DOK1.-Wang, Y., Zhang, X., Tian, J., Shan, J., Hu, Y., Zhai, Y., Guo, J. Talin promotes integrin activation accompanied by generation of tension in talin and an increase in osmotic pressure in neurite outgrowth.
Collapse
Affiliation(s)
- Yifan Wang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaolong Zhang
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jilai Tian
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunfeng Hu
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqian Zhai
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Guo
- State Key Laboratory Cultivation Base for Traditional Chinese Medicine (TCM) Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Drug Targets and Drugs for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Qorri B, Kalaydina RV, Velickovic A, Kaplya Y, Decarlo A, Szewczuk MR. Agonist-Biased Signaling via Matrix Metalloproteinase-9 Promotes Extracellular Matrix Remodeling. Cells 2018; 7:cells7090117. [PMID: 30149671 PMCID: PMC6162445 DOI: 10.3390/cells7090117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/12/2018] [Accepted: 08/23/2018] [Indexed: 12/26/2022] Open
Abstract
The extracellular matrix (ECM) is a highly dynamic noncellular structure that is crucial for maintaining tissue architecture and homeostasis. The dynamic nature of the ECM undergoes constant remodeling in response to stressors, tissue needs, and biochemical signals that are mediated primarily by matrix metalloproteinases (MMPs), which work to degrade and build up the ECM. Research on MMP-9 has demonstrated that this proteinase exists on the cell surface of many cell types in complex with G protein-coupled receptors (GPCRs), and receptor tyrosine kinases (RTKs) or Toll-like receptors (TLRs). Through a novel yet ubiquitous signaling platform, MMP-9 is found to play a crucial role not only in the direct remodeling of the ECM but also in the transactivation of associated receptors to mediate and recruit additional remodeling proteins. Here, we summarize the role of MMP-9 as it exists in a tripartite complex on the cell surface and discuss how its association with each of the TrkA receptor, Toll-like receptors, epidermal growth factor receptor, and the insulin receptor contributes to various aspects of ECM remodeling.
Collapse
Affiliation(s)
- Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | - Aleksandra Velickovic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Yekatrina Kaplya
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Alexandria Decarlo
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
18
|
Kuol N, Stojanovska L, Apostolopoulos V, Nurgali K. Role of the Nervous System in Tumor Angiogenesis. CANCER MICROENVIRONMENT 2018; 11:1-11. [PMID: 29502307 DOI: 10.1007/s12307-018-0207-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022]
Abstract
The development of cancer involves an intricate process, wherein many identified and unidentified factors play a role. Tumor angiogenesis, growth of new blood vessels, is one of the major prerequisites for tumor growth as tumor cells rely on adequate oxygen and nutrient supply as well as the removal of waste products. Growth factors including VEGF orchestrate the development of angiogenesis. In addition, nervous system via the release of neurotransmitters contributes to tumor angiogenesis. The nervous system governs functional activities of many organs, and, as tumors are not independent organs within an organism, this system is integrally involved in tumor growth and progression via regulating tumor angiogenesis. Various neurotransmitters have been reported to play an important role in tumor angiogenesis.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia. .,Department of Medicine Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia.
| |
Collapse
|
19
|
Abstract
The neurotrophins are a family of closely related proteins that were first identified as survival factors for sympathetic and sensory neurons and have since been shown to control a number of aspects of survival, development, and function of neurons in both the central and peripheral nervous systems. Limiting quantities of neurotrophins during development control the numbers of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. Biological effects of each of the four mammalian neurotrophins are mediated through activation of one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB, and TrkC). In addition, all neurotrophins activate the p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis factor receptor superfamily. Neurotrophin engagement of Trk receptors leads to activation of Ras, phosphatidylinositol 3-kinase, phospholipase C-γ1, and signaling pathways controlled through these proteins, including the mitogen-activated protein kinases. Neurotrophin availability is required into adulthood, where they control synaptic function and plasticity and sustain neuronal cell survival, morphology, and differentiation. This article will provide an overview of neurotrophin biology, their receptors, and signaling pathways.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
20
|
Gincberg G, Shohami E, Trembovler V, Alexandrovich AG, Lazarovici P, Elchalal U. Nerve growth factor plays a role in the neurotherapeutic effect of a CD45 + pan-hematopoietic subpopulation derived from human umbilical cord blood in a traumatic brain injury model. Cytotherapy 2017; 20:245-261. [PMID: 29274773 DOI: 10.1016/j.jcyt.2017.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/09/2017] [Accepted: 11/14/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Human umbilical cord blood (HUCB) is an important source of stem cells for therapy of hematopoietic disorders and is a potential therapy for various neurological disorders, including traumatic brain injury (TBI). The expression of nerve growth factor (NGF) and its receptors TrkA, p75NTR and α9β1 integrin on an HUCB CD45+ pan-hematopoietic subpopulation was investigated in the context of its neurotherapeutic potential after TBI. METHODS NGF and its receptors were detected on CD45+ cells by reverse transcriptase polymerase chain reaction, flow cytometry analysis and confocal microscopy. CD45+ cells were stimulated by TBI brain extracts, and NGF levels were measured by enzyme-linked immunosorbent assay. TBI mice were divided into six groups for xenogeneic intravenous transplantation, 1 day post-trauma, with 1 × 106 CD45+ cells untreated or treated with the anti-NGF neutralizing antibody K252a, a TrkA antagonist; VLO5, an α9β1 disintegrin; or negative (vehicle) and positive (NGF) controls. RESULTS The HUCB CD45+ subpopulation constitutively expresses NGF and its receptors, mainly TrkA and p75NTR and minor levels of α9β1. In vitro experiments provided evidence that trauma-related mediators from brain extracts of TBI mice induced release of NGF from HUCB CD45+ cell cultures. HUCB CD45+ cells induced a neurotherapeutic effect in TBI mice, abrogated by cell treatment with either anti-NGF antibody or K252a, but not VLO5. CONCLUSIONS These findings strengthen the role of NGF and its TrkA receptor in the HUCB CD45+ subpopulation's neurotherapeutic effect. The presence of neurotrophin receptors in the HUCB CD45+ pan-hematopoietic subpopulation may explain the neuroprotective effect of cord blood in therapy of a variety of neurological disorders.
Collapse
Affiliation(s)
- Galit Gincberg
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Shohami
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Victoria Trembovler
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander G Alexandrovich
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Uriel Elchalal
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
21
|
Zhang S, Zhao E, Winkelstein BA. A Nociceptive Role for Integrin Signaling in Pain After Mechanical Injury to the Spinal Facet Capsular Ligament. Ann Biomed Eng 2017; 45:2813-2825. [PMID: 28924864 PMCID: PMC5693676 DOI: 10.1007/s10439-017-1917-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/01/2017] [Indexed: 12/17/2022]
Abstract
Integrins modulate chemically-induced nociception in a variety of inflammatory and neuropathic pain models. Yet, the role of integrins in mechanically-induced pain remains undefined, despite its well-known involvement in cell adhesion and mechanotransduction. Excessive spinal facet capsular ligament stretch is a common injury that induces morphological and functional changes in its innervating afferent neurons and can lead to pain. However, the local mechanisms underlying the translation from tissue deformation to pain signaling are unclear, impeding effective treatment. Therefore, the involvement of the integrin subunit β1 in pain signaling from facet injury was investigated in complementary in vivo and in vitro studies. An anatomical study in the rat identified expression of the integrin subunit β1 in dorsal root ganglion (DRG) neurons innervating the facet, with greater expression in peptidergic than non-peptidergic DRG neurons. Painful facet capsule stretch in the rat upregulated the integrin subunit β1 in small- and medium-diameter DRG neurons at day 7. Inhibiting the α2β1 integrin in a DRG-collagen culture prior to its stretch injury prevented strain-induced increases in axonal substance P (SP) in a dose-dependent manner. Together, these findings suggest that integrin subunit β1-dependent pathways may contribute to SP-mediated pain from mechanical injury of the facet capsular ligament.
Collapse
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA
| | - Ethan Zhao
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd St, Philadelphia, PA, 19104-6321, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
22
|
The role of α9β1 integrin and its ligands in the development of autoimmune diseases. J Cell Commun Signal 2017; 12:333-342. [PMID: 28975544 DOI: 10.1007/s12079-017-0413-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.
Collapse
|
23
|
Samuelov L, Li Q, Bochner R, Najor NA, Albrecht L, Malchin N, Goldsmith T, Grafi-Cohen M, Vodo D, Fainberg G, Meilik B, Goldberg I, Warshauer E, Rogers T, Edie S, Ishida-Yamamoto A, Burzenski L, Erez N, Murray SA, Irvine AD, Shultz L, Green KJ, Uitto J, Sprecher E, Sarig O. SVEP1 plays a crucial role in epidermal differentiation. Exp Dermatol 2017; 26:423-430. [PMID: 27892606 PMCID: PMC5543306 DOI: 10.1111/exd.13256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
SVEP1 is a recently identified multidomain cell adhesion protein, homologous to the mouse polydom protein, which has been shown to mediate cell-cell adhesion in an integrin-dependent manner in osteogenic cells. In this study, we characterized SVEP1 function in the epidermis. SVEP1 was found by qRT-PCR to be ubiquitously expressed in human tissues, including the skin. Confocal microscopy revealed that SVEP1 is normally mostly expressed in the cytoplasm of basal and suprabasal epidermal cells. Downregulation of SVEP1 expression in primary keratinocytes resulted in decreased expression of major epidermal differentiation markers. Similarly, SVEP1 downregulation was associated with disturbed differentiation and marked epidermal acanthosis in three-dimensional skin equivalents. In contrast, the dispase assay failed to demonstrate significant differences in adhesion between keratinocytes expressing normal vs low levels of SVEP1. Homozygous Svep1 knockout mice were embryonic lethal. Thus, to assess the importance of SVEP1 for normal skin homoeostasis in vivo, we downregulated SVEP1 in zebrafish embryos with a Svep1-specific splice morpholino. Scanning electron microscopy revealed a rugged epidermis with perturbed microridge formation in the centre of the keratinocytes of morphant larvae. Transmission electron microscopy analysis demonstrated abnormal epidermal cell-cell adhesion with disadhesion between cells in Svep1-deficient morphant larvae compared to controls. In summary, our results indicate that SVEP1 plays a critical role during epidermal differentiation.
Collapse
Affiliation(s)
- Liat Samuelov
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ron Bochner
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nicole A Najor
- Departments of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Albrecht
- Departments of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Natalia Malchin
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tomer Goldsmith
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Meital Grafi-Cohen
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Vodo
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gilad Fainberg
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Benjamin Meilik
- Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilan Goldberg
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Emily Warshauer
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tova Rogers
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sarah Edie
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | - Noam Erez
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Alan D Irvine
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | | | - Kathleen J Green
- Departments of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
24
|
Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 2017; 151:1-15. [PMID: 28112808 PMCID: PMC5382350 DOI: 10.1111/imm.12717] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 12/13/2022] Open
Abstract
Neurotrophic factors comprise a broad family of biomolecules - most of which are peptides or small proteins - that support the growth, survival and differentiation of both developing and mature neurons. The prototypical example and best-characterized neurotrophic factor is nerve growth factor (NGF), which is widely recognized as a target-derived factor responsible for the survival and maintenance of the phenotype of specific subsets of peripheral neurons and basal forebrain cholinergic nuclei during development and maturation. In addition to being active in a wide array of non-nervous system cells, NGF is also synthesized by a range of cell types not considered as classical targets for innervation by NGF-dependent neurons; these include cells of the immune-haematopoietic lineage and populations in the brain involved in neuroendocrine functions. NGF concentrations are elevated in numerous inflammatory and autoimmune states such as multiple sclerosis, chronic arthritis, systemic lupus erythematosus and mastocytosis, in conjunction with increased accumulation of mast cells. Intriguingly, NGF seems to be linked also with diabetic pathology and insulin homeostasis. Mast cells and NGF appear involved in neuroimmune interactions and tissue inflammation. As mast cells are capable of producing and responding to NGF, this suggests that alterations in mast cell behaviour could provoke maladaptive neuroimmune tissue responses, including those of an autoimmune nature. Moreover, NGF exerts a modulatory role on sensory nociceptive nerve physiology in the adult, which appears to correlate with hyperalgesic phenomena occurring in tissue inflammation. NGF can therefore be viewed as a multifactorial modulator of neuro-immune-endocrine functions.
Collapse
Affiliation(s)
- Stephen D. Skaper
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
| |
Collapse
|
25
|
Zhang Z, Zhang Y, Zhou Z, Shi H, Qiu X, Xiong J, Chen Y. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep 2017; 15:1362-1367. [PMID: 28098876 DOI: 10.3892/mmr.2017.6110] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Brain‑derived neurotrophic factor (BDNF), a member of the neurotropic family, is expressed in osteoblast‑like cells of a fracture callus, however, its role in fracture healing remains to be fully elucidated. Osteoblasts isolated from Sprague Dawley rats were stimulated by BDNF in a dose‑ and time‑dependent manner. Immunoblotting and immunofluorescence was used to detect the expression and distribution of targeted proteins. The concentration of vascular endothelial growth factor (VEGF) released in medium was determined using an ELISA. PD98059 and K252a were used to investigate the signaling pathways that may be involved. The present study demonstrated that BDNF was involved in fracture repair by controlling the expression and secretion of VEGF from osteoblasts, which predominantly drives angiogenesis during fracture healing. Tropomyosin‑related kinase B (TrkB), the specific receptor of BDNF, was shown to be expressed at high levels in the osteoblasts. Following BDNF stimulation, TrkB and extracellular signal‑regulated kinase 1/2 (ERK1/2) were rapidly activated. The inhibition of TrkB by K252a decreased the expression and secretion of VEGF, and suppressed the phosphorylation level of ERK1/2. PD98059, an antagonist of ERK1/2, elicited the same effects on VEGF from the BDNF‑stimulated osteoblasts, however, it did not affect the phosphorylation of TrkB. In conclusion, during fracture healing, BDNF was found to stimulate the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Zitao Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yan Zhang
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengnan Zhou
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hongfei Shi
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xusheng Qiu
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jin Xiong
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yixin Chen
- Department of Orthopedics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
26
|
Geron M, Kumar R, Matzner H, Lahiani A, Gincberg G, Cohen G, Lazarovici P, Priel A. Protein toxins of the Echis coloratus viper venom directly activate TRPV1. Biochim Biophys Acta Gen Subj 2017; 1861:615-623. [PMID: 28063984 DOI: 10.1016/j.bbagen.2017.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/13/2016] [Accepted: 01/03/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Peptide and protein toxins are essential tools to dissect and probe the biology of their target receptors. Venoms target vital physiological processes to evoke pain. Snake venoms contain various factors with the ability to evoke, enhance and sustain pain sensation. While a number of venom-derived toxins were shown to directly target TRPV1 channels expressed on somatosensory nerve terminals to evoke pain response, such toxins were yet to be identified in snake venoms. METHODS We screened Echis coloratus saw-scaled viper venom's protein fractions isolated by reversed phase HPLC for their ability to activate TRPV1 channels. To this end, we employed heterologous systems to analyze TRPV1 and NGF pathways by imaging and electrophysiology, combined with molecular biology, biochemical, and pharmacological tools. RESULTS We identified TRPV1 activating proteins in the venom of Echis coloratus that produce a channel-dependent increase in intracellular calcium and outwardly rectifying currents in neurons and heterologous systems. Interestingly, channel activation was not mediated by any of its known toxin binding sites. Moreover, although NGF neurotropic activity was detected in this venom, TRPV1 activation was independent of NGF receptors. CONCLUSIONS Echis coloratus venom contains proteins with the ability to directly activate TRPV1. This activity is independent of the NGF pathway and is not mediated by known TRPV1 toxins' binding sites. GENERAL SIGNIFICANCE Our results could facilitate the discovery of new toxins targeting TRPV1 to enhance current understanding of this receptor activation mechanism. Furthermore, the findings of this study provide insight into the mechanism through which snakes' venom elicit pain.
Collapse
Affiliation(s)
- Matan Geron
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Rakesh Kumar
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Henry Matzner
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Adi Lahiani
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Galit Gincberg
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gadi Cohen
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Philip Lazarovici
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Avi Priel
- Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
27
|
Quintiliano K, Crestani T, Silveira D, Helfer VE, Rosa A, Balbueno E, Steffens D, Jotz GP, Pilger DA, Pranke P. Neural Differentiation of Mesenchymal Stem Cells on Scaffolds for Nerve Tissue Engineering Applications. Cell Reprogram 2016; 18:369-381. [DOI: 10.1089/cell.2016.0024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kerlin Quintiliano
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thayane Crestani
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Davi Silveira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Annelise Rosa
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Material Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Balbueno
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daniela Steffens
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post Graduate Program in Biological Science: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro Universitário Ritter dos Reis—UniRitter
| | - Geraldo Pereira Jotz
- Post-graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo André Pilger
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-graduate Program in Material Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post Graduate Program in Biological Science: Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Stem Cell Research Institute. Porto Alegre, Brazil
| |
Collapse
|
28
|
Cheah M, Andrews MR, Chew DJ, Moloney EB, Verhaagen J, Fässler R, Fawcett JW. Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord. J Neurosci 2016; 36:7283-97. [PMID: 27383601 PMCID: PMC4938867 DOI: 10.1523/jneurosci.0901-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/30/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED After CNS injury, axon regeneration is blocked by an inhibitory environment consisting of the highly upregulated tenascin-C and chondroitin sulfate proteoglycans (CSPGs). Tenascin-C promotes growth of axons if they express a tenascin-binding integrin, particularly α9β1. Additionally, integrins can be inactivated by CSPGs, and this inhibition can be overcome by the presence of a β1-binding integrin activator, kindlin-1. We examined the synergistic effect of α9 integrin and kindlin-1 on sensory axon regeneration in adult rat spinal cord after dorsal root crush and adeno-associated virus transgene expression in dorsal root ganglia. After 12 weeks, axons from C6-C7 dorsal root ganglia regenerated through the tenascin-C-rich dorsal root entry zone into the dorsal column up to C1 level and above (>25 mm axon length) through a normal pathway. Animals also showed anatomical and electrophysiological evidence of reconnection to the dorsal horn and behavioral recovery in mechanical pressure, thermal pain, and ladder-walking tasks. Expression of α9 integrin or kindlin-1 alone promoted much less regeneration and recovery. SIGNIFICANCE STATEMENT The study demonstrates that long-distance sensory axon regeneration over a normal pathway and with sensory and sensory-motor recovery can be achieved. This was achieved by expressing an integrin that recognizes tenascin-C, one of the components of glial scar tissue, and an integrin activator. This enabled extensive long-distance (>25 mm) regeneration of both myelinated and unmyelinated sensory axons with topographically correct connections in the spinal cord. The extent of growth and recovery we have seen would probably be clinically significant. Restoration of sensation to hands, perineum, and genitalia would be a significant improvement for a spinal cord-injured patient.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Melissa R Andrews
- School of Medicine, University of St. Andrews, St. Andrews KY16 9TF, United Kingdom,
| | - Daniel J Chew
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Elizabeth B Moloney
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands, and
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands, and
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge CB2 0PY, United Kingdom,
| |
Collapse
|
29
|
Demir IE, Tieftrunk E, Schorn S, Friess H, Ceyhan GO. Nerve growth factor & TrkA as novel therapeutic targets in cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:37-50. [PMID: 27264679 DOI: 10.1016/j.bbcan.2016.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 05/28/2016] [Indexed: 12/11/2022]
Abstract
In the past 20years, nerve growth factor (NGF) and its receptors TrkA & p75NTR were recognized to be overexpressed in the overwhelming majority of human solid cancers. Recent studies discovered the presence of overactive TrkA signaling due to TrkA rearrangements or TrkA fusion products in frequent cancers like colorectal cancer, thyroid cancer, or acute myeloid leukemia. Thus, targeting TrkA/NGF via selective small-molecule-inhibitors or antibodies has gained enormous attention in the drug discovery sector. Clinical studies on the anti-cancer impact of NGF-blocking antibodies are likely to be accelerated after the recent removal of clinical holds on these agents by regulatory authorities. Based on these current developments, the present review provides not only a broad overview of the biological effects of NGF-TrkA-p75NTR on cancer cells and their microenvironment, but also explains why NGF and its receptors are going to evoke major interest as promising therapeutic anti-cancer targets in the coming decade.
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stephan Schorn
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
30
|
Lee S, Mattingly A, Lin A, Sacramento J, Mannent L, Castel MN, Canolle B, Delbary-Gossart S, Ferzaz B, Morganti JM, Rosi S, Ferguson AR, Manley GT, Bresnahan JC, Beattie MS. A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury. J Neuroinflammation 2016; 13:88. [PMID: 27102880 PMCID: PMC4840857 DOI: 10.1186/s12974-016-0544-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/10/2016] [Indexed: 12/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) results in long-term neurological deficits, which may be mediated in part by pro-inflammatory responses in both the injured brain and the circulation. Inflammation may be involved in the subsequent development of neurodegenerative diseases and post-injury seizures. The p75 neurotrophin receptor (p75NTR) has multiple biological functions, affecting cell survival, apoptotic cell death, axonal growth, and degeneration in pathological conditions. We recently found that EVT901, a novel piperazine derivative that inhibits p75NTR oligomerization, is neuroprotective, reduces microglial activation, and improves outcomes in two models of TBI in rats. Since TBI elicits both CNS and peripheral inflammation, we used a mouse model of TBI to examine whether EVT901 would affect peripheral immune responses and trafficking to the injured brain. Methods Cortical contusion injury (CCI)-TBI of the sensory/motor cortex was induced in C57Bl/6 wild-type mice and CCR2+/RFP heterozygote transgenic mice, followed by treatment with EVT901, a selective antagonist of p75NTR, or vehicle by i.p. injection at 4 h after injury and then daily for 7 days. Brain and blood were collected at 1 and 6 weeks after injury. Flow cytometry and histological analysis were used to determine peripheral immune responses and trafficking of peripheral immune cells into the lesion site at 1 and 6 weeks after TBI. A battery of behavioral tests administered over 6 weeks was used to evaluate neurological outcome, and stereological estimation of brain tissue volume at 6 weeks was used to assess tissue damage. Finally, multivariate principal components analysis (PCA) was used to evaluate the relationships between inflammatory events, EVT901 treatment, and neurological outcomes. Results EVT901 is neuroprotective in mouse CCI-TBI and dramatically reduced the early trafficking of CCR2+ and pro-inflammatory monocytes into the lesion site. EVT901 reduced the number of CD45highCD11b+ and CD45highF4/80+ cells in the injured brain at 6 weeks. TBI produced a significant increase in peripheral pro-inflammatory monocytes (Ly6Cint-high pro-inflammatory monocytes), and this peripheral effect was also blocked by EVT901 treatment. Further, we found that blocking p75NTR with EVT901 reduces the expansion of pro-inflammatory monocytes, and their response to LPS in vitro, supporting the idea that there is a peripheral EVT901 effect that blunts inflammation. Further, 1 week of EVT901 blocks the expansion of pro-inflammatory monocytes in the circulation after TBI, reduces the number of multiple subsets of pro-inflammatory monocytes that enter the injury site at 1 and 6 weeks post-injury, and is neuroprotective, as it was in the rat. Conclusions Together, these findings suggest that p75NTR signaling participates in the production of the peripheral pro-inflammatory response to CNS injury and implicates p75NTR as a part of the pro-inflammatory cascade. Thus, the neuroprotective effects of p75NTR antagonists might be due to a combination of central and peripheral effects, and p75NTR may play a role in the production of peripheral inflammation in addition to its many other biological roles. Thus, p75NTR may be a therapeutic target in human TBI. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0544-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sangmi Lee
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Aaron Mattingly
- Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA
| | - Amity Lin
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Jeffrey Sacramento
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Leda Mannent
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | - Marie-Noelle Castel
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | - Benoit Canolle
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | | | - Badia Ferzaz
- Early to Candidate, Sanofi Research, 195 route d'Espagne, Chilly-Mazarin, France
| | - Josh M Morganti
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Susanna Rosi
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA.,Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA.,Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Jacqueline C Bresnahan
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA
| | - Michael S Beattie
- Department of Neurological Surgery, Brain and Spinal Injury Center, University of California at San Francisco, Box 0899, 1001 Potrero Ave, Bldg 1, Rm 101, San Francisco, CA, 94143-0899, USA. .,Biomedical Science Graduate Program, University of California at San Francisco, San Francisco, CA, 94143-0899, USA.
| |
Collapse
|
31
|
Ventresca EM, Lecht S, Jakubowski P, Chiaverelli RA, Weaver M, Del Valle L, Ettinger K, Gincberg G, Priel A, Braiman A, Lazarovici P, Lelkes PI, Marcinkiewicz C. Association of p75(NTR) and α9β1 integrin modulates NGF-dependent cellular responses. Cell Signal 2015; 27:1225-36. [PMID: 25748048 DOI: 10.1016/j.cellsig.2015.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 01/10/2023]
Abstract
Direct interaction of α9β1 integrin with nerve growth factor (NGF) has been previously reported to induce pro-proliferative and pro-survival activities of non-neuronal cells. We investigated participation of p75(NTR) in α9β1 integrin-dependent cellular response to NGF stimulation. Using selective transfection of glioma cell lines with these receptors, we showed a strong, cation-independent association of α9 integrin subunit with p75(NTR) on the cellular membrane by selective immunoprecipitation experiments. The presence of the α9/p75(NTR) complex increases NGF-dependent cell adhesion, proliferation and migration. Other integrin subunits including β1 were not found in complex with p75(NTR). FRET analysis indicated that p75(NTR) and α9 integrin subunit are not closely associated through their cytoplasmic domains, most probably because of the molecular interference with other cytoplasmic proteins such as paxillin. Interaction of α9β1 integrin with another ligand, VCAM-1 was not modulated by the p75(NTR). α9/p75(NTR) complex elevated NGF-dependent activation of MAPK Erk1/2 arty for integrin that may create active complexes with other types of receptors belonging to the TNF superfamily.
Collapse
Affiliation(s)
- Erin M Ventresca
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Shimon Lecht
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Piotr Jakubowski
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | | - Michael Weaver
- Department of Neurosurgery, Temple University Hospital, Philadelphia, PA, USA
| | - Luis Del Valle
- Department of Medicine and Pathology, Stanley Scott Cancer Center, Louisiana State University, New Orleans, LA, USA
| | - Keren Ettinger
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Gincberg
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Priel
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, The Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Philip Lazarovici
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA; School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Duval C, Zaniolo K, Leclerc S, Salesse C, Guérin SL. Characterization of the human α9 integrin subunit gene: Promoter analysis and transcriptional regulation in ocular cells. Exp Eye Res 2015; 135:146-63. [PMID: 25746835 DOI: 10.1016/j.exer.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
α9β1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9β1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.
Collapse
Affiliation(s)
- Céline Duval
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Karine Zaniolo
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Steeve Leclerc
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Christian Salesse
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
33
|
Broom L, Jenner P, Rose S. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity. Exp Neurol 2014; 263:1-7. [PMID: 25218309 DOI: 10.1016/j.expneurol.2014.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/13/2023]
Abstract
The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation.
Collapse
Affiliation(s)
- Lauren Broom
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK.
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK
| | - Sarah Rose
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, London, SE1 1UL, UK
| |
Collapse
|
34
|
Sarchielli E, Marini M, Ambrosini S, Peri A, Mazzanti B, Pinzani P, Barletta E, Ballerini L, Paternostro F, Paganini M, Porfirio B, Morelli A, Gallina P, Vannelli GB. Multifaceted roles of BDNF and FGF2 in human striatal primordium development. An in vitro study. Exp Neurol 2014; 257:130-47. [PMID: 24792640 DOI: 10.1016/j.expneurol.2014.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 04/17/2014] [Accepted: 04/23/2014] [Indexed: 12/24/2022]
Abstract
Grafting fetal striatal cells into the brain of Huntington's disease (HD) patients has raised certain expectations in the past decade as an effective cell-based-therapy for this devastating condition. We argue that the first requirement for successful transplantation is defining the window of plasticity for the striatum during development when the progenitor cells, isolated from their environment, are able to maintain regional-specific-identity and to respond appropriately to cues. The primary cell culture from human fetal striatal primordium described here consists of a mixed population of neural stem cells, neuronal-restricted progenitors and striatal neurons. These cells express trophic factors, such as BDNF and FGF2. We show that these neurotrophins maintain cell plasticity, inducing the expression of neuronal precursor markers and cell adhesion molecules, as well as promoting neurogenesis, migration and survival. We propose that BDNF and FGF2 play an important autocrine-paracrine role during early striatum development in vivo and that their release by fetal striatal grafts may be relevant in the setting of HD cell therapy.
Collapse
Affiliation(s)
- Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefano Ambrosini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Peri
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Lara Ballerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Paganini
- Department of Neuroscience and NEUROFARBA, University of Florence, Florence, Italy
| | - Berardino Porfirio
- Department of Experimental and Clinical Biomedical Science "Mario Serio", University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pasquale Gallina
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Gabriella B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
35
|
Crosstalk between Fibroblast Growth Factor (FGF) Receptor and Integrin through Direct Integrin Binding to FGF and Resulting Integrin-FGF-FGFR Ternary Complex Formation. Med Sci (Basel) 2013. [DOI: 10.3390/medsci1010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
36
|
Applications of snake venom components to modulate integrin activities in cell-matrix interactions. Int J Biochem Cell Biol 2013; 45:1974-86. [PMID: 23811033 DOI: 10.1016/j.biocel.2013.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 01/23/2023]
Abstract
Snake venom proteins are broadly investigated in the different areas of life science. Direct interaction of these compounds with cells may involve a variety of mechanisms that result in diverse cellular responses leading to the activation or blocking of physiological functions of the cell. In this review, the snake venom components interacting with integrins will be characterized in context of their effect on cellular response. Currently, two major families of snake venom proteins are considered as integrin-binding molecules. The most attention has been devoted to the disintegrin family, which binds certain types of integrins through specific motifs recognized as a tri-peptide structurally localized on an integrin-binding loop. Other snake venom integrin-binding proteins belong to the C-type lectin family. Snake venom molecules bind to the cellular integrins resulting in a modulation of cell signaling and in consequence, the regulation of cell proliferation, migration and apoptosis. Therefore, snake venom research on the integrin-binding molecules may have significance in biomedicine and basic cell biology.
Collapse
|
37
|
Secolin R, Banzato CEM, Mella LFB, Santos ML, Dalgalarrondo P, Lopes-Cendes I. Refinement of chromosome 3p22.3 region and identification of a susceptibility gene for bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet 2013; 162B:163-8. [PMID: 23280964 DOI: 10.1002/ajmg.b.32127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/07/2012] [Indexed: 12/24/2022]
Abstract
Genome-wide association studies and meta-analysis, as well as our own previous family-based association results, have pointed to chromosome (ch) 3p22.3 and 3p21.1 as candidate regions to contain a susceptibility gene for bipolar affective disorder (BPAD). In the present study, we further refined the region of interest on ch 3p22.3. We genotyped 94 SNPs within the candidate region in 74 families and performed family-based association analysis using a transmission disequilibrium test. One single SNP (rs166508) was associated with the BPAD phenotype (P = 0.0187). This SNP is located within intron 15 of the integrin alpha 9 (ITGA9) gene. ITGA9 encodes the α9 subunit of the α9β1 integrin, a membrane glycoprotein receptor for neurotrophins, such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Quantification of ITGA9 transcripts in the peripheral blood of patients with BPAD and controls showed an upregulation of ITGA9 (Kruskal-Wallis P = 0.0339) in patients with the disease-associated genotype (rs166508*A/A), compared to those with rs166508*G/G and rs166508*G/A genotypes. Sequencing of the ITGA9 cDNA revealed a sequence variant (r.1689_1839del) in rs166508*A carriers, which leads to loss of the entire exon 16. In silico analysis revealed that the deleted region contains three putative microRNA binding sites, which may be involved in the negative regulation of ITGA9. In conclusion, our results confirm previous evidence pointing to a candidate region for BPAD on ch 3p.22.3. In addition, we suggest a molecular substrate that could explain the increase of ITGA9 mRNA levels in probands with BPAD, proposing a new mechanism that could be involved in the genetic susceptibility to the disease.
Collapse
Affiliation(s)
- Rodrigo Secolin
- Department of Medical Genetics, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Ettinger K, Lecht S, Arien-Zakay H, Cohen G, Aga-Mizrachi S, Yanay N, Saragovi HU, Nedev H, Marcinkiewicz C, Nevo Y, Lazarovici P. Nerve growth factor stimulation of ERK1/2 phosphorylation requires both p75NTR and α9β1 integrin and confers myoprotection towards ischemia in C2C12 skeletal muscle cell model. Cell Signal 2012; 24:2378-88. [PMID: 22960610 DOI: 10.1016/j.cellsig.2012.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/06/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023]
Abstract
The functions of nerve growth factor (NGF) in skeletal muscles physiology and pathology are not clear and call for an updated investigation. To achieve this goal we sought to investigate NGF-induced ERK1/2 phosphorylation and its role in the C2C12 skeletal muscle myoblasts and myotubes. RT-PCR and western blotting experiments demonstrated expression of p75(NTR), α9β1 integrin, and its regulator ADAM12, but not trkA in the cells, as also found in gastrocnemius and quadriceps mice muscles. Both proNGF and βNGF induced ERK1/2 phosphorylation, a process blocked by (a) the specific MEK inhibitor, PD98059; (b) VLO5, a MLD-disintegrin with relative selectivity towards α9β1 integrin; and (c) p75(NTR) antagonists Thx-B and LM-24, but not the inactive control molecule backbone Thx. Upon treatment for 4 days with either anti-NGF antibody or VLO5 or Thx-B, the proliferation of myoblasts was decreased by 60-70%, 85-90% and 60-80% respectively, indicative of trophic effect of NGF which was autocrinically released by the cells. Exposure of myotubes to ischemic insult in the presence of βNGF, added either 1h before oxygen-glucose-deprivation or concomitant with reoxygenation insults, resulted with about 20% and 33% myoprotection, an effect antagonized by VLO5 and Thx-B, further supporting the trophic role of NGF in C2C12 cells. Cumulatively, the present findings propose that proNGF and βNGF-induced ERK1/2 phosphorylation in C2C12 cells by functional cooperation between p75(NTR) and α9β1 integrin, which are involved in myoprotective effects of autocrine released NGF. Furthermore, the present study establishes an important trophic role of α9β1 in NGF-induced signaling in skeletal muscle model, resembling the role of trkA in neurons. Future molecular characterization of the interactions between NGF receptors in the skeletal muscle will contribute to the understanding of NGF mechanism of action and may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Keren Ettinger
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Grondona JM, Hoyo-Becerra C, Visser R, Fernández-Llebrez P, López-Ávalos MD. The subcommissural organ and the development of the posterior commissure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 296:63-137. [PMID: 22559938 DOI: 10.1016/b978-0-12-394307-1.00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Growing axons navigate through the developing brain by means of axon guidance molecules. Intermediate targets producing such signal molecules are used as guideposts to find distal targets. Glial, and sometimes neuronal, midline structures represent intermediate targets when axons cross the midline to reach the contralateral hemisphere. The subcommissural organ (SCO), a specialized neuroepithelium located at the dorsal midline underneath the posterior commissure, releases SCO-spondin, a large glycoprotein belonging to the thrombospondin superfamily that shares molecular domains with axonal pathfinding molecules. Several evidences suggest that the SCO could be involved in the development of the PC. First, both structures display a close spatiotemporal relationship. Second, certain mutants lacking an SCO present an abnormal PC. Third, some axonal guidance molecules are expressed by SCO cells. Finally, SCO cells, the Reissner's fiber (the aggregated form of SCO-spondin), or synthetic peptides from SCO-spondin affect the neurite outgrowth or neuronal aggregation in vitro.
Collapse
Affiliation(s)
- Jesús M Grondona
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | | | |
Collapse
|
40
|
Sato-Nishiuchi R, Nakano I, Ozawa A, Sato Y, Takeichi M, Kiyozumi D, Yamazaki K, Yasunaga T, Futaki S, Sekiguchi K. Polydom/SVEP1 is a ligand for integrin α9β1. J Biol Chem 2012; 287:25615-30. [PMID: 22654117 DOI: 10.1074/jbc.m112.355016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of proteins, including tenascin-C and osteopontin, have been identified as ligands for integrin α9β1. However, their affinities for integrin α9β1 are apparently much lower than those of other integrins (e.g. α3β1, α5β1, and α8β1) for their specific ligands, leaving the possibility that physiological ligands for integrin α9β1 still remain unidentified. In this study, we found that polydom (also named SVEP1) mediates cell adhesion in an integrin α9β1-dependent manner and binds directly to recombinant integrin α9β1 with an affinity that far exceeds those of the known ligands. Using a series of recombinant polydom proteins with N-terminal deletions, we mapped the integrin-binding site to the 21st complement control protein domain. Alanine-scanning mutagenesis revealed that the EDDMMEVPY sequence (amino acids 2636-2644) in the 21st complement control protein domain was involved in the binding to integrin α9β1 and that Glu(2641) was the critical acidic residue for the integrin binding. The importance of this sequence was further confirmed by integrin binding inhibition assays using synthetic peptides. Immunohistochemical analyses of mouse embryonic tissues showed that polydom colocalized with integrin α9 in the stomach, intestine, and other organs. Furthermore, in situ integrin α9β1 binding assays using frozen mouse tissues showed that polydom accounts for most, but not all, of the integrin α9β1 ligands in tissues. Taken together, the present findings indicate that polydom is a hitherto unknown ligand for integrin α9β1 that functions as a physiological ligand in vivo.
Collapse
|
41
|
Walsh EM, Kim R, Del Valle L, Weaver M, Sheffield J, Lazarovici P, Marcinkiewicz C. Importance of interaction between nerve growth factor and α9β1 integrin in glial tumor angiogenesis. Neuro Oncol 2012; 14:890-901. [PMID: 22611032 DOI: 10.1093/neuonc/nos119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NGF is a growth factor for which the role in the promotion of angiogenesis is still not completely understood. We found that NGF promotes the pathological neovascularization process in glioma through a direct interaction with α9β1 integrin, which is up-regulated on microvascular endothelial cells in cancer tissue. We propagated gHMVEC primary cells using a new method of immune-selection, and these cells demonstrated α9β1 integrin-dependent binding of NGF in a cell adhesion assay. Moreover, NGF induced gHMVEC proliferation and chemotaxis inhibited by specific blockers of α9β1 integrin, such as MLD-disintegrins and monoclonal antibody Y9A2. A Matrigel tube formation assay revealed that NGF significantly increased capillary-like growth from gHMVEC to a level comparable to treatment with VEGF. The snake venom disintegrin, VLO5, inhibited the agonistic effect of both growth factors, whereas the effect of Y9A2 was not statistically significant. Angiogenesis exogenously induced by NGF was also α9β1-integrin dependent in an embryonic quail CAM system. However, angiogenesis pathologically induced by developing glioma in this system was only sensitive for inhibition with MLD-disintegrin, suggesting a more complex effect of cancer cells on the neovascularization process. The anti-angiogenic effect of MLD-disintegrins is probably related to their pro-apoptotic ability induced in activated tumoral endothelial cells. Therefore, the molecular basis of these disintegrins may be useful for developing new angiostatic pharmaceuticals for application in cancer therapy.
Collapse
Affiliation(s)
- Erin M Walsh
- Department of Biology Temple University Hospital, Philadelphia, PA 19122, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Høye AM, Couchman JR, Wewer UM, Fukami K, Yoneda A. The newcomer in the integrin family: integrin α9 in biology and cancer. Adv Biol Regul 2012; 52:326-339. [PMID: 22781746 DOI: 10.1016/j.jbior.2012.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 06/01/2023]
Abstract
Integrins are heterodimeric transmembrane receptors regulating cell-cell and cell-extracellular matrix interactions. Of the 24 integrin heterodimers identified in humans, α9β1 integrin is one of the least studied. α9, together with α4, comprise a more recent evolutionary sub-family of integrins that is only found in vertebrates. Since α9 was thought to have similar functions as α4, due to many shared ligands, it was a rather overlooked integrin until recently, when its importance for survival after birth was highlighted upon investigation of the α9 knockout mouse. α9β1 is expressed on a wide variety of cell types, interacts with many ligands for example fibronectin, tenascin-C and ADAM12, and has been shown to have important functions in processes such as cell adhesion and migration, lung development, lymphatic and venous valve development, and in wound healing. This has sparked an interest to investigate α9β1-mediated signaling and its regulation. This review gives an overview of the recent progress in α9β1-mediated biological and pathological processes, and discusses its potential as a target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Anette M Høye
- Department of Biomedical Sciences, The Faculty of Health and Medical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | | | | | | | | |
Collapse
|
43
|
Olsen AL, Sackey BK, Marcinkiewicz C, Boettiger D, Wells RG. Fibronectin extra domain-A promotes hepatic stellate cell motility but not differentiation into myofibroblasts. Gastroenterology 2012; 142:928-937.e3. [PMID: 22202457 PMCID: PMC3321084 DOI: 10.1053/j.gastro.2011.12.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 11/29/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Myofibroblasts are the primary cell type involved in physiologic wound healing and its pathologic counterpart, fibrosis. Cellular fibronectin that contains the alternatively spliced extra domain A (EIIIA) is up-regulated during these processes and is believed to promote myofibroblast differentiation. We sought to determine the requirement for EIIIA in fibrosis and differentiation of myofibroblasts in rodent livers. METHODS We used a mechanically tunable hydrogel cell culture system to study differentiation of primary hepatic stellate cells and portal fibroblasts from rats into myofibroblasts. Liver fibrosis was induced in mice by bile duct ligation or administration of thioacetamide. RESULTS EIIIA was not required for differentiation of rat hepatic stellate cells or portal fibroblasts into fibrogenic myofibroblasts. Instead, hepatic stellate cells cultured on EIIIA-containing cellular fibronectin formed increased numbers of lamellipodia; their random motility and chemotaxis also increased. These increases required the receptor for EIIIA, the integrin α(9)β(1). In contrast, the motility of portal fibroblasts did not increase on EIIIA, and these cells expressed little α(9)β(1). Male EIIIA(-/-) mice were modestly protected from thioacetamide-induced fibrosis, which requires motile hepatic stellate cells, but not from bile duct ligation-induced fibrosis, in which portal fibroblasts are more important. Notably, myofibroblasts developed during induction of fibrosis with either thioacetamide or bile duct ligation in EIIIA(-/-) mice. CONCLUSIONS EIIIA is dispensable for differentiation of hepatic stellate cells and portal fibroblasts to myofibroblasts, both in culture and in mouse models of fibrosis. Our findings, however, indicate a role for EIIIA in promoting stellate cell motility and parenchymal liver fibrosis.
Collapse
Affiliation(s)
- Abby L. Olsen
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Bridget K. Sackey
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | | | - David Boettiger
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Rebecca G. Wells
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
44
|
Murase S, McKay RD. Matrix metalloproteinase-9 regulates survival of neurons in newborn hippocampus. J Biol Chem 2012; 287:12184-94. [PMID: 22351756 DOI: 10.1074/jbc.m111.297671] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The number of neurons in the adult rodent brain is strongly influenced by events in early postnatal life that eliminate approximately half of the neurons. Recently, we reported that neurotrophins induced survival of neonatal rat hippocampal neurons by promoting neural activity and activation of the Ser/Thr kinase, Akt. The survival of neurons also depended on integrin signaling, but a role for the extracellular matrix (ECM) in this mechanism was yet to be explored. Here, we show that levels of the matrix metalloproteinase-9 (MMP9) decrease, and the level of the ECM protein laminin increases in rat hippocampus during the period of neuronal death. Hippocampi from MMP9 null mice showed higher levels of laminin expression than wild type at P1 and no further increase at P10. In vitro, the matrix metalloproteinase inhibitor FN-439 promoted survival of neurons in a laminin-integrin β1-dependent manner. Blocking laminin signaling attenuated activation of Akt by depolarization. In vivo, injecting FN-439 into the neonatal hippocampus increased the level of laminin and promoted neuronal survival through an integrin-dependent mechanism. These results show signals from the ECM are not simply permissive but rather actively regulated, and they interact with neuronal activity to control the number of hippocampal neurons. This work is the first to report a role for MMP9 in regulating neuronal survival through the developmental process that establishes the functional brain.
Collapse
Affiliation(s)
- Sachiko Murase
- Laboratory of Molecular Biology, NINDS, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
45
|
Mostovich LA, Prudnikova TY, Kondratov AG, Loginova D, Vavilov PV, Rykova VI, Sidorov SV, Pavlova TV, Kashuba VI, Zabarovsky ER, Grigorieva EV. Integrin alpha9 (ITGA9) expression and epigenetic silencing in human breast tumors. Cell Adh Migr 2012; 5:395-401. [PMID: 21975548 DOI: 10.4161/cam.5.5.17949] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Integrin alpha9 (ITGA9) is one of the less studied integrin subunits that facilitates accelerated cell migration and regulates diverse biological functions such as angiogenesis, lymphangiogenesis, cancer cell proliferation and migration. In this work, integrin alpha9 expression and its epigenetic regulation in normal human breast tissue, primary breast tumors and breast cancer cell line MCF7 were studied. It was shown that integrin alpha9 is expressed in normal human breast tissue. In breast cancer, ITGA9 expression was downregulated or lost in 44% of tumors while another 45% of tumors showed normal or increased ITGA9 expression level (possible aberrations in the ITGA9 mRNA structure were supposed in 11% of tumors). Methylation of ITGA9 CpG-island located in the first intron of the gene was shown in 90% of the breast tumors with the decreased ITGA9 expression while no methylation at 5'-untranslated region of ITGA9 was observed. 5-aza-dC treatment restored integrin alpha9 expression in ITGA9-negative MCF7 breast carcinoma cells, Trichostatin A treatment did not influenced it but a combined treatment of the cells with 5-aza-dC/Trichostatin A doubled the ITGA9 activation. The obtained results suggest CpG methylation as a major mechanism of integrin alpha9 inactivation in breast cancer with a possible involvement of other yet unidentified molecular pathways.
Collapse
|
46
|
Myers JP, Santiago-Medina M, Gomez TM. Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 2011; 71:901-23. [PMID: 21714101 PMCID: PMC3192254 DOI: 10.1002/dneu.20931] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing neurons use a combination of guidance cues to assemble a functional neural network. A variety of proteins immobilized within the extracellular matrix (ECM) provide specific binding sites for integrin receptors on neurons. Integrin receptors on growth cones associate with a number of cytosolic adaptor and signaling proteins that regulate cytoskeletal dynamics and cell adhesion. Recent evidence suggests that soluble growth factors and classic axon guidance cues may direct axon pathfinding by controlling integrin-based adhesion. Moreover, because classic axon guidance cues themselves are immobilized within the ECM and integrins modulate cellular responses to many axon guidance cues, interactions between activated receptors modulate cell signals and adhesion. Ultimately, growth cones control axon outgrowth and pathfinding behaviors by integrating distinct biochemical signals to promote the proper assembly of the nervous system. In this review, we discuss our current understanding how ECM proteins and their associated integrin receptors control neural network formation.
Collapse
Affiliation(s)
- Jonathan P Myers
- Department of Neuroscience, Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
47
|
Walsh EM, Marcinkiewicz C. Non-RGD-containing snake venom disintegrins, functional and structural relations. Toxicon 2011; 58:355-62. [PMID: 21801741 DOI: 10.1016/j.toxicon.2011.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/25/2011] [Accepted: 07/12/2011] [Indexed: 01/16/2023]
Abstract
Snake venom disintegrins are present in a variety of species and are functionally divided into three families: RGD, MLD and R/KTS. The RGD family of disintegrins, which bind and inhibit the physiological functions of RGD-dependent integrins, constitute the largest and most investigated family. This review will be focused on characterization of two relatively new families of snake venom disintegrins, expressing in their active site MLD and R/KTS motifs. The MLD motif, present only in heterodimeric disintegrins, mediates binding of these disintegrins to α4β1, α4β7 and α9β1 integrins, whereas the presence of a KTS or RTS sequence in the active site selectively directs activity of disintegrins to the collagen receptor α1β1 integrin. Structurally, KTS-disintegrins are short, monomeric molecules containing 41 amino acids in its polypeptide chain. Biological activities of MLD and KTS-disintegrins were investigated in many systems in vitro and in vivo. Purified disintegrins are non-toxic in therapeutic doses in rodent and avian models. Their modulatory properties were observed in investigations of cancer angiogenesis and metastasis, immunosuppression of IDDM (insulin-dependent diabetes mellitus) and asthma, as well as in neurodegenerative assays and cell apoptosis.
Collapse
Affiliation(s)
- Erin M Walsh
- Temple University, College of Science and Technology, Department of Biology, Philadelphia, PA 19122, United States
| | | |
Collapse
|
48
|
Ivaska J, Heino J. Cooperation between integrins and growth factor receptors in signaling and endocytosis. Annu Rev Cell Dev Biol 2011; 27:291-320. [PMID: 21663443 DOI: 10.1146/annurev-cellbio-092910-154017] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All multicellular animals express receptors for growth factors (GFs) and extracellular matrix (ECM) molecules. Integrin-type ECM receptors anchor cells to their surroundings and concomitantly activate intracellular signal transduction pathways. The same signaling mechanisms are regulated by GF receptors (GFRs). Recently, intensive research efforts have revealed novel mechanisms describing how the two receptor systems collaborate at many different levels. Integrins can directly bind to GFs and promote their activation. Adhesion receptors also organize signaling platforms and assist GFRs or even activate them via ligand-independent mechanisms. Furthermore, integrins can orchestrate endocytosis and recycling of GFRs. Here, we review the present knowledge about the interplay between integrins and GFRs and discuss recent ideas of how this collaboration may explain some previous controversies in integrin research.
Collapse
Affiliation(s)
- Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Center of Finland, Turku FI-20520, Finland.
| | | |
Collapse
|
49
|
Murase S, Owens DF, McKay RD. In the newborn hippocampus, neurotrophin-dependent survival requires spontaneous activity and integrin signaling. J Neurosci 2011; 31:7791-800. [PMID: 21613492 PMCID: PMC3500851 DOI: 10.1523/jneurosci.0202-11.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022] Open
Abstract
The nervous system develops through a program that first produces neurons in excess and then eliminates as many as half in a specific period of early postnatal life. Neurotrophins are widely thought to regulate neuronal survival, but this role has not been clearly defined in the CNS. Here we show that neurotrophins promote survival of young neurons by promoting spontaneous activity. Survival of hippocampal neurons in neonatal rat requires spontaneous activity that depends on the excitatory action of GABA. Neurotrophins facilitate recruitment of cultured neurons into active networks, and it is this activity, combined with integrin receptor signaling, that controls neuronal survival. In vivo, neurotrophins require integrin signaling to control neuron number. These data are the first to link the early excitatory action of GABA to the developmental death period and to assign an essential role for activity in neurotrophin-mediated survival that establishes appropriate networks.
Collapse
Affiliation(s)
- Sachiko Murase
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, and
| | - David F. Owens
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Ronald D. McKay
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, and
- Lieber Institute for Brain Development, Baltimore, Maryland 21205
| |
Collapse
|
50
|
The extracellular matrix dimension of skeletal muscle development. Dev Biol 2011; 354:191-207. [PMID: 21420400 DOI: 10.1016/j.ydbio.2011.03.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/10/2011] [Accepted: 03/11/2011] [Indexed: 12/25/2022]
Abstract
Cells anchor to substrates by binding to extracellular matrix (ECM). In addition to this anchoring function however, cell-ECM binding is a mechanism for cells to sense their surroundings and to communicate and coordinate behaviour amongst themselves. Several ECM molecules and their receptors play essential roles in muscle development and maintenance. Defects in these proteins are responsible for some of the most severe muscle dystrophies at every stage of life from neonates to adults. However, recent studies have also revealed a role of cell-ECM interactions at much earlier stages of development as skeletal muscle forms. Here we review which ECM molecules are present during the early phases of myogenesis, how myogenic cells interact with the ECM that surrounds them and the potential consequences of those interactions. We conclude that cell-ECM interactions play significant roles during all stages of skeletal muscle development in the embryo and suggest that this "extracellular matrix dimension" should be added to our conceptual network of factors contributing to skeletal myogenesis.
Collapse
|