1
|
Cla4p Kinase Activity Is Down-Regulated by Fus3p during Yeast Mating. Biomolecules 2022; 12:biom12040598. [PMID: 35454186 PMCID: PMC9028331 DOI: 10.3390/biom12040598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/20/2023] Open
Abstract
In Saccharomyces cerevisiae, the p21-activated kinase Cla4p regulates polarized morphogenesis and cytokinesis. However, it remains unknown how Cla4p kinase activity is regulated. After pheromone exposure, yeast cells temporally separate the mitotic and mating programs by sequestering Fus2p in the nucleus until cell cycle completion, after which Fus2p exits to facilitate cell fusion. Previously, we showed that sequestration is regulated by two opposing protein kinases, Cla4p and Fus3p. Phosphorylation of Fus2p-S67 by Cla4p promotes nuclear localization by both activating nuclear import and blocking export. During mating, phosphorylation of Fus2p-S85 and Fus2p-S100 by Fus3p promotes nuclear export and blocks import. Here, we find that Cla4p kinase activity is itself down-regulated during mating. Pheromone exposure causes Cla4p hyper-phosphorylation and reduced Fus2p-S67 phosphorylation, dependent on Fus3p. Multiple phosphorylation sites in Cla4p are mating- and/or Fus3p-specific. Of these, Cla4p-S186 phosphorylation reduced the kinase activity of Cla4p, in vitro. A phosphomimetic cla4-S186E mutation caused a strong reduction in Fus2p-S67 phosphorylation and nuclear localization, in vivo. More generally, a non-phosphorylatable mutation, cla4-S186A, caused failure to maintain pheromone arrest and delayed formation of the mating-specific septin morphology. Thus, as cells enter the mating pathway, Fus3p counteracts Cla4p kinase activity to allow proper mating differentiation.
Collapse
|
2
|
Weerasinghe H, Bugeja HE, Andrianopoulos A. The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Sci Rep 2021; 11:2334. [PMID: 33504839 PMCID: PMC7840665 DOI: 10.1038/s41598-020-79593-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Hayley E Bugeja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
3
|
Quadri R, Sertic S, Muzi-Falconi M. gRASping Depolarization: Contribution of RAS GTPases to Mitotic Polarity Clusters Resolution. Front Cell Dev Biol 2020; 8:589993. [PMID: 33178703 PMCID: PMC7593642 DOI: 10.3389/fcell.2020.589993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Jiménez J, Queralt E, Posas F, de Nadal E. The regulation of Net1/Cdc14 by the Hog1 MAPK upon osmostress unravels a new mechanism regulating mitosis. Cell Cycle 2020; 19:2105-2118. [PMID: 32794416 PMCID: PMC7513861 DOI: 10.1080/15384101.2020.1804222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
During evolution, cells have developed a plethora of mechanisms to optimize survival in a changing and unpredictable environment. In this regard, they have evolved networks that include environmental sensors, signaling transduction molecules and response mechanisms. Hog1 (yeast) and p38 (mammals) stress-activated protein kinases (SAPKs) are activated upon stress and they drive a full collection of cell adaptive responses aimed to maximize survival. SAPKs are extensively used to learn about the mechanisms through which cells adapt to changing environments. In addition to regulating gene expression and metabolism, SAPKs control cell cycle progression. In this review, we will discuss the latest findings related to the SAPK-driven regulation of mitosis upon osmostress in yeast.
Collapse
Affiliation(s)
- Javier Jiménez
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Department of Ciències Bàsiques, Facultat De Medicina I Ciències De La Salut, Universitat Internacional De Catalunya , Barcelona, Spain
| | - Ethel Queralt
- Cell Cycle Group, Institut d'Investigacions Biomèdica De Bellvitge (IDIBELL), L'Hospitalet De Llobregat , Barcelona, Spain
| | - Francesc Posas
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| | - Eulàlia de Nadal
- Departament De Ciències Experimentals I De La Salut, Universitat Pompeu Fabra (UPF) , Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology , 08028 Barcelona, Spain
| |
Collapse
|
5
|
Matellán L, Monje-Casas F. Regulation of Mitotic Exit by Cell Cycle Checkpoints: Lessons From Saccharomyces cerevisiae. Genes (Basel) 2020; 11:E195. [PMID: 32059558 PMCID: PMC7074328 DOI: 10.3390/genes11020195] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
In order to preserve genome integrity and their ploidy, cells must ensure that the duplicated genome has been faithfully replicated and evenly distributed before they complete their division by mitosis. To this end, cells have developed highly elaborated checkpoints that halt mitotic progression when problems in DNA integrity or chromosome segregation arise, providing them with time to fix these issues before advancing further into the cell cycle. Remarkably, exit from mitosis constitutes a key cell cycle transition that is targeted by the main mitotic checkpoints, despite these surveillance mechanisms being activated by specific intracellular signals and acting at different stages of cell division. Focusing primarily on research carried out using Saccharomyces cerevisiae as a model organism, the aim of this review is to provide a general overview of the molecular mechanisms by which the major cell cycle checkpoints control mitotic exit and to highlight the importance of the proper regulation of this process for the maintenance of genome stability during the distribution of the duplicated chromosomes between the dividing cells.
Collapse
Affiliation(s)
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC)—University of Seville—University Pablo de Olavide, Avda, Américo Vespucio, 24, 41092 Sevilla, Spain;
| |
Collapse
|
6
|
Geymonat M, Segal M. Intrinsic and Extrinsic Determinants Linking Spindle Pole Fate, Spindle Polarity, and Asymmetric Cell Division in the Budding Yeast S. cerevisiae. Results Probl Cell Differ 2017; 61:49-82. [PMID: 28409300 DOI: 10.1007/978-3-319-53150-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The budding yeast S. cerevisiae is a powerful model to understand the multiple layers of control driving an asymmetric cell division. In budding yeast, asymmetric targeting of the spindle poles to the mother and bud cell compartments respectively orients the mitotic spindle along the mother-bud axis. This program exploits an intrinsic functional asymmetry arising from the age distinction between the spindle poles-one inherited from the preceding division and the other newly assembled. Extrinsic mechanisms convert this age distinction into differential fate. Execution of this program couples spindle orientation with the segregation of the older spindle pole to the bud. Remarkably, similar stereotyped patterns of inheritance occur in self-renewing stem cell divisions underscoring the general importance of studying spindle polarity and differential fate in yeast. Here, we review the mechanisms accounting for this pivotal interplay between intrinsic and extrinsic asymmetries that translate spindle pole age into differential fate.
Collapse
Affiliation(s)
- Marco Geymonat
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Marisa Segal
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
7
|
Abstract
The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.
Collapse
Affiliation(s)
- Bàrbara Baro
- Department of Pediatrics, Division of Infectious Diseases,Stanford University School of Medicine, Stanford, CA, USA.
| | - Ethel Queralt
- Cancer Epigenetics & Biology Program, Hospitalet de Llobregat, Barcelona, Spain.
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Avda. Américo Vespucio, s/n. P.C.T. Cartuja 93., 41092, Sevilla, Spain.
| |
Collapse
|
8
|
Role of Candida albicans Tem1 in mitotic exit and cytokinesis. Fungal Genet Biol 2014; 69:84-95. [PMID: 24973462 DOI: 10.1016/j.fgb.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
Candida albicans demonstrates three main growth morphologies: yeast, pseudohyphal and true hyphal forms. Cell separation is distinct in these morphological forms and the process of separation is closely linked to the completion of mitosis and cytokinesis. In Saccharomyces cerevisiae the small GTPase Tem1 is known to initiate the mitotic exit network, a signalling pathway involved in signalling the end of mitosis and initiating cytokinesis and cell separation. Here we have characterised the role of Tem1 in C. albicans, and demonstrate that it is essential for mitotic exit and cytokinesis, and that this essential function is signalled through the kinase Cdc15. Cells depleted of Tem1 displayed highly polarised growth but ultimately failed to both complete cytokinesis and re-enter the cell cycle following nuclear division. Consistent with its role in activating the mitotic exit network Tem1 localises to spindle pole bodies in a cell cycle-dependent manner. Ultimately, the mitotic exit network in C. albicans appears to co-ordinate the sequential processes of mitotic exit, cytokinesis and cell separation.
Collapse
|
9
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
10
|
SPOC alert—When chromosomes get the wrong direction. Exp Cell Res 2012; 318:1421-7. [DOI: 10.1016/j.yexcr.2012.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 12/16/2022]
|
11
|
Toda K, Naito K, Mase S, Ueno M, Uritani M, Yamamoto A, Ushimaru T. APC/C-Cdh1-dependent anaphase and telophase progression during mitotic slippage. Cell Div 2012; 7:4. [PMID: 22321970 PMCID: PMC3305350 DOI: 10.1186/1747-1028-7-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons. Results Here we describe mitotic slippage in yeast bub2Δ mutant cells that are defective in the repression of precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments. Conclusions The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.
Collapse
Affiliation(s)
- Kazuhiro Toda
- Faculty of Science, Shizuoka University, Shizuoka University, Shizuoka 422-8529, Japan.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bertazzi DT, Kurtulmus B, Pereira G. The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4. ACTA ACUST UNITED AC 2011; 193:1033-48. [PMID: 21670215 PMCID: PMC3115795 DOI: 10.1083/jcb.201101056] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lte1 directly inhibits Kin4 activity and restricts its binding to the mother spindle pole body, which allows proper mitotic exit of cells with a correctly aligned spindle. The spindle position checkpoint (SPOC) is an essential surveillance mechanism that allows mitotic exit only when the spindle is correctly oriented along the cell axis. Key SPOC components are the kinase Kin4 and the Bub2–Bfa1 GAP complex that inhibit the mitotic exit–promoting GTPase Tem1. During an unperturbed cell cycle, Kin4 associates with the mother spindle pole body (mSPB), whereas Bub2–Bfa1 is at the daughter SPB (dSPB). When the spindle is mispositioned, Bub2–Bfa1 and Kin4 bind to both SPBs, which enables Kin4 to phosphorylate Bfa1 and thereby block mitotic exit. Here, we show that the daughter cell protein Lte1 physically interacts with Kin4 and inhibits Kin4 kinase activity. Specifically, Lte1 binds to catalytically active Kin4 and promotes Kin4 hyperphosphorylation, which restricts Kin4 binding to the mSPB. This Lte1-mediated exclusion of Kin4 from the dSPB is essential for proper mitotic exit of cells with a correctly aligned spindle. Therefore, Lte1 promotes mitotic exit by inhibiting Kin4 activity at the dSPB.
Collapse
|
13
|
Praneenararat T, Takagi T, Iwasaki W. Interactive, multiscale navigation of large and complicated biological networks. ACTA ACUST UNITED AC 2011; 27:1121-7. [PMID: 21349867 PMCID: PMC3072549 DOI: 10.1093/bioinformatics/btr083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Motivation: Many types of omics data are compiled as lists of connections between elements and visualized as networks or graphs where the nodes and edges correspond to the elements and the connections, respectively. However, these networks often appear as ‘hair-balls’—with a large number of extremely tangled edges—and cannot be visually interpreted. Results: We present an interactive, multiscale navigation method for biological networks. Our approach can automatically and rapidly abstract any portion of a large network of interest to an immediately interpretable extent. The method is based on an ultrafast graph clustering technique that abstracts networks of about 100 000 nodes in a second by iteratively grouping densely connected portions and a biological-property-based clustering technique that takes advantage of biological information often provided for biological entities (e.g. Gene Ontology terms). It was confirmed to be effective by applying it to real yeast protein network data, and would greatly help modern biologists faced with large, complicated networks in a similar manner to how Web mapping services enable interactive multiscale navigation of geographical maps (e.g. Google Maps). Availability: Java implementation of our method, named NaviCluster, is available at http://navicluster.cb.k.u-tokyo.ac.jp/. Contact:thanet@cb.k.u-tokyo.ac.jp Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thanet Praneenararat
- Department of Computational Biology, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan.
| | | | | |
Collapse
|
14
|
Geymonat M, Spanos A, Jensen S, Sedgwick SG. Phosphorylation of Lte1 by Cdk prevents polarized growth during mitotic arrest in S. cerevisiae. J Cell Biol 2010; 191:1097-112. [PMID: 21149565 PMCID: PMC3002025 DOI: 10.1083/jcb.201005070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 11/09/2010] [Indexed: 01/19/2023] Open
Abstract
Lte1 is known as a regulator of mitotic progression in budding yeast. Here we demonstrate phosphorylation-dependent inhibition of polarized bud growth during G2/M by Lte1. Cla4 activity first localizes Lte1 to the polarity cap and thus specifically to the bud. This localization is a prerequisite for subsequent Clb-Cdk-dependent phosphorylation of Lte1 and its relocalization to the entire bud cortex. There, Lte1 interferes with activation of the small GTPases, Ras and Bud1. The inhibition of Bud1 prevents untimely polarization until mitosis is completed and Cdc14 phosphatase is released. Inhibition of Bud1 and Ras depends on Lte1's GEF-like domain, which unexpectedly inhibits these small G proteins. Thus, Lte1 has dual functions for regulation of mitotic progression: it both induces mitotic exit and prevents polarized growth during mitotic arrest, thereby coupling cell cycle progression and morphological development.
Collapse
Affiliation(s)
- Marco Geymonat
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, England, UK.
| | | | | | | |
Collapse
|
15
|
Caydasi AK, Ibrahim B, Pereira G. Monitoring spindle orientation: Spindle position checkpoint in charge. Cell Div 2010; 5:28. [PMID: 21143992 PMCID: PMC3004881 DOI: 10.1186/1747-1028-5-28] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/11/2010] [Indexed: 12/15/2022] Open
Abstract
Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function.
Collapse
Affiliation(s)
- Ayse K Caydasi
- German Cancer Research Centre, DKFZ-ZMBH Alliance, Molecular Biology of Centrosomes and Cilia, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
16
|
Lu Y, Cross FR. Periodic cyclin-Cdk activity entrains an autonomous Cdc14 release oscillator. Cell 2010; 141:268-79. [PMID: 20403323 DOI: 10.1016/j.cell.2010.03.021] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/24/2009] [Accepted: 03/17/2010] [Indexed: 12/22/2022]
Abstract
One oscillation of Cyclin-dependent kinase (Cdk) activity, largely driven by periodic synthesis and destruction of cyclins, is tightly coupled to a single complete eukaryotic cell division cycle. Tight linkage of different steps in diverse cell-cycle processes to Cdk activity has been proposed to explain this coupling. Here, we demonstrate an intrinsically oscillatory module controlling nucleolar release and resequestration of the Cdc14 phosphatase, which is essential for mitotic exit in budding yeast. We find that this Cdc14 release oscillator functions at constant and physiological cyclin-Cdk levels, and is therefore independent of the Cdk oscillator. However, the frequency of the release oscillator is regulated by cyclin-Cdk activity. This observation together with its mechanism suggests that the intrinsically autonomous Cdc14 release cycles are locked at once-per-cell-cycle through entrainment by the Cdk oscillator in wild-type cells. This concept may have broad implications for the structure and evolution of eukaryotic cell-cycle control.
Collapse
Affiliation(s)
- Ying Lu
- The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | | |
Collapse
|
17
|
Geymonat M, Spanos A, de Bettignies G, Sedgwick SG. Lte1 contributes to Bfa1 localization rather than stimulating nucleotide exchange by Tem1. ACTA ACUST UNITED AC 2009; 187:497-511. [PMID: 19948498 PMCID: PMC2779235 DOI: 10.1083/jcb.200905114] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lte1 is a mitotic regulator long envisaged as a guanosine nucleotide exchange factor (GEF) for Tem1, the small guanosine triphosphatase governing activity of the Saccharomyces cerevisiae mitotic exit network. We demonstrate that this model requires reevaluation. No GEF activity was detectable in vitro, and mutational analysis of Lte1's putative GEF domain indicated that Lte1 activity relies on interaction with Ras for localization at the bud cortex rather than providing nucleotide exchange. Instead, we found that Lte1 can determine the subcellular localization of Bfa1 at spindle pole bodies (SPBs). Under conditions in which Lte1 is essential, Lte1 promoted the loss of Bfa1 from the maternal SPB. Moreover, in cells with a misaligned spindle, mislocalization of Lte1 in the mother cell promoted loss of Bfa1 from one SPB and allowed bypass of the spindle position checkpoint. We observed that lte1 mutants display aberrant localization of the polarity cap, which is the organizer of the actin cytoskeleton. We propose that Lte1's role in cell polarization underlies its contribution to mitotic regulation.
Collapse
Affiliation(s)
- Marco Geymonat
- Division of Stem Cell Biology and Developmental Genetics, National Institute for Medical Research, London NW7 1AA, England, UK.
| | | | | | | |
Collapse
|
18
|
García-Cortés JC, McCollum D. Proper timing of cytokinesis is regulated by Schizosaccharomyces pombe Etd1. ACTA ACUST UNITED AC 2009; 186:739-53. [PMID: 19736319 PMCID: PMC2742193 DOI: 10.1083/jcb.200902116] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Spatial cues regulate cytokinesis: fully elongated spindles initiate cytokinesis in late anaphase, and the resulting cellular asymmetry triggers the process to end. Cytokinesis must be initiated only after chromosomes have been segregated in anaphase and must be terminated once cleavage is completed. We show that the fission yeast protein Etd1 plays a central role in both of these processes. Etd1 activates the guanosine triphosphatase (GTPase) Spg1 to trigger signaling through the septum initiation network (SIN) pathway and onset of cytokinesis. Spg1 is activated in late anaphase when spindle elongation brings spindle pole body (SPB)–localized Spg1 into proximity with its activator Etd1 at cell tips, ensuring that cytokinesis is only initiated when the spindle is fully elongated. Spg1 is active at just one of the two SPBs during cytokinesis. When the actomyosin ring finishes constriction, the SIN triggers disappearance of Etd1 from the half of the cell with active Spg1, which then triggers Spg1 inactivation. Asymmetric activation of Spg1 is crucial for timely inactivation of the SIN. Together, these results suggest a mechanism whereby cell asymmetry is used to monitor cytoplasmic partitioning to turn off cytokinesis signaling.
Collapse
Affiliation(s)
- Juan Carlos García-Cortés
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | |
Collapse
|
19
|
Cao L, Yu W, Wu Y, Yu L. The evolution, complex structures and function of septin proteins. Cell Mol Life Sci 2009; 66:3309-23. [PMID: 19597764 PMCID: PMC11115805 DOI: 10.1007/s00018-009-0087-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/21/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022]
Abstract
The septin family is a conserved GTP-binding protein family and was originally discovered through genetic screening for budding yeast mutants. Septins are implicated in many cellular processes in fungi and metazoa. The function of septins usually depends on septin assembling into oligomeric complexes and highly ordered polymers. The expansion of the septin gene number in vertebrates increased the complex diversity of septins. In this review, we first discuss the evolution, structures and assembly of septin proteins in yeast and metazoa. Then, we review the function of septin proteins in cytokinesis, membrane remodeling and compartmentalization.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| |
Collapse
|
20
|
Hwang WW, Madhani HD. Nonredundant requirement for multiple histone modifications for the early anaphase release of the mitotic exit regulator Cdc14 from nucleolar chromatin. PLoS Genet 2009; 5:e1000588. [PMID: 19662160 PMCID: PMC2716543 DOI: 10.1371/journal.pgen.1000588] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 07/07/2009] [Indexed: 12/03/2022] Open
Abstract
In Saccharomyces cerevisiae, the conserved phosphatase Cdc14 is required for the exit from mitosis. It is anchored on nucleolar chromatin by the Cfi1/Net1 protein until early anaphase, at which time it is released into the nucleoplasm. Two poorly understood, redundant pathways promote Cdc14 release, the FEAR (Cdc fourteen early release) network and the MEN (mitotic exit network). Through the analysis of genetic interactions, we report here a novel requirement for the ubiquitination of histone H2B by the Bre1 ubiquitin ligase in the cell cycle–dependent release of Cdc14 from nucleolar chromatin when the MEN is inactivated. This function for H2B ubiquitination is mediated by its activation of histone H3 methylation on lysines 4 and 79 (meH3K4 and meH3K79) but, surprisingly, is not dependent on the histone deacetylase (HDAC) Sir2, which associates with Cdc14 on nucleolar chromatin as part of the RENT complex. We also observed a defect in Cdc14 release in cells lacking H3 lysine 36 methylation (meH3K36) and in cells lacking an HDAC recruited by this modification. These histone modifications represent previously unappreciated factors required for the accessibility to and/or action on nucleolar chromatin of FEAR network components. The nonredundant role for these modifications in this context contrasts with the notion of a highly combinatorial code by which histone marks act to control biological processes. During proliferation, eukaryotic cells segregate their replicated genome to generate two identical progeny through a highly regulated process called mitosis. Inaccuracy in this process results in cell inviability or aneuploidy. In the S. cerevisiae cell cycle, the exit from the mitotic state is triggered by the release of the phosphatase Cdc14 during the anaphase stage of mitosis from nucleolar chromatin, where it is sequestered and kept inactive. The role of chromatin, if any, in the regulation of Cdc14 sequestration and/or release is unexplored. Using genetic analysis, we have discovered that multiple evolutionarily conserved histone modifications are required for the early anaphase release of Cdc14. These include monoubiquitination of histone H2B as well as two methylations of histone H3 on lysines 4 and 79 that require H2B monoubiquitination to occur efficiently. In addition, methylation of H3 on lysine 36 and a histone deacetylase recruited by this modification are also required. We suggest that these histone modifications are required on nucleolar chromatin for the accessibility and/or action of factors involved in the early anaphase release of Cdc14. The nonredundant requirement for multiple chromatin modifications stands in contrast to the popular notion of a highly combinatorial “histone code” for the action of histone modifications.
Collapse
Affiliation(s)
- William W. Hwang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Hiten D. Madhani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Varela E, Shimada K, Laroche T, Leroy D, Gasser SM. Lte1, Cdc14 and MEN-controlled Cdk inactivation in yeast coordinate rDNA decompaction with late telophase progression. EMBO J 2009; 28:1562-75. [PMID: 19387493 DOI: 10.1038/emboj.2009.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 03/26/2009] [Indexed: 11/10/2022] Open
Abstract
The mechanism of chromatin compaction in mitosis has been well studied, while little is known about what controls chromatin decompaction in early G1 phase. We have localized the Condensin subunit Brn1 to a compact spiral of rDNA in mitotic budding yeast cells. Brn1 release and the resulting rDNA decompaction in late telophase coincided with mitotic spindle dissociation, and occurred asymmetrically (daughter cells first). We immunoprecipitated the GTP-exchange factor Lte1, which helps activate the mitotic exit network (MEN) in anaphase, with mitotic Brn1. In lteDelta cells Brn1 release was delayed, even at temperatures that do not impair mitotic exit. Mutations in MEN pathway components that act downstream of Lte1 similarly delayed rDNA decompaction. We found that Brn1 release in wild-type cells coincided with the release of Cdc14 phosphatase from the nucleolus and with mitotic CDK inactivation, yet it could be selectively delayed by perturbation of the MEN pathway. This may argue that different levels of Cdk inactivation control spindle disassembly and chromatin decompaction. Mutation of lte1 also impaired rotation of the nucleus in early G1.
Collapse
Affiliation(s)
- Elisa Varela
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Barral Y, Liakopoulos D. Role of spindle asymmetry in cellular dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:149-213. [PMID: 19815179 DOI: 10.1016/s1937-6448(09)78004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mitotic spindle is mostly perceived as a symmetric structure. However, in many cell divisions, the two poles of the spindle organize asters with different dynamics, associate with different biomolecules or subcellular domains, and perform different functions. In this chapter, we describe some of the most prominent examples of spindle asymmetry. These are encountered during cell-cycle progression in budding and fission yeast and during asymmetric cell divisions of stem cells and embryos. We analyze the molecular mechanisms that lead to generation of spindle asymmetry and discuss the importance of spindle-pole differentiation for the correct outcome of cell division.
Collapse
Affiliation(s)
- Yves Barral
- Institute of Biochemistry, ETH Hönggerberg, HPM, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
23
|
Abstract
In budding yeast, the protein phosphatase Cdc14 is a key regulator of late mitotic events. Research over the last decade has revealed many of its functions and today we know that this protein phosphatase orchestrates several aspects of chromosome segregation and is the key trigger of exit from mitosis. Elucidation of the mechanisms controlling Cdc14 activity through nucleolar sequestration now serves as a paradigm for how regulation of the subcellular localization of proteins regulates protein function. Here I review these findings focusing on how discoveries in my laboratory helped elucidate the function and regulation of Cdc14.
Collapse
Affiliation(s)
- Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
24
|
Delgehyr N, Lopes CSJ, Moir CA, Huisman SM, Segal M. Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae. J Cell Sci 2008; 121:3803-14. [PMID: 18957510 DOI: 10.1242/jcs.036269] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In S. cerevisiae, spindle orientation is linked to the inheritance of the ;old' spindle pole by the bud. A player in this asymmetric commitment, Bud6p, promotes cortical capture of astral microtubules. Additionally, Bud6p stimulates actin cable formation though the formin Bni1p. A relationship with the second formin, Bnr1p, is unclear. Another player is Kar9p, a protein that guides microtubules along actin cables organised by formins. Here, we ask whether formins mediate Bud6p-dependent microtubule capture beyond any links to Kar9p and actin. We found that both formins control Bud6p localisation. bni1 mutations advanced recruitment of Bud6p at the bud neck, ahead of spindle assembly, whereas bnr1Delta reduced Bud6p association with the bud neck. Accordingly, bni1 or bnr1 mutations redirected microtubule capture to or away from the bud neck, respectively. Furthermore, a Bni1p truncation that can form actin cables independently of Bud6p could not bypass a bud6Delta for microtubule capture. Conversely, Bud6(1-565)p, a truncation insufficient for correct actin organisation via formins, supported microtubule capture. Finally, Bud6p or Bud6(1-565)p associated with microtubules in vitro. Thus, surprisingly, Bud6p may promote microtubule capture independently of its links to actin organisation, whereas formins would contribute to the program of Bud6p-dependent microtubule-cortex interactions by controlling Bud6p localisation.
Collapse
Affiliation(s)
- Nathalie Delgehyr
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | | | | |
Collapse
|
25
|
Tiedje C, Sakwa I, Just U, Höfken T. The Rho GDI Rdi1 regulates Rho GTPases by distinct mechanisms. Mol Biol Cell 2008; 19:2885-96. [PMID: 18417612 DOI: 10.1091/mbc.e07-11-1152] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3beta homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases.
Collapse
Affiliation(s)
- Christopher Tiedje
- Institute of Biochemistry, Christian Albrecht University, 24098 Kiel, Germany
| | | | | | | |
Collapse
|
26
|
Tiedje C, Holland DG, Just U, Höfken T. Proteins involved in sterol synthesis interact with Ste20 and regulate cell polarity. J Cell Sci 2007; 120:3613-24. [PMID: 17895367 DOI: 10.1242/jcs.009860] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Saccharomyces cerevisiae p21-activated kinase (PAK) Ste20 regulates various aspects of cell polarity during vegetative growth, mating and filamentous growth. To gain further insight into the mechanisms of Ste20 action, we screened for interactors of Ste20 using the split-ubiquitin system. Among the identified proteins were Erg4, Cbr1 and Ncp1, which are all involved in sterol biosynthesis. The interaction between Ste20 and Erg4, as well as between Ste20 and Cbr1, was confirmed by pull-down experiments. Deletion of either ERG4 or NCP1 resulted in various polarity defects, indicating a role for these proteins in bud site selection, apical bud growth, cell wall assembly, mating and invasive growth. Interestingly, Erg4 was required for the polarized localization of Ste20 during mating. Lack of CBR1 produced no detectable phenotype, whereas the deletion of CBR1 in the absence of NCP1 was lethal. Using a conditional lethal mutant we demonstrate that both proteins have overlapping functions in bud morphology.
Collapse
Affiliation(s)
- Christopher Tiedje
- Institute of Biochemistry, Christian Albrecht University Kiel, Olshausenstrasse 40, 24098 Kiel, Germany.
| | | | | | | |
Collapse
|
27
|
Nelson SA, Cooper JA. A novel pathway that coordinates mitotic exit with spindle position. Mol Biol Cell 2007; 18:3440-50. [PMID: 17615297 PMCID: PMC1951770 DOI: 10.1091/mbc.e07-03-0242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/26/2007] [Indexed: 12/25/2022] Open
Abstract
In budding yeast, the spindle position checkpoint (SPC) delays mitotic exit until the mitotic spindle moves into the neck between the mother and bud. This checkpoint works by inhibiting the mitotic exit network (MEN), a signaling cascade initiated and controlled by Tem1, a small GTPase. Tem1 is regulated by a putative guanine exchange factor, Lte1, but the function and regulation of Lte1 remains poorly understood. Here, we identify novel components of the checkpoint that operate upstream of Lte1. We present genetic evidence in agreement with existing biochemical evidence for the molecular mechanism of a pathway that links microtubule-cortex interactions with Lte1 and mitotic exit. Each component of this pathway is required for the spindle position checkpoint to delay mitotic exit until the spindle is positioned correctly.
Collapse
Affiliation(s)
- Scott A Nelson
- Department of Cell Biology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | |
Collapse
|
28
|
Haarer BK, Helfant AH, Nelson SA, Cooper JA, Amberg DC. Stable preanaphase spindle positioning requires Bud6p and an apparent interaction between the spindle pole bodies and the neck. EUKARYOTIC CELL 2007; 6:797-807. [PMID: 17416900 PMCID: PMC1899834 DOI: 10.1128/ec.00332-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Accepted: 03/15/2007] [Indexed: 11/20/2022]
Abstract
Faithful partitioning of genetic material during cell division requires accurate spatial and temporal positioning of nuclei within dividing cells. In Saccharomyces cerevisiae, nuclear positioning is regulated by an elegant interplay between components of the actin and microtubule cytoskeletons. Regulators of this process include Bud6p (also referred to as the actin-interacting protein Aip3p) and Kar9p, which function to promote contacts between cytoplasmic microtubule ends and actin-delimited cortical attachment points. Here, we present the previously undetected association of Bud6p with the cytoplasmic face of yeast spindle pole bodies, the functional equivalent of metazoan centrosomes. Cells lacking Bud6p show exaggerated movements of the nucleus between mother and daughter cells and display reduced amounts of time a given spindle pole body spends in close association with the neck region of budding cells. Furthermore, overexpression of BUD6 greatly enhances interactions between the spindle pole body and mother-bud neck in a spindle alignment-defective dynactin mutant. These results suggest that association of either spindle pole body with neck components, rather than simply entry of a spindle pole body into the daughter cell, provides a positive signal for the progression of mitosis. We propose that Bud6p, through its localization at both spindle pole bodies and at the mother-bud neck, supports this positive signal and provides a regulatory mechanism to prevent excessive oscillations of preanaphase nuclei, thus reducing the likelihood of mitotic delays and nuclear missegregation.
Collapse
Affiliation(s)
- Brian K Haarer
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
29
|
Lanzetti L, Margaria V, Melander F, Virgili L, Lee MH, Bartek J, Jensen S. Regulation of the Rab5 GTPase-activating protein RN-tre by the dual specificity phosphatase Cdc14A in human cells. J Biol Chem 2007; 282:15258-70. [PMID: 17371873 DOI: 10.1074/jbc.m700914200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Cdc14 family of dual specificity phosphatases regulates key mitotic events in the eukaryotic cell cycle. Although extensively characterized in yeast, little is known about the function of mammalian Cdc14 family members. Here we report a genetic substrate-trapping system designed to identify substrates of the human Cdc14A (hCdc14A) phosphatase. Using this approach, we identify RN-tre, a GTPase-activating protein for the Rab5 GTPase, as a novel physiological target of hCdc14A. As a Rab5 GTPase-activating protein, RN-tre has previously been implicated in control of intracellular membrane trafficking. We find that RN-tre forms a stable complex with the catalytically inactive hCdc14A C278S mutant but not with the wild type protein in human cells, indicative of a substrate/enzyme interaction. In support, we show that RN-tre is regulated by cell cycle-dependent phosphorylation peaking at mitosis, which can be antagonized by hCdc14A activity in vitro as well as in vivo. Furthermore, we show that RN-tre phosphorylation is critical for efficient hCdc14A association and that RN-tre binding can be displaced by tungstate, a competitive inhibitor that binds to the active site of hCdc14A. Consistent with the preference of hCdc14A for phosphorylations mediated by proline-directed kinases, we find that RN-tre is a direct substrate of cyclin-dependent kinase. Finally, phosphorylation of RN-tre appears to finely modulate its catalytic activity. Our findings reveal a novel connection between the cell cycle machinery and the endocytic pathway.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Dipartimento di Scienze Oncologiche, Università degli Studi di Torino, Istituto per la Ricerca e la Cura del Cancro, Strada Provinciale 142, 10060 Candiolo, Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Park HO, Bi E. Central roles of small GTPases in the development of cell polarity in yeast and beyond. Microbiol Mol Biol Rev 2007; 71:48-96. [PMID: 17347519 PMCID: PMC1847380 DOI: 10.1128/mmbr.00028-06] [Citation(s) in RCA: 335] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SUMMARY The establishment of cell polarity is critical for the development of many organisms and for the function of many cell types. A large number of studies of diverse organisms from yeast to humans indicate that the conserved, small-molecular-weight GTPases function as key signaling proteins involved in cell polarization. The budding yeast Saccharomyces cerevisiae is a particularly attractive model because it displays pronounced cell polarity in response to intracellular and extracellular cues. Cells of S. cerevisiae undergo polarized growth during various phases of their life cycle, such as during vegetative growth, mating between haploid cells of opposite mating types, and filamentous growth upon deprivation of nutrition such as nitrogen. Substantial progress has been made in deciphering the molecular basis of cell polarity in budding yeast. In particular, it becomes increasingly clear how small GTPases regulate polarized cytoskeletal organization, cell wall assembly, and exocytosis at the molecular level and how these GTPases are regulated. In this review, we discuss the key signaling pathways that regulate cell polarization during the mitotic cell cycle and during mating.
Collapse
Affiliation(s)
- Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA.
| | | |
Collapse
|
31
|
Zhao X, Chang AY, Toh-e A, Arvan P. A role for Lte1p (a low temperature essential protein involved in mitosis) in proprotein processing in the yeast secretory pathway. J Biol Chem 2007; 282:1670-8. [PMID: 17121813 PMCID: PMC2533109 DOI: 10.1074/jbc.m610500200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified six single gene disruptions in Saccharomyces cerevisiae that allow enhanced immunoreactive insulin secretion primarily because of defective Kex2p-mediated endoproteolytic processing. Five eis mutants disrupted established VPS (vacuolar protein sorting) genes, The sixth, LTE1, is a Low Temperature (<15 degrees C) Essential gene encoding a large protein with potential guanine nucleotide exchange (GEF) domains. Lte1p functions as a positive regulator of the mitotic GTPase Tem1p, and overexpression of Tem1p suppresses the low temperature mitotic defect of lte1. By sequence analysis, Tem1p has highest similarity to Vps21p (yeast homolog of mammalian Rab5). Unlike TEM1, LTE1 is not restricted to mitosis but is expressed throughout the cell cycle. Lte1p function in interphase cells is largely unknown. Here we confirm the eis phenotype of lte1 mutant cells and demonstrate a defect in proalpha factor processing that is rescued by expression of full-length Lte1p but not a C-terminally truncated Lte1p lacking its GEF homology domain. Neither overexpression of Tem1p nor 13 other structurally related GTPases can suppress the secretory proprotein processing defect. However, overexpression of Vps21p selectively restores proprotein processing in a manner dependent upon the active GTP-bound form of the GTPase. By contrast, a vps21 mutant produces a synthetic defect with lte1 in proprotein processing, as well as a synthetic growth defect. Together, the data underscore a link between the mitotic regulator, Lte1p, and protein processing and trafficking in the secretory/endosomal system.
Collapse
Affiliation(s)
- Xiang Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Sue Golding Graduate Division, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Amy Y. Chang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Akio Toh-e
- Department of Biological Science, University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
32
|
Huisman SM, Smeets MFMA, Segal M. Phosphorylation of Spc110p by Cdc28p-Clb5p kinase contributes to correct spindle morphogenesis in S. cerevisiae. J Cell Sci 2007; 120:435-46. [PMID: 17213332 DOI: 10.1242/jcs.03342] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spindle morphogenesis is regulated by cyclin-dependent kinases and monitored by checkpoint pathways to accurately coordinate chromosomal segregation with other events in the cell cycle. We have previously dissected the contribution of individual B-type cyclins to spindle morphogenesis in Saccharomyces cerevisiae. We showed that the S-phase cyclin Clb5p is required for coupling spindle assembly and orientation. Loss of Clb5p-dependent kinase abolishes intrinsic asymmetry between the spindle poles resulting in lethal translocation of the spindle into the bud with high penetrance in diploid cells. This phenotype was exploited in a screen for high dosage suppressors that yielded spc110(Delta)(13), encoding a truncation of the spindle pole body component Spc110p (the intranuclear receptor for the gamma-tubulin complex). We found that Clb5p-GFP was localised to the spindle poles and intranuclear microtubules and that Clb5p-dependent kinase promoted cell cycle dependent phosphorylation of Spc110p contributing to spindle integrity. Two cyclin-dependent kinase consensus sites were required for this phosphorylation and were critical for the activity of spc110(Delta)(13) as a suppressor. Together, our results point to the function of cyclin-dependent kinase phosphorylation of Spc110p and provide, in addition, support to a model for Clb5p control of spindle polarity at the level of astral microtubule organisation.
Collapse
Affiliation(s)
- Stephen M Huisman
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | | | | |
Collapse
|
33
|
Corbett M, Xiong Y, Boyne JR, Wright DJ, Munro E, Price C. IQGAP and mitotic exit network (MEN) proteins are required for cytokinesis and re-polarization of the actin cytoskeleton in the budding yeast, Saccharomyces cerevisiae. Eur J Cell Biol 2006; 85:1201-15. [PMID: 17005296 DOI: 10.1016/j.ejcb.2006.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/21/2022] Open
Abstract
In budding yeast the final stages of the cell division cycle, cytokinesis and cell separation, are distinct events that require to be coupled, both together and with mitotic exit. Here we demonstrate that mutations in genes of the mitotic exit network (MEN) prevent cell separation and are synthetically lethal in combination with both cytokinesis and septation defective mutations. Analysis of the synthetic lethal phenotypes reveals that Iqg1p functions in combination with the MEN components, Tem1p, Cdc15p Dbf20p and Dbf2p to govern the re-polarization of the actin cytoskeleton to either side of the bud neck. In addition phosphorylation of the conserved PCH protein, Hof1p, is dependent upon these activities and requires actin ring assembly. Recruitment of Dbf2p to the bud neck is dependent upon actin ring assembly and correlates with Hof1p phosphorylation. Failure to phosphorylate Hof1p results in the increased stability of the protein and its persistence at the bud neck. These data establish a mechanistic dependency of cell separation upon an intermediate step requiring actomyosin ring assembly.
Collapse
Affiliation(s)
- Mark Corbett
- Biological Sciences, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cell cycle checkpoints can delay mitotic exit in budding yeast. The master controller is the small GTPase Tem1, with inputs from a proposed guanine nucleotide exchange factor (GEF), Lte1, and a GTPase-activating protein (GAP), Bub2/Bfa1. In this issue, Fraschini et al. (p. 335) show that GAP activity of Bub2/Bfa1 appears to be dispensable for inactivation of Tem1 in cells. Their results call into question the GTP/GDP switch model for Tem1 activity, as have other results in the past. The paper also focuses attention on the two spindle pole bodies as potential sites for regulation of Tem1.
Collapse
Affiliation(s)
- John A Cooper
- Department of Cell Biology, Washington University, St. Louis, MO 63110, USA.
| | | |
Collapse
|
35
|
Yellman CM, Burke DJ. The role of Cdc55 in the spindle checkpoint is through regulation of mitotic exit in Saccharomyces cerevisiae. Mol Biol Cell 2005; 17:658-66. [PMID: 16314395 PMCID: PMC1356577 DOI: 10.1091/mbc.e05-04-0336] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cdc55, a B-type regulatory subunit of protein phosphatase 2A, has been implicated in mitotic spindle checkpoint activity and maintenance of sister chromatid cohesion during metaphase. The spindle checkpoint is composed of two independent pathways, one leading to inhibition of the metaphase-to-anaphase transition by checkpoint proteins, including Mad2, and the other to inhibition of mitotic exit by Bub2. We show that Cdc55 is a negative regulator of mitotic exit. A cdc55 mutant, like a bub2 mutant, prematurely releases Cdc14 phosphatase from the nucleolus during spindle checkpoint activation, and premature exit from mitosis indirectly leads to loss of sister chromatid cohesion and inviability in nocodazole. The role of Cdc55 is separable from Bub2 and inhibits release of Cdc14 through a mechanism independent of the known negative regulators of mitotic exit. Epistasis experiments indicate Cdc55 acts either downstream or independent of the mitotic exit network kinase Cdc15. Interestingly, the B-type cyclin Clb2 is partially stable during premature activation of mitotic exit in a cdc55 mutant, indicating mitotic exit is incomplete.
Collapse
Affiliation(s)
- Christopher M Yellman
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
36
|
de Gramont A, Cohen-Fix O. The many phases of anaphase. Trends Biochem Sci 2005; 30:559-68. [PMID: 16126387 DOI: 10.1016/j.tibs.2005.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 07/29/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
Anaphase is the stage of the cell cycle in which duplicated chromosomes separate and move towards opposite poles of the cell. Although its chromosome movements have always been viewed as majestic, until recently anaphase lacked obvious landmarks of regulation. The picture has changed with numerous recent studies that have highlighted the raison d'être of anaphase. It is now known to be associated with a series of regulatory pathways that promote a switch from high to low cyclin-dependent kinase activity--an essential feature for proper mitotic exit. The balance between protein phosphorylation and protein dephosphorylation drives and coordinates diverse processes such as chromosome movement, spindle dynamics and cleavage furrow formation. This well-ordered sequence of events is central to successful mitosis.
Collapse
Affiliation(s)
- Armand de Gramont
- The Laboratory of Molecular and Cellular Biology, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
37
|
Tan A, Rida P, Surana U. Essential tension and constructive destruction: the spindle checkpoint and its regulatory links with mitotic exit. Biochem J 2005; 386:1-13. [PMID: 15521820 PMCID: PMC1134761 DOI: 10.1042/bj20041415] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Replicated genetic material must be partitioned equally between daughter cells during cell division. The precision with which this is accomplished depends critically on the proper functioning of the mitotic spindle. The assembly, orientation and attachment of the spindle to the kinetochores are therefore constantly monitored by a surveillance mechanism termed the SCP (spindle checkpoint). In the event of malfunction, the SCP not only prevents chromosome segregation, but also inhibits subsequent mitotic events, such as cyclin destruction (mitotic exit) and cytokinesis. This concerted action helps to maintain temporal co-ordination among mitotic events. It appears that the SCP is primarily activated by either a lack of occupancy or the absence of tension at kinetochores. Once triggered, the inhibitory circuit bifurcates, where one branch restrains the sister chromatid separation by inhibiting the E3 ligase APC(Cdc20) (anaphase-promoting complex activated by Cdc20) and the other impinges on the MEN (mitotic exit network). A large body of investigations has now led to the identification of the control elements, their targets and the functional coupling among them. Here we review the emerging regulatory network and discuss the remaining gaps in our understanding of this effective mechanochemical control system.
Collapse
Affiliation(s)
- Agnes L. C. Tan
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Padmashree C. G. Rida
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
- To whom correspondence should be addressed (email )
| |
Collapse
|
38
|
Abstract
The exit from mitosis is the last critical decision during a cell-division cycle. A complex regulatory system has evolved to evaluate the success of mitotic events and control this decision. Whereas outstanding genetic work in yeast has led to rapid discovery of a large number of interacting genes involved in the control of mitotic exit, it has also become increasingly difficult to comprehend the logic and mechanistic features embedded in the complex molecular network. Our view is that this difficulty stems in part from the attempt to explain mitotic-exit control using concepts from traditional top-down engineering design, and that exciting new results from evolutionary engineering design applied to networks and electronic circuits may lend better insights. We focus on four particularly intriguing features of the mitotic-exit control system and attempt to examine these features from the perspective of evolutionary design and complex system engineering.
Collapse
Affiliation(s)
- William J Bosl
- University of California, Davis Cancer Center, Sacramento, CA 95817, USA
| | | |
Collapse
|
39
|
Abstract
Completion of the cell cycle requires the temporal and spatial coordination of chromosome segregation with mitotic spindle disassembly and cytokinesis. In budding yeast, the protein phosphatase Cdc14 is a key regulator of these late mitotic events. Here, we review the functions of Cdc14 and how this phosphatase is regulated to accomplish the coupling of mitotic processes. We also discuss the function and regulation of Cdc14 in other eukaryotes, emphasizing conserved features.
Collapse
Affiliation(s)
- Frank Stegmeier
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
40
|
Lee KS, Park JE, Asano S, Park CJ. Yeast polo-like kinases: functionally conserved multitask mitotic regulators. Oncogene 2005; 24:217-29. [PMID: 15640837 DOI: 10.1038/sj.onc.1208271] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The polo-like kinases (Plks) are a conserved subfamily of Ser/Thr protein kinases that play pivotal roles in regulating various cellular and biochemical events at multiple stages of M phase. Genetic and biochemical data revealed that both the budding yeast and the fission yeast polo kinase homologs (Cdc5 and Plo1, respectively) bear remarkable functional similarities with those in metazoan organisms, suggesting that the role of Plks is largely conserved throughout evolution. Thus, studies on Plks in genetically amenable lower eucaryotic organisms may yield valuable insights into the function of Plks in higher eucaryotic organisms. In this review, common properties and distinct functions of Cdc5 and Plo1 will be discussed and compared to properties and functions of Plks in higher eucaryotic organisms.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, 9000 Rockville Pike, Bldg 37, Rm 3118, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
41
|
D'Amours D, Amon A. At the interface between signaling and executing anaphase--Cdc14 and the FEAR network. Genes Dev 2005; 18:2581-95. [PMID: 15520278 DOI: 10.1101/gad.1247304] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Anaphase is the stage of the cell cycle when the duplicated genome is separated to opposite poles of the cell. The irreversible nature of this event confers a unique burden on the cell and it is therefore not surprising that the regulation of this cell cycle stage is complex. In budding yeast, a signaling network known as the Cdc fourteen early anaphase release (FEAR) network and its effector, the protein phosphatase Cdc14, play a key role in the coordination of the multiple events that occur during anaphase, such as partitioning of the DNA, regulation of spindle stability, activation of microtubule forces, and initiation of mitotic exit. These functions of the FEAR network contribute to genomic stability by coordinating the completion of anaphase and the execution of mitotic exit.
Collapse
Affiliation(s)
- Damien D'Amours
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
42
|
Huisman SM, Bales OAM, Bertrand M, Smeets MFMA, Reed SI, Segal M. Differential contribution of Bud6p and Kar9p to microtubule capture and spindle orientation in S. cerevisiae. ACTA ACUST UNITED AC 2004; 167:231-44. [PMID: 15492045 PMCID: PMC2172562 DOI: 10.1083/jcb.200407167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In Saccharomyces cerevisiae, spindle orientation is controlled by a temporal and spatial program of microtubule (MT)–cortex interactions. This program requires Bud6p/Aip3p to direct the old pole to the bud and confine the new pole to the mother cell. Bud6p function has been linked to Kar9p, a protein guiding MTs along actin cables. Here, we show that Kar9p does not mediate Bud6p functions in spindle orientation. Based on live microscopy analysis, kar9Δ cells maintained Bud6p-dependent MT capture. Conversely, bud6Δ cells supported Kar9p-associated MT delivery to the bud. Moreover, additive phenotypes in bud6Δ kar9Δ or bud6Δ dyn1Δ mutants underscored the separate contributions of Bud6p, Kar9p, and dynein to spindle positioning. Finally, tub2C354S, a mutation decreasing MT dynamics, suppressed a kar9Δ mutation in a BUD6-dependent manner. Thus, Kar9p-independent capture at Bud6p sites can effect spindle orientation provided MT turnover is reduced. Together, these results demonstrate Bud6p function in MT capture at the cell cortex, independent of Kar9p-mediated MT delivery along actin cables.
Collapse
Affiliation(s)
- Stephen M Huisman
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The guanine nucleotide exchange factor Cdc24, the GTPase Cdc42, and the Cdc42 effectors Cla4 and Ste20, two p21-activated kinases, form a signal transduction cascade that promotes mitotic exit in yeast. We performed a genetic screen to identify components of this pathway. Two related bud cortex–associated Cdc42 effectors, Gic1 and Gic2, were obtained as factors that promoted mitotic exit independently of Ste20. The mitotic exit function of Gic1 was dependent on its activation by Cdc42 and on the release of Gic1 from the bud cortex. Gic proteins became essential for mitotic exit when activation of the mitotic exit network through Cdc5 polo kinase and the bud cortex protein Lte1 was impaired. The mitotic exit defect of cdc5-10 Δlte1 Δgic1 Δgic2 cells was rescued by inactivation of the inhibiting Bfa1-Bub2 GTPase-activating protein. Moreover, Gic1 bound directly to Bub2 and prevented binding of the GTPase Tem1 to Bub2. We propose that in anaphase the Cdc42-regulated Gic proteins trigger mitotic exit by interfering with Bfa1-Bub2 GTPase-activating protein function.
Collapse
Affiliation(s)
- Thomas Höfken
- The Paterson Institute for Cancer Research, Christie Hospital NHS Trust, Wilmslow Rd., Manchester, M20 4BX, UK
| | | |
Collapse
|
44
|
Nichols CB, Fraser JA, Heitman J. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans. Mol Biol Cell 2004; 15:4476-89. [PMID: 15282344 PMCID: PMC519142 DOI: 10.1091/mbc.e04-05-0370] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sexual identity and mating are linked to virulence of the fungal pathogen Cryptococcus neoformans. Cells of the alpha mating type are more prevalent and can be more virulent than a cells, and basidiospores are thought to be the infectious propagule. Mating in C. neoformans involves cell-cell fusion and the generation of dikaryotic hyphae, processes that involve substantial changes in cell polarity. Two p21-activated kinase (PAK) kinases, Pak1 and Ste20, are required for both mating and virulence in C. neoformans. We show here that Ste20 and Pak1 play crucial roles in polarized morphogenesis at different steps during mating: Pak1 functions during cell fusion, whereas Ste20 fulfills a distinct morphogenic role and is required to maintain polarity in the heterokaryotic mating filament. In conclusion, our studies demonstrate that PAK kinases are necessary for polar growth during mating and that polarity establishment is necessary for mating and may contribute to virulence of C. neoformans.
Collapse
Affiliation(s)
- Connie B Nichols
- Department of Molecular Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
45
|
Abstract
The mitotic exit network (MEN) and the septation initiation network (SIN) control events at the end of mitosis in S. cerevisiae and S. pombe, respectively. SIN initiates contraction of the actin ring and synthesis of the division septum, thereby bringing about cytokinesis. The MEN is also required for cytokinesis, but its main role is to control inactivation of mitotic cyclin-dependent kinases (CDKs) at the end of mitosis, and thereby regulate mitotic exit. Each revolves around a Ras-family GTPase and involves several protein kinases, and SIN and MEN proteins are localised to the spindle pole body. In S. cerevisiae, a second network, known as FEAR, cooperates with the MEN to bring about mitotic exit, and a third, AMEN, contributes to switching the MEN off. Some of the central components of the FEAR, SIN and MEN have been conserved through evolution, which suggests that aspects of their function in controlling events at the end of mitosis might be conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Viesturs Simanis
- Cell Cycle Control Laboratory, Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges, Switzerland.
| |
Collapse
|
46
|
Abstract
The mitotic spindle segregates chromosomes to opposite ends of the cell in preparation for cell division. Chromosome attachment to the spindle is monitored by the spindle assembly checkpoint, and at least in yeast cells, penetration of one spindle pole into the bud is monitored by the spindle position checkpoint. We review the historical origins of these checkpoints and recent progress in understanding their surveillance pathways. We also highlight fascinating but as yet unresolved questions, and examine crosstalk between the checkpoints.
Collapse
Affiliation(s)
- Daniel J Lew
- Department of Pharmacology and Cancer Biology, Box 3813, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
47
|
Abstract
Establishing the temporal order of mitotic events is critical to ensure that each daughter cell receives a complete DNA complement. The spatial co-ordination of the cytokinetic ring site with the axis of chromosome segregation is likewise crucial. Recent studies in fungi indicate that regulators of chromosome segregation also participate in promoting mitotic exit and that the proteins that initiate mitotic exit, in turn, additionally regulate cytokinesis. These findings suggest that late mitotic events are coupled by employing one pathway to control multiple events. The regulatory mechanisms that ensure the spatial co-ordination of the mitotic spindle apparatus with the division site have also been elucidated recently in the asymmetrically dividing budding yeast. Interestingly, the spatial co-ordination of late mitotic events seems also to be important in higher eukaryotes.
Collapse
Affiliation(s)
- Anupama Seshan
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge MA 02139, USA
| | | |
Collapse
|
48
|
Kitazono AA, Garza DA, Kron SJ. Mutations in the yeast cyclin-dependent kinase Cdc28 reveal a role in the spindle assembly checkpoint. Mol Genet Genomics 2003; 269:672-84. [PMID: 12827501 DOI: 10.1007/s00438-003-0870-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 05/22/2003] [Indexed: 11/26/2022]
Abstract
Anaphase onset and mitotic exit are regulated by the spindle assembly or kinetochore checkpoint, which inhibits the anaphase-promoting complex (APC), preventing the degradation of anaphase inhibitors and mitotic cyclins. As a result, cells arrest with high cyclin-dependent kinase (CDK) activity due to the accumulation of cyclins. Aside from this, a clear-cut demonstration of a direct role for CDKs in the spindle checkpoint response has been elusive. Cdc28 is the main CDK driving the cell cycle in budding yeast. In this report, mutations in cdc28 are described that confer specific checkpoint defects, supersensitivity towards microtubule poisons and chromosome loss. Two alleles encode single mutations in the N and C terminal regions, respectively (R10G and R288G), and one allele specifies two mutations near the C terminus (F245L, I284T). These cdc28 mutants are unable to arrest or efficiently prevent sister chromatid separation during treatment with nocodazole. Genetic interactions with checkpoint and apc mutants suggest Cdc28 may regulate checkpoint arrest downstream of the MAD2 and BUB2 pathways. These studies identify a C-terminal domain of Cdc28 required for checkpoint arrest upon spindle damage that mediates chromosome stability during vegetative growth, suggesting that it has an essential surveillance function in the unperturbed cell cycle.
Collapse
Affiliation(s)
- A A Kitazono
- Center for Molecular Oncology and Dept. of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
49
|
Abstract
Septins are a conserved eukaryotic family of GTP-binding filament-forming proteins with functions in cytokinesis and other processes. In the budding yeast Saccharomyces cerevisiae, septins initially localize to the presumptive bud site and then to the cortex of the mother-bud neck as an hourglass structure. During cytokinesis, the septin hourglass splits and single septin rings partition with each of the resulting cells. Septins are thought to function in diverse processes in S. cerevisiae, mainly by acting as a scaffold to direct the neck localization of septin-associated proteins.
Collapse
Affiliation(s)
- Mark S Longtine
- Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74075-3035, USA
| | | |
Collapse
|
50
|
Abstract
ACdc25 family protein Lte1 (low temperature essential) is essential for mitotic exit at a lowered temperature and has been presumed to be a guanine nucleotide exchange factor (GEF) for a small GTPase Tem1, which is a key regulator of mitotic exit. We found that Lte1 physically associates with Ras2-GTP both in vivo and in vitro and that the Cdc25 homology domain (CHD) of Lte1 is essential for the interaction with Ras2. Furthermore, we found that the proper localization of Lte1 to the bud cortex is dependent on active Ras and that the overexpression of a derivative of Lte1 without the CHD suppresses defects in mitotic exit of a Deltalte1 mutant and a Deltaras1 Deltaras2 mutant. These results suggest that Lte1 is a downstream effector protein of Ras in mitotic exit and that the Ras GEF domain of Lte1 is not essential for mitotic exit but required for its localization.
Collapse
Affiliation(s)
- Satoshi Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Japan
| | | | | |
Collapse
|