1
|
Osega CE, Bustos FJ, Arriagada G. From Entry to the Nucleus: How Retroviruses Commute. Annu Rev Virol 2024; 11:89-104. [PMID: 38848600 DOI: 10.1146/annurev-virology-100422-023502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Once inside host cells, retroviruses generate a double-stranded DNA copy of their RNA genomes via reverse transcription inside a viral core, and this viral DNA is subsequently integrated into the genome of the host cell. Before integration can occur, the core must cross the cell cortex, be transported through the cytoplasm, and enter the nucleus. Retroviruses have evolved different mechanisms to accomplish this journey. This review examines the various mechanisms retroviruses, especially HIV-1, have evolved to commute throughout the cell. Retroviruses cross the cell cortex while modulating actin dynamics and use microtubules as roads while connecting with microtubule-associated proteins and motors to reach the nucleus. Although a clearer picture exists for HIV-1 compared with other retroviruses, there is still much to learn about how retroviruses accomplish their commute.
Collapse
Affiliation(s)
- Camila E Osega
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Fernando J Bustos
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile;
| |
Collapse
|
2
|
Badieyan S, Lichon D, Andreas MP, Gillies JP, Peng W, Shi J, DeSantis ME, Aiken CR, Böcking T, Giessen TW, Campbell EM, Cianfrocco MA. HIV-1 binds dynein directly to hijack microtubule transport machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555335. [PMID: 37693451 PMCID: PMC10491134 DOI: 10.1101/2023.08.29.555335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Viruses exploit host cytoskeletal elements and motor proteins for trafficking through the dense cytoplasm. Yet the molecular mechanism that describes how viruses connect to the motor machinery is unknown. Here, we demonstrate the first example of viral microtubule trafficking from purified components: HIV-1 hijacking microtubule transport machinery. We discover that HIV-1 directly binds to the retrograde microtubule-associated motor, dynein, and not via a cargo adaptor, as previously suggested. Moreover, we show that HIV-1 motility is supported by multiple, diverse dynein cargo adaptors as HIV-1 binds to dynein light and intermediate chains on dynein's tail. Further, we demonstrate that multiple dynein motors tethered to rigid cargoes, like HIV-1 capsids, display reduced motility, distinct from the behavior of multiple motors on membranous cargoes. Our results introduce a new model of viral trafficking wherein a pathogen opportunistically 'hijacks' the microtubule transport machinery for motility, enabling multiple transport pathways through the host cytoplasm.
Collapse
Affiliation(s)
| | - Drew Lichon
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael P Andreas
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Wang Peng
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI USA
| | - Christopher R Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Tobias W Giessen
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, IL, USA
| | - Michael A Cianfrocco
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Abstract
Microtubules (MTs) form rapidly adaptable, complex intracellular networks of filaments that not only provide structural support, but also form the tracks along which motors traffic macromolecular cargos to specific sub-cellular sites. These dynamic arrays play a central role in regulating various cellular processes including cell shape and motility as well as cell division and polarization. Given their complex organization and functional importance, MT arrays are carefully controlled by many highly specialized proteins that regulate the nucleation of MT filaments at distinct sites, their dynamic growth and stability, and their engagement with other subcellular structures and cargoes destined for transport. This review focuses on recent advances in our understanding of how MTs and their regulatory proteins function, including their active targeting and exploitation, during infection by viruses that utilize a wide variety of replication strategies that occur within different cellular sub-compartments or regions of the cell.
Collapse
Affiliation(s)
- Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; HIV Clinical and Translational Research, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
4
|
Hasanzadeh A, Hamblin MR, Kiani J, Noori H, Hardie JM, Karimi M, Shafiee H. Could artificial intelligence revolutionize the development of nanovectors for gene therapy and mRNA vaccines? NANO TODAY 2022; 47:101665. [PMID: 37034382 PMCID: PMC10081506 DOI: 10.1016/j.nantod.2022.101665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gene therapy enables the introduction of nucleic acids like DNA and RNA into host cells, and is expected to revolutionize the treatment of a wide range of diseases. This growth has been further accelerated by the discovery of CRISPR/Cas technology, which allows accurate genomic editing in a broad range of cells and organisms in vitro and in vivo. Despite many advances in gene delivery and the development of various viral and non-viral gene delivery vectors, the lack of highly efficient non-viral systems with low cellular toxicity remains a challenge. The application of cutting-edge technologies such as artificial intelligence (AI) has great potential to find new paradigms to solve this issue. Herein, we review AI and its major subfields including machine learning (ML), neural networks (NNs), expert systems, deep learning (DL), computer vision and robotics. We discuss the potential of AI-based models and algorithms in the design of targeted gene delivery vehicles capable of crossing extracellular and intracellular barriers by viral mimicry strategies. We finally discuss the role of AI in improving the function of CRISPR/Cas systems, developing novel nanobots, and mRNA vaccine carriers.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Joseph M. Hardie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02139 USA
| |
Collapse
|
5
|
Dynein Light-Chain Dynlrb2 Is Essential for Murine Leukemia Virus Traffic and Nuclear Entry. J Virol 2021; 95:e0017021. [PMID: 33980598 DOI: 10.1128/jvi.00170-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine leukemia virus (MLV) requires the infected cell to divide to access the nucleus to integrate into the host genome. It has been determined that MLV uses the microtubule and actin network to reach the nucleus at the early stages of infection. Several studies have shown that viruses use the dynein motor protein associated with microtubules for their displacement. We have previously reported that dynein light-chain roadblock type 2 (Dynlrb2) knockdown significantly decreases MLV infection compared to nonsilenced cells, suggesting a functional association between this dynein light chain and MLV preintegration complex (PIC). In this study, we aimed to determine if the dynein complex Dynlrb2 subunit plays an essential role in the retrograde transport of MLV. For this, an MLV mutant containing the green fluorescent protein (GFP) fused to the viral protein p12 was used to assay the PIC localization and speed in cells in which the expression of Dynlrb2 was modulated. We found a significant decrease in the arrival of MLV PIC to the nucleus and a reduced net speed of MLV PICs when Dynlrb2 was knocked down. In contrast, an increase in nuclear localization was observed when Dynlrb2 was overexpressed. Our results suggest that Dynlrb2 plays an essential role in MLV retrograde transport. IMPORTANCE Different viruses use different components of cytoplasmic dynein complex to traffic to their replication site. We have found that murine leukemia virus (MLV) depends on dynein light-chain Dynlrb2 for infection, retrograde traffic, and nuclear entry. Our study provides new information regarding the molecular requirements for retrograde transport of MLV preintegration complex and demonstrates the essential role of Dynlrb2 in MLV infection.
Collapse
|
6
|
The Unique, the Known, and the Unknown of Spumaretrovirus Assembly. Viruses 2021; 13:v13010105. [PMID: 33451128 PMCID: PMC7828637 DOI: 10.3390/v13010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Within the family of Retroviridae, foamy viruses (FVs) are unique and unconventional with respect to many aspects in their molecular biology, including assembly and release of enveloped viral particles. Both components of the minimal assembly and release machinery, Gag and Env, display significant differences in their molecular structures and functions compared to the other retroviruses. This led to the placement of FVs into a separate subfamily, the Spumaretrovirinae. Here, we describe the molecular differences in FV Gag and Env, as well as Pol, which is translated as a separate protein and not in an orthoretroviral manner as a Gag-Pol fusion protein. This feature further complicates FV assembly since a specialized Pol encapsidation strategy via a tripartite Gag-genome–Pol complex is used. We try to relate the different features and specific interaction patterns of the FV Gag, Pol, and Env proteins in order to develop a comprehensive and dynamic picture of particle assembly and release, but also other features that are indirectly affected. Since FVs are at the root of the retrovirus tree, we aim at dissecting the unique/specialized features from those shared among the Spuma- and Orthoretrovirinae. Such analyses may shed light on the evolution and characteristics of virus envelopment since related viruses within the Ortervirales, for instance LTR retrotransposons, are characterized by different levels of envelopment, thus affecting the capacity for intercellular transmission.
Collapse
|
7
|
Pietrantoni G, Ibarra-Karmy R, Arriagada G. Microtubule Retrograde Motors and Their Role in Retroviral Transport. Viruses 2020; 12:483. [PMID: 32344581 PMCID: PMC7232228 DOI: 10.3390/v12040483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Following entry into the host cell, retroviruses generate a dsDNA copy of their genomes via reverse transcription, and this viral DNA is subsequently integrated into the chromosomal DNA of the host cell. Before integration can occur, however, retroviral DNA must be transported to the nucleus as part of a 'preintegration complex' (PIC). Transporting the PIC through the crowded environment of the cytoplasm is challenging, and retroviruses have evolved different mechanisms to accomplish this feat. Within a eukaryotic cell, microtubules act as the roads, while the microtubule-associated proteins dynein and kinesin are the vehicles that viruses exploit to achieve retrograde and anterograde trafficking. This review will examine the various mechanisms retroviruses have evolved in order to achieve retrograde trafficking, confirming that each retrovirus has its own strategy to functionally subvert microtubule associated proteins.
Collapse
Affiliation(s)
| | | | - Gloria Arriagada
- Instituto de Ciencias Biomedicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370071, Chile; (G.P.); (R.I.-K.)
| |
Collapse
|
8
|
Kesari AS, Heintz VJ, Poudyal S, Miller AS, Kuhn RJ, LaCount DJ. Zika virus NS5 localizes at centrosomes during cell division. Virology 2020; 541:52-62. [PMID: 32056715 DOI: 10.1016/j.virol.2019.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) nonstructural protein 5 (NS5) plays a critical role in viral RNA replication and mediates key virus-host cell interactions. As with other flavivirus NS5 proteins, ZIKV NS5 is primarily found in the nucleus. We previously reported that the NS5 protein of dengue virus, another flavivirus, localized to centrosomes during cell division. Here we show that ZIKV NS5 also relocalizes from the nucleus to centrosomes during mitosis. In infected cells with supernumerary centrosomes, NS5 was present at all centrosomes. Transient expression of NS5 in uninfected cells confirmed that centrosomal localization was independent of other viral proteins. Live-cell imaging demonstrated that NS5-GFP accumulated at centrosomes shortly after break down of nuclear membrane and remained there through mitosis. Cells expressing NS5-GFP took longer to complete mitosis than control cells. Finally, an analysis of ZIKV NS5 binding partners revealed several centrosomal proteins, providing potential direct links between NS5 and centrosomes.
Collapse
Affiliation(s)
- Aditi S Kesari
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Veronica J Heintz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrew S Miller
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Richard J Kuhn
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA
| | - Douglas J LaCount
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Department of Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Chambers P, McCarthy HO, Dunne NJ. Emerging areas of bone repair materials. BONE REPAIR BIOMATERIALS 2019:411-446. [DOI: 10.1016/b978-0-08-102451-5.00016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Wei G, Kehl T, Bao Q, Benner A, Lei J, Löchelt M. The chromatin binding domain, including the QPQRYG motif, of feline foamy virus Gag is required for viral DNA integration and nuclear accumulation of Gag and the viral genome. Virology 2018; 524:56-68. [PMID: 30145377 DOI: 10.1016/j.virol.2018.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 01/15/2023]
Abstract
The retroviral Gag protein, the major component of released particles, plays different roles in particle assembly, maturation or infection of new host cells. Here, we characterize the Gag chromatin binding site including the highly conserved QPQRYG motif of feline foamy virus, a member of the Spumaretrovirinae. Mutagenesis of critical residues in the chromatin binding site/QPQRYG motif almost completely abrogates viral DNA integration and reduces nuclear accumulation of Gag and viral DNA. Genome packaging, reverse transcription, particle release and uptake into new target cells are not affected. The integrity of the QPQRYG motif appears to be important for processes after cytosolic entry, likely influencing incoming virus capsids or disassembly intermediates but not Gag synthesized de novo in progeny virus-producing cells. According to our data, chromatin binding is a shared feature among foamy viruses but further work is needed to understand the mechanisms involved.
Collapse
Affiliation(s)
- Guochao Wei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Timo Kehl
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Qiuying Bao
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Janet Lei
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Martin Löchelt
- Division of Molecular Diagnostics of Oncogenic Infections, Research Focus Infection, Inflammation and Cancer, German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany.
| |
Collapse
|
11
|
Walsh D, Naghavi MH. Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends Microbiol 2018; 27:39-50. [PMID: 30033343 DOI: 10.1016/j.tim.2018.06.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022]
Abstract
Being dependent upon host transport systems to navigate the cytoplasm, viruses have evolved various strategies to manipulate cytoskeletal functions. Generally, viruses use the actin cytoskeleton to control entry and short-range transport at the cell periphery and exploit microtubules (MTs) for longer-range cytosolic transport, in some cases to reach the nucleus. While earlier studies established the fundamental importance of these networks to successful infection, the mechanistic details and true extent to which viruses usurp highly specialized host cytoskeletal regulators and motor adaptors is only beginning to emerge. This review outlines our current understanding of how cytoskeletal regulation contributes specifically to the early stages of viral infection, with a primary focus on retroviruses and herpesviruses as examples of recent advances in this area.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
12
|
Paris J, Tobaly-Tapiero J, Giron ML, Burlaud-Gaillard J, Buseyne F, Roingeard P, Lesage P, Zamborlini A, Saïb A. The invariant arginine within the chromatin-binding motif regulates both nucleolar localization and chromatin binding of Foamy virus Gag. Retrovirology 2018; 15:48. [PMID: 29996845 PMCID: PMC6042332 DOI: 10.1186/s12977-018-0428-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear localization of Gag is a property shared by many retroviruses and retrotransposons. The importance of this stage for retroviral replication is still unknown, but studies on the Rous Sarcoma virus indicate that Gag might select the viral RNA genome for packaging in the nucleus. In the case of Foamy viruses, genome encapsidation is mediated by Gag C-terminal domain (CTD), which harbors three clusters of glycine and arginine residues named GR boxes (GRI-III). In this study we investigated how PFV Gag subnuclear distribution might be regulated. RESULTS We show that the isolated GRI and GRIII boxes act as nucleolar localization signals. In contrast, both the entire Gag CTD and the isolated GRII box, which contains the chromatin-binding motif, target the nucleolus exclusively upon mutation of the evolutionary conserved arginine residue at position 540 (R540), which is a key determinant of FV Gag chromatin tethering. We also provide evidence that Gag localizes in the nucleolus during FV replication and uncovered that the viral protein interacts with and is methylated by Protein Arginine Methyltransferase 1 (PRMT1) in a manner that depends on the R540 residue. Finally, we show that PRMT1 depletion by RNA interference induces the concentration of Gag C-terminus in nucleoli. CONCLUSION Altogether, our findings suggest that methylation by PRMT1 might finely tune the subnuclear distribution of Gag depending on the stage of the FV replication cycle. The role of this step for viral replication remains an open question.
Collapse
Affiliation(s)
- Joris Paris
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joëlle Tobaly-Tapiero
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Lou Giron
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Florence Buseyne
- Institut Pasteur, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- CNRS UMR3569, Insitut Pasteur, Paris, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Pascale Lesage
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alessia Zamborlini
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire PVM, Conservatoire National des Arts et Métiers (Cnam), Paris, France
| | - Ali Saïb
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Abstract
Cytoplasmic dynein 1 is an important microtubule-based motor in many eukaryotic cells. Dynein has critical roles both in interphase and during cell division. Here, we focus on interphase cargoes of dynein, which include membrane-bound organelles, RNAs, protein complexes and viruses. A central challenge in the field is to understand how a single motor can transport such a diverse array of cargoes and how this process is regulated. The molecular basis by which each cargo is linked to dynein and its cofactor dynactin has started to emerge. Of particular importance for this process is a set of coiled-coil proteins - activating adaptors - that both recruit dynein-dynactin to their cargoes and activate dynein motility.
Collapse
|
14
|
Osseman Q, Gallucci L, Au S, Cazenave C, Berdance E, Blondot ML, Cassany A, Bégu D, Ragues J, Aknin C, Sominskaya I, Dishlers A, Rabe B, Anderson F, Panté N, Kann M. The chaperone dynein LL1 mediates cytoplasmic transport of empty and mature hepatitis B virus capsids. J Hepatol 2018; 68:441-448. [PMID: 29113909 DOI: 10.1016/j.jhep.2017.10.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/26/2017] [Accepted: 10/27/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) has a DNA genome but replicates within the nucleus by reverse transcription of an RNA pregenome, which is converted to DNA in cytoplasmic capsids. Capsids in this compartment are correlated with inflammation and epitopes of the capsid protein core (Cp) are a major target for T cell-mediated immune responses. We investigated the mechanism of cytoplasmic capsid transport, which is important for infection but also for cytosolic capsid removal. METHODS We used virion-derived capsids containing mature rcDNA (matC) and empty capsids (empC). RNA-containing capsids (rnaC) were used as a control. The investigations comprised pull-down assays for identification of cellular interaction partners, immune fluorescence microscopy for their colocalization and electron microscopy after microinjection to determine their biological significance. RESULTS matC and empC underwent active transport through the cytoplasm towards the nucleus, while rnaC was poorly transported. We identified the dynein light chain LL1 as a functional interaction partner linking capsids to the dynein motor complex and showed that there is no compensatory transport pathway. Using capsid and dynein LL1 mutants we characterized the required domains on the capsid and LL1. CONCLUSIONS This is the first investigation on the detailed molecular mechanism of how matC pass the cytoplasm upon infection and how empC can be actively removed from the cytoplasm into the nucleus. Considering that hepatocytes with cytoplasmic capsids are better recognized by the T cells, we hypothesize that targeting capsid DynLL1-interaction will not only block HBV infection but also stimulate elimination of infected cells. LAY SUMMARY In this study, we identified the molecular details of HBV translocation through the cytoplasm. Our evidence offers a new drug target which could not only inhibit infection but also stimulate immune clearance of HBV infected cells.
Collapse
Affiliation(s)
- Quentin Osseman
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Lara Gallucci
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Shelly Au
- Department of Zoology, University of British Columbia Vancouver, B.C. V6T 1Z4, Canada
| | - Christian Cazenave
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Elodie Berdance
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Marie-Lise Blondot
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Aurélia Cassany
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Dominique Bégu
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Jessica Ragues
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Cindy Aknin
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | | | - Andris Dishlers
- Latvian Biomedical Research and Study Center, 1067 Riga, Latvia
| | - Birgit Rabe
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany
| | - Fenja Anderson
- Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany; Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Nelly Panté
- Department of Zoology, University of British Columbia Vancouver, B.C. V6T 1Z4, Canada
| | - Michael Kann
- Univ. de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33076 Bordeaux, France; CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France; Institute of Medical Virology, University of Giessen, 35392 Giessen, Germany; CHU de Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
15
|
Milev MP, Yao X, Berthoux L, Mouland AJ. Impacts of virus-mediated manipulation of host Dynein. DYNEINS 2018. [PMCID: PMC7150161 DOI: 10.1016/b978-0-12-809470-9.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In general viruses' modus operandi to propagate is achieved by the co-opting host cell components, membranes, proteins, and machineries to their advantage. This is true for virtually every aspect of a virus' replication cycle from virus entry to the budding or release of progeny virus particles. In this chapter, we will discuss new information on the impacts of virus-mediated manipulation of Dynein motor complexes and associated machineries and factors. We will highlight how these host cell components impact on pathogenicity and immune responses, as many of the virus-mediated hijacked components also play pivotal roles in immune responses to pathogen insult. There are several comprehensive reviews that define virus–Dynein interactions including the first edition of this book that describes how viruses manipulate the host cell machineries their advantage. An updated table is included to summarize these virus–host interactions. Notably, barriers to intracellular translocation represent major hurdles to viral components during de novo infection and during active replication and the generation of progeny virus particles. Clearly, the subversion of host cell molecular motor protein activities takes advantage of constitutive and regulated membrane trafficking events and will target virus components to intracytoplasmic locales and membrane assembly. Broadening our understanding of the interplay between viruses, Dynein and the cytoskeleton will likely inform on new types of therapies. Continual enhancement of the breadth of new information on how viruses manipulate host cell biology will inevitably aid in the identification of new targets that can be poisoned to block old, new, and emerging viruses alike in their tracks.
Collapse
|
16
|
Abstract
Retroviruses are obligate intracellular parasites of eukaryotic cells. After reverse transcription, the viral DNA contained in the preintegration complex is delivered to the nucleus of the host cell, where it integrates. Before reaching the nucleus, the incoming particle and the preintegration complex must travel throughout the cytoplasm. Likewise, the newly synthesized viral proteins and viral particles must transit the cytoplasm during exit. The cytoplasm is a crowded environment, and simple diffusion is difficult. Therefore, viruses have evolved to utilize the cellular mechanisms of movement through the cytoplasm, where microtubules are the roads, and the ATP-dependent motors dynein and kinesin are the vehicles for retrograde and anterograde trafficking. This review will focus on how different retroviruses (Mazon-Pfizer monkey virus, prototype foamy virus, bovine immunodeficiency virus, human immunodeficiency virus type 1, and murine leukemia virus) have subjugated the microtubule-associated motor proteins for viral replication. Although there have been advances in our understanding of how retroviruses move along microtubules, the strategies are different among them. Thus, a better understanding of the mechanisms used by each retrovirus to functionally subvert microtubule motor proteins will provide important clues in the design of new antiretroviral drugs that can specifically disrupt intracellular viral trafficking.
Collapse
Affiliation(s)
- Gloria Arriagada
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
17
|
Opazo T, Garcés A, Tapia D, Barraza F, Bravo A, Schwenke T, Cancino J, Arriagada G. Functional Evidence of the Involvement of the Dynein Light Chain DYNLRB2 in Murine Leukemia Virus Infection. J Virol 2017; 91:e00129-17. [PMID: 28250122 PMCID: PMC5411577 DOI: 10.1128/jvi.00129-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/21/2017] [Indexed: 11/20/2022] Open
Abstract
How murine leukemia virus (MLV) travels from the cell membrane to the nucleus and the mechanism for nuclear entry of MLV DNA in dividing cells still remain unclear. It seems likely that the MLV preintegration complex (PIC) interacts with cellular proteins to perform these tasks. We recently published that the microtubule motor cytoplasmic dynein complex and its regulator proteins interact with the MLV PIC at early times of infection, suggesting a functional interaction between the incoming viral particles, the dynein complex, and dynein regulators. To better understand the role of the dynein complex in MLV infection, we performed short hairpin RNA (shRNA) screening of the dynein light chains on MLV infection. We found that silencing of a specific light chain of the cytoplasmic dynein complex, DYNLRB2, reduced the efficiency of infection by MLV reporter viruses without affecting HIV-1 infection. Furthermore, the overexpression of DYNLRB2 increased infection by MLV. We conclude that the DYNLRB2 light chain of the cytoplasmic dynein complex is an important and specific piece of the host machinery needed for MLV infection.IMPORTANCE Retroviruses must reach the chromatin of their host to integrate their viral DNA, but first they must get into the nucleus. The cytoplasm is a crowded environment in which simple diffusion is slow, and thus viruses utilize retrograde transport along the microtubule network, mediated by the dynein complex. Different viruses use different components of this multisubunit complex. We have found that murine leukemia virus (MLV) associates functionally and specifically with the dynein light chain DYNLRB2, which is required for infection. Our study provides more insight into the molecular requirements for retrograde transport of the MLV preintegration complex and demonstrates, for the first time, a role for DYNLRB2 in viral infection.
Collapse
Affiliation(s)
- Tatiana Opazo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Andrea Garcés
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Diego Tapia
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Felipe Barraza
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Angélica Bravo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Tomás Schwenke
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Jorge Cancino
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Gloria Arriagada
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
18
|
Abstract
The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes and present a crystal structure of the CBS bound to a mononucleosome. The CBS interacts with the histone octamer, engaging the H2A-H2B acidic patch in a manner similar to other acidic patch-binding proteins such as herpesvirus latency-associated nuclear antigen (LANA). Substitutions of the invariant arginine anchor residue in GAG result in global redistribution of PFV and macaque simian foamy virus (SFVmac) integration sites toward centromeres, dampening the resulting proviral expression without affecting the overall efficiency of integration. Our findings underscore the importance of retroviral structural proteins for integration site selection and the avoidance of genomic junkyards.
Collapse
|
19
|
Cao J, Li X, Lv Y. Dynein light chain family genes in 15 plant species: Identification, evolution and expression profiles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:70-81. [PMID: 27964786 DOI: 10.1016/j.plantsci.2016.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
Dynein light chain (DLC) is one important component of the dynein complexes, which have been proved involving in a variety of cellular functions. However, higher plants lack all other components of the complexes except DLCs, suggesting that in plants, the DLC protein does not carry out the same function as it in animals. Therefore, the function of this family in plants is mysterious. In this study, we investigated the DLC gene family in 15 plant species and analyzed their expression profiles. In total, 128 DLC genes were identified from the 15 studied plant species and were divided into eight groups by their phylogenetic relation. Highly conserved gene structure and motif arrangement was discovered within each group, indicating their functional correlation. Genetic variation and recombination events were also detected in DLC genes. Through selection analyses, we also identified some significant site-specific constraints in most of the DLC paralogs. In addition, DLC genes presented various expression profiles in different development stages, or under different abiotic stresses or phytohormone treatments. This may be associated with a variety of cis-elements responding to stress and phytohormone in the upstream sequences of the DLC genes. Functional network analysis exhibited 123 physical or functional interactions. The results provide a foundation for exploring the characterization of the DLC genes in plants and offer insights for additional functional studies.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Xiangyang Li
- Industrial Crop Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, PR China
| | - Yueqing Lv
- Institute of Life Sciences, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
20
|
Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathog 2016; 12:e1005860. [PMID: 27579920 PMCID: PMC5006980 DOI: 10.1371/journal.ppat.1005860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/11/2016] [Indexed: 01/31/2023] Open
Abstract
Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. Viruses are masters at exploiting host cell machineries for their replication. For human immunodeficiency virus type 1 (HIV-1), the best-studied representative of the Orthoretrovirinae subfamily from the genus lentiviruses, numerous important virus-host interactions have been described. In contrast, only a few cellular proteins are known to influence the replication of foamy viruses (FVs, also known as spumaviruses), an intriguing type of complex retrovirus of the Spumaretrovirinae subfamily that combines features of both retroviruses and hepadnaviruses in its replication strategy. Given the increasing interest in FVs as gene transfer tools and their unique status within the retrovirus family, this discrepancy urged the identification of novel host cell interaction partners of FV structural components. This study focused on prototype FV (PFV), the best-characterized member of FVs, and its capsid protein, Gag, as the central player of viral replication. Members of the mitosis-regulatory, polo-like kinase (PLK) family were identified as novel Gag binding partners. The Gag interaction with PLK1 (and possibly also PLK2) facilitated efficient PFV genome integration into host chromatin, ensuring successful replication and viral spread in infected target cell cultures. Collectively, our results elucidate the first link between cell cycle regulatory networks and the mitosis-dependent PFV integration process.
Collapse
|
21
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Valle-Tenney R, Opazo T, Cancino J, Goff SP, Arriagada G. Dynein Regulators Are Important for Ecotropic Murine Leukemia Virus Infection. J Virol 2016; 90:6896-6905. [PMID: 27194765 PMCID: PMC4944281 DOI: 10.1128/jvi.00863-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED During the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway. IMPORTANCE Retroviruses must access the chromatin of host cells to integrate the viral DNA, but before this crucial event, they must reach the nucleus. The movement through the cytoplasm-a crowded environment where diffusion is slow-is thought to utilize retrograde transport along the microtubule network by the dynein complex. Different viruses use different components of this multisubunit complex. We found that the preintegration complex of murine leukemia virus (MLV) interacts with the dynein complex and that regulators of this complex are essential for infection. Our study provides the first insight into the requirements for retrograde transport of the MLV preintegration complex.
Collapse
Affiliation(s)
- Roger Valle-Tenney
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Tatiana Opazo
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Jorge Cancino
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| | - Stephen P Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | - Gloria Arriagada
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Viña del Mar, Chile
| |
Collapse
|
23
|
Jambunathan N, Charles AS, Subramanian R, Saied AA, Naderi M, Rider P, Brylinski M, Chouljenko VN, Kousoulas KG. Deletion of a Predicted β-Sheet Domain within the Amino Terminus of Herpes Simplex Virus Glycoprotein K Conserved among Alphaherpesviruses Prevents Virus Entry into Neuronal Axons. J Virol 2015; 90:2230-9. [PMID: 26656706 PMCID: PMC4810717 DOI: 10.1128/jvi.02468-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/25/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED We have shown previously that herpes simplex virus 1 (HSV-1) lacking expression of the entire glycoprotein K (gK) or expressing gK with a 38-amino-acid deletion (gKΔ31-68 mutation) failed to infect ganglionic neurons after ocular infection of mice. We constructed a new model for the predicted three-dimensional structure of gK, revealing that the gKΔ31-68 mutation spans a well-defined β-sheet structure within the amino terminus of gK, which is conserved among alphaherpesviruses. The HSV-1(McKrae) gKΔ31-68 virus was tested for the ability to enter into ganglionic neuronal axons in cell culture of explanted rat ganglia using a novel virus entry proximity ligation assay (VEPLA). In this assay, cell surface-bound virions were detected by the colocalization of gD and its cognate receptor nectin-1 on infected neuronal surfaces. Capsids that have entered into the cytoplasm were detected by the colocalization of the virion tegument protein UL37, with dynein required for loading of virion capsids onto microtubules for retrograde transport to the nucleus. HSV-1(McKrae) gKΔ31-68 attached to cell surfaces of Vero cells and ganglionic axons in cell culture as efficiently as wild-type HSV-1(McKrae). However, unlike the wild-type virus, the mutant virus failed to enter into the axoplasm of ganglionic neurons. This work suggests that the amino terminus of gK is a critical determinant for entry into neuronal axons and may serve similar conserved functions for other alphaherpesviruses. IMPORTANCE Alphaherpesviruses, unlike beta- and gammaherpesviruses, have the unique ability to infect and establish latency in neurons. Glycoprotein K (gK) and the membrane protein UL20 are conserved among all alphaherpesviruses. We show here that a predicted β-sheet domain, which is conserved among alphaherpesviruses, functions in HSV-1 entry into neuronal axons, suggesting that it may serve similar functions for other herpesviruses. These results are in agreement with our previous observations that deletion of this gK domain prevents the virus from successfully infecting ganglionic neurons after ocular infection of mice.
Collapse
Affiliation(s)
- Nithya Jambunathan
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anu-Susan Charles
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ramesh Subramanian
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ahmad A Saied
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Misagh Naderi
- Department of Biological Sciences, College of Basic Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Paul Rider
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Michal Brylinski
- Department of Biological Sciences, College of Basic Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
24
|
Malikov V, da Silva ES, Jovasevic V, Bennett G, de Souza Aranha Vieira DA, Schulte B, Diaz-Griffero F, Walsh D, Naghavi MH. HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nat Commun 2015; 6:6660. [PMID: 25818806 PMCID: PMC4380233 DOI: 10.1038/ncomms7660] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 02/17/2015] [Indexed: 12/11/2022] Open
Abstract
Intracellular transport of cargos, including many viruses, involves directed movement on microtubules mediated by motor proteins. Although a number of viruses bind motors of opposing directionality, how they associate with and control these motors to accomplish directed movement remains poorly understood. Here we show that human immunodeficiency virus type 1 (HIV-1) associates with the kinesin-1 adaptor protein, Fasiculation and Elongation Factor zeta 1 (FEZ1). RNAi-mediated FEZ1 depletion blocks early infection, with virus particles exhibiting bi-directional motility but no net movement to the nucleus. Furthermore, both dynein and kinesin-1 motors are required for HIV-1 trafficking to the nucleus. Finally, the ability of exogenously expressed FEZ1 to promote early HIV-1 infection requires binding to kinesin-1. Our findings demonstrate that opposing motors both contribute to early HIV-1 movement and identify the kinesin-1 adaptor, FEZ1 as a capsid-associated host regulator of this process usurped by HIV-1 to accomplish net inward movement towards the nucleus.
Collapse
Affiliation(s)
- Viacheslav Malikov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Eveline Santos da Silva
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Vladimir Jovasevic
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Geoffrey Bennett
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | - Bianca Schulte
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Mojgan H Naghavi
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
25
|
Fernandez J, Portilho DM, Danckaert A, Munier S, Becker A, Roux P, Zambo A, Shorte S, Jacob Y, Vidalain PO, Charneau P, Clavel F, Arhel NJ. Microtubule-associated proteins 1 (MAP1) promote human immunodeficiency virus type I (HIV-1) intracytoplasmic routing to the nucleus. J Biol Chem 2014; 290:4631-4646. [PMID: 25505242 DOI: 10.1074/jbc.m114.613133] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After cell entry, HIV undergoes rapid transport toward the nucleus using microtubules and microfilaments. Neither the cellular cytoplasmic components nor the viral proteins that interact to mediate transport have yet been identified. Using a yeast two-hybrid screen, we identified four cytoskeletal components as putative interaction partners for HIV-1 p24 capsid protein: MAP1A, MAP1S, CKAP1, and WIRE. Depletion of MAP1A/MAP1S in indicator cell lines and primary human macrophages led to a profound reduction in HIV-1 infectivity as a result of impaired retrograde trafficking, demonstrated by a characteristic accumulation of capsids away from the nuclear membrane, and an overall defect in nuclear import. MAP1A/MAP1S did not impact microtubule network integrity or cell morphology but contributed to microtubule stabilization, which was shown previously to facilitate infection. In addition, we found that MAP1 proteins interact with HIV-1 cores both in vitro and in infected cells and that interaction involves MAP1 light chain LC2. Depletion of MAP1 proteins reduced the association of HIV-1 capsids with both dynamic and stable microtubules, suggesting that MAP1 proteins help tether incoming viral capsids to the microtubular network, thus promoting cytoplasmic trafficking. This work shows for the first time that following entry into target cells, HIV-1 interacts with the cytoskeleton via its p24 capsid protein. Moreover, our results support a role for MAP1 proteins in promoting efficient retrograde trafficking of HIV-1 by stimulating the formation of stable microtubules and mediating the association of HIV-1 cores with microtubules.
Collapse
Affiliation(s)
- Juliette Fernandez
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Débora M Portilho
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Sandie Munier
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Andreas Becker
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Pascal Roux
- Imagopole, Institut Pasteur, 75015 Paris, France
| | - Anaba Zambo
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | | | - Yves Jacob
- the Département de Virologie, Unité de Génétique Moléculaire des Virus à ARN, Université Paris Diderot, CNRS UMR3569, Institut Pasteur, 75015 Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, CNRS UMR3569, Institut Pasteur, 75015 Paris, France, and
| | - Pierre Charneau
- the Unité de Virologie Moléculaire et Vaccinologie, Institut Pasteur, 75015 Paris, France
| | - François Clavel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France
| | - Nathalie J Arhel
- From INSERM U941, Institut Universitaire d'Hématologie de l'Hôpital Saint-Louis, 75010 Paris, France,.
| |
Collapse
|
26
|
Sabo Y, Walsh D, Barry DS, Tinaztepe S, de los Santos K, Goff SP, Gundersen GG, Naghavi MH. HIV-1 induces the formation of stable microtubules to enhance early infection. Cell Host Microbe 2013; 14:535-46. [PMID: 24237699 PMCID: PMC3855456 DOI: 10.1016/j.chom.2013.10.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 02/05/2023]
Abstract
Stable microtubule (MT) subsets form distinct networks from dynamic MTs and acquire distinguishing posttranslational modifications, notably detyrosination and acetylation. Acting as specialized tracks for vesicle and macromolecular transport, their formation is regulated by the end-binding protein EB1, which recruits proteins that stabilize MTs. We show that HIV-1 induces the formation of acetylated and detyrosinated stable MTs early in infection. Although the MT depolymerizing agent nocodazole affected dynamic MTs, HIV-1 particles localized to nocodazole-resistant stable MTs, and infection was minimally affected. EB1 depletion or expression of an EB1 carboxy-terminal fragment that acts as a dominant-negative inhibitor of MT stabilization prevented HIV-1-induced stable MT formation and suppressed early viral infection. Furthermore, we show that the HIV-1 matrix protein targets the EB1-binding protein Kif4 to induce MT stabilization. Our findings illustrate how specialized MT-binding proteins mediate MT stabilization by HIV-1 and the importance of stable MT subsets in viral infection.
Collapse
Affiliation(s)
- Yosef Sabo
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Denis S. Barry
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| | - Sedef Tinaztepe
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Kenia de los Santos
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Mojgan H. Naghavi
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
- Centre for Research in Infectious Diseases, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
27
|
Gaudin R, de Alencar BC, Arhel N, Benaroch P. HIV trafficking in host cells: motors wanted! Trends Cell Biol 2013; 23:652-62. [PMID: 24119663 DOI: 10.1016/j.tcb.2013.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/16/2022]
Abstract
Throughout the viral replication cycle, viral proteins, complexes, and particles need to be transported within host cells. These transport events are dependent on the host cell cytoskeleton and molecular motors. However, the mechanisms by which virus is trafficked along cytoskeleton filaments and how molecular motors are recruited and regulated to guarantee successful integration of the viral genome and production of new viruses has only recently begun to be understood. Recent studies on HIV have identified specific molecular motors involved in the trafficking of these viral particles. Here we review recent literature on the transport of HIV components in the cell, provide evidence for the identity and role of molecular motors in this process, and highlight how these trafficking events may be related to those occurring with other viruses.
Collapse
Affiliation(s)
- Raphaël Gaudin
- Institut Curie, Centre de Recherche, 26 rue d'Ulm, 75248 Paris Cedex 05, France; INSERM, U932, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | |
Collapse
|
28
|
Boso G, Tasaki T, Kwon YT, Somia NV. The N-end rule and retroviral infection: no effect on integrase. Virol J 2013; 10:233. [PMID: 23849394 PMCID: PMC3716682 DOI: 10.1186/1743-422x-10-233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/05/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Integration of double stranded viral DNA is a key step in the retroviral life cycle. Virally encoded enzyme, integrase, plays a central role in this reaction. Mature forms of integrase of several retroviruses (i.e. HIV-1 and MLV) bear conserved destabilizing N-terminal residues of the N-end rule pathway - a ubiquitin dependent proteolytic system in which the N-terminal residue of a protein determines its half life. Substrates of the N-end rule pathway are recognized by E3 ubiquitin ligases called N-recognins. We have previously shown that the inactivation of three of these N-recognins, namely UBR1, UBR2 and UBR4 in mouse embryonic fibroblasts (MEFs) leads to increased stability of ectopically expressed HIV-1 integrase. These findings have prompted us to investigate the involvement of the N-end rule pathway in the HIV-1 life cycle. RESULTS The infectivity of HIV-1 but not MLV was decreased in N-recognin deficient cells in which three N-recognins (UBR1, UBR2 and UBR4) were depleted. HIV-1 integrase mutants of N-terminal amino acids (coding for stabilizing or destabilizing residues) were severely impaired in their infectivity in both human and mouse cells. Quantitative PCR analysis revealed that this inhibition was mainly caused by a defect in reverse transcription. The decreased infectivity was independent of the N-end rule since cells deficient in N-recognins were equally refractory to infection by the integrase mutants. MLV integrase mutants showed no difference in their infectivity or intravirion processing of integrase. CONCLUSIONS The N-end rule pathway impacts the early phase of the HIV-1 life cycle; however this effect is not the result of the direct action of the N-end rule pathway on the viral integrase. The N-terminal amino acid residue of integrase is highly conserved and cannot be altered without causing a substantial decrease in viral infectivity.
Collapse
Affiliation(s)
- Guney Boso
- Developmental Biology and Genetics Graduate Program, Molecular, Cellular, University of Minnesota, Minneapolis, MN, USA
| | | | | | | |
Collapse
|
29
|
Reh J, Stange A, Götz A, Rönitz M, Große A, Lindemann D. An N-terminal domain helical motif of Prototype Foamy Virus Gag with dual functions essential for particle egress and viral infectivity. Retrovirology 2013; 10:45. [PMID: 23618494 PMCID: PMC3667135 DOI: 10.1186/1742-4690-10-45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/19/2013] [Indexed: 12/16/2022] Open
Abstract
Background Foamy viruses (FVs) have developed a unique budding strategy within the retrovirus family. FV release requires co-expression and a highly specific interaction between capsid (Gag) and glycoprotein (Env), which cannot be complemented by heterologous Env proteins. The interaction domain in FV Env has been mapped in greater detail and resides mainly in the N-terminal tip of the cytoplasmic domain of the Env leader peptide subunit. In contrast, the corresponding domain within Gag is less well defined. Previous investigations suggest that it is located within the N-terminal part of the protein. Results Here we characterized additional Gag interaction determinants of the prototype FV (PFV) isolate using a combination of particle release, GST pull-down and single cycle infectivity analysis assays. Our results demonstrate that a minimal PFV Gag protein comprising the N-terminal 129 aa was released into the supernatant, whereas proteins lacking this domain failed to do so. Fine mapping of domains within the N-terminus of PFV Gag revealed that the N-terminal 10 aa of PFV Gag were dispensable for viral replication. In contrast, larger deletions or structurally deleterious point mutations in C-terminally adjacent sequences predicted to harbor a helical region abolished particle egress and Gag – Env protein interaction. Pull-down assays, using proteins of mammalian and prokaryotic origin, support the previous hypothesis of a direct interaction of both PFV proteins without requirement for cellular cofactors and suggest a potential direct contact of Env through this N-terminal Gag domain. Furthermore, analysis of point mutants within this domain in context of PFV vector particles indicates additional particle release-independent functions for this structure in viral replication by directly affecting virion infectivity. Conclusions Thus, our results demonstrate not only a critical function of an N-terminal PFV Gag motif for the essential capsid - glycoprotein interaction required for virus budding but also point out additional functions that affect virion infectivity.
Collapse
Affiliation(s)
- Juliane Reh
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr, 74, 01307, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Hütter S, Zurnic I, Lindemann D. Foamy virus budding and release. Viruses 2013; 5:1075-98. [PMID: 23575110 PMCID: PMC3705266 DOI: 10.3390/v5041075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 12/21/2022] Open
Abstract
Like all other viruses, a successful egress of functional particles from infected cells is a prerequisite for foamy virus (FV) spread within the host. The budding process of FVs involves steps, which are shared by other retroviruses, such as interaction of the capsid protein with components of cellular vacuolar protein sorting (Vps) machinery via late domains identified in some FV capsid proteins. Additionally, there are features of the FV budding strategy quite unique to the spumaretroviruses. This includes secretion of non-infectious subviral particles and a strict dependence on capsid-glycoprotein interaction for release of infectious virions from the cells. Virus-like particle release is not possible since FV capsid proteins lack a membrane-targeting signal. It is noteworthy that in experimental systems, the important capsid-glycoprotein interaction could be bypassed by fusing heterologous membrane-targeting signals to the capsid protein, thus enabling glycoprotein-independent egress. Aside from that, other systems have been developed to enable envelopment of FV capsids by heterologous Env proteins. In this review article, we will summarize the current knowledge on FV budding, the viral components and their domains involved as well as alternative and artificial ways to promote budding of FV particle structures, a feature important for alteration of target tissue tropism of FV-based gene transfer systems.
Collapse
Affiliation(s)
- Sylvia Hütter
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Irena Zurnic
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (S.H); (I.Z.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-351458-6210; Fax: +49-351-458-6310
| |
Collapse
|
31
|
Berka U, Hamann MV, Lindemann D. Early events in foamy virus-host interaction and intracellular trafficking. Viruses 2013; 5:1055-74. [PMID: 23567621 PMCID: PMC3705265 DOI: 10.3390/v5041055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 02/08/2023] Open
Abstract
Here we review viral and cellular requirements for entry and intracellular trafficking of foamy viruses (FVs) resulting in integration of viral sequences into the host cell genome. The virus encoded glycoprotein harbors all essential viral determinants, which are involved in absorption to the host membrane and triggering the uptake of virus particles. However, only recently light was shed on some details of FV's interaction with its host cell receptor(s). Latest studies indicate glycosaminoglycans of cellular proteoglycans, particularly heparan sulfate, to be of utmost importance. In a species-specific manner FVs encounter endogenous machineries of the target cell, which are in some cases exploited for fusion and further egress into the cytosol. Mostly triggered by pH-dependent endocytosis, viral and cellular membranes fuse and release naked FV capsids into the cytoplasm. Intact FV capsids are then shuttled along microtubules and are found to accumulate nearby the centrosome where they can remain in a latent state for extended time periods. Depending on the host cell cycle status, FV capsids finally disassemble and, by still poorly characterized mechanisms, the preintegration complex gets access to the host cell chromatin. Host cell mitosis finally allows for viral genome integration, ultimately starting a new round of viral replication.
Collapse
Affiliation(s)
- Ursula Berka
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Martin Volker Hamann
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty―Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, Dresden 01307, Germany; E-Mails: (U.B.); (M.V.H.)
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
| |
Collapse
|
32
|
The foamy virus Gag proteins: what makes them different? Viruses 2013; 5:1023-41. [PMID: 23531622 PMCID: PMC3705263 DOI: 10.3390/v5041023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
Gag proteins play an important role in many stages of the retroviral replication cycle. They orchestrate viral assembly, interact with numerous host cell proteins, engage in regulation of viral gene expression, and provide the main driving force for virus intracellular trafficking and budding. Foamy Viruses (FV), also known as spumaviruses, display a number of unique features among retroviruses. Many of these features can be attributed to their Gag proteins. FV Gag proteins lack characteristic orthoretroviral domains like membrane-binding domains (M domains), the major homology region (MHR), and the hallmark Cys-His motifs. In contrast, they contain several distinct domains such as the essential Gag-Env interaction domain and the glycine and arginine rich boxes (GR boxes). Furthermore, FV Gag only undergoes limited maturation and follows an unusual pathway for nuclear translocation. This review summarizes the known FV Gag domains and motifs and their functions. In particular, it provides an overview of the unique structural and functional properties that distinguish FV Gag proteins from orthoretroviral Gag proteins.
Collapse
|
33
|
Brice A, Moseley GW. Viral interactions with microtubules: orchestrators of host cell biology? Future Virol 2013. [DOI: 10.2217/fvl.12.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Viral interaction with the microtubule (MT) cytoskeleton is critical to infection by many viruses. Most data regarding virus–MT interaction indicate key roles in the subcellular transport of virions/viral genomic material to sites of replication, assembly and egress. However, the MT cytoskeleton orchestrates diverse processes in addition to subcellular cargo transport, including regulation of signaling pathways, cell survival and mitosis, suggesting that viruses, expert manipulators of the host cell, may use the virus–MT interface to control multiple aspects of cell biology. Several lines of evidence support this idea, indicating that specific viral proteins can modify MT dynamics and/or structure and regulate processes such as apoptosis and innate immune signaling through MT-dependent mechanisms. Here, the authors review general aspects of virus–MT interactions, with emphasis on viral mechanisms that modify MT dynamics and functions to affect processes beyond virion transport. The emerging importance of discrete viral protein–MT interactions in pathogenic processes indicates that these interfaces may represent new targets for future therapeutics and vaccine development.
Collapse
Affiliation(s)
- Aaron Brice
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia
| | - Gregory W Moseley
- Viral Immune Evasion & Pathogenicity Laboratory, Department of Biochemistry & Molecular Biology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
34
|
Abstract
The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.
Collapse
|
35
|
Eichwald C, Arnoldi F, Laimbacher AS, Schraner EM, Fraefel C, Wild P, Burrone OR, Ackermann M. Rotavirus viroplasm fusion and perinuclear localization are dynamic processes requiring stabilized microtubules. PLoS One 2012; 7:e47947. [PMID: 23110139 PMCID: PMC3479128 DOI: 10.1371/journal.pone.0047947] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/17/2012] [Indexed: 12/21/2022] Open
Abstract
Rotavirus viroplasms are cytosolic, electron-dense inclusions corresponding to the viral machinery of replication responsible for viral template transcription, dsRNA genome segments replication and assembly of new viral cores. We have previously observed that, over time, those viroplasms increase in size and decrease in number. Therefore, we hypothesized that this process was dependent on the cellular microtubular network and its associated dynamic components. Here, we present evidence demonstrating that viroplasms are dynamic structures, which, in the course of an ongoing infection, move towards the perinuclear region of the cell, where they fuse among each other, thereby gaining considerably in size and, simultaneouly, explaining the decrease in numbers. On the viral side, this process seems to depend on VP2 for movement and on NSP2 for fusion. On the cellular side, both the temporal transition and the maintenance of the viroplasms are dependent on the microtubular network, its stabilization by acetylation, and, surprisingly, on a kinesin motor of the kinesin-5 family, Eg5. Thus, we provide for the first time deeper insights into the dynamics of rotavirus replication, which can explain the behavior of viroplasms in the infected cell.
Collapse
|
36
|
Stirnnagel K, Schupp D, Dupont A, Kudryavtsev V, Reh J, Müllers E, Lamb DC, Lindemann D. Differential pH-dependent cellular uptake pathways among foamy viruses elucidated using dual-colored fluorescent particles. Retrovirology 2012; 9:71. [PMID: 22935135 PMCID: PMC3495412 DOI: 10.1186/1742-4690-9-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/13/2012] [Indexed: 11/30/2022] Open
Abstract
Background It is thought that foamy viruses (FVs) enter host cells via endocytosis because all FV glycoproteins examined display pH-dependent fusion activities. Only the prototype FV (PFV) glycoprotein has also significant fusion activity at neutral pH, suggesting that its uptake mechanism may deviate from other FVs. To gain new insights into the uptake processes of FV in individual live host cells, we developed fluorescently labeled infectious FVs. Results N-terminal tagging of the FV envelope leader peptide domain with a fluorescent protein resulted in efficient incorporation of the fluorescently labeled glycoprotein into secreted virions without interfering with their infectivity. Double-tagged viruses consisting of an eGFP-tagged PFV capsid (Gag-eGFP) and mCherry-tagged Env (Ch-Env) from either PFV or macaque simian FV (SFVmac) were observed during early stages of the infection pathway. PFV Env, but not SFVmac Env, containing particles induced strong syncytia formation on target cells. Both virus types showed trafficking of double-tagged virions towards the cell center. Upon fusion and subsequent capsid release into the cytosol, accumulation of naked capsid proteins was observed within four hours in the perinuclear region, presumably representing the centrosomes. Interestingly, virions harboring fusion-defective glycoproteins still promoted virus attachment and uptake, but failed to show syncytia formation and perinuclear capsid accumulation. Biochemical and initial imaging analysis indicated that productive fusion events occur predominantly within 4–6 h after virus attachment. Non-fused or non-fusogenic viruses are rapidly cleared from the cells by putative lysosomal degradation. Quantitative monitoring of the fraction of individual viruses containing both Env and capsid signals as a function of time demonstrated that PFV virions fused within the first few minutes, whereas fusion of SFVmac virions was less pronounced and observed over the entire 90 minutes measured. Conclusions The characterized double-labeled FVs described here provide new mechanistic insights into FV early entry steps, demonstrating that productive viral fusion occurs early after target cell attachment and uptake. The analysis highlights apparent differences in the uptake pathways of individual FV species. Furthermore, the infectious double-labeled FVs promise to provide important tools for future detailed analyses on individual FV fusion events in real time using advanced imaging techniques.
Collapse
Affiliation(s)
- Kristin Stirnnagel
- Institute of Virology, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr, 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tobaly-Tapiero J, Zamborlini A, Bittoun P, Saïb A. Investigating the intercellular spreading properties of the foamy virus Gag protein. PLoS One 2012; 7:e31108. [PMID: 22393357 PMCID: PMC3290618 DOI: 10.1371/journal.pone.0031108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/02/2012] [Indexed: 01/08/2023] Open
Abstract
Small regions called protein transduction domains (PTDs), identified in cellular and viral proteins, have been reported to efficiently cross biological membranes. Here we show that the structural Gag protein of the prototypic foamy virus (PFV) is apparently able to move from cell to cell and to transport the green fluorescent protein (GFP) from few transfected cells to the nuclei of the entire monolayer. Deletion studies showed that this property lies within the second glycine/arginine (GRII) box in the C-terminus of the protein. We also found that uptake and nuclear accumulation of Gag GRII expressed as GFP-fusion protein in recipient cells was observed only following methanol fixation, but never in living cells or when cells were fixed with glutaraldehyde or treated with trichloroacetic acid prior to methanol fixation. Absence of intercellular spreading in vivo was further confirmed using a sensitive luciferase activity assay based on transactivation of the PFV long terminal repeats. Thus, we conclude that intercellular spreading of PFV Gag represents an artificial diffusion event occurring during cell fixation, followed by nuclear retention mediated by the chromatin-binding sequence within the Gag GRII box. In light of these results, we advise caution before defining a peptide as PTD on the basis of intercellular spreading observed by fluorescence microscopy.
Collapse
Affiliation(s)
- Joelle Tobaly-Tapiero
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
| | - Alessia Zamborlini
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Patricia Bittoun
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
| | - Ali Saïb
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| |
Collapse
|
38
|
Coupling viruses to dynein and kinesin-1. EMBO J 2011; 30:3527-39. [PMID: 21878994 DOI: 10.1038/emboj.2011.283] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 07/21/2011] [Indexed: 12/13/2022] Open
Abstract
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport.
Collapse
|
39
|
Adenovirus recruits dynein by an evolutionary novel mechanism involving direct binding to pH-primed hexon. Viruses 2011; 3:1417-31. [PMID: 21994788 PMCID: PMC3185799 DOI: 10.3390/v3081417] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/03/2011] [Accepted: 08/06/2011] [Indexed: 12/19/2022] Open
Abstract
Following receptor-mediated uptake into endocytic vesicles and escape from the endosome, adenovirus is transported by cytoplasmic dynein along microtubules to the perinuclear region of the cell. How motor proteins are recruited to viruses for their own use has begun to be investigated only recently. We review here the evidence for a role for dynein and other motor proteins in adenovirus infectivity. We also discuss the implications of recent studies on the mechanism of dynein recruitment to adenovirus for understanding the relationship between pathogenic and physiological cargo recruitment and for the evolutionary origins of dynein-mediated adenovirus transport.
Collapse
|
40
|
Rapali P, Szenes Á, Radnai L, Bakos A, Pál G, Nyitray L. DYNLL/LC8: a light chain subunit of the dynein motor complex and beyond. FEBS J 2011; 278:2980-96. [PMID: 21777386 DOI: 10.1111/j.1742-4658.2011.08254.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The LC8 family members of dynein light chains (DYNLL1 and DYNLL2 in vertebrates) are highly conserved ubiquitous eukaryotic homodimer proteins that interact, besides dynein and myosin 5a motor proteins, with a large (and still incomplete) number of proteins involved in diverse biological functions. Despite an earlier suggestion that LC8 light chains function as cargo adapters of the above molecular motors, they are now recognized as regulatory hub proteins that interact with short linear motifs located in intrinsically disordered protein segments. The most prominent LC8 function is to promote dimerization of their binding partners that are often scaffold proteins of various complexes, including the intermediate chains of the dynein motor complex. Structural and functional aspects of this intriguing hub protein will be highlighted in this minireview.
Collapse
Affiliation(s)
- Péter Rapali
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
41
|
Merino-Gracia J, García-Mayoral MF, Rodríguez-Crespo I. The association of viral proteins with host cell dynein components during virus infection. FEBS J 2011; 278:2997-3011. [PMID: 21777384 PMCID: PMC7164101 DOI: 10.1111/j.1742-4658.2011.08252.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
After fusion with the cellular plasma membrane or endosomal membranes, viral particles are generally too large to diffuse freely within the crowded cytoplasm environment. Thus, they will never reach the cell nucleus or the perinuclear areas where replication or reverse transcription usually takes place. It has been proposed that many unrelated viruses are transported along microtubules in a retrograde manner using the cellular dynein machinery or, at least, some dynein components. A putative employment of the dynein motor in a dynein‐mediated transport has been suggested from experiments in which viral capsid proteins were used as bait in yeast two‐hybrid screens using libraries composed of cellular proteins and dynein‐associated chains were retrieved as virus‐interacting proteins. In most cases DYNLL1, DYNLT1 or DYNLRB1 were identified as the dynein chains that interact with viral proteins. The importance of these dynein–virus interactions has been supported, in principle, by the observation that in some cases the dynein‐interacting motifs of viral proteins altered by site‐directed mutagenesis result in non‐infective virions. Furthermore, overexpression of p50 dynamitin, which blocks the dynein–dynactin interaction, or incubation of infected cells with peptides that compete with viral polypeptides for dynein binding have been shown to alter the viral retrograde transport. Still, it remains to be proved that dynein light chains can bind simultaneously to incoming virions and to the dynein motor for retrograde transport to take place. In this review, we will analyse the association of viral proteins with dynein polypeptides and its implications for viral infection.
Collapse
Affiliation(s)
- Javier Merino-Gracia
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
42
|
Sun S, Butterworth AH, Paramasivam S, Yan S, Lightcap CM, Williams JC, Polenova T. Resonance Assignments and Secondary Structure Analysis of Dynein Light Chain 8 by Magic Angle Spinning NMR Spectroscopy. CAN J CHEM 2011; 89:909-918. [PMID: 23243318 DOI: 10.1139/v11-030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynein light chain LC8 is the smallest subunit of the dynein motor complex and has been shown to play important roles in both dynein dependent and dynein independent physiological functions via its interaction with a number of its binding partners. It has also been linked to pathogenesis including roles in viral infections and tumorigenesis. Structural information for LC8-target proteins is critical to understanding the underlying function of LC8 in these complexes. However, some LC8-target interactions are not amenable for structural characterization by conventional structural biology techniques due to their large size, low solubility and crystallization difficulties. Here, we report magic angle spinning (MAS) NMR studies of the homodimeric apo-LC8 protein as a first effort in addressing more complex, multi-partner LC8-based protein assemblies. We have established site-specific backbone and side chain resonance assignments for the majority of the residues of LC8, and show TALOS+ predicted torsion angles ϕ and ψ in close agreement with most residues in the published LC8 crystal structure. Data obtained through these studies will provide the first step toward using MAS NMR to examine the LC8 structure, which will eventually be used to investigate protein-protein interactions in larger systems, which cannot be determined by conventional structural studies.
Collapse
Affiliation(s)
- Shangjin Sun
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | | | | | | | | | | | | |
Collapse
|
43
|
Brault JB, Kudelko M, Vidalain PO, Tangy F, Desprès P, Pardigon N. The interaction of flavivirus M protein with light chain Tctex-1 of human dynein plays a role in late stages of virus replication. Virology 2011; 417:369-78. [PMID: 21767858 DOI: 10.1016/j.virol.2011.06.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/17/2011] [Accepted: 06/22/2011] [Indexed: 11/29/2022]
Abstract
The role of the membrane protein (prM/M) in flavivirus life cycle remains unclear. Here, we identified a cellular interactor to the 40-residue-long ectodomain of prM/M (ectoM) using a yeast two-hybrid screen against a human cDNA library and GST pull-down assays. We showed that dynein light chain Tctex-1 interacts with the ectoM of dengue 1-4, West Nile, and Japanese encephalitis flaviviruses. No interaction was found with yellow fever and tick-borne flaviviruses. This interaction is highly specific since a single amino-acid change in the ectoM abrogates the interaction with Tctex-1. To understand the role of this interaction, silencing of Tctex-1 using siRNA was performed prior to infection. A significant decrease in progeny production was observed for dengue and West Nile viruses. Silencing Tctex-1 inhibited the production of recombinant dengue subviral particles (RSPs). Thus Tctex-1 may play a role in late stages of viral replication through its interaction with the membrane protein.
Collapse
Affiliation(s)
- Jean-Baptiste Brault
- Unité des Interactions Moléculaires Flavivirus-Hôtes, Department of Virology, Institut Pasteur, 75724 Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Prototype foamy virus gag nuclear localization: a novel pathway among retroviruses. J Virol 2011; 85:9276-85. [PMID: 21715475 DOI: 10.1128/jvi.00663-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gag nuclear localization has long been recognized as a hallmark of foamy virus (FV) infection. Two required motifs, a chromatin-binding site (CBS) and a nuclear localization signal (NLS), both located in glycine-arginine-rich box II (GRII), have been described. However, the underlying mechanisms of Gag nuclear translocation are largely unknown. We analyzed prototype FV (PFV) Gag nuclear localization using a novel live-cell fluorescence microscopy assay. Furthermore, we characterized the nuclear localization route of Gag mutants tagged with the simian vacuolating virus 40-NLS (SV40-NLS) and also dissected the respective contributions of the CBS and the NLS. We found that PFV Gag does not translocate to the nucleus of interphase cells by NLS-mediated nuclear import and does not possess a functional NLS. PFV Gag nuclear localization occurred only by tethering to chromatin during mitosis. This mechanism was found for endogenously expressed Gag as well as for Gag delivered by infecting viral particles. Thereby, the CBS was absolutely essential, while the NLS was dispensable. Gag CBS-dependent nuclear localization was neither essential for infectivity nor necessary for Pol encapsidation. Interestingly, Gag localization was independent of the presence of Pol, Env, and viral RNA. The addition of a heterologous SV40-NLS resulted in the nuclear import of PFV Gag in interphase cells, rescued the nuclear localization deficiency but not the infectivity defect of a PFV Gag ΔGRII mutant, and did not enhance FV's ability to infect G(1)/S-phase-arrested cells. Thus, PFV Gag nuclear localization follows a novel pathway among orthoretroviral Gag proteins.
Collapse
|
45
|
Lindemann D, Rethwilm A. Foamy virus biology and its application for vector development. Viruses 2011; 3:561-85. [PMID: 21994746 PMCID: PMC3185757 DOI: 10.3390/v3050561] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/23/2011] [Indexed: 01/12/2023] Open
Abstract
Spuma- or foamy viruses (FV), endemic in most non-human primates, cats, cattle and horses, comprise a special type of retrovirus that has developed a replication strategy combining features of both retroviruses and hepadnaviruses. Unique features of FVs include an apparent apathogenicity in natural hosts as well as zoonotically infected humans, a reverse transcription of the packaged viral RNA genome late during viral replication resulting in an infectious DNA genome in released FV particles and a special particle release strategy depending capsid and glycoprotein coexpression and specific interaction between both components. In addition, particular features with respect to the integration profile into the host genomic DNA discriminate FV from orthoretroviruses. It appears that some inherent properties of FV vectors set them favorably apart from orthoretroviral vectors and ask for additional basic research on the viruses as well as on the application in Gene Therapy. This review will summarize the current knowledge of FV biology and the development as a gene transfer system.
Collapse
Affiliation(s)
- Dirk Lindemann
- Institut für Virologie, Medizinische Fakultät “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- DFG-Center for Regenerative Therapies Dresden (CRTD)—Cluster of Excellence, Biotechnology Center, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, 97078 Würzburg, Germany; E-Mail:
| |
Collapse
|
46
|
Nowrouzi A, Glimm H, von Kalle C, Schmidt M. Retroviral vectors: post entry events and genomic alterations. Viruses 2011; 3:429-55. [PMID: 21994741 PMCID: PMC3185758 DOI: 10.3390/v3050429] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/24/2011] [Accepted: 04/05/2011] [Indexed: 12/16/2022] Open
Abstract
The curative potential of retroviral vectors for somatic gene therapy has been demonstrated impressively in several clinical trials leading to sustained long-term correction of the underlying genetic defect. Preclinical studies and clinical monitoring of gene modified hematopoietic stem and progenitor cells in patients have shown that biologically relevant vector induced side effects, ranging from in vitro immortalization to clonal dominance and oncogenesis in vivo, accompany therapeutic efficiency of integrating retroviral gene transfer systems. Most importantly, it has been demonstrated that the genotoxic potential is not identical among all retroviral vector systems designed for clinical application. Large scale viral integration site determination has uncovered significant differences in the target site selection of retrovirus subfamilies influencing the propensity for inducing genetic alterations in the host genome. In this review we will summarize recent insights gained on the mechanisms of insertional mutagenesis based on intrinsic target site selection of different retrovirus families. We will also discuss examples of side effects occurring in ongoing human gene therapy trials and future prospectives in the field.
Collapse
Affiliation(s)
- Ali Nowrouzi
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; E-Mails: (C.v.K.); (M.S.); Tel.: +49-6221-56-6991; +49-6221-42-1600; Fax: +49-6221-56-6930; +49-6221-42-1611
| | - Manfred Schmidt
- Department of Translational Oncology, German Cancer Research Center, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; E-Mail: (A.N.)
- National Center for Tumor Diseases, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Authors to whom correspondence should be addressed; E-Mails: (C.v.K.); (M.S.); Tel.: +49-6221-56-6991; +49-6221-42-1600; Fax: +49-6221-56-6930; +49-6221-42-1611
| |
Collapse
|
47
|
Abstract
Foamy virus (FV) capsid proteins have few lysines. Basic residues are almost exclusively represented by arginines indicating positive selective pressure. To analyze the possible functions of this peculiarity, we mutated an infectious molecular clone of the prototypic FV (PFV) to harbor lysines in the Gag protein at arginine-specifying positions and analyzed various aspects of the FV replication cycle. The majority of mutants replicated equally as well in permanent cell cultures as the original wild-type (wt) virus and were genetically stable in gag upon 10 cell-free passages. With respect to the features of late reverse transcription, nucleic acid content, and infectiousness of the virion DNA genome, the majority of mutants behaved like the wt. Several mutants of PFV were ubiquitinated in Gag but unable to generate virus-like particles (VLPs) or to undergo pseudotyping by a heterologous envelope. Using primary cells, however, a replicative disadvantage of the majority of mutants was disclosed. This disadvantage was enhanced upon interferon (IFN) treatment. We found no evidence that the lysine-bearing gag mutants showed more restriction than the wt virus by tetherin (CD317) or Trim5α. A single lysine in PFV Gag was found to be nonessential for transient replication in permanent cell culture if replaced by an arginine residue. Upon replication in primary cells, even without IFN treatment, this mutant was severely impaired, indicating the importance of specifying at least this lysine residue in PFV Gag. The paucity of lysines in FV Gag proteins may be a consequence of preventing proteasomal Gag degradation.
Collapse
|
48
|
Renault N, Tobaly-Tapiero J, Paris J, Giron ML, Coiffic A, Roingeard P, Saïb A. A nuclear export signal within the structural Gag protein is required for prototype foamy virus replication. Retrovirology 2011; 8:6. [PMID: 21255441 PMCID: PMC3033328 DOI: 10.1186/1742-4690-8-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 01/21/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The Gag polyproteins play distinct roles during the replication cycle of retroviruses, hijacking many cellular machineries to fulfill them. In the case of the prototype foamy virus (PFV), Gag structural proteins undergo transient nuclear trafficking after their synthesis, returning back to the cytoplasm for capsid assembly and virus egress. The functional role of this nuclear stage as well as the molecular mechanism(s) responsible for Gag nuclear export are not understood. RESULTS We have identified a leptomycin B (LMB)-sensitive nuclear export sequence (NES) within the N-terminus of PFV Gag that is absolutely required for the completion of late stages of virus replication. Point mutations of conserved residues within this motif lead to nuclear redistribution of Gag, preventing subsequent virus egress. We have shown that a NES-defective PFV Gag acts as a dominant negative mutant by sequestrating its wild-type counterpart in the nucleus. Trans-complementation experiments with the heterologous NES of HIV-1 Rev allow the cytoplasmic redistribution of FV Gag, but fail to restore infectivity. CONCLUSIONS PFV Gag-Gag interactions are finely tuned in the cytoplasm to regulate their functions, capsid assembly, and virus release. In the nucleus, we have shown Gag-Gag interactions which could be involved in the nuclear export of Gag and viral RNA. We propose that nuclear export of unspliced and partially spliced PFV RNAs relies on two complementary mechanisms, which take place successively during the replication cycle.
Collapse
Affiliation(s)
- Noémie Renault
- CNRS UMR7212, Inserm U944, Université Paris Diderot, Institut Universitaire d'Hématologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
49
|
Small peptide inhibitors disrupt a high-affinity interaction between cytoplasmic dynein and a viral cargo protein. J Virol 2010; 84:10792-801. [PMID: 20686048 DOI: 10.1128/jvi.01168-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several viruses target the microtubular motor system in early stages of the viral life cycle. African swine fever virus (ASFV) protein p54 hijacks the microtubule-dependent transport by interaction with a dynein light chain (DYNLL1/DLC8). This was shown to be a high-affinity interaction, and the residues gradually disappearing were mapped on DLC8 to define a putative p54 binding surface by nuclear magnetic resonance (NMR) spectroscopy. The potential of short peptides targeting the binding domain to disrupt this high-affinity protein-protein interaction was assayed, and a short peptide sequence was shown to bind and compete with viral protein binding to dynein. Given the complexity and number of proteins involved in cellular transport, the prevention of this viral-DLC8 interaction might not be relevant for successful viral infection. Thus, we tested the capacity of these peptides to interfere with viral infection by disrupting dynein interaction with viral p54. Using this approach, we report on short peptides that inhibit viral growth.
Collapse
|
50
|
Interaction of viruses with host cell molecular motors. Curr Opin Biotechnol 2010; 21:633-9. [PMID: 20638267 DOI: 10.1016/j.copbio.2010.06.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/18/2010] [Indexed: 11/21/2022]
Abstract
Viral particles are generally too large to diffuse freely within the crowded environment of the host cell cytoplasm. They depend on mammalian cell transport systems, in particular the microtubular molecular motor dynein, to deliver their nucleic acids to the vicinity of the nucleus. An understanding of how viruses interact with dynein, and its many accessory proteins, may reveal targets for drug discovery and will unlock the toolbox required to improve the performance of synthetic gene delivery systems.
Collapse
|