1
|
Ajonu CI, Grundy RI, Ball GR, Zafeiris D. Application of a high-throughput swarm-based deep neural network Algorithm reveals SPAG5 downregulation as a potential therapeutic target in adult AML. Funct Integr Genomics 2025; 25:8. [PMID: 39762615 PMCID: PMC11703901 DOI: 10.1007/s10142-024-01514-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Gene‒gene interactions play pivotal roles in disease pathogenesis and are fundamental in the development of targeted therapeutics, particularly through the elucidation of oncogenic gene drivers in cancer. The systematic analysis of pathways and gene interactions is critical in the drug discovery process for various cancer subtypes. SPAG5, known for its role in spindle formation during cell division, has been identified as an oncogene in several cancers, although its specific impact on AML remains underexplored. This study leverages a high-throughput swarm-based deep neural network (SDNN) and transcriptomic data-an approach that enhances predictive accuracy and robustness through collective intelligence-to augment, model, and enhance the understanding of the TP53 pathway in AML cohorts. Our integrative systems biology approach identified SPAG5 as a uniquely downregulated driver in adult AML, underscoring its potential as a novel therapeutic target. The interaction of SPAG5 with key hub genes such as MDM2 and CDK1 not only reinforces its role in tumour suppression through negative regulation but also highlights its potential in moderating the phenotypic and genomic alterations associated with AML progression. This study of the role and interaction dynamics of SPAG5 sets the stage for future research aimed at developing targeted and personalized treatment approaches for AML, utilizing the capabilities of genetic interventions.
Collapse
Affiliation(s)
- Chinyere I Ajonu
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
- Intelligent OMICS Limited, Nottingham, United Kingdom.
| | | | - Graham R Ball
- Intelligent OMICS Limited, Nottingham, United Kingdom
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, United Kingdom
| | | |
Collapse
|
2
|
Zhang X, Zhang L, Cui M, Ji S, Zhang Y, Li Q, Zhang M. SPAG5 is a potential therapeutic target affecting proliferation, apoptosis, and invasion of esophageal cancer cells. Eur J Med Res 2024; 29:596. [PMID: 39696708 DOI: 10.1186/s40001-024-02182-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Sperm-associated antigen 5 (SPAG5) is a mitotic spindle protein crucial for coordinating the separation of sister chromatids into daughter cells. Increasing evidence suggests that SPAG5 is overexpressed in various malignancies, functioning as an oncogene. However, research specifically examining SPAG5 in esophageal cancer remains limited. METHODS In this research, we leveraged bioinformatics techniques to evaluate the expression and prognostic significance of SPAG5 in a variety of cancer types. We conducted Gene Set Enrichment Analysis (GSEA) to elucidate the relationship between SPAG5 and cancer characteristics. Additionally, we investigated the correlation between SPAG5 expression and immune cell infiltration utilizing the TIMER2.0 platform. The TIDE platform was used to assess the impact of SPAG5 on the effectiveness of immunotherapy and to screen for potential therapeutic drugs. We employed qRT-PCR and immunohistochemistry staining to ascertain the expression of SPAG5 in esophageal cancer tissue. Through cellular functional experiments, we examined the influence of SPAG5 expression on the proliferation, apoptosis, invasion, and migration of esophageal cancer cells. The Pathscan Stress Signaling Antibody Array was utilized to probe the potential molecular mechanisms of SPAG5. RESULTS SPAG5 exhibits high levels of expression in various cancers, encompassing esophageal cancer, and its presence indicates an unfavorable prognosis. SPAG5 is primarily enriched in pathways associated with cellular proliferation and demonstrates a correlation with immune gene expression as well as the infiltration of immune cells. Suppression of SPAG5 expression in esophageal cancer cells not only inhibits cell proliferation, but also attenuates cell invasion and migration while inducing cellular apoptosis. The depletion of SPAG5 results in a decline in the levels of critical signaling proteins. CONCLUSION SPAG5 plays a pivotal role in esophageal cancer cell proliferation, apoptosis, and metastasis within the tumor microenvironment, making it a promising therapeutic target.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, 710021, Shaanxi, China
| | - Lingmin Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China
- Engineering Research Center of Shaanxi Universities for Innovative Services of Chronic Disease Prevention and Control and Transformation of Nutritional Functional Food, Xi'an, 710077, Shaanxi, China
| | - Shiyu Ji
- Jingbian County People's Hospital of Shaanxi Province, Yulin Shi, 718500, Shaanxi, China
| | - Yanan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China.
- Engineering Research Center of Shaanxi Universities for Innovative Services of Chronic Disease Prevention and Control and Transformation of Nutritional Functional Food, Xi'an, 710077, Shaanxi, China.
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, Shaanxi, China.
- Engineering Research Center of Shaanxi Universities for Innovative Services of Chronic Disease Prevention and Control and Transformation of Nutritional Functional Food, Xi'an, 710077, Shaanxi, China.
| |
Collapse
|
3
|
Chen YC, Kilic E, Wang E, Rossman W, Suzuki A. CENcyclopedia: Dynamic Landscape of Kinetochore Architecture Throughout the Cell Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627000. [PMID: 39677682 PMCID: PMC11643120 DOI: 10.1101/2024.12.05.627000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinetochore, an intricate macromolecular protein complex located on chromosomes, plays a pivotal role in orchestrating chromosome segregation. It functions as a versatile platform for microtubule assembly, diligently monitors microtubule binding fidelity, and acts as a force coupler. Comprising over 100 distinct proteins, many of which exist in multiple copies, the kinetochore's composition dynamically changes throughout the cell cycle, responding to specific timing and conditions. This dynamicity is important for establishing functional kinetochores, yet the regulatory mechanisms of these dynamics have largely remained elusive. In this study, we employed advanced quantitative immunofluorescence techniques to meticulously chart the dynamics of kinetochore protein levels across the cell cycle. These findings offer a comprehensive view of the dynamic landscape of kinetochore architecture, shedding light on the detailed mechanisms of microtubule interaction and the nuanced characteristics of kinetochore proteins. This study significantly advances our understanding of the molecular coordination underlying chromosome segregation.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ece Kilic
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn Wang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Will Rossman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Nasimi Shad A, Akhlaghipour I, Alshakarchi HI, Saburi E, Moghbeli M. Role of microRNA-363 during tumor progression and invasion. J Physiol Biochem 2024; 80:481-499. [PMID: 38691273 DOI: 10.1007/s13105-024-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Recent progresses in diagnostic and therapeutic methods have significantly improved prognosis in cancer patients. However, cancer is still considered as one of the main causes of human deaths in the world. Late diagnosis in advanced tumor stages can reduce the effectiveness of treatment methods and increase mortality rate of cancer patients. Therefore, investigating the molecular mechanisms of tumor progression can help to introduce the early diagnostic markers in these patients. MicroRNA (miRNAs) has an important role in regulation of pathophysiological cellular processes. Due to their high stability in body fluids, they are always used as the non-invasive markers in cancer patients. Since, miR-363 deregulation has been reported in a wide range of cancers, we discussed the role of miR-363 during tumor progression and metastasis. It has been reported that miR-363 has mainly a tumor suppressor function through the regulation of transcription factors, apoptosis, cell cycle, and structural proteins. MiR-363 also affected the tumor progression via regulation of various signaling pathways such as WNT, MAPK, TGF-β, NOTCH, and PI3K/AKT. Therefore, miR-363 can be introduced as a probable therapeutic target as well as a non-invasive diagnostic marker in cancer patients.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hawraa Ibrahim Alshakarchi
- Al-Zahra Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, Iraq
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Chen M, Wang D, Xu Y, Yang C. Upregulation of sperm-associated antigen 5 expression in endometrial carcinoma was associated with poor prognosis and immune dysregulation, and promoted cell migration and invasion. Sci Rep 2024; 14:13415. [PMID: 38862557 PMCID: PMC11166665 DOI: 10.1038/s41598-024-64354-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024] Open
Abstract
Sperm-associated antigen 5 (SPAG5) regulates cancer cell invasion and is involved in the progression of many cancers. However, the role of SPAG5 in endometrial carcinoma (EC) is still unknown. The purpose of this study was to explore the role of SPAG5 in EC and its potential molecular mechanism. The UALCAN tool and cBioPortal were used to analyze the expression and alterations of SPAG5 in EC, respectively. OncoLnc was used for survival analysis. We analyzed the effects of SPAG5 on immune cell infiltration and the expression levels of immune checkpoints. We also overexpressed and knocked down SPAG5 in EC cells to explore the effect of SPAG5 regulation on migration, invasion, apoptosis, and the cell cycle of EC cells. We found that SPAG5 was overexpressed and the SPAG5 gene was often mutated in EC. High SPAG5 expression was significantly associated with poor overall survival in patients with EC. SPAG5 also affected the level of immune cell infiltration in the TIME and the expression of immune checkpoints lymphocyte activating 3 (LAG3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) in patients with EC. It may also be involved in the immunotherapy response in these patients. In vitro experiments showed that SPAG5 promotes cancer cell migration and invasion. In conclusion, this study lays the foundation for further understanding the molecular mechanisms of EC involving SPAG5 and contributes to diagnosing and managing this disease.
Collapse
Affiliation(s)
- Manru Chen
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Dan Wang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, China
| | - Yanyu Xu
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, China
| | - Chenggang Yang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, China.
- Department of Research and Development, Gu'an Bojian Bio-Technology Co., LTD, Langfang, China.
| |
Collapse
|
6
|
Gao X, Bu H, Gao X, Wang Y, Wang L, Zhang Z. Pan-cancer analysis: SPAG5 is an immunological and prognostic biomarker for multiple cancers. FASEB J 2023; 37:e23159. [PMID: 37650687 DOI: 10.1096/fj.202300626r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023]
Abstract
Sperm-associated antigen 5 (SPAG5) is a mitotic spindle protein that regulates the separation of sister chromatids into daughter cells. Recent studies have discovered its overexpression in various cancers, suggesting its oncogenic characteristics and functions. However, a comprehensive analysis of SPAG5 regarding its diagnostic, prognostic, and immune-related effects across different cancer types is lacking. In this study, we employed bioinformatics methods and integrated multiple public databases to explore the potential oncogenic role of SPAG5. We analyzed its expression, prognosis, related chemicals, enriched pathways, immune infiltration, and its impact on different tumor genetic alterations. The results revealed that SPAG5 is highly expressed in most cancers and significantly correlates with poor patient prognosis. Additionally, SPAG5 expression showed potential for early cancer diagnosis in 15 different cancer types. In terms of tumor immunity, high expression of SPAG5 was associated with an immunosuppressive tumor microenvironment and immune therapy efficacy indicators. SPAG5 expression exhibited a negative correlation with most immune cell infiltrates but demonstrated a significant positive correlation with Th2 cells and MDSC cells. Multicolor fluorescence immunohistochemistry demonstrated that SPAG5 activates immune cell populations within tumors, indicating its significant role in the tumor microenvironment. Enrichment analysis indicated that SPAG5-related genes are mainly involved in cell cycle, cellular senescence, P53 signaling pathway, and FoxO signaling pathway. Furthermore, we confirmed the high expression of SPAG5 in cancer cells and observed that its knockdown upregulated the expression of the p53 protein. In conclusion, SPAG5 holds value as a diagnostic, prognostic, and immune biomarker in various cancers and may provide a novel target for tumor immunotherapy.
Collapse
Affiliation(s)
- Xiaofeng Gao
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Huitong Bu
- College of Biology, Hunan University, Changsha, People's Republic of China
| | - Xuzheng Gao
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Ying Wang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Long Wang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
- School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
| | - Zhenwang Zhang
- Medicine Research Institute/Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, People's Republic of China
| |
Collapse
|
7
|
Bunning AR, Gupta Jr. ML. The importance of microtubule-dependent tension in accurate chromosome segregation. Front Cell Dev Biol 2023; 11:1096333. [PMID: 36755973 PMCID: PMC9899852 DOI: 10.3389/fcell.2023.1096333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Accurate chromosome segregation is vital for cell and organismal viability. The mitotic spindle, a bipolar macromolecular machine composed largely of dynamic microtubules, is responsible for chromosome segregation during each cell replication cycle. Prior to anaphase, a bipolar metaphase spindle must be formed in which each pair of chromatids is attached to microtubules from opposite spindle poles. In this bipolar configuration pulling forces from the dynamic microtubules can generate tension across the sister kinetochores. The tension status acts as a signal that can destabilize aberrant kinetochore-microtubule attachments and reinforces correct, bipolar connections. Historically it has been challenging to isolate the specific role of tension in mitotic processes due to the interdependency of attachment and tension status at kinetochores. Recent technical and experimental advances have revealed new insights into how tension functions during mitosis. Here we summarize the evidence that tension serves as a biophysical signal that unifies multiple aspects of kinetochore and centromere function to ensure accurate chromosome segregation.
Collapse
|
8
|
Ying Z, Wang K, Wu J, Wang M, Yang J, Wang X, Zhou G, Chen H, Xu H, Sze SCW, Gao F, Li C, Sha O. CCHCR1-astrin interaction promotes centriole duplication through recruitment of CEP72. BMC Biol 2022; 20:240. [PMID: 36280838 PMCID: PMC9590400 DOI: 10.1186/s12915-022-01437-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/14/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The centrosome is one of the most important non-membranous organelles regulating microtubule organization and progression of cell mitosis. The coiled-coil alpha-helical rod protein 1 (CCHCR1, also known as HCR) gene is considered to be a psoriasis susceptibility gene, and the protein is suggested to be localized to the P-bodies and centrosomes in mammalian cells. However, the exact cellular function of HCR and its potential regulatory role in the centrosomes remain unexplored. RESULTS We found that HCR interacts directly with astrin, a key factor in centrosome maturation and mitosis. Immunoprecipitation assays showed that the coiled-coil region present in the C-terminus of HCR and astrin respectively mediated the interaction between them. Astrin not only recruits HCR to the centrosome, but also protects HCR from ubiquitin-proteasome-mediated degradation. In addition, depletion of either HCR or astrin significantly reduced centrosome localization of CEP72 and subsequent MCPH proteins, including CEP152, CDK5RAP2, and CEP63. The absence of HCR also caused centriole duplication defects and mitotic errors, resulting in multipolar spindle formation, genomic instability, and DNA damage. CONCLUSION We conclude that HCR is localized and stabilized at the centrosome by directly binding to astrin. HCR are required for the centrosomal recruitment of MCPH proteins and centriolar duplication. Both HCR and astrin play key roles in keeping normal microtubule assembly and maintaining genomic stability.
Collapse
Affiliation(s)
- Zhenguang Ying
- Department of Anatomy, Histology and Developmental Biology, Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Kaifang Wang
- Department of Anatomy, Histology and Developmental Biology, Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Junfeng Wu
- Department of Anatomy, Histology and Developmental Biology, Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Mingyu Wang
- Medical AI Laboratory, School of Biomedical Engineering, Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Jing Yang
- Department of Anatomy, Histology and Developmental Biology, Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Xia Wang
- Department of Anatomy, Histology and Developmental Biology, Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Guowei Zhou
- Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, 515000, China
| | - Hongwu Xu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
- Department of Clinically Oriented Anatomy, Shantou University Medical College, Shantou, 515000, China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hongkong, 999077, China
- Golden Meditech Centre for NeuroRegeneration Sciences, Hong Kong Baptist University, Hongkong, 999077, China
| | - Feng Gao
- School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, 518000, China
| | - Chunman Li
- Department of Anatomy, Shantou University Medical College, Shantou, 515000, China.
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515000, China.
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, Shenzhen University Health Science Centre, Shenzhen, 518000, China.
- School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, 518000, China.
| |
Collapse
|
9
|
Zhang S, Gong X, Zhou Y, Ma Q, Cai Q, Yang G, Guo X, Chen Y, Xu M, Zhu Y, Zeng Y, Zeng F. Maternal Prkce expression in mature oocytes is critical for the first cleavage facilitating maternal-to-zygotic transition in mouse early embryos. Cell Prolif 2022; 55:e13231. [PMID: 35582855 PMCID: PMC9201378 DOI: 10.1111/cpr.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives Early embryo development is dependent on the regulation of maternal messages stored in the oocytes during the maternal‐to‐zygote transition. Previous studies reported variability of oocyte competence among different inbred mouse strains. The present study aimed to identify the maternal transcripts responsible for early embryonic development by comparing transcriptomes from oocytes of high‐ or low‐ competence mouse strains. Materials and Methods In vitro fertilization embryos from oocytes of different mouse strains were subject to analysis using microarrays, RNA sequencing, real‐time quantitative PCR (RT‐qPCR) analysis, Western blotting, and immunofluorescence. One candidate gene, Prkce, was analysed using Prkce knockout mice, followed by a cRNA rescue experiment. Results The fertilization and 2‐cell rate were significantly higher for FVB/NJ (85.1% and 82.0%) and DBA/2J (79.6% and 76.7%) inbred mouse strains than those for the MRL/lpr (39.9% and 35.8%) and 129S3 (35.9% and 36.6%) strains. Thirty‐nine differentially expressed genes (DEGs) were noted, of which nine were further verified by RT‐qPCR. Prkce knockout mice showed a reduced 2‐cell rate (Prkce+/+ 80.1% vs. Prkce−/− 32.4%) that could be rescued by Prkce cRNA injection (2‐cell rate reached 76.7%). Global transcriptional analysis revealed 143 DEGs in the knockout mice, which were largely composed of genes functioning in cell cycle regulation. Conclusions The transcription level of maternal messages such as Prkce in mature oocytes is associated with different 2‐cell rates in select inbred mouse strains. Prkce transcript levels could serve as a potential biomarker to characterize high‐quality mature oocytes.
Collapse
Affiliation(s)
- Shaoqing Zhang
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Gong
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiye Zhou
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Qingwen Ma
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Qin Cai
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Guanheng Yang
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Xinbing Guo
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yanwen Chen
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Miao Xu
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yiwen Zhu
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Yitao Zeng
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fanyi Zeng
- School of Life Sciences and Biotechnology & Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,School of Pharmacy, Macau University of Science and Technonlogy, Taipa, Macau, China
| |
Collapse
|
10
|
Schatton D, Di Pietro G, Szczepanowska K, Veronese M, Marx MC, Braunöhler K, Barth E, Müller S, Giavalisco P, Langer T, Trifunovic A, Rugarli EI. CLUH controls astrin-1 expression to couple mitochondrial metabolism to cell cycle progression. eLife 2022; 11:74552. [PMID: 35559794 PMCID: PMC9135405 DOI: 10.7554/elife.74552] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Proliferating cells undergo metabolic changes in synchrony with cell cycle progression and cell division. Mitochondria provide fuel, metabolites, and ATP during different phases of the cell cycle, however it is not completely understood how mitochondrial function and the cell cycle are coordinated. CLUH (clustered mitochondria homolog) is a post-transcriptional regulator of mRNAs encoding mitochondrial proteins involved in oxidative phosphorylation and several metabolic pathways. Here, we show a role of CLUH in regulating the expression of astrin, which is involved in metaphase to anaphase progression, centrosome integrity, and mTORC1 inhibition. We find that CLUH binds both the SPAG5 mRNA and its product astrin, and controls the synthesis and the stability of the full-length astrin-1 isoform. We show that CLUH interacts with astrin-1 specifically during interphase. Astrin-depleted cells show mTORC1 hyperactivation and enhanced anabolism. On the other hand, cells lacking CLUH show decreased astrin levels and increased mTORC1 signaling, but cannot sustain anaplerotic and anabolic pathways. In absence of CLUH, cells fail to grow during G1, and progress faster through the cell cycle, indicating dysregulated matching of growth, metabolism, and cell cycling. Our data reveal a role of CLUH in coupling growth signaling pathways and mitochondrial metabolism with cell cycle progression.
Collapse
Affiliation(s)
| | - Giada Di Pietro
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Karolina Szczepanowska
- Institute for Mitochondrial Diseases and Ageing, University of Cologne, Cologne, Germany
| | - Matteo Veronese
- Institute for Genetics, University of Cologne, Cologne, Germany
| | | | | | - Esther Barth
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | | | - Thomas Langer
- Langer Department, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Dang L, Shi C, Zhang Q, Liao P, Wang Y. Downregulation of sperm-associated antigen 5 inhibits melanoma progression by regulating forkhead box protein M1/A disintegrin and metalloproteinase 17/NOTCH1 signaling. Bioengineered 2022; 13:4744-4756. [PMID: 35138218 PMCID: PMC8974132 DOI: 10.1080/21655979.2022.2031670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Sperm-associated antigen 5 (SPAG5) has been identified as a driver in several type of cancers. In this study, we aimed to reveal the role of SPAG5 in melanoma and clarify whether FOXM1 (forkhead box protein M1) /ADAM17 (A disintegrin and metalloproteinase 17) /NOTCH1 signaling was involved. The expression of SPAG5 in malignant melanoma (MM) tissues and matched normal tissues was detected using qRT-PCR, immunohistochemistry and Western blotting. Cell viability was tested using CCK-8 (Cell Count Kit-8), colony formation and EdU staining. Cell migration and epithelial to mesenchymal transition (EMT) were measured using transwell chambers and immunofluorescent staining. Cell cycle distribution and tumorigenesis were assessed by flow cytometry and in vivo tumor-bearing experiments, respectively. The results demonstrated that the expression of SPAG5 was increased in MM tissues and cells. Downregulation of SPAG5 inhibited cell viability, migration, invasion and EMT, and induced a G1-phase arrest. In addition, downregulation of SPAG5 decreased the expression of FOXM1, thereafter inhibiting the expression of ADAM17, NOTCH1 and HES1. Furthermore, deletion of SPAG5 expression decreased the tumorigenesis of MM A375 cells. In conclusion, this study demonstrated that SPAG5 was overexpressed in MM. Downregulation of SPAG5 repressed MM cell growth and EMT, which might be induced by inactivation of the FOXM1/ADAM17/NOTCH1 signaling.
Collapse
Affiliation(s)
- Lin Dang
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Cuiping Shi
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Qianqian Zhang
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Peiyu Liao
- Department of Dermatovenology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yan Wang
- Department of Pathology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
12
|
Wang C, Su H, Cheng R, Ji H. SPAG5 Is Involved in Human Gliomagenesis Through the Regulation of Cell Proliferation and Apoptosis. Front Oncol 2021; 11:673780. [PMID: 34796102 PMCID: PMC8592975 DOI: 10.3389/fonc.2021.673780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Background Glioma is the most frequent malignant primary brain tumor in adults. Objective To explore the role of sperm-associated antigen 5 (SPAG5) in glioma. Methods The association between SPAG5 expression and clinical features was investigated based on The Cancer Genome Atlas (TCGA) datasets. The function of SPAG5 in glioma was analyzed using U87 and U251 cells. Knockdown glioma cells were constructed by shRNA interference. qRT-PCR and Western blotting were used to measure the expression of SPAG5 and Cadherin 2 (CDH2). Cell proliferation and apoptosis were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, caspase 3/7 assay, and high-content screening (HCS) proliferation analysis and colony formation assay. Transwell assays and wound-healing assays were used to investigate cell migration and invasion. Results The increased expression of SPAG5 was correlated with poor outcomes in glioma patients. Knocking down SPAG5 could inhibit the proliferation and colony formation and promoted the apoptosis of glioma cells. Knocking down SPAG5 could also inhibit cell migration and invasion and the expression of CDH2. Overexpression of CDH2 with SPAG5 depletion could restore the proliferation and inhibit the apoptosis of glioma cells, which also promoted cell migration and invasion. Conclusions SPAG5 is a promising prognostic factor and potential therapeutic target for clinical intervention in glioma.
Collapse
Affiliation(s)
- Chunhong Wang
- Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People's Hospital, Taiyuan, China
| | - Haiyang Su
- Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People's Hospital, Taiyuan, China
| | - Rui Cheng
- Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People's Hospital, Taiyuan, China
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Medical University Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
13
|
Canu V, Donzelli S, Sacconi A, Lo Sardo F, Pulito C, Bossel N, Di Benedetto A, Muti P, Botti C, Domany E, Bicciato S, Strano S, Yarden Y, Blandino G. Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ 2021; 28:1493-1511. [PMID: 33230261 PMCID: PMC8166963 DOI: 10.1038/s41418-020-00677-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Sperm-associated antigen 5 (SPAG5) is an important driver of the cell mitotic spindle required for chromosome segregation and progression into anaphase. SPAG5 has been identified as an important proliferation marker and chemotherapy-sensitivity predictor, especially in estrogen receptor-negative breast cancer subtypes. Here, we report that SPAG5 is a direct target of miR-10b-3p, and its aberrantly high expression associates with poor disease-free survival in two large cohorts of breast cancer patients. SPAG5 depletion strongly impaired cancer cell cycle progression, proliferation, and migration. Interestingly, high expression of SPAG5 pairs with a YAP/TAZ-activated signature in breast cancer patients. Reassuringly, the depletion of YAP, TAZ, and TEAD strongly reduced SPAG5 expression and diminished its oncogenic effects. YAP, TAZ coactivators, and TEAD transcription factors are key components of the Hippo signaling pathway involved in tumor initiation, progression, and metastasis. Furthermore, we report that SPAG5 is a direct transcriptional target of TEAD/YAP/TAZ, and pharmacological targeting of YAP and TAZ severely reduces SPAG5 expression. Collectively, our data uncover an oncogenic feedback loop, comprising miR-10b-3p, SPAG5, and YAP/TAZ/TEAD, which fuels the aberrant proliferation of breast cancer.
Collapse
Affiliation(s)
- Valeria Canu
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- grid.417520.50000 0004 1760 5276Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Noa Bossel
- grid.13992.300000 0004 0604 7563Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Anna Di Benedetto
- grid.417520.50000 0004 1760 5276Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- grid.4708.b0000 0004 1757 2822Department of Biomedical Science and Oral Health, University of Milan, Milan, 20122 Italy
| | - Claudio Botti
- grid.417520.50000 0004 1760 5276Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Eytan Domany
- grid.13992.300000 0004 0604 7563Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Silvio Bicciato
- grid.7548.e0000000121697570Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabrina Strano
- grid.417520.50000 0004 1760 5276SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Giovanni Blandino
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
14
|
Lau EOC, Damiani D, Chehade G, Ruiz-Reig N, Saade R, Jossin Y, Aittaleb M, Schakman O, Tajeddine N, Gailly P, Tissir F. DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. eLife 2021; 10:e61974. [PMID: 33899739 PMCID: PMC8102060 DOI: 10.7554/elife.61974] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Diaphanous (DIAPH) three (DIAPH3) is a member of the formin proteins that have the capacity to nucleate and elongate actin filaments and, therefore, to remodel the cytoskeleton. DIAPH3 is essential for cytokinesis as its dysfunction impairs the contractile ring and produces multinucleated cells. Here, we report that DIAPH3 localizes at the centrosome during mitosis and regulates the assembly and bipolarity of the mitotic spindle. DIAPH3-deficient cells display disorganized cytoskeleton and multipolar spindles. DIAPH3 deficiency disrupts the expression and/or stability of several proteins including the kinetochore-associated protein SPAG5. DIAPH3 and SPAG5 have similar expression patterns in the developing brain and overlapping subcellular localization during mitosis. Knockdown of SPAG5 phenocopies DIAPH3 deficiency, whereas its overexpression rescues the DIAHP3 knockdown phenotype. Conditional inactivation of Diaph3 in mouse cerebral cortex profoundly disrupts neurogenesis, depleting cortical progenitors and neurons, leading to cortical malformation and autistic-like behavior. Our data uncover the uncharacterized functions of DIAPH3 and provide evidence that this protein belongs to a molecular toolbox that links microtubule dynamics during mitosis to aneuploidy, cell death, fate determination defects, and cortical malformation.
Collapse
Affiliation(s)
- Eva On-Chai Lau
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Devid Damiani
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Georges Chehade
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Rana Saade
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
| | - Yves Jossin
- Université catholique de Louvain, Institute of Neuroscience, Mammalian Development and Cell BiologyBrusselsBelgium
| | | | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Nicolas Tajeddine
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell PhysiologyBrusselsBelgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental NeurobiologyBrusselsBelgium
- College of Health and Life Sciences, HBKUDohaQatar
| |
Collapse
|
15
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Geraghty Z, Barnard C, Uluocak P, Gruneberg U. The association of Plk1 with the astrin-kinastrin complex promotes formation and maintenance of a metaphase plate. J Cell Sci 2021; 134:jcs251025. [PMID: 33288550 PMCID: PMC7803464 DOI: 10.1242/jcs.251025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Errors in mitotic chromosome segregation can lead to DNA damage and aneuploidy, both hallmarks of cancer. To achieve synchronous error-free segregation, mitotic chromosomes must align at the metaphase plate with stable amphitelic attachments to microtubules emanating from opposing spindle poles. The astrin-kinastrin (astrin is also known as SPAG5 and kinastrin as SKAP) complex, also containing DYNLL1 and MYCBP, is a spindle and kinetochore protein complex with important roles in bipolar spindle formation, chromosome alignment and microtubule-kinetochore attachment. However, the molecular mechanisms by which astrin-kinastrin fulfils these diverse roles are not fully understood. Here, we characterise a direct interaction between astrin and the mitotic kinase Plk1. We identify the Plk1-binding site on astrin as well as four Plk1 phosphorylation sites on astrin. Regulation of astrin by Plk1 is dispensable for bipolar spindle formation and bulk chromosome congression, but promotes stable microtubule-kinetochore attachments and metaphase plate maintenance. It is known that Plk1 activity is required for effective microtubule-kinetochore attachment formation, and we suggest that astrin phosphorylation by Plk1 contributes to this process.
Collapse
Affiliation(s)
- Zoë Geraghty
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Christina Barnard
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Pelin Uluocak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
17
|
Liu Y, Yu W, Ren P, Zhang T. Upregulation of centromere protein M promotes tumorigenesis: A potential predictive target for cancer in humans. Mol Med Rep 2020; 22:3922-3934. [PMID: 33000180 PMCID: PMC7533490 DOI: 10.3892/mmr.2020.11461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Centromere protein M (CENPM), a protein required for chromosome separation, is involved in in mitosis. However, little has been reported about the roles of CENPM in various types of cancer. The present study identified that the mRNA expression levels of CENPM were significantly upregulated in 14 types of human cancer and identified a positive association between CENPM mRNA expression and patient mortality using the Oncomine, Gene Expression Profiling Interactive Analysis, Human Protein Atlas and Kaplan‑Meier Plotter databases. A protein interaction network constructed with CENPM‑interacting genes obtained from the cBioPortal demonstrated that nine genes participating in the cell cycle served key roles in the function of CENPM. Cell cycle analysis, reverse transcription‑quantitative polymerase chain reaction, a Cell Counting Kit‑8‑based proliferation assay and a terminal deoxynucleotidyl transferase dUTP nick end labelling assay further revealed the tumorigenic and carcinogenic roles of CENPM in vitro. In addition, it was identified that the mRNA expression levels of five of the nine identified genes were significantly associated with CENPM in MCF7 cells and that CENPM was rarely mutated among various types of human cancer. In conclusion, the data from the present study revealed that CENPM exerted its pro‑tumorigenic function by regulating cell cycle‑associated protein expression and suggested that CENPM could be used as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Peng Ren
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 556000, P.R. China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
18
|
Ying Z, Yang J, Li W, Wang X, Zhu Z, Jiang W, Li C, Sha O. Astrin: A Key Player in Mitosis and Cancer. Front Cell Dev Biol 2020; 8:866. [PMID: 32984344 PMCID: PMC7484939 DOI: 10.3389/fcell.2020.00866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/11/2020] [Indexed: 12/04/2022] Open
Abstract
Astrin, which is a spindle-associated protein, was found to be closely related to mitotic spindle formation and maintenance. It interacts with other spindle-related proteins to play a key role in maintaining the attachment of the kinetochore-microtubule and integrity of centrosomes and promoting the centriole duplication. In addition, Astrin was quite recently found to be abnormally highly expressed in a variety of cancers. Astrin promotes the development of cancer by participating in various molecular pathways and is considered as a potential prognostic and survival predictor.
Collapse
Affiliation(s)
- Zhenguang Ying
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Jing Yang
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Wei Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Xia Wang
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Zeyao Zhu
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Weipeng Jiang
- School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, China
| | - Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, China.,School of Dentistry, Shenzhen University Health Science Centre, Shenzhen, China
| |
Collapse
|
19
|
Yang T, Tian S, Wang L, Wang Y, Zhao J. MicroRNA-367-3p overexpression represses the proliferation and invasion of cervical cancer cells through downregulation of SPAG5-mediated Wnt/β-catenin signalling. Clin Exp Pharmacol Physiol 2019; 47:687-695. [PMID: 31792998 DOI: 10.1111/1440-1681.13222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/30/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022]
Abstract
MicroRNA-367-3p (miR-367-3p) has been previously reported as a cancer-related miRNA that is dysregulated in various cancer types and functions either as an oncogenic or as tumour suppressive miRNA. However, whether miR-367-3p is dysregulated in cervical cancer and, further, whether it contributes to the development and progression of the disease remains unknown. Here, our results demonstrated that miR-367-3p expression was markedly decreased in both cervical cancer tissues and cell lines compared with corresponding controls. In vitro experiments revealed that miR-367-3p overexpression repressed the proliferation and invasion of cervical cancer cells. Notably, sperm-associated antigen 5 (SPAG5) was identified as a target gene of miR-367-3p. Moreover, decreased expression of miR-367-3p was correlated with high expression of SPAG5 in cervical cancer tissue specimens. SPAG5 inhibition or miR-367-3p overexpression significantly downregulated Wnt/β-catenin signalling in cervical cancer cells. However, the antitumour effect mediated by miR-367-3p overexpression was partially reversed by SPAG5 overexpression. Overall, these findings demonstrate that miR-367-3p overexpression restricts the proliferation and invasion of cervical cancer cells through targeting SPAG5 to downregulate Wnt/β-catenin signalling, suggesting a mechanism for the tumour suppressive function of miR-367-3p in cervical cancer. Our study highlights the involvement of miR-367-3p/SPAG5/Wnt/β-catenin signalling axis in regulating the malignant progression of cervical cancer.
Collapse
Affiliation(s)
- Ting Yang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Sijuan Tian
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Linlin Wang
- Obstetrics and Gynecology Department, Ningbo First Hospital, Ningbo, China
| | - Yaohui Wang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| | - Juan Zhao
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, China
| |
Collapse
|
20
|
Amin MA, Agarwal S, Varma D. Mapping the kinetochore MAP functions required for stabilizing microtubule attachments to chromosomes during metaphase. Cytoskeleton (Hoboken) 2019; 76:398-412. [PMID: 31454167 DOI: 10.1002/cm.21559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022]
Abstract
In mitosis, faithful chromosome segregation is orchestrated by the dynamic interactions between the spindle microtubules (MTs) emanating from the opposite poles and the kinetochores of the chromosomes. However, the precise mechanism that coordinates the coupling of the kinetochore components to dynamic MTs has been a long-standing question. Microtubule-associated proteins (MAPs) regulate MT nucleation and dynamics, MT-mediated transport and MT cross-linking in cells. During mitosis, MAPs play an essential role not only in determining spindle length, position, and orientation but also in facilitating robust kinetochore-microtubule (kMT) attachments by linking the kinetochores to spindle MTs efficiently. The stability of MTs imparted by the MAPs is critical to ensure accurate chromosome segregation. This review primarily focuses on the specific function of nonmotor kinetochore MAPs, their recruitment to kinetochores and their MT-binding properties. We also attempt to synthesize and strengthen our understanding of how these MAPs work in coordination with the kinetochore-bound Ndc80 complex (the key component at the MT-binding interface in metaphase and anaphase) to establish stable kMT attachments and control accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Mohammed A Amin
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Shivangi Agarwal
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dileep Varma
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
21
|
Gheiratmand L, Coyaud E, Gupta GD, Laurent EMN, Hasegan M, Prosser SL, Gonçalves J, Raught B, Pelletier L. Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites. EMBO J 2019; 38:e101109. [PMID: 31304627 PMCID: PMC6627244 DOI: 10.15252/embj.2018101109] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
Centriolar satellites are small electron-dense granules that cluster in the vicinity of centrosomes. Satellites have been implicated in multiple critical cellular functions including centriole duplication, centrosome maturation, and ciliogenesis, but their precise composition and assembly properties have remained poorly explored. Here, we perform in vivo proximity-dependent biotin identification (BioID) on 22 human satellite proteins, to identify 2,113 high-confidence interactions among 660 unique polypeptides. Mining this network, we validate six additional satellite components. Analysis of the satellite interactome, combined with subdiffraction imaging, reveals the existence of multiple unique microscopically resolvable satellite populations that display distinct protein interaction profiles. We further show that loss of satellites in PCM1-depleted cells results in a dramatic change in the satellite interaction landscape. Finally, we demonstrate that satellite composition is largely unaffected by centriole depletion or disruption of microtubules, indicating that satellite assembly is centrosome-independent. Together, our work offers the first systematic spatial and proteomic profiling of human centriolar satellites and paves the way for future studies aimed at better understanding the biogenesis and function(s) of these enigmatic structures.
Collapse
Affiliation(s)
- Ladan Gheiratmand
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Etienne Coyaud
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
| | - Gagan D Gupta
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Present address:
Department of Chemistry and BiologyRyerson UniversityTorontoONCanada
| | | | - Monica Hasegan
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Suzanna L Prosser
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - João Gonçalves
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
| | - Brian Raught
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoONCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoONCanada
| | - Laurence Pelletier
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| |
Collapse
|
22
|
Abstract
Mistakes in the process of cell division can lead to the loss, gain or rearrangement of chromosomes. Significant chromosomal abnormalities are usually lethal to the cells and cause spontaneous miscarriages. However, in some cases, defects in the spindle assembly checkpoint lead to severe diseases, such as cancer and birth and development defects, including Down's syndrome. The timely and accurate control of chromosome segregation in mitosis relies on the spindle assembly checkpoint (SAC), an evolutionary conserved, self-regulated signalling system present in higher organisms. The spindle assembly checkpoint is orchestrated by dynamic interactions between spindle microtubules and the kinetochore , a multiprotein complex that constitutes the site for attachment of chromosomes to microtubule polymers to pull sister chromatids apart during cell division. This chapter discusses the current molecular understanding of the essential, highly dynamic molecular interactions underpinning spindle assembly checkpoint signalling and how the complex choreography of interactions can be coordinated in time and space to finely regulate the process. The potential of targeting this signalling pathway to interfere with the abnormal segregation of chromosomes, which occurs in diverse malignancies and the new opportunities that recent technological developments are opening up for a deeper understanding of the spindle assembly checkpoint are also discussed.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
23
|
Molecular Pathogenesis of Gene Regulation by the miR-150 Duplex: miR-150-3p Regulates TNS4 in Lung Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11050601. [PMID: 31052206 PMCID: PMC6562801 DOI: 10.3390/cancers11050601] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
Based on our miRNA expression signatures, we focused on miR-150-5p (the guide strand) and miR-150-3p (the passenger strand) to investigate their functional significance in lung adenocarcinoma (LUAD). Downregulation of miR-150 duplex was confirmed in LUAD clinical specimens. In vitro assays revealed that ectopic expression of miR-150-5p and miR-150-3p inhibited cancer cell malignancy. We performed genome-wide gene expression analyses and in silico database searches to identify their oncogenic targets in LUAD cells. A total of 41 and 26 genes were identified as miR-150-5p and miR-150-3p targets, respectively, and they were closely involved in LUAD pathogenesis. Among the targets, we investigated the oncogenic roles of tensin 4 (TNS4) because high expression of TNS4 was strongly related to poorer prognosis of LUAD patients (disease-free survival: p = 0.0213 and overall survival: p = 0.0003). Expression of TNS4 was directly regulated by miR-150-3p in LUAD cells. Aberrant expression of TNS4 was detected in LUAD clinical specimens and its aberrant expression increased the aggressiveness of LUAD cells. Furthermore, we identified genes downstream from TNS4 that were associated with critical regulators of genomic stability. Our approach (discovery of anti-tumor miRNAs and their target RNAs for LUAD) will contribute to the elucidation of molecular networks involved in the malignant transformation of LUAD.
Collapse
|
24
|
Wang T, Li K, Song H, Xu D, Liao Y, Jing B, Guo W, Hu M, Kuang Y, Sun B, Ling J, Zhang T, Xu J, Yao F, Deng J. p53 suppression is essential for oncogenic SPAG5 upregulation in lung adenocarcinoma. Biochem Biophys Res Commun 2019; 513:319-325. [PMID: 30955859 DOI: 10.1016/j.bbrc.2019.03.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Aberrant expression of sperm-associated antigen 5 (SPAG5) is implicated to play oncogenic roles in several types of cancers. However, the functions of SPAG5 in lung adenocarcinoma remain unclear. In this study, we investigated the role of SPAG5 in lung adenocarcinoma. We found that SPAG5 was upregulated in most of the lung adenocarcinoma cell lines as compared to normal lung epithelial cells. SPAG5 knockdown suppressed proliferation, colony forming, and migration of lung adenocarcinoma A549 cells in vitro and inhibited tumor growth in vivo. These suggest that upregulated SPAG5 promotes lung tumor progression. Importantly, treatment with MDM2 inhibitor, Nutlin-3a, restored p53 and p21 expression and suppressed SPAG5 expression in wild-type p53 lung adenocarcinoma cells, A549 and H460, but not in p53-null lung cancer cells, H1299. This suggests that the p53 signal pathway is essential for SPAG5 suppression. In addition, knocking-down p53 or p21 in A549 and H460 cells attenuated Nutlin-3a-induced repression of SPAG5, which further supports that the p53-p21 axis is required for SPAG5 repression. Thus, SPAG5 can serve as a prognostic marker, and therapeutic strategy targeting the p53-p21-SPAG5 axis may have important clinical implications.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Beibei Sun
- Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Ling
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tuo Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianhua Xu
- Basic Medical School of Pathology and Pathophysiology, Kunming Medical University, Kunming, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Translational Medical Research Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Jiang J, Wang J, He X, Ma W, Sun L, Zhou Q, Li M, Yu S. High expression of
SPAG
5 sustains the malignant growth and invasion of breast cancer cells through the activation of Wnt/β‐catenin signalling. Clin Exp Pharmacol Physiol 2019; 46:597-606. [PMID: 30854682 DOI: 10.1111/1440-1681.13082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jue Jiang
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| | - Juan Wang
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| | - Xin He
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| | - Wenqi Ma
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| | - Lei Sun
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| | - Qi Zhou
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| | - Miao Li
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| | - Shanshan Yu
- Department of Ultrasound The Second Affiliated Hospital Medical School of Xi'an Jiaotong University Xi'an China
| |
Collapse
|
26
|
Zanchetta ME, Meroni G. Emerging Roles of the TRIM E3 Ubiquitin Ligases MID1 and MID2 in Cytokinesis. Front Physiol 2019; 10:274. [PMID: 30941058 PMCID: PMC6433704 DOI: 10.3389/fphys.2019.00274] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Ubiquitination is a post-translational modification that consists of ubiquitin attachment to target proteins through sequential steps catalysed by activating (E1), conjugating (E2), and ligase (E3) enzymes. Protein ubiquitination is crucial for the regulation of many cellular processes not only by promoting proteasomal degradation of substrates but also re-localisation of cellular factors and modulation of protein activity. Great importance in orchestrating ubiquitination relies on E3 ligases as these proteins recognise the substrate that needs to be modified at the right time and place. Here we focus on two members of the TRIpartite Motif (TRIM) family of RING E3 ligases, MID1, and MID2. We discuss the recent findings on these developmental disease-related proteins analysing the link between their activity on essential factors and the regulation of cytokinesis highlighting the possible consequence of alteration of this process in pathological conditions.
Collapse
Affiliation(s)
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
27
|
Wang D, Chen Z, Lin F, Wang Z, Gao Q, Xie H, Xiao H, Zhou Y, Zhang F, Ma Y, Mei H, Cai Z, Liu Y, Huang W. OIP5 Promotes Growth, Metastasis and Chemoresistance to Cisplatin in Bladder Cancer Cells. J Cancer 2018; 9:4684-4695. [PMID: 30588253 PMCID: PMC6299379 DOI: 10.7150/jca.27381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Opa interacting protein 5 (OIP5) has previously been identified as a tumorigenesis gene. The purpose of this study is to explore the role of OIP5 in the progression of bladder cancer (BC). The OIP5 expression and clinical behaviors in bladder cancer were collected from lager database. Our study showed that OIP5 was highly expressed in bladder cancer tissues and cells. Overexpression of OIP5 in tumor patients predicted worse overall survival (OS) and higher histological grade. Vitro and vivo experiments demonstrated that knockdown of OIP5 significantly inhibited cell growth of BC. Scratch assay and transwell assay suggested that migration capacity of BC cells was decreased after knockdown of OIP5. Cisplatin sensitivity assay indicated that depletion of OIP5 increased the sensitivity of BC cells to cisplatin. Finally, we identified 38 overlapping differentially expressed genes (DEGs) between RNA-seq and TCGA analyses which were closely linked to OIP5. Bioinformatics analysis showed that these DEGs enriched in oocyte meiosis, fanconi anemia pathway, cell cycle, and microRNAs regulation. TOP2A, SPAG5, SKA1, EXO1, TK1 were confirmed to associated with bladder cancer development. Our study suggests that OIP5 may be a potential biomarker for growth, metastasis and drug-resistance in bladder cancer.
Collapse
Affiliation(s)
- Dailian Wang
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China
| | - Zhicong Chen
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China
| | - Fan Lin
- College of pharmacy, Guangdong Pharmaceutical University, Guangdong, China
| | - Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
| | - Qunjun Gao
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
| | - Haibiao Xie
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
| | - Huizhong Xiao
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
| | - Yifan Zhou
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
| | - Fuyou Zhang
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
| | - Yingfei Ma
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongbin Mei
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China
| | - Yuchen Liu
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, Guangzhou Medical University, Guangdong, China
- Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, China
| |
Collapse
|
28
|
Yang YF, Zhang MF, Tian QH, Fu J, Yang X, Zhang CZ, Yang H. SPAG5 interacts with CEP55 and exerts oncogenic activities via PI3K/AKT pathway in hepatocellular carcinoma. Mol Cancer 2018; 17:117. [PMID: 30089483 PMCID: PMC6081940 DOI: 10.1186/s12943-018-0872-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/01/2018] [Indexed: 01/13/2023] Open
Abstract
Background Deregulation of microtubules and centrosome integrity is response for the initiation and progression of human cancers. Sperm-associated antigen 5 (SPAG5) is essential for the spindle apparatus organization and chromosome segregation, but its role in hepatocellular carcinoma (HCC) remains undefined. Methods The expression of SPAG5 in HCC were examined in a large cohort of patients by RT-PCR, western blot and IHC. The clinical significance of SPAG5 was next determined by statistical analyses. The biological function of SPAG5 in HCC and the underlying mechanisms were investigated, using in vitro and in vivo models. Results Here, we demonstrated that SPAG5 exhibited pro-HCC activities via the activation of PI3K/AKT signaling pathway. SPAG5 expression was increased in HCC and correlated with poor outcomes in two independent cohorts containing 670 patients. High SPAG5 expression was associated with poor tumor differentiation, larger tumor size, advanced TNM stage, tumor vascular invasion and lymph node metastasis. In vitro and in vivo data showed that SPAG5 overexpression promoted tumor growth and metastasis, whereas SPAG5 knockdown led to the opposite phenotypes. SPAG5 interacted with centrosomal protein CEP55 to trigger the phosphorylation of AKT at Ser473. Inhibition of PI3K/AKT signaling markedly attenuated SPAG5-mediated cell growth. Furthermore, SPAG5 expression was suppressed by miR-363-3p which inhibited the activity of SPAG5 mRNA 3’UTR. Ectopic expression of SPAG5 partly abolished the miR-363-3p-caused cell cycle arrest and suppression of cell proliferation and migration. Conclusions Collectively, these findings indicate that SPAG5 serves a promising prognostic factor in HCC and functions as an oncogene via CEP55-mediated PI3K/AKT pathway. The newly identified miR-363-3p/SPAG5/CEP55 axis may represent a potential therapeutic target for the clinical intervention of HCC. Electronic supplementary material The online version of this article (10.1186/s12943-018-0872-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Feng Yang
- Department of Pathology, Dongguan Third People's Hospital, Dongguan, China
| | - Mei-Fang Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Qiu-Hong Tian
- Department of Oncology, First Affiliated Hospital of NanChang University, NanChang, 330006, Jiangxi, China
| | - Jia Fu
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Xia Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China
| | - Chris Zhiyi Zhang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, China.
| | - Hong Yang
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
29
|
Mapping genomic and transcriptomic alterations spatially in epithelial cells adjacent to human breast carcinoma. Nat Commun 2017; 8:1245. [PMID: 29093438 PMCID: PMC5665998 DOI: 10.1038/s41467-017-01357-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/12/2017] [Indexed: 12/21/2022] Open
Abstract
Almost all genomic studies of breast cancer have focused on well-established tumours because it is technically challenging to study the earliest mutational events occurring in human breast epithelial cells. To address this we created a unique dataset of epithelial samples ductoscopically obtained from ducts leading to breast carcinomas and matched samples from ducts on the opposite side of the nipple. Here, we demonstrate that perturbations in mRNA abundance, with increasing proximity to tumour, cannot be explained by copy number aberrations. Rather, we find a possibility of field cancerization surrounding the primary tumour by constructing a classifier that evaluates where epithelial samples were obtained relative to a tumour (cross-validated micro-averaged AUC = 0.74). We implement a spectral co-clustering algorithm to define biclusters. Relating to over-represented bicluster pathways, we further validate two genes with tissue microarrays and in vitro experiments. We highlight evidence suggesting that bicluster perturbation occurs early in tumour development. Studying the spatial mutational and gene expression alterations in breast cancer could impact our understanding of breast cancer development. Here, the authors analyse a unique dataset of epithelial samples that highlight potential field cancerisation surrounding the primary tumour.
Collapse
|
30
|
Kern DM, Monda JK, Su KC, Wilson-Kubalek EM, Cheeseman IM. Astrin-SKAP complex reconstitution reveals its kinetochore interaction with microtubule-bound Ndc80. eLife 2017; 6:26866. [PMID: 28841134 PMCID: PMC5602300 DOI: 10.7554/elife.26866] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Chromosome segregation requires robust interactions between the macromolecular kinetochore structure and dynamic microtubule polymers. A key outstanding question is how kinetochore-microtubule attachments are modulated to ensure that bi-oriented attachments are selectively stabilized and maintained. The Astrin-SKAP complex localizes preferentially to properly bi-oriented sister kinetochores, representing the final outer kinetochore component recruited prior to anaphase onset. Here, we reconstitute the 4-subunit Astrin-SKAP complex, including a novel MYCBP subunit. Our work demonstrates that the Astrin-SKAP complex contains separable kinetochore localization and microtubule binding domains. In addition, through cross-linking analysis in human cells and biochemical reconstitution, we show that the Astrin-SKAP complex binds synergistically to microtubules with the Ndc80 complex to form an integrated interface. We propose a model in which the Astrin-SKAP complex acts together with the Ndc80 complex to stabilize correctly formed kinetochore-microtubule interactions.
Collapse
Affiliation(s)
- David M Kern
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Julie K Monda
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Kuan-Chung Su
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | | | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
31
|
Shrestha RL, Conti D, Tamura N, Braun D, Ramalingam RA, Cieslinski K, Ries J, Draviam VM. Aurora-B kinase pathway controls the lateral to end-on conversion of kinetochore-microtubule attachments in human cells. Nat Commun 2017; 8:150. [PMID: 28751710 PMCID: PMC5532248 DOI: 10.1038/s41467-017-00209-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 06/12/2017] [Indexed: 12/29/2022] Open
Abstract
Human chromosomes are captured along microtubule walls (lateral attachment) and then tethered to microtubule-ends (end-on attachment) through a multi-step end-on conversion process. Upstream regulators that orchestrate this remarkable change in the plane of kinetochore-microtubule attachment in human cells are not known. By tracking kinetochore movements and using kinetochore markers specific to attachment status, we reveal a spatially defined role for Aurora-B kinase in retarding the end-on conversion process. To understand how Aurora-B activity is counteracted, we compare the roles of two outer-kinetochore bound phosphatases and find that BubR1-associated PP2A, unlike KNL1-associated PP1, plays a significant role in end-on conversion. Finally, we uncover a novel role for Aurora-B regulated Astrin-SKAP complex in ensuring the correct plane of kinetochore-microtubule attachment. Thus, we identify Aurora-B as a key upstream regulator of end-on conversion in human cells and establish a late role for Astrin-SKAP complex in the end-on conversion process.Human chromosomes are captured along microtubule walls and then tethered to microtubule-ends through a multi-step end-on conversion process. Here the authors show that Aurora-B regulates end-on conversion in human cells and establish a late role for Astrin-SKAP complex in the end-on conversion process.
Collapse
Affiliation(s)
- Roshan L Shrestha
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Duccio Conti
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Naoka Tamura
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Dominique Braun
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Revathy A Ramalingam
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Konstanty Cieslinski
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | - Viji M Draviam
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
32
|
Critical roles of Astrin in the mitosis of immature rat Sertoli cells. Biochem Biophys Res Commun 2017; 486:958-964. [PMID: 28351621 DOI: 10.1016/j.bbrc.2017.03.137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/25/2017] [Indexed: 11/21/2022]
Abstract
Male hypogonadism (hgn/hgn) rats show testicular hypoplasia accompanied by dysplastic development of seminiferous tubules due to loss-of-function mutation of the gene encoding Astrin, which is required for mitotic progression in the division cycle of HeLa cells. In the present study, we examined the cytological base leading to the decrease of Sertoli cells in hgn/hgn testes. In hgn/hgn testes on postnatal day 3, anti-phospho-histone H3 (Ser10) (pH3)-positive mitotic phase and TUNEL-positive apoptosis increased in GATA4-positive Sertoli cells. Isolated immature Sertoli cells from hgn/hgn testes showed increased pH3-assessed mitotic index accompanied by decreased 5-bromo-2'-deoxyuridine-incorporation and increased TUNEL-positive apoptosis, suggesting mitotic delay and cell death. In the visualization of mitotic progression by nocodazole (NOC)-mediated cell cycle arrest and subsequent release, hgn/hgn rat-derived Sertoli cells failed to make the transition from prometaphase to metaphase, and the cells with micronuclei and TUNEL-positive cells gradually increased in a time-dependent manner. Western blot analysis detected ≈142 kDa protein expected as Astrin in extracts of +/+ and +/hgn testes and cultured normal Sertoli cells but not in extracts of hgn/hgn testes. CLASP1 was detected in extracts of both normal and hgn/hgn testes, whereas it was localized in kinetochore of normal mitotic Sertoli cells but diffused in cytoplasm of hgn/hgn Sertoli cells. These results indicate that Astrin is required for normal mitotic progression in immature Sertoli cells and that the most severe type of testicullar dysplasia in hgn/hgn rats is caused by mitotic cell death of immature Sertoli cells due to lack of Astrin.
Collapse
|
33
|
Chung HJ, Park JE, Lee NS, Kim H, Jang CY. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem 2016; 291:17579-92. [PMID: 27325694 PMCID: PMC5016155 DOI: 10.1074/jbc.m115.712745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.
Collapse
Affiliation(s)
- Hee Jin Chung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and
| | - Ji Eun Park
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and From the Center for Neuroscience Imaging Research, Institute for Basic Science and
| | - Chang-Young Jang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
34
|
Chu X, Chen X, Wan Q, Zheng Z, Du Q. Nuclear Mitotic Apparatus (NuMA) Interacts with and Regulates Astrin at the Mitotic Spindle. J Biol Chem 2016; 291:20055-67. [PMID: 27462074 DOI: 10.1074/jbc.m116.724831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The large nuclear mitotic apparatus (NuMA) protein is an essential player in mitotic spindle assembly and maintenance. We report here the identification of Astrin, a spindle- and kinetochore-associated protein, as a novel interactor of NuMA. We show that the C-terminal tail of NuMA can directly bind to the C terminus of Astrin and that this interaction helps to recruit Astrin to microtubules. Knockdown of NuMA by RNA interference dramatically impaired Astrin recruitment to the mitotic spindle. Overexpression of the N terminus of mammalian homologue of Drosophila Pins (LGN), which blocks the microtubule binding of NuMA and competes with Astrin for NuMA binding, also led to similar results. Furthermore, we found that cytoplasmic dynein is required for the spindle pole accumulation of Astrin, and dynein-mediated transport is important for balanced distribution of Astrin between spindle poles and kinetochores. On the other hand, if Astrin levels are reduced, then NuMA could not efficiently concentrate at the spindle poles. Our findings reveal a direct physical link between two important regulators of mitotic progression and demonstrate the critical role of the NuMA-Astrin interaction for accurate cell division.
Collapse
Affiliation(s)
- Xiaogang Chu
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Xuanyu Chen
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Qingwen Wan
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Zhen Zheng
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Quansheng Du
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
35
|
Kern DM, Nicholls PK, Page DC, Cheeseman IM. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends. J Cell Biol 2016; 213:315-28. [PMID: 27138257 PMCID: PMC4862331 DOI: 10.1083/jcb.201510117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
The Astrin/SKAP complex regulates mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, Kern et al. demonstrate that a previously unappreciated short SKAP isoform mediates mitotic spindle positioning at astral microtubule plus ends. The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning.
Collapse
Affiliation(s)
- David M Kern
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Peter K Nicholls
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - David C Page
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
36
|
Friese A, Faesen AC, Huis in 't Veld PJ, Fischböck J, Prumbaum D, Petrovic A, Raunser S, Herzog F, Musacchio A. Molecular requirements for the inter-subunit interaction and kinetochore recruitment of SKAP and Astrin. Nat Commun 2016; 7:11407. [PMID: 27095104 PMCID: PMC4843017 DOI: 10.1038/ncomms11407] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/22/2016] [Indexed: 12/18/2022] Open
Abstract
Accurate chromosome segregation during cell division is crucial for propagating life and protects from cellular transformation. The SKAP:Astrin heterodimer localizes to spindle microtubules and to mature microtubule–kinetochore attachments during mitosis. Depletion of either subunit disrupts spindle structure and destabilizes kinetochore–microtubule attachments. Here, we identify molecular requirements for the inter-subunit interaction of SKAP and Astrin, and discuss requirements for their kinetochore recruitment. We also identify and characterize a microtubule-binding domain in SKAP, distinct from the SXIP motif that mediates end binding (EB) protein binding and plus end tracking, and show that it stimulates the growth-rate of microtubules, possibly through a direct interaction with tubulin. Mutations targeting this microtubule-binding domain impair microtubule plus-end tracking but not kinetochore targeting, and recapitulate many effects observed during depletion of SKAP. Collectively, our studies represent the first thorough mechanistic analysis of SKAP and Astrin, and significantly advance our functional understanding of these important mitotic proteins. SKAP and Astrin form a heterodimer that localizes to spindle microtubules and to mature microtubule-kinetochore attachments during mitosis. Here, the authors identify molecular requirements for the inter-subunit interaction of SKAP and Astrin and kinetochore recruitment.
Collapse
Affiliation(s)
- Alexandra Friese
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Alex C Faesen
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Pim J Huis in 't Veld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Josef Fischböck
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Franz Herzog
- Gene Center Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany
| |
Collapse
|
37
|
Gholkar AA, Senese S, Lo YC, Vides E, Contreras E, Hodara E, Capri J, Whitelegge JP, Torres JZ. The X-Linked-Intellectual-Disability-Associated Ubiquitin Ligase Mid2 Interacts with Astrin and Regulates Astrin Levels to Promote Cell Division. Cell Rep 2015; 14:180-8. [PMID: 26748699 DOI: 10.1016/j.celrep.2015.12.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/13/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
Mid1 and Mid2 are ubiquitin ligases that regulate microtubule dynamics and whose mutation is associated with X-linked developmental disorders. We show that astrin, a microtubule-organizing protein, co-purifies with Mid1 and Mid2, has an overlapping localization with Mid1 and Mid2 at intercellular bridge microtubules, is ubiquitinated by Mid2 on lysine 409, and is degraded during cytokinesis. Mid2 depletion led to astrin stabilization during cytokinesis, cytokinetic defects, multinucleated cells, and cell death. Similarly, expression of a K409A mutant astrin in astrin-depleted cells led to the accumulation of K409A on intercellular bridge microtubules and an increase in cytokinetic defects, multinucleated cells, and cell death. These results indicate that Mid2 regulates cell division through the ubiquitination of astrin on K409, which is critical for its degradation and proper cytokinesis. These results could help explain how mutation of MID2 leads to misregulation of microtubule organization and the downstream disease pathology associated with X-linked intellectual disabilities.
Collapse
Affiliation(s)
- Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chen Lo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Program in Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Edmundo Vides
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ely Contreras
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emmanuelle Hodara
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L, Sztriha L, Partlow JN, Kim H, Krup AL, Dammermann A, Krogan NJ, Walsh CA, Reiter JF. Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. eLife 2015; 4:e07519. [PMID: 26297806 PMCID: PMC4574112 DOI: 10.7554/elife.07519] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022] Open
Abstract
Primary microcephaly (MCPH) associated proteins CDK5RAP2, CEP152, WDR62 and CEP63 colocalize at the centrosome. We found that they interact to promote centriole duplication and form a hierarchy in which each is required to localize another to the centrosome, with CDK5RAP2 at the apex, and CEP152, WDR62 and CEP63 at sequentially lower positions. MCPH proteins interact with distinct centriolar satellite proteins; CDK5RAP2 interacts with SPAG5 and CEP72, CEP152 with CEP131, WDR62 with MOONRAKER, and CEP63 with CEP90 and CCDC14. These satellite proteins localize their cognate MCPH interactors to centrosomes and also promote centriole duplication. Consistent with a role for satellites in microcephaly, homozygous mutations in one satellite gene, CEP90, may cause MCPH. The satellite proteins, with the exception of CCDC14, and MCPH proteins promote centriole duplication by recruiting CDK2 to the centrosome. Thus, centriolar satellites build a MCPH complex critical for human neurodevelopment that promotes CDK2 centrosomal localization and centriole duplication.
Collapse
Affiliation(s)
- Andrew Kodani
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Timothy W Yu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Divya Jayaraman
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Lāszló Sztriha
- Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Jennifer N Partlow
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Hanjun Kim
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | - Alexis L Krup
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| | | | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Christopher A Walsh
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
39
|
Chou CH, Loh JK, Yang MC, Lin CC, Hong MC, Cho CL, Chou AK, Wang CH, Lieu AS, Howng SL, Hsu CM, Hong YR. AIBp regulates mitotic entry and mitotic spindle assembly by controlling activation of both Aurora-A and Plk1. Cell Cycle 2015; 14:2764-76. [PMID: 26114227 PMCID: PMC4614063 DOI: 10.1080/15384101.2015.1066536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022] Open
Abstract
We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A-mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.
Collapse
Affiliation(s)
- Chia-Hua Chou
- Department of Biochemistry; Faculty of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
- Department of Biological Sciences; National Sun Yat-Sen University; Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Department of Surgery; Kaohsiung Municipal Hsiao-Kang Hospital; Kaohsiung Medical University; Kaohsiung, Taiwan
- Graduate Institute of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
- Department of Neurosurgery; Kaohsiung Medical University Hospital; Kaohsiung, Taiwan
| | - Ming-Chang Yang
- Department of Biological Sciences; National Sun Yat-Sen University; Kaohsiung, Taiwan
- Laboratory of Medical Research; Center of Education and Faculty Development; Kaohsiung Armed Forces General Hospital; Kaohsiung, Taiwan
| | - Ching-Chih Lin
- Department of Biochemistry; Faculty of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
| | - Ming-Chang Hong
- Department of Biochemistry; Faculty of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
| | - Chung-Lung Cho
- Department of Biological Sciences; National Sun Yat-Sen University; Kaohsiung, Taiwan
| | - An-Kuo Chou
- Department of Anesthesiology; Kaohsiung Chang Gung Memorial Hospital and College of Medicine; Chang Gung University; Kaohsiung, Taiwan
| | - Chi-Huei Wang
- Department of Biotechnology; Kaohsiung Medical University; Kaohsiung, Taiwan
| | - Ann-Shung Lieu
- Graduate Institute of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
- Department of Neurosurgery; Kaohsiung Medical University Hospital; Kaohsiung, Taiwan
| | - Shen-Long Howng
- Graduate Institute of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
- Department of Neurosurgery; Kaohsiung Medical University Hospital; Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences; National Sun Yat-Sen University; Kaohsiung, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry; Faculty of Medicine; College of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
- Department of Biological Sciences; National Sun Yat-Sen University; Kaohsiung, Taiwan
- Graduate Institute of Medicine; Kaohsiung Medical University; Kaohsiung, Taiwan
| |
Collapse
|
40
|
Tamura N, Simon JE, Nayak A, Shenoy RT, Hiroi N, Boilot V, Funahashi A, Draviam VM. A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset. Biol Open 2015; 4:155-69. [PMID: 25596275 PMCID: PMC4365484 DOI: 10.1242/bio.201410413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022] Open
Abstract
Microtubules execute diverse mitotic events that are spatially and temporally separated; the underlying regulation is poorly understood. By combining drug treatments, large-scale immunoprecipitation and mass spectrometry, we report the first comprehensive map of mitotic phase-specific protein interactions of the microtubule-end binding protein, EB1. EB1 interacts with some, but not all, of its partners throughout mitosis. We show that the interaction of EB1 with Astrin-SKAP complex, a key regulator of chromosome segregation, is enhanced during prometaphase, compared to anaphase. We find that EB1 and EB3, another EB family member, can interact directly with SKAP, in an SXIP-motif dependent manner. Using an SXIP defective mutant that cannot interact with EB, we uncover two distinct pools of SKAP at spindle microtubules and kinetochores. We demonstrate the importance of SKAP's SXIP-motif in controlling microtubule growth rates and anaphase onset, without grossly disrupting spindle function. Thus, we provide the first comprehensive map of temporal changes in EB1 interactors during mitosis and highlight the importance of EB protein interactions in ensuring normal mitosis.
Collapse
Affiliation(s)
- Naoka Tamura
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Judith E Simon
- Department of Genetics, University of Cambridge, Cambridge, UK Present address: European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Arnab Nayak
- Department of Genetics, University of Cambridge, Cambridge, UK Present address: Institute for Biochemistry II, Goethe University Frankfurt am Main, Germany
| | - Rajesh T Shenoy
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Viviane Boilot
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Viji M Draviam
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
42
|
Chiu SC, Chen JMM, Wei TYW, Cheng TS, Wang YHC, Ku CF, Lian CH, Liu CCJ, Kuo YC, Yu CTR. The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation. Am J Physiol Cell Physiol 2014; 307:C466-78. [PMID: 25009111 DOI: 10.1152/ajpcell.00164.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells display dramatic morphological changes in mitosis, where numerous factors form regulatory networks to orchestrate the complicated process, resulting in extreme fidelity of the segregation of duplicated chromosomes into two daughter cells. Astrin regulates several aspects of mitosis, such as maintaining the cohesion of sister chromatids by inactivating Separase and stabilizing spindle, aligning and segregating chromosomes, and silencing spindle assembly checkpoint by interacting with Src kinase-associated phosphoprotein (SKAP) and cytoplasmic linker-associated protein-1α (CLASP-1α). To understand how Astrin is regulated in mitosis, we report here that Astrin acts as a mitotic phosphoprotein, and Aurora-A phosphorylates Astrin at Ser(115). The phosphorylation-deficient mutant Astrin S115A abnormally activates spindle assembly checkpoint and delays mitosis progression, decreases spindle stability, and induces chromosome misalignment. Mechanistic analyses reveal that Astrin phosphorylation mimicking mutant S115D, instead of S115A, binds and induces ubiquitination and degradation of securin, which sequentially activates Separase, an enzyme required for the separation of sister chromatids. Moreover, S115A fails to bind mitosis regulators, including SKAP and CLASP-1α, which results in the mitotic defects observed in Astrin S115A-transfected cells. In conclusion, Aurora-A phosphorylates Astrin and guides the binding of Astrin to its cellular partners, which ensures proper progression of mitosis.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan; Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan
| | - Jo-Mei Maureen Chen
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Tong-You Wade Wei
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, Taiwan; and
| | - Tai-Shan Cheng
- Graduate Institute of Biochemistry of Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Hui Candice Wang
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chia-Feng Ku
- Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, Taiwan; and
| | - Chiao-Hsuan Lian
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chun-Chih Jared Liu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Yi-Chun Kuo
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan
| | - Chang-Tze Ricky Yu
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, Taiwan; Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Puli, Nantou, Taiwan; and
| |
Collapse
|
43
|
Yuan LJ, Li JD, Zhang L, Wang JH, Wan T, Zhou Y, Tu H, Yun JP, Luo RZ, Jia WH, Zheng M. SPAG5 upregulation predicts poor prognosis in cervical cancer patients and alters sensitivity to taxol treatment via the mTOR signaling pathway. Cell Death Dis 2014; 5:e1247. [PMID: 24853425 PMCID: PMC4047857 DOI: 10.1038/cddis.2014.222] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 12/31/2022]
Abstract
Previously, we found that sperm-associated antigen 5 (SPAG5) was upregulated in pelvic lymph node metastasis–positive cervical cancer. The aim of this study is to examine the role of SPAG5 in the proliferation and tumorigenicity of cervical cancer and its clinical significance in tumor progression. In our study, SPAG5 expression in cervical cancer patients was detected using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemistry; cervical cancer cell function with downregulated SPAG5 in vitro was explored using tetrazolium assay, flow cytometry, and colony formation and Transwell assays. SPAG5 was upregulated in tumor tissue compared with paired adjacent noncancerous tissues; SPAG5 upregulation in tumor tissues indicated poor disease-free survival, which was also an independent prognostic indicator for cervical cancer patients. In vitro study demonstrated that SPAG5 downregulation inhibited cell proliferation and growth significantly by G2/M arrest and induction of apoptosis, and hindered cell migration and invasion. Under SPAG5 downregulation, the sensitivity of cervical cancer cells differed according to taxol dose, which correlated with mammalian target of rapamycin (mTOR) signaling pathway activity. In general, SPAG5 upregulation relates to poor prognosis in cervical cancer patients, and SPAG5 is a regulator of mTOR activity during taxol treatment in cervical cancer.
Collapse
Affiliation(s)
- L-J Yuan
- 1] State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China [2] Department of Gynecology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - J-D Li
- 1] State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China [2] Department of Gynecology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - L Zhang
- 1] State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China [2] Department of Gynecology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - J-H Wang
- Department of Chest, Second People's Hospital of Guangdong Province, Guangzhou 510317, China
| | - T Wan
- 1] State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China [2] Department of Gynecology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Y Zhou
- 1] State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China [2] Department of Gynecology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - H Tu
- 1] State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China [2] Department of Gynecology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - J-P Yun
- Department of Pathology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - R-Z Luo
- Department of Pathology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - W-H Jia
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - M Zheng
- 1] State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China [2] Department of Gynecology, Sun Yat-sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
44
|
Zhong W, Zhou Y, Li J, Mysore R, Luo W, Li S, Chang MS, Olkkonen VM, Yan D. OSBP-related protein 8 (ORP8) interacts with Homo sapiens sperm associated antigen 5 (SPAG5) and mediates oxysterol interference of HepG2 cell cycle. Exp Cell Res 2014; 322:227-35. [PMID: 24424245 DOI: 10.1016/j.yexcr.2014.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 12/19/2013] [Accepted: 01/03/2014] [Indexed: 02/02/2023]
Abstract
We earlier identified OSBP-related protein 8 (ORP8) as an endoplasmic reticulum/nuclear envelope oxysterol-binding protein implicated in cellular lipid homeostasis, migration, and organization of the microtubule cytoskeleton. Here, a yeast two-hybrid screen identified Homo sapiens sperm associated antigen 5 (SPAG5)/Astrin as interaction partner of ORP8. The putative interaction was further confirmed by pull-down and co-immunoprecipitation assays. ORP8 did not colocalize with kinetochore-associated SPAG5 in mitotic HepG2 or HuH7 cells, but overexpressed ORP8 was capable of recruiting SPAG5 onto endoplasmic reticulum membranes in interphase cells. In our experiments, 25-hydroxycholesterol (25OHC) retarded the HepG2 cell cycle, causing accumulation in G2/M phase; ORP8 overexpression resulted in the same phenotype. Importantly, ORP8 knock-down dramatically inhibited the oxysterol effect on HepG2 cell cycle, suggesting a mediating role of ORP8. Furthermore, knock-down of SPAG5 significantly reduced the effects of both ORP8 overexpression and 25OHC on the cell cycle, placing SPAG5 downstream of the two cell-cycle interfering factors. Taken together, the present results suggest that ORP8 may via SPAG5 mediate oxysterol interference of the HepG2 cell cycle.
Collapse
Affiliation(s)
- Wenbin Zhong
- Department of Biotechnology, Jinan University, Guangzhou 510632, China
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jiwei Li
- Department of Biotechnology, Jinan University, Guangzhou 510632, China
| | | | - Wei Luo
- Department of Biotechnology, Jinan University, Guangzhou 510632, China
| | - Shiqian Li
- Department of Biotechnology, Jinan University, Guangzhou 510632, China
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, National Taiwan University, No. 1, Taipei, Taiwan
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Daoguang Yan
- Department of Biotechnology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
45
|
Abstract
The eukaryotic cell division cycle has been studied at the molecular level for over 30 years, most fruitfully in model organisms. In the past 5 years, developments in mass spectrometry-based proteomics have been applied to the study of protein interactions and post-translational modifications involving key cell cycle regulators such as cyclin-dependent kinases and the anaphase-promoting complex, as well as effectors such as centrosomes, the kinetochore and DNA replication forks. In addition, innovations in chemical biology, functional proteomics and bioinformatics have been employed to study the cell cycle at the proteome level. This review surveys the contributions of proteomics to cell cycle research. The near future should see the application of more quantitative proteomic approaches to probe the dynamic aspects of the molecular system that underlie the cell cycle in model organisms and in human cells.
Collapse
Affiliation(s)
- Vincent Archambault
- Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, UK.
| |
Collapse
|
46
|
Thedieck K, Holzwarth B, Prentzell MT, Boehlke C, Kläsener K, Ruf S, Sonntag AG, Maerz L, Grellscheid SN, Kremmer E, Nitschke R, Kuehn EW, Jonker JW, Groen AK, Reth M, Hall MN, Baumeister R. Inhibition of mTORC1 by astrin and stress granules prevents apoptosis in cancer cells. Cell 2013; 154:859-74. [PMID: 23953116 DOI: 10.1016/j.cell.2013.07.031] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/03/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) controls growth and survival in response to metabolic cues. Oxidative stress affects mTORC1 via inhibitory and stimulatory inputs. Whereas downregulation of TSC1-TSC2 activates mTORC1 upon oxidative stress, the molecular mechanism of mTORC1 inhibition remains unknown. Here, we identify astrin as an essential negative mTORC1 regulator in the cellular stress response. Upon stress, astrin inhibits mTORC1 association and recruits the mTORC1 component raptor to stress granules (SGs), thereby preventing mTORC1-hyperactivation-induced apoptosis. In turn, balanced mTORC1 activity enables expression of stress factors. By identifying astrin as a direct molecular link between mTORC1, SG assembly, and the stress response, we establish a unifying model of mTORC1 inhibition and activation upon stress. Importantly, we show that in cancer cells, apoptosis suppression during stress depends on astrin. Being frequently upregulated in tumors, astrin is a potential clinically relevant target to sensitize tumors to apoptosis.
Collapse
Affiliation(s)
- Kathrin Thedieck
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Katayama K, Yasuda H, Tochigi Y, Suzuki H. The microtubule-associated protein astrin transgenesis rescues spermatogenesis and renal function in hypogonadic (hgn/hgn) rats. Andrology 2012; 1:301-7. [PMID: 23413142 DOI: 10.1111/j.2047-2927.2012.00032.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/05/2012] [Accepted: 09/26/2012] [Indexed: 11/30/2022]
Abstract
Male hypogonadic (hgn/hgn) rats show male sterility, reduced female fertility, progressive renal insufficiency and body growth retardation. These defects are associated with loss-of-function mutation of astrin and appear to be related to organ hypoplasia resulting from abnormal cell proliferation and increased cell death during embryonic and early postnatal development. As targeted disruption of mouse spag5 (astrin ortholog) has been reported to show no phenotype, we performed rescue experiments based on the introduction of rat astrin cDNA transgene into hgn/hgn rats to determine whether astrin is actually necessary for the establishment of normal male fertility and renal function. Astrin transgenic (Tg) rats were mated with hgn/+ rats of the HGN strain, and Tg-hgn/+ rats were then crossed to obtain Tg-hgn/hgn. Tg-hgn/hgn males showed recovery of body growth, fertility and renal function. Testis size was smaller in these transgenic animals than normal controls, but showed an increase by 16.5-fold compared with hgn/hgn males. Spermatogenesis occurred in Tg-hgn/hgn testes, and their accessory reproductive organs were of approximately normal size. hgn/hgn males show hypergonadotropic hypogonadism. Increased testosterone and decreased LH levels in Tg-hgn/hgn serum indicated the recovery of Leydig cells' function. Tg-hgn/hgn males showed normal reproductive behaviour, and their mating with Tg-hgn/hgn females produced pups in normal litter size. Their renal sizes and glomerular numbers showed complete recovery, and renal function assayed by biochemical parameters was normal. These results indicated that the transgene is functional in the testis and kidney development as well as body growth. In conclusion, astrin is necessary for the establishment of normal size (cell number) and function of the testis and kidney in rats.
Collapse
Affiliation(s)
- K Katayama
- Laboratory of Veterinary Physiology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Multiple cancer testis antigens function to support tumor cell mitotic fidelity. Mol Cell Biol 2012; 32:4131-40. [PMID: 22869527 DOI: 10.1128/mcb.00686-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the expression of genes that are normally involved in spermatogenesis is frequently detected in tumors, the extent to which these gene products are required for neoplastic behaviors is unclear. To begin to address their functional relevance to tumorigenesis, we identified a cohort of proteins which display synthetic lethality with paclitaxel in non-small-cell lung cancer and whose expression is biased toward testes and tumors. Remarkably, these testis proteins, FMR1NB, NXF2, MAGEA5, FSIP1, and STARD6, are required for accurate chromosome segregation in tumor cells. Their individual depletion enhances the generation of multipolar spindles, increases mitotic transit time, and induces micronucleation in response to an otherwise innocuous dose of paclitaxel. The underlying basis for abnormal mitosis is an alteration in microtubule function, as their depletion increases microtubule cytaster formation and disrupts microtubule stability. Given these observations, we hypothesize that reactivated testis proteins may represent unique tumor cell vulnerabilities which, if targeted, could enhance responsiveness to antimitotic therapy. Indeed, we demonstrate that combining paclitaxel with a small-molecule inhibitor of the gametogenic and tumor cell mitotic protein TACC3 leads to enhanced centrosomal abnormalities, activation of death programs, and loss of anchorage-independent growth.
Collapse
|
49
|
Kersten FF, van Wijk E, Hetterschijt L, Bauβ K, Peters TA, Aslanyan MG, van der Zwaag B, Wolfrum U, Keunen JE, Roepman R, Kremer H. The mitotic spindle protein SPAG5/Astrin connects to the Usher protein network postmitotically. Cilia 2012; 1:2. [PMID: 23351521 PMCID: PMC3541543 DOI: 10.1186/2046-2530-1-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 04/25/2012] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED BACKGROUND Mutations in the gene for Usher syndrome 2A (USH2A) are causative for non-syndromic retinitis pigmentosa and Usher syndrome, a condition that is the most common cause of combined deaf-blindness. To gain insight into the molecular pathology underlying USH2A-associated retinal degeneration, we aimed to identify interacting proteins of USH2A isoform B (USH2AisoB) in the retina. RESULTS We identified the centrosomal and microtubule-associated protein sperm-associated antigen (SPAG)5 in the retina. SPAG5 was also found to interact with another previously described USH2AisoB interaction partner: the centrosomal ninein-like protein NINLisoB. Using In situ hybridization, we found that Spag5 was widely expressed during murine embryonic development, with prominent signals in the eye, cochlea, brain, kidney and liver. SPAG5 expression in adult human tissues was detected by quantitative PCR, which identified expression in the retina, brain, intestine, kidney and testis. In the retina, Spag5, Ush2aisoB and NinlisoB were present at several subcellular structures of photoreceptor cells, and colocalized at the basal bodies. CONCLUSIONS Based on these results and on the suggested roles for USH proteins in vesicle transport and providing structural support to both the inner ear and the retina, we hypothesize that SPAG5, USH2AisoB and NINLisoB may function together in microtubule-based cytoplasmic trafficking of proteins that are essential for cilium formation, maintenance and/or function.
Collapse
Affiliation(s)
- Ferry Fj Kersten
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
CLASPs prevent irreversible multipolarity by ensuring spindle-pole resistance to traction forces during chromosome alignment. Nat Cell Biol 2012; 14:295-303. [PMID: 22307330 DOI: 10.1038/ncb2423] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/15/2011] [Indexed: 01/10/2023]
Abstract
Loss of spindle-pole integrity during mitosis leads to multipolarity independent of centrosome amplification. Multipolar-spindle conformation favours incorrect kinetochore-microtubule attachments, compromising faithful chromosome segregation and daughter-cell viability. Spindle-pole organization influences and is influenced by kinetochore activity, but the molecular nature behind this critical force balance is unknown. CLASPs are microtubule-, kinetochore- and centrosome-associated proteins whose functional perturbation leads to three main spindle abnormalities: monopolarity, short spindles and multipolarity. The first two reflect a role at the kinetochore-microtubule interface through interaction with specific kinetochore partners, but how CLASPs prevent spindle multipolarity remains unclear. Here we found that human CLASPs ensure spindle-pole integrity after bipolarization in response to CENP-E- and Kid-mediated forces from misaligned chromosomes. This function is independent of end-on kinetochore-microtubule attachments and involves the recruitment of ninein to residual pericentriolar satellites. Distinctively, multipolarity arising through this mechanism often persists through anaphase. We propose that CLASPs and ninein confer spindle-pole resistance to traction forces exerted during chromosome congression, thereby preventing irreversible spindle multipolarity and aneuploidy.
Collapse
|