1
|
Rift Valley Fever Virus Non-Structural Protein S Is Associated with Nuclear Translocation of Active Caspase-3 and Inclusion Body Formation. Viruses 2022; 14:v14112487. [PMID: 36366585 PMCID: PMC9698985 DOI: 10.3390/v14112487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/06/2022] [Accepted: 11/06/2022] [Indexed: 11/12/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) causes Rift Valley fever (RVF), an emerging zoonotic disease that causes abortion storms and high mortality rates in young ruminants as well as severe or even lethal complications in a subset of human patients. This study investigates the pathomechanism of intranuclear inclusion body formation in severe RVF in a mouse model. Liver samples from immunocompetent mice infected with virulent RVFV 35/74, and immunodeficient knockout mice that lack interferon type I receptor expression and were infected with attenuated RVFV MP12 were compared to livers from uninfected controls using histopathology and immunohistochemistry for RVFV nucleoprotein, non-structural protein S (NSs) and pro-apoptotic active caspase-3. Histopathology of the livers showed virus-induced, severe hepatic necrosis in both mouse strains. However, immunohistochemistry and immunofluorescence revealed eosinophilic, comma-shaped, intranuclear inclusions and an intranuclear (co-)localization of RVFV NSs and active caspase-3 only in 35/74-infected immunocompetent mice, but not in MP12-infected immunodeficient mice. These results suggest that intranuclear accumulation of RVFV 35/74 NSs is involved in nuclear translocation of active caspase-3, and that nuclear NSs and active caspase-3 are involved in the formation of the light microscopically visible inclusion bodies.
Collapse
|
2
|
Rajeevan A, Keshri R, Kapoor S, Kotak S. NuMA interaction with chromatin is vital for proper chromosome decondensation at the mitotic exit. Mol Biol Cell 2020; 31:2437-2451. [PMID: 32845810 PMCID: PMC7851854 DOI: 10.1091/mbc.e20-06-0415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
NuMA is an abundant long coiled-coil protein that plays a prominent role in spindle organization during mitosis. In interphase, NuMA is localized to the nucleus and hypothesized to control gene expression and chromatin organization. However, because of the prominent mitotic phenotype upon NuMA loss, its precise function in the interphase nucleus remains elusive. Here, we report that NuMA is associated with chromatin in interphase and prophase but released upon nuclear envelope breakdown (NEBD) by the action of Cdk1. We uncover that NuMA directly interacts with DNA via evolutionarily conserved sequences in its C-terminus. Notably, the expression of the DNA-binding-deficient mutant of NuMA affects chromatin decondensation at the mitotic exit, and nuclear shape in interphase. We show that the nuclear shape defects observed upon mutant NuMA expression are due to its potential to polymerize into higher-order fibrillar structures. Overall, this work establishes the spindle-independent function of NuMA in choreographing proper chromatin decompaction and nuclear shape by directly associating with the DNA.
Collapse
Affiliation(s)
- Ashwathi Rajeevan
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Riya Keshri
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Sukriti Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science, 560012 Bangalore, India
| |
Collapse
|
3
|
Kopeina GS, Prokhorova EA, Lavrik IN, Zhivotovsky B. Alterations in the nucleocytoplasmic transport in apoptosis: Caspases lead the way. Cell Prolif 2018; 51:e12467. [PMID: 29947118 DOI: 10.1111/cpr.12467] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Apoptosis is a mode of regulated cell death that is indispensable for the morphogenesis, development and homeostasis of multicellular organisms. Caspases are cysteine-dependent aspartate-specific proteases, which function as initiators and executors of apoptosis. Caspases are cytosolic proteins that can cleave substrates located in different intracellular compartments during apoptosis. Many years ago, the involvement of caspases in the regulation of nuclear changes, a hallmark of apoptosis, was documented. Accumulated data suggest that apoptosis-associated alterations in nucleocytoplasmic transport are also linked to caspase activity. Here, we aim to discuss the current state of knowledge regarding this process. Particular attention will be focused on caspase nuclear entry and their functions in the demolition of the nucleus upon apoptotic stimuli.
Collapse
Affiliation(s)
- Gelina S Kopeina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Inna N Lavrik
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Vega SL, Liu E, Arvind V, Bushman J, Sung HJ, Becker ML, Lelièvre S, Kohn J, Vidi PA, Moghe PV. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation. Exp Cell Res 2016; 351:11-23. [PMID: 28034673 DOI: 10.1016/j.yexcr.2016.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/15/2022]
Abstract
Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions.
Collapse
Affiliation(s)
- Sebastián L Vega
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Er Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Varun Arvind
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Jared Bushman
- Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ, United States; School of Pharmacy, University of Wyoming, Laramie, WY, United States
| | - Hak-Joon Sung
- Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Matthew L Becker
- Department of Polymer Science and Engineering, University of Akron, Akron, OH, United States
| | - Sophie Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Joachim Kohn
- Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ, United States
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, United States; Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.
| |
Collapse
|
5
|
Gupta G, Nowak-Sliwinska P, Herrero N, Dyson PJ, Therrien B. Increasing the selectivity of biologically active tetranuclear arene ruthenium assemblies. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Death Receptor 6 and Caspase-6 Regulate Prion Peptide-Induced Axonal Degeneration in Rat Spinal Neurons. J Mol Neurosci 2015; 56:966-976. [DOI: 10.1007/s12031-015-0562-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/01/2015] [Indexed: 01/12/2023]
|
7
|
|
8
|
Johnpeter JP, Gupta G, Kumar JM, Srinivas G, Nagesh N, Therrien B. Biological Studies of Chalcogenolato-Bridged Dinuclear Half-Sandwich Complexes. Inorg Chem 2013; 52:13663-73. [DOI: 10.1021/ic4022307] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Justin P. Johnpeter
- Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| | - Gajendra Gupta
- Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| | - Jerald Mahesh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | - Gunda Srinivas
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500 007, India
| | - Bruno Therrien
- Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
9
|
Owa C, Messina ME, Halaby R. Triptolide induces lysosomal-mediated programmed cell death in MCF-7 breast cancer cells. Int J Womens Health 2013; 5:557-69. [PMID: 24043955 PMCID: PMC3772696 DOI: 10.2147/ijwh.s44074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background Breast cancer is a major cause of death; in fact, it is the most common type, in order of the number of global deaths, of cancer in women worldwide. This research seeks to investigate how triptolide, an extract from the Chinese herb Tripterygium wilfordii Hook F, induces apoptosis in MCF-7 human breast cancer cells. Accumulating evidence suggests a role for lysosomal proteases in the activation of apoptosis. However, there is also some controversy regarding the direct participation of lysosomal proteases in activation of key apoptosis-related caspases and release of mitochondrial cytochrome c. In the present study, we demonstrate that triptolide induces an atypical, lysosomal-mediated apoptotic cell death in MCF-7 cells because they lack caspase-3. Methods MCF-7 cell death was characterized via cellular morphology, chromatin condensation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric cell growth inhibition assay and the expression levels of proapoptotic proteins. Acridine orange and LysoTracker® staining were performed to visualize lysosomes. Lysosomal enzymatic activity was monitored using an acid phosphatase assay and western blotting of cathepsin B protein levels in the cytosolic fraction, which showed increased enzymatic activity in drug-treated cells. Results These experiments suggest that triptolide-treated MCF-7 cells undergo atypical apoptosis and that, during the early stages, lysosomal enzymes leak into the cytosol, indicating lysosomal membrane permeability. Conclusion Our results suggest that further studies are warranted to investigate triptolide’s potential as an anticancer therapeutic agent.
Collapse
Affiliation(s)
- Chie Owa
- Department of Biology, Montclair State University, Montclair, NJ, USA
| | | | | |
Collapse
|
10
|
Anti-proliferative properties of ethyl acetate extract of Phellinus linteus grown on ginseng (Panax ginseng) on HT-29 human colon carcinoma cells through inducing apoptosis. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0089-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Dieker J, Iglesias-Guimarais V, Décossas M, Stevenin J, Vlag J, Yuste VJ, Muller S. Early Apoptotic Reorganization of Spliceosomal Proteins Involves Caspases, CAD and Rearrangement of NuMA. Traffic 2011; 13:257-72. [DOI: 10.1111/j.1600-0854.2011.01307.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 10/21/2011] [Accepted: 10/21/2011] [Indexed: 01/18/2023]
Affiliation(s)
| | - Victoria Iglesias-Guimarais
- Cell Death, Senescence & Survival Research Group; Dept. Bioquimica i Biologia Molecular; Institut de Neurociències; Universitat Autònoma de Barcelona; Barcelona; Spain
| | - Marion Décossas
- Centre National de la Recherche Scientifique (CNRS); Institut de Biologie Moléculaire et Cellulaire; Strasbourg; France
| | - James Stevenin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Institut National de Santé et de Recherche Médicale (INSERM)/Centre National de Recherche Scientifique (CNRS); Université de Strasbourg; Illkirch; France
| | - Johan Vlag
- Nephrology Research Laboratory; Department of Nephrology; Nijmegen Centre for Molecular Life Sciences; Radboud University Nijmegen Medical Centre; Nijmegen; The Netherlands
| | - Victor J. Yuste
- Cell Death, Senescence & Survival Research Group; Dept. Bioquimica i Biologia Molecular; Institut de Neurociències; Universitat Autònoma de Barcelona; Barcelona; Spain
| | - Sylviane Muller
- Centre National de la Recherche Scientifique (CNRS); Institut de Biologie Moléculaire et Cellulaire; Strasbourg; France
| |
Collapse
|
12
|
Silencing of Nuclear Mitotic Apparatus protein (NuMA) accelerates the apoptotic disintegration of the nucleus. Apoptosis 2010; 15:936-45. [PMID: 20467816 DOI: 10.1007/s10495-010-0506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One main feature of apoptosis is the sequential degradation of the nuclear structure, including the fragmentation of chromatin and caspase-mediated cleavage of various nuclear proteins. Among these proteins is the Nuclear Mitotic Apparatus protein (NuMA) which plays a specific role in the organization of the mitotic spindle. The exact function of NuMA in the interphase nucleus is unknown, but a number of reports have suggested that it may play a role in chromatin organization and/or gene expression. Here we show that upon cleavage in apoptotic cells, the N-terminal cleavage fragment of NuMA is solubilized while the C-terminal fragment remains associated with the condensed chromatin. Using pancaspase inhibitor z-VAD-fmk and caspase-3 deficient MCF-7 cells, we further show that the solubilization is dependent on caspase-mediated cleavage of NuMA. Finally, the silencing of NuMA by RNAi accelerated nuclear breakdown in apoptotic MCF-7 cells. These results suggest that NuMA may provide structural support in the interphase nucleus by contributing to the organization of chromatin.
Collapse
|
13
|
Nitric oxide induces apoptosis in GM-CSF-treated eosinophils via caspase-6-dependent lamin and DNA fragmentation. Pulm Pharmacol Ther 2010; 23:365-71. [PMID: 20380887 DOI: 10.1016/j.pupt.2010.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/19/2010] [Accepted: 04/01/2010] [Indexed: 11/21/2022]
Abstract
Asthma is characterized by accumulation of eosinophils in the lungs and delayed apoptosis may be one mechanism leading to eosinophilia. Nitric oxide (NO), present in inflamed lungs, has been shown to possess both anti- and proeosinophilic properties. We previously showed that NO induces apoptosis in the presence of survival prolonging cytokine IL-5 in human eosinophils. In the present study, we examined the intracellular mechanisms of NO-induced apoptosis in granulocyte macrophage-colony stimulating factor (GM-CSF)-treated eosinophils concentrating on the role of caspases and calpains. Eosinophils were isolated from human blood and apoptosis was determined by relative DNA fragmentation assay, morphological analysis and/or Annexin-V FITC assay. We showed that NO-donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) induced apoptosis in GM-CSF-treated eosinophils. SNAP-induced DNA fragmentation was totally prevented by an inhibitor of caspase-6 (Z-VEID-FMK). Decreased levels of caspase-6 proenzyme and increased amounts of cleaved lamin A/C in SNAP-treated cells indicated activation of caspase-6. Furthermore, SNAP-induced lamin A/C and B fragmentation was totally abolished by an inhibitor of caspase-6. According to our results, caspase-6 mediates lamin and DNA fragmentation also in spontaneously dying eosinophils. Inhibitor of calpains prevented most of DNA fragmentation related to spontaneous apoptosis but had no effect in eosinophils undergoing NO-induced apoptosis. In the present study we showed that caspase-6 is essential for the executive phase involving lamin and DNA fragmentation in both NO-induced and spontaneous eosinophil apoptosis. However, differences in the involvement of calpains suggest that the intracellular signalling in NO-induced apoptosis has specific features at the level of proteases. This study demonstrates new mechanisms for NO-induced and spontaneous apoptosis in human eosinophils.
Collapse
|
14
|
Zhao ZL, Li QF, Zheng YB, Chen LY, Shi SL, Jing GJ. The Aberrant Expressions of Nuclear Matrix Proteins During the Apoptosis of Human Osteosarcoma Cells. Anat Rec (Hoboken) 2010; 293:813-20. [DOI: 10.1002/ar.21074] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Bielskiene K, Bagdoniene L, Juodka B, Lipinski M, Sjakste T, Vassetzky YS, Sjakste N. Transcription- and apoptosis-dependent long-range distribution of tight DNA-protein complexes in the chicken alpha-globin gene. DNA Cell Biol 2008; 27:615-21. [PMID: 18781829 DOI: 10.1089/dna.2008.0771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The proteins tightly bound to DNA (TBP) are a group of proteins that remain attached to DNA with covalent or noncovalent bonds after its deproteinization, and have been hypothesized to be involved in regulation of gene expression. To investigate this question further, oligonucleotide DNA arrays were used to determine the distribution of tightly bound proteins along a 100-kb DNA fragment surrounding the chicken alpha-globin gene domain in DNA from chicken erythrocytes, liver, and AEV-transformed HD3 (erythroblast) cells in different physiological conditions. DNA was fractionated into TBP-free (F) and TBP-enriched (R) fractions by separation on nitrocellulose, and these fractions were used as probes for hybridization with the microarray. In erythrocytes, the site 60 kb from the 5' end of the sequence and containing a LINE family CR1 repeat was TBP enriched, but in HD3 cells this sequence was devoid of TBPs. Thus cessation of transcription of the domain is followed by an F-R transition of this site. In apoptotic HD3 cells, TBPs remained attached to DNA only at a site situated 16 kb from the 5' end of the sequence. These data confirm and extend previous conclusions about the specificity of the DNA sequences that preferably form tight complexes with proteins and about the differentiation-specific distribution of the TBPs in different cell lineages. Binding of TBPs appears to be independent of primary DNA sequence.
Collapse
Affiliation(s)
- Kristina Bielskiene
- Department of Biochemistry and Biophysics, Vilnius University, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
16
|
Preferential cytolysis of peripheral memory CD4+ T cells by in vitro X4-tropic human immunodeficiency virus type 1 infection before the completion of reverse transcription. J Virol 2008; 82:9154-63. [PMID: 18596085 DOI: 10.1128/jvi.00773-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CD4+ T-cell depletion is the hallmark of AIDS pathogenesis. Multiple mechanisms may contribute to the death of productively infected CD4+ T cells and innocent-bystander cells. In this study, we characterize a novel mechanism in which human immunodeficiency virus type 1 (HIV-1) infection preferentially depletes peripheral memory CD4+ T cells before the completion of reverse transcription. Using a recombinant HIV-1 carrying the green fluorescent protein reporter gene, we demonstrate that memory CD4+ T cells were susceptible to infection-induced cell death at a low multiplicity of infection. Infected memory CD4+ T cells underwent rapid necrotic cell death. Killing of host cells was dependent on X4 envelope-mediated viral fusion, but not on virion-associated Vpr or Nef. In contrast to peripheral resting CD4+ T cells, CD4+ T cells stimulated by mitogen or certain cytokines were resistant to HIV-1-induced early cell death. These results demonstrate that early steps in HIV-1 infection have a detrimental effect on certain subsets of CD4+ T cells. The early cell death may serve as a selective disadvantage for X4-tropic HIV-1 in acute infection but may play a role in accelerated disease progression, which is associated with the emergence of X4-tropic HIV-1 in the late stage of AIDS.
Collapse
|
17
|
Kaposi's sarcoma-associated herpesvirus-encoded LANA can interact with the nuclear mitotic apparatus protein to regulate genome maintenance and segregation. J Virol 2008; 82:6734-46. [PMID: 18417561 DOI: 10.1128/jvi.00342-08] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) genomes are tethered to the host chromosomes and partitioned faithfully into daughter cells with the host chromosomes. The latency-associated nuclear antigen (LANA) is important for segregation of the newly synthesized viral genomes to the daughter nuclei. Here, we report that the nuclear mitotic apparatus protein (NuMA) and LANA can associate in KSHV-infected cells. In synchronized cells, NuMA and LANA are colocalized in interphase cells and separate during mitosis at the beginning of prophase, reassociating again at the end of telophase and cytokinesis. Silencing of NuMA expression by small interfering RNA and expression of LGN and a dominant-negative of dynactin (P150-CC1), which disrupts the association of NuMA with microtubules, resulted in the loss of KSHV terminal-repeat plasmids containing the major latent origin. Thus, NuMA is required for persistence of the KSHV episomes in daughter cells. This interaction between NuMA and LANA is critical for segregation and maintenance of the KSHV episomes through a temporally controlled mechanism of binding and release during specific phases of mitosis.
Collapse
|
18
|
Lin HH, Hsu HL, Yeh NH. Apoptotic cleavage of NuMA at the C-terminal end is related to nuclear disruption and death amplification. J Biomed Sci 2007; 14:681-94. [PMID: 17401638 DOI: 10.1007/s11373-007-9165-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 03/05/2007] [Indexed: 10/23/2022] Open
Abstract
NuMA is a nuclear matrix protein in interphase and distributes to the spindle poles during mitosis. While the essential function of NuMA for mitotic spindle assembly is well established, a structural role of NuMA in interphase nucleus has also been proposed. Several observations suggest that the apoptotic degradation of NuMA may relate to chromatin condensation and micronucleation. Here we demonstrate that four apoptotic cleavage sites are clustered at a junction between the globular tail and the central coiled-coil domains of NuMA. Cleavage of a caspase-6-sensitive site at D(1705) produced the R-form, a major tail-less product of NuMA during apoptosis. The other two cleavage sites were defined at D(1726) and D(1747) that were catalyzed, respectively, by caspase-3 and an unknown aspartase. A NuMA deletion mutant missing the entire cleavage region of residues 1701-1828 resisted degradation and protected cells from nuclear disruption upon apoptotic attack. Under such conditions, cytochrome c was released from mitochondria, but the subsequent apoptotic events such as caspase-3 activation, poly(ADP-ribose) polymerase degradation, and DNA fragmentation were attenuated. Conversely, the tail-less NuMA alone, a mutant mimicking the R-form, induced chromatin condensation and activated the death machinery. It supports that intact NuMA is a structural element in maintaining nuclear integrity.
Collapse
Affiliation(s)
- Hsueh-Hsuan Lin
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, 155 Li-Nong Street Sec. 2, Taipei, 112, Taiwan ROC
| | | | | |
Collapse
|
19
|
Vähä-Koskela MJV, Kallio JP, Jansson LC, Heikkilä JE, Zakhartchenko VA, Kallajoki MA, Kähäri VM, Hinkkanen AE. Oncolytic capacity of attenuated replicative semliki forest virus in human melanoma xenografts in severe combined immunodeficient mice. Cancer Res 2006; 66:7185-94. [PMID: 16849565 DOI: 10.1158/0008-5472.can-05-2214] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic viruses have gained attention as a novel form of cancer treatment. Many viral vectors in use today have been rendered safe by deletion of genes encoding viral structural proteins, thus making them unable to spread beyond the first infected cells. Hence, such replication-deficient constructs may lack efficacy. Here, we analyzed the oncolytic potential of the replication-competent vector VA7-EGFP, based on the avirulent Semliki Forest virus (SFV) strain A7(74), to kill cancer cells in culture as well as to target s.c. human melanoma xenografts in severe combined immunodeficient (SCID) mice. VA7-EGFP was able to infect most cancer cell lines studied, leading to complete lysis of the cells within 72 hours after infection. In SCID mice grafted with A2058 human melanoma, marked regression of the xenografts was observed following a single injection of 10(6) plaque-forming units of virus given either i.p., i.v., or intratumorally. Histologic analysis revealed the presence of virus not only in all treated tumors but also in the brains of the treated mice, causing progressing neuropathology beginning at day 16 after infection. Following initial oncolysis, clusters of viable tumor cells were observed embedded in connective tissue, and at later stages, encapsulated tumor nodules had formed. Infection of melanoma cells from explant cultures of these nodules revealed that a portion of the cells were resistant to virus. To be eligible for use in virotherapy, the ability of avirulent SFV to spread within tumor tissue may have to be improved and the biological safety of the virus may have to be addressed thoroughly in higher animals.
Collapse
Affiliation(s)
- Markus J V Vähä-Koskela
- Abo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Momeni HR, Kanje M. Calpain inhibitors delay injury-induced apoptosis in adult mouse spinal cord motor neurons. Neuroreport 2006; 17:761-5. [PMID: 16708011 DOI: 10.1097/01.wnr.0000220127.01597.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Here, we investigated the effect of calpain inhibitors on apoptosis in organotypic adult spinal cord slices from mice. An increase in calpain I immunoreactivity was found in the nuclei of motor neurons from slices cultured for 30 min. After 4 h, the immunopositive motor neurons exhibited apoptotic changes including nuclear and chromatin condensation. Eight hours after excision, most motor neurons showed nuclear apoptotic features. Two calpain inhibitors, leupeptin and calpain inhibitor XI, inhibited apoptosis in the motor neurons while the caspase inhibitor Z-VAD.fmk had no effect. Leupeptin, but not calpain inhibitor XI and Z-VAD.fmk, also inhibited nucleosomal DNA fragmentation. These results suggest the involvement of calpain I in the induction of apoptosis in motor neurons of adult spinal cord and that apoptosis can be triggered independent of caspase activation.
Collapse
Affiliation(s)
- Hamid R Momeni
- Department of Cell and Organism Biology, Lund University, Lund, Sweden.
| | | |
Collapse
|
21
|
Abstract
Apoptosis is important in developmental biology and in remodeling of tissues during repair. Apoptosis also plays important roles in the progression of many diseases. The cellular and molecular mechanisms of apoptosis, in general, have been extensively demonstrated. However, the causes and the roles of apoptosis of various cell types in the lung are not well understood. We have determined that adenosine/homocysteine causes lung vascular endothelial cell apoptosis by inhibition of carboxyl methylation of the small GTPase, Ras, through inhibition of isoprenylcysteine carboxyl methyltransferase(ICMT) activity, leading to inactivation of Ras and the subsequent disruption of focal adhesion complexes, resulting in cell-extracellular matrix detachment and anoikis. Apoptosis can either ameliorate or exacerbate lung injury, depending upon the cell type. Although apoptosis of polymorphonuclear leukocytes in the lung prevents inflammation and the development of acute respiratory distress syndrome during acute lung injury, Fas/FasL-mediated alveolar epithelial cell apoptosis promotes acute lung injury and pulmonary fibrosis. Lung epithelial and endothelial cell apoptosis also contributes to the development of emphysema. This article focuses on elucidating the mechanisms of adenosine/homocysteine-induced endothelial cell apoptosis. We also review the current understanding of the role of lung cell apoptosis in acute lung injury, pulmonary fibrosis and emphysema.
Collapse
Affiliation(s)
- Qing Lu
- Pulmonary Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Department of Medicine Brown Medical School, Providence, RI 02908, USA
| | | | | |
Collapse
|
22
|
Kivinen K, Kallajoki M, Taimen P. Caspase-3 is required in the apoptotic disintegration of the nuclear matrix. Exp Cell Res 2005; 311:62-73. [PMID: 16199031 DOI: 10.1016/j.yexcr.2005.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/12/2005] [Accepted: 08/17/2005] [Indexed: 01/27/2023]
Abstract
Apoptotic breakdown of cellular structures is largely mediated by caspases. One target of degradation is a proteinaceous framework of the nucleus termed the nuclear matrix. We compared the apoptotic changes of the nuclear matrix in staurosporine-treated caspase-3-deficient MCF-7 cells transfected with intact CASP-3 gene (MCF-7c3) or an empty vector (MCF-7v) as a control. Nuclear Mitotic Apparatus protein (NuMA), lamin A/C and lamin B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. In both cell lines, staurosporine induced rapid cytoplasmic shrinkage and partial chromatin condensation. MCF-7c3 cells formed apoptotic bodies, whereas MCF-7v cells did not. NuMA and lamins were actively cleaved in MCF-7c3 cells following caspase-3 activation, but only minimal or no cleavage was detected in MCF-7v cells. Interestingly, lamin B but not lamin A/C was relocated into cytoplasmic granules in apoptotic MCF-7v cells. Pancaspase inhibitor, z-VAD-fmk, prevented the apoptotic changes, while caspase-3 inhibitor, z-DEVD-fmk, induced lamin B granules in both cell lines. These results show that caspase-3 is involved in the cleavage of NuMA and lamins either directly or by activating other proteases. This may be essential for disintegration of the nuclear structure during apoptosis.
Collapse
Affiliation(s)
- Katri Kivinen
- Department of Pathology, University of Turku, MediCity Research Laboratory, Tykistökatu 6 A, 4th floor, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
23
|
Boisvieux-Ulrich E, Sourdeval M, Marano F. CD437, a synthetic retinoid, induces apoptosis in human respiratory epithelial cells via caspase-independent mitochondrial and caspase-8-dependent pathways both up-regulated by JNK signaling pathway. Exp Cell Res 2005; 307:76-90. [PMID: 15922728 DOI: 10.1016/j.yexcr.2005.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 01/30/2005] [Accepted: 02/01/2005] [Indexed: 01/01/2023]
Abstract
The synthetic retinoid-related molecule CD437-induced apoptosis in human epithelial airway respiratory cells: the 16HBE bronchial cell line and normal nasal epithelial cells. CD437 caused apoptosis in S-phase cells and cell cycle arrest in S phase. Apoptosis was abolished by caspase-8 inhibitor z-IETD-fmk which preserved S-phase cells but was weakly inhibited by others selective caspase-inhibitors, indicating that caspase-8 activation was involved. z-VAD and z-IETD prevented the nuclear envelope fragmentation but did not block the chromatin condensation. The disruption of mitochondrial transmembrane potential was also induced by CD437 treatment. The translocation of Bax to mitochondria was demonstrated, as well as the release of cytochrome c into the cytosol and of apoptosis-inducing factor (AIF) translocated into the nucleus. z-VAD and z-IETD did not inhibit mitochondrial depolarization, Bax translocation or release of cytochrome c and AIF from mitochondria. These results suggest that CD437-induced apoptosis is executed by two converging pathways. AIF release is responsible for chromatin condensation, the first stage of apoptotic cell, via a mitochondrial pathway independent of caspase. But final stage of apoptosis requires the caspase-8-dependent nuclear envelope fragmentation. In addition, using SP600125, JNK inhibitor, we demonstrated that CD437 activates the JNK-MAP kinase signaling pathway upstream to mitochondrial and caspase-8 pathways. Conversely, JNK pathway inhibition, which suppresses S-phase apoptosis, did not prevent cell cycle arrest within S phase, confirming that these processes are triggered by distinct mechanisms.
Collapse
Affiliation(s)
- Emmanuelle Boisvieux-Ulrich
- Laboratoire de Cytophysiologie et Toxicologie Cellulaire, Université Paris7, Denis Diderot, case 70-73,2 place Jussieu, 75251 Paris Cedex 05, France.
| | | | | |
Collapse
|
24
|
Krauss SW, Lo AJ, Short SA, Koury MJ, Mohandas N, Chasis JA. Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins. Blood 2005; 106:2200-5. [PMID: 15933051 PMCID: PMC1895142 DOI: 10.1182/blood-2005-04-1357] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enucleation, a rare feature of mammalian differentiation, occurs in 3 cell types: erythroblasts, lens epithelium, and keratinocytes. Previous investigations suggest that caspase activation functions in lens epithelial and keratinocyte enucleation, as well as in early erythropoiesis encompassing erythroid burst-forming unit (BFU-E) differentiation to proerythroblast. To determine whether caspase activation contributes to later erythropoiesis and whether nuclear substructures other than chromatin reorganize, we analyzed distributions of nuclear subcompartment proteins and assayed for caspase-induced cleavage of subcompartmental target proteins in mouse erythroblasts. We found that patterns of lamin B in the filamentous network interacting with both the nuclear envelope and DNA, nuclear matrix protein NuMA (Nuclear mitotic apparatus), and splicing factors Sm and SC35 persisted during nuclear condensation, consistent with effective transcription of genes expressed late in differentiation. Thus, nuclear reorganization prior to enucleation is selective, allowing maintenance of critical transcriptional processes independent of extensive chromosomal reorganization. Consistent with these data, we found no evidence for caspase-induced cleavage of major nuclear subcompartment proteins during late erythropoiesis, in contrast to what has been observed in early erythropoiesis and in lens epithelial and keratinocyte differentiation. These findings imply that nuclear condensation and extrusion during terminal erythroid differentiation involve novel mechanisms that do not entail major activation of apoptotic machinery.
Collapse
Affiliation(s)
- Sharon Wald Krauss
- Life Sciences Division, University of California Lawrence Berkeley National Laboratory, Bldg 74, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kammerer S, Roth RB, Hoyal CR, Reneland R, Marnellos G, Kiechle M, Schwarz-Boeger U, Griffiths LR, Ebner F, Rehbock J, Cantor CR, Nelson MR, Braun A. Association of the NuMA region on chromosome 11q13 with breast cancer susceptibility. Proc Natl Acad Sci U S A 2005; 102:2004-9. [PMID: 15684076 PMCID: PMC548529 DOI: 10.1073/pnas.0409806102] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The development of breast cancer is a complex process that involves multiple genes at many stages, from initial cell cycle dysregulation to disease progression. To identify genetic variations that influence this process, we conducted a large-scale association study using a collection of German cases and controls and >25,000 SNPs located within 16,000 genes. One of the loci identified was located on chromosome 11q13 [odds ratio (OR)=1.85, P=0.017]. The initial association was subsequently tested in two independent breast cancer collections. In both sample sets, the frequency of the susceptibility allele was increased in the cases (OR=1.6, P=0.01). The susceptibility allele was also associated with an increase in cancer family history (P=0.1). Fine mapping showed that the region of association extends approximately 300 kb and spans several genes, including the gene encoding the nuclear mitotic apparatus protein (NuMA). A nonsynonymous SNP (A794G) in NuMA was identified that showed a stronger association with breast cancer risk than the initial marker SNP (OR=2.8, P=0.005 initial sample; OR=2.1, P=0.002 combined). NuMA is a cell cycle-related protein essential for normal mitosis that is degraded in early apoptosis. NuMA-retinoic acid receptor alpha fusion proteins have been described in acute promyelocytic leukemia. Although the potential functional relevance of the A794G variation requires further biological validation, we conclude that variations in the NuMA gene are likely responsible for the observed increased breast cancer risk.
Collapse
|
26
|
Taimen P, Parvinen M, Osborn M, Kallajoki M. NuMA in rat testis—Evidence for roles in proliferative activity and meiotic cell division. Exp Cell Res 2004; 298:512-20. [PMID: 15265698 DOI: 10.1016/j.yexcr.2004.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Revised: 04/13/2004] [Indexed: 10/26/2022]
Abstract
NuMA is a well-characterized organizer of the mitotic spindle, which is believed to play a structural role in interphase nucleus. We studied the expression of NuMA in rat seminiferous epithelium in detail. Different stages of the cycle of the seminiferous epithelium were identified using transillumination. Corresponding areas were microdissected and analysed using immunofluorescence, immunohistochemistry, or immunoblotting. NuMA was expressed in Sertoli cells, proliferating type A and B spermatogonia, and early spermatids but it was absent in late spermatids and mature spermatozoa. Interestingly, NuMA-positive primary spermatocytes lost their nuclear NuMA at the beginning of long-lasting prophase of the first meiotic division. A strong expression was again observed at the end of the prophase and finally, a redistribution of NuMA into pole regions of the meiotic spindle was observed in first and second meiotic divisions. In immunoblotting, a single 250-kDa protein present in all stages of the rat seminiferous epithelial cycle was detected. Our results show that NuMA is not essential for the organization of nuclear structure in all cell types and suggest that its presence is more likely connected to the proliferation phase of the cells. They also suggest that NuMA may play an important role in meiotic cell division.
Collapse
Affiliation(s)
- Pekka Taimen
- Department of Anatomy, University of Turku, FIN-20520 Turku, Finland.
| | | | | | | |
Collapse
|
27
|
Taimen P, Berghäll H, Vainionpää R, Kallajoki M. NuMA and nuclear lamins are cleaved during viral infection--inhibition of caspase activity prevents cleavage and rescues HeLa cells from measles virus-induced but not from rhinovirus 1B-induced cell death. Virology 2004; 320:85-98. [PMID: 15003865 DOI: 10.1016/j.virol.2003.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Revised: 09/25/2003] [Accepted: 11/11/2003] [Indexed: 11/20/2022]
Abstract
Nuclear matrix is a structural framework of important nuclear processes. We studied the effect of two different types of viral infections on nuclear matrix. HeLa cells were infected with human rhinovirus 1B (HRV 1B) or measles virus (MV), and Nuclear Mitotic Apparatus protein (NuMA) and lamins A/C and B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. We show that NuMA, lamins, and poly(ADP-ribose) polymerase-1 are cleaved during viral infection in a virus family-specific manner suggesting that these viruses activate different sets of proteases. Morphologically, NuMA was excluded from the condensed chromatin, lamins showed a folded distribution, and both proteins finally remained around the nuclear fragments. A general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-FMK) prevented the nuclear disintegration and the cleavage of the proteins studied. Interestingly, z-VAD-FMK rescued MV-infected but not HRV 1B-infected cells from cell death. These results show for the first time that NuMA and lamins are specific target proteins during virus-induced programmed cell death.
Collapse
Affiliation(s)
- Pekka Taimen
- Department of Pathology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| | | | | | | |
Collapse
|
28
|
Tang CJC, Hu HM, Tang TK. NuMA expression and function in mouse oocytes and early embryos. J Biomed Sci 2004; 11:370-6. [PMID: 15067221 DOI: 10.1007/bf02254442] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 11/26/2003] [Indexed: 12/30/2022] Open
Abstract
Nuclear mitotic apparatus protein (NuMA), originally described as a nuclear protein, is an essential component in the formation and maintenance of mitotic spindle poles. In this study, we analyze the expression pattern and function of NuMA in mouse oocytes and early embryos. In germinal vesicle-stage oocytes, NuMA was detected both at the centrosome and in the nucleus. However, after nuclear maturation and extrusion of the first polar body, NuMA was concentrated at the broad meiotic spindle poles and at cytasters (centers of cytoplasmic microtubule asters) of mature metaphase II oocytes. Cold-induced depolymerization of microtubules appeared to disassociate NuMA foci from the cytoplasmic cytasters. During fertilization, NuMA was relocated into the re-formed male and female pronuclei. Microinjection of anti-NuMA antibody into 1 of 2 cells of 2-cell-stage embryos inhibited normal cell division. These results suggest that NuMA might play an important role in cell division during early embryonic mitosis.
Collapse
Affiliation(s)
- Chieh-Ju C Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
29
|
Fant X, Merdes A, Haren L. Cell and molecular biology of spindle poles and NuMA. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:1-57. [PMID: 15364196 DOI: 10.1016/s0074-7696(04)38001-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mitotic and meiotic cells contain a bipolar spindle apparatus of microtubules and associated proteins. To arrange microtubules into focused spindle poles, different mechanisms are used by various organisms. Principally, two major pathways have been characterized: nucleation and anchorage of microtubules at preexisting centers such as centrosomes or spindle pole bodies, or microtubule growth off the surface of chromosomes, followed by sorting and focusing into spindle poles. These two mechanisms can even be found in cells of the same organism: whereas most somatic animal cells utilize the centrosome as an organizing center for spindle microtubules, female meiotic cells build an acentriolar spindle apparatus. Most interestingly, the molecular components that drive acentriolar spindle pole formation are also present in cells containing centrosomes. They include microtubule-dependent motor proteins and a variety of structural proteins that regulate microtubule orientation, anchoring, and stability. The first of these spindle pole proteins, NuMA, had already been identified more than 20 years ago. In addition, several new proteins have been characterized more recently. This review discusses their role during spindle formation and their regulation in the cell cycle.
Collapse
Affiliation(s)
- Xavier Fant
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Edinburgh EH9 3JR, United Kingdom
| | | | | |
Collapse
|