1
|
Liu H, Muro K, Chishima R, Takano J, Tominaga M. Myosin XI is required for boron transport under boron limitation via maintenance of endocytosis and polar localization of the boric acid channel AtNIP5;1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109938. [PMID: 40262396 DOI: 10.1016/j.plaphy.2025.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Myosin XI plays a major role in cytoplasmic streaming and is essential for intracellular transport. Here, we investigated the physiological roles of myosin XI in nutrient transport using double (2ko) and triple (3ko) myosin XI knockout mutants of Arabidopsis thaliana. The results revealed that the mutants exhibited more severe boron deficiency phenotypes under boron-limiting conditions, and the boron concentration in the aerial parts of mutant plants was lower than that in the wild-type. Microscopic analysis demonstrated a reduction in general endocytosis and abolishment of NIP5; 1's polar localization in 2ko and 3ko plants. Overall, these results indicate that myosin XI is necessary for proper boron transport via the maintenance of the endocytic pathway and NIP5; 1's polar localization.
Collapse
Affiliation(s)
- Haiyang Liu
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan
| | - Keita Muro
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531, Japan
| | - Riku Chishima
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan
| | - Junpei Takano
- Graduate School of Agriculture, Osaka Metropolitan University, Gakuen-cho 1-1, Naka-ku, Sakai, 599-8531, Japan
| | - Motoki Tominaga
- Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan; Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan.
| |
Collapse
|
2
|
Konishi N, Mitani-Ueno N, Ma JF. Role of polar localization of the silicon transporter OsLsi1 in metalloid uptake by rice roots. PLANT PHYSIOLOGY 2025; 198:kiaf196. [PMID: 40341966 PMCID: PMC12089981 DOI: 10.1093/plphys/kiaf196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/18/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025]
Abstract
Low silicon (Si) rice 1 (OsLsi1) is a key transporter mediating Si uptake in rice (Oryza sativa). It is polarly localized at the distal side of the root exodermis and endodermis. Although OsLsi1 is also permeable to other metalloids, such as boron (B), germanium (Ge), arsenic (As), antimony (Sb), and selenium (Se), the role of its polar localization in the uptake of these metalloids remains unclear. In this study, we investigated the role of OsLsi1 polar localization in metalloid uptake by examining transgenic rice plants expressing polarly or nonpolarly localized OsLsi1 variants. Loss of OsLsi1 polar localization resulted in decreased accumulation of Ge, B, and As in shoots but increased Sb accumulation, while Se accumulation remained unaffected under normal conditions. Experiments with varying B concentrations revealed that B uptake is significantly lower at low B concentrations (0.3 to 3 μm) but higher at high B concentrations (300 μm) in plants expressing nonpolarly localized OsLsi1, despite the similar B permeability of both OsLsi1 variants in Xenopus oocytes and their comparable protein abundance in roots. Additionally, the loss of OsLsi1 polarity did not affect the abundance, localization, or high B-induced degradation of the borate transporter 1 (OsBOR1), an efflux transporter that cooperates with OsLsi1 for B uptake. Taken together, our findings demonstrate that the polar localization of OsLsi1 plays a critical role in regulating metalloid uptake, depending on the presence or absence of efflux transporters cooperating with OsLsi1.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
3
|
Meselhy AG, Mosa K, Chhikara S, Kumar K, Musante C, White JC, Dhankher OP. Plasma membrane intrinsic protein OsPIP2;6 is involved in root-to-shoot arsenic translocation in rice (Oryza sativa L.). PLANT CELL REPORTS 2024; 43:64. [PMID: 38340214 DOI: 10.1007/s00299-024-03157-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
KEY MESSAGE This study demonstrates the crucial role of OsPIP2;6 for translocation of arsenic from roots to shoots, which can decrease arsenic accumulation in rice for improved food safety. Arsenic (As) contamination in food and water, primarily through rice consumption, poses a significant health risk due to its natural tendency to accumulate inorganic arsenic (iAs). Understanding As transport mechanisms is vital for producing As-free rice. This study investigates the role of rice plasma membrane intrinsic protein, OsPIP2;6, for AsIII tolerance and accumulation. RNAi-mediated suppression of OsPIP2;6 expression resulted in a substantial (35-65%) reduction in As accumulation in rice shoots, while root arsenic levels remained largely unaffected. Conversely, OsPIP2;6 overexpression led to 15-76% higher arsenic accumulation in shoots, with no significant change in root As content. In mature plants, RNAi suppression caused (19-26%) decrease in shoot As, with flag leaves and grains showing a 16% reduction. OsPIP2;6 expression was detected in both roots and shoots, with higher transcript levels in shoots. Localization studies revealed its presence in vascular tissues of both roots and shoots. Overall, our findings highlight OsPIP2;6's role in root-to-shoot As translocation, attributed to its specific localization in the vascular tissue of roots and leaves. This knowledge can facilitate the development of breeding programs to mitigate As accumulation in rice and other food crops for improved food safety and increasing productivity on As-contaminated soils.
Collapse
Affiliation(s)
- Ahmed G Meselhy
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Kareem Mosa
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sudesh Chhikara
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| | - Kundan Kumar
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K. K. Birla Goa Campus, Zuarinagar, Goa, India
| | - Craig Musante
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
4
|
Robe K, Barberon M. Nutrient carriers at the heart of plant nutrition and sensing. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102376. [PMID: 37182415 DOI: 10.1016/j.pbi.2023.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023]
Abstract
Plants require water and several essential nutrients for their development. The radial transport of nutrients from the soil to the root vasculature is achieved through a combination of three different pathways: apoplastic, symplastic, and transcellular. A common feature for these pathways is the requirement of carriers to transport nutrients across the plasma membrane. An efficient transport of nutrients across the root cell layers relies on a large number of carriers, each of them having their own substrate specificity, tissular and subcellular localization. Polarity is also emerging as a major feature allowing their function. Recent advances on radial transport of nutrients, especially carrier mediated nutrient transport will be discussed in this review, as well as the role of transporters as nutrient sensors.
Collapse
Affiliation(s)
- Kevin Robe
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva, Switzerland.
| |
Collapse
|
5
|
Konishi N, Mitani-Ueno N, Yamaji N, Ma JF. Polar localization of a rice silicon transporter requires isoleucine at both C- and N-termini as well as positively charged residues. THE PLANT CELL 2023; 35:2232-2250. [PMID: 36891818 PMCID: PMC10226592 DOI: 10.1093/plcell/koad073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 05/30/2023]
Abstract
Silicon (Si) is important for stable and high yields in rice (Oryza sativa), a typical Si hyperaccumulator. The high Si accumulation is achieved by the cooperation of 2 Si transporters, LOW SILICON 1 (OsLsi1) and OsLsi2, which are polarly localized in cells of the root exodermis and endodermis. However, the mechanism underlying their polar localization is unknown. Here, we identified amino acid residues critical for the polar localization of OsLsi1. Deletion of both N- and C-terminal regions resulted in the loss of its polar localization. Furthermore, the deletion of the C-terminus inhibited its trafficking from the endoplasmic reticulum to the plasma membrane. Detailed site-directed mutagenesis analysis showed that Ile18 at the N-terminal region and Ile285 at the C-terminal region were essential for the polar localization of OsLsi1. Moreover, a cluster of positively charged residues at the C-terminal region is also required for polar localization. Phosphorylation and Lys modifications of OsLsi1 are unlikely to be involved in its polar localization. Finally, we showed that the polar localization of OsLsi1 is required for the efficient uptake of Si. Our study not only identified critical residues required for the polar localization of OsLsi1, but also provided experimental evidence for the importance of transporter polarity for efficient nutrient uptake.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | | |
Collapse
|
6
|
Konishi N, Huang S, Yamaji N, Ma JF. Cell-Type-Dependent but CME-Independent Polar Localization of Silicon Transporters in Rice. PLANT & CELL PHYSIOLOGY 2022; 63:699-712. [PMID: 35277719 DOI: 10.1093/pcp/pcac032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Silicon (Si) is an important nutrient required for sustainable and high production of rice and its uptake is mediated by a pair of influx (OsLsi1)-efflux (OsLsi2) transporters showing polar localization. However, the mechanisms underlying their polarity are unknown. Here, we revealed that the polarity of the Si transporters depends on cell types. The polar localization of both OsLsi1 and OsLsi2 was not altered by Si supply, but their protein abundance was reduced. Double immunostaining showed that localization of OsLsi1 and OsLsi2 was separated at the edge of the lateral polar domain by Casparian strips in the endodermis, whereas they were slightly overlapped at the transversal side of the exodermis. When OsLsi1 was ectopically expressed in the shoots, it showed polar localization at the xylem parenchyma cells of the basal node and leaf sheath, but not at the phloem companion cells. Ectopic expression of non-polar Si transporters, barley HvLsi2 and maize ZmLsi2 in rice, resulted in their polar localization at the proximal side. The polar localization of OsLsi1 and OsLsi2 was not altered by inhibition of clathrin-mediated endocytosis (CME) by dominant-negative induction of dynamin-related protein1A and knockout of mu subunit of adaptor protein 2 complex, although the knockout mutants of OsAP2M gene showed dwarf phenotype. These results indicate that CME is not required for the polar localization of Si transporters. Taken together, our results indicate that CME-independent machinery controls the polar localization of Si transporters in exodermis, endodermis of root cells and xylem parenchyma cells.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Sheng Huang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama, 710-0046 Japan
| |
Collapse
|
7
|
Cao M, Liu H, Zhang C, Wang D, Liu X, Chen Q. Functional Analysis of StPHT1;7, a Solanum tuberosum L. Phosphate Transporter Gene, in Growth and Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1384. [PMID: 33080882 PMCID: PMC7650598 DOI: 10.3390/plants9101384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
PHT1 (phosphate transporter 1) family genes play important roles in regulating plant growth and responding to stress. However, there has been little research on the role of the PHT1 family in potatoes. In this study, using molecular and bioinformatic approaches, 8 PHT1 family genes were identified from the potato genome. StPHT1;7 was highly expressed in the whole potato plants. The overexpression and silence vectors of StPHT1;7 were constructed and transformed into the potato cultivar Desiree. Consequently, StPHT1;7 overexpression (with a relative expression 2-7-fold that in the control) and silence lines (with a relative expression of 0.3%-1% that in the control) were obtained. Their growth vigor was ranked in the order overexpression line > wild type > silence line. In the absence of phosphorus, the root length of the overexpression line was approximately 2.6 times that of the wild type, while the root length of the silence line was approximately 0.6 times that of the wild type. Furthermore, their tolerance to drought stress was ranked as wild type > overexpression line > silence line. These results suggest that StPHT1;7 affects growth and stress tolerance in potato plants.
Collapse
Affiliation(s)
- Minxuan Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianning 712100, China; (M.C.); (H.L.); (C.Z.); (D.W.)
| | - Hengzhi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianning 712100, China; (M.C.); (H.L.); (C.Z.); (D.W.)
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianning 712100, China; (M.C.); (H.L.); (C.Z.); (D.W.)
| | - Dongdong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianning 712100, China; (M.C.); (H.L.); (C.Z.); (D.W.)
| | - Xiaofang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Xianning 712100, China
| | - Qin Chen
- College of Food Science and Engineering, Northwest A&F University, Xianning 712100, China
| |
Collapse
|
8
|
Abstract
Cell polarity in plants operates across a broad range of spatial and temporal scales to control processes from acute cell growth to systemic hormone distribution. Similar to other eukaryotes, plants generate polarity at both the subcellular and tissue levels, often through polarization of membrane-associated protein complexes. However, likely due to the constraints imposed by the cell wall and their extremely plastic development, plants possess novel polarity molecules and mechanisms highly tuned to environmental inputs. Considerable progress has been made in identifying key plant polarity regulators, but detailed molecular understanding of polarity mechanisms remains incomplete in plants. Here, we emphasize the striking similarities in the conceptual frameworks that generate polarity in both animals and plants. To this end, we highlight how novel, plant-specific proteins engage in common themes of positive feedback, dynamic intracellular trafficking, and posttranslational regulation to establish polarity axes in development. We end with a discussion of how environmental signals control intrinsic polarity to impact postembryonic organogenesis and growth.
Collapse
Affiliation(s)
- Andrew Muroyama
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| | - Dominique Bergmann
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5020, USA; .,Department of Biology, Stanford University, Stanford, California 94305-5020, USA
| |
Collapse
|
9
|
Fan X, Che X, Lai W, Wang S, Hu W, Chen H, Zhao B, Tang M, Xie X. The auxin-inducible phosphate transporter AsPT5 mediates phosphate transport and is indispensable for arbuscule formation in Chinese milk vetch at moderately high phosphate supply. Environ Microbiol 2020; 22:2053-2079. [PMID: 32079042 DOI: 10.1111/1462-2920.14952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022]
Abstract
Phosphorus is a macronutrient that is essential for plant survival. Most land plants have evolved the ability to form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which enhances phosphate (Pi) acquisition. Modulation of Pi transporter systems is the master strategy used by mycorrhizal plants to adapt to ambient Pi concentrations. However, the specific functions of PHOSPHATE TRANSPORTER 1 (PHT1) genes, which are Pi transporters that are responsive to high Pi availability, are largely unknown. Here, we report that AsPT5, an Astragalus sinicus (Chinese milk vetch) member of the PHT1 gene family, is conserved across dicotyledons and is constitutively expressed in a broad range of tissues independently of Pi supply, but is remarkably induced by indole-3-acetic acid (auxin) treatment under moderately high Pi conditions. Subcellular localization experiments indicated that AsPT5 localizes to the plasma membrane of plant cells. Using reverse genetics, we showed that AsPT5 not only mediates Pi transport and remodels root system architecture but is also essential for arbuscule formation in A. sinicus under moderately high Pi concentrations. Overall, our study provides insight into the function of AsPT5 in Pi transport, AM development and the cross-talk between Pi nutrition and auxin signalling in mycorrhizal plants.
Collapse
Affiliation(s)
- Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | | | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Campos P, Borie F, Cornejo P, López-Ráez JA, López-García Á, Seguel A. Phosphorus Acquisition Efficiency Related to Root Traits: Is Mycorrhizal Symbiosis a Key Factor to Wheat and Barley Cropping? FRONTIERS IN PLANT SCIENCE 2018; 9:752. [PMID: 29922321 PMCID: PMC5996197 DOI: 10.3389/fpls.2018.00752] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/16/2018] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) are major crops cultivated around the world, thus playing a crucial role on human diet. Remarkably, the growing human population requires a significant increase in agricultural production in order to feed everybody. In this context, phosphorus (P) management is a key factor as it is component of organic molecules such as nucleic acids, ATP and phospholipids, and it is the most abundant macronutrient in biomass after nitrogen (N), although being one of the scarcest elements in the lithosphere. In general, P fertilization has low efficiency, as only a fraction of the applied P is acquired by roots, leaving a substantial amount to be accumulated in soil as not readily available P. Breeding for P-efficient cultivars is a relatively low cost alternative and can be done through two mechanisms: i) improving P use efficiency (PUE), and/or ii) P acquisition efficiency (PAE). PUE is related to the internal allocation/mobilization of P, and is usually represented by the amount of P accumulated per biomass. PAE relies on roots ability to acquire P from the soil, and is commonly expressed as the relative difference of P acquired under low and high P availability conditions. In this review, plant adaptations related to improved PAE are described, with emphasis on arbuscular mycorrhizal (AM) symbiosis, which is generally accepted to enhance plant P acquisition. A state of the art (1980-2018) of AM growth responses and P uptake in wheat and barley is made to discuss about the commonly accepted growth promoting effect and P increased uptake by AM fungi and the contrasting evidence about the generally accepted lack of positive responses in both plant species. Finally, the mechanisms by which AM symbiosis can affect wheat and barley PAE are discussed, highlighting the importance of considering AM functional diversity on future studies and the necessity to improve PAE definition by considering the carbon trading between all the directly related PAE traits and its return to the host plant.
Collapse
Affiliation(s)
- Pedro Campos
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Juan A. López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Álvaro López-García
- Section Ecology and Evolution, Biological Institute, University of Copenhagen, Copenhagen, Denmark
| | - Alex Seguel
- Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
11
|
Moon S, Chandran AKN, Gho YS, Park SA, Kim SR, Yoo YH, Jung KH. Integrated omics analysis of root-preferred genes across diverse rice varieties including Japonica and indica cultivars. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:11-23. [PMID: 29132026 DOI: 10.1016/j.jplph.2017.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 06/07/2023]
Abstract
Plant root systems play essential roles in developmental processes, such as the absorption of water and inorganic nutrients, and structural support. Gene expression is affected by growth conditions and the genetic background of plants. To identify highly conserved root-preferred genes in rice across diverse growth conditions and varieties, we used two independent meta-anatomical expression profiles based on a large collection of Affymetrix and Agilent 44K microarray data sets available for public use. We then identified 684 loci with root-preferred expression, which were validated with in silico analysis using both meta-expression profiles. The expression patterns of four candidate genes were confirmed in vivo by monitoring expression of β-glucuronidase under control of the candidate-gene promoters, providing new tools to manipulate agronomic traits associated with roots. We also utilized real-time PCR to examine the root-preferential expression of 14 genes across four rice varieties, including japonica and indica cultivars. Using a database of rice genes with known functions, we identified the reported functions of 39 out of the 684 candidate genes. Sixteen genes are directly involved in root development, while the remaining are involved in processes indirectly related to root development (i.e., soil-stress tolerance or growth retardation). This indicates the importance of our candidate genes for studies on root development and function. Gene ontology enrichment analysis in the 'biological processes' category revealed that root-preferred genes in rice are closely associated with nutrient transport-related genes, indicating that the primary role of roots is the uptake of nutrients from soil. In addition, predicted protein-protein interaction analysis suggested a molecular network for root development composed of 215 interactions associated with 44 root-preferred or root development-related genes. Taken together, our data provide an important foundation for future research on root development in rice.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | | | - Yun-Shil Gho
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Sun-A Park
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Sung-Ryul Kim
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Yo-Han Yoo
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| |
Collapse
|
12
|
Naramoto S. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:8-14. [PMID: 28686910 DOI: 10.1016/j.pbi.2017.06.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/06/2017] [Accepted: 06/14/2017] [Indexed: 05/08/2023]
Abstract
Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed.
Collapse
Affiliation(s)
- Satoshi Naramoto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Liu B, Zhao S, Wu X, Wang X, Nan Y, Wang D, Chen Q. Identification and characterization of phosphate transporter genes in potato. J Biotechnol 2017; 264:17-28. [DOI: 10.1016/j.jbiotec.2017.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
14
|
Grain Yield, Dry Weight and Phosphorus Accumulation and Translocation in Two Rice (Oryza sativa L.) Varieties as Affected by Salt-Alkali and Phosphorus. SUSTAINABILITY 2017. [DOI: 10.3390/su9081461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Wang D, Lv S, Jiang P, Li Y. Roles, Regulation, and Agricultural Application of Plant Phosphate Transporters. FRONTIERS IN PLANT SCIENCE 2017; 8:817. [PMID: 28572810 PMCID: PMC5435767 DOI: 10.3389/fpls.2017.00817] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 05/20/2023]
Abstract
Phosphorus (P) is an essential mineral nutrient for plant growth and development. Low availability of inorganic phosphate (orthophosphate; Pi) in soil seriously restricts the crop production, while excessive fertilization has caused environmental pollution. Pi acquisition and homeostasis depend on transport processes controlled Pi transporters, which are grouped into five families so far: PHT1, PHT2, PHT3, PHT4, and PHT5. This review summarizes the current understanding on plant PHT families, including phylogenetic analysis, function, and regulation. The potential application of Pi transporters and the related regulatory factors for developing genetically modified crops with high phosphorus use efficiency (PUE) are also discussed in this review. At last, we provide some potential strategies for developing high PUE crops under salt or drought stress conditions, which can be valuable for improving crop yields challenged by global scarcity of water resources and increasing soil salinization.
Collapse
Affiliation(s)
- Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
16
|
Młodzińska E, Zboińska M. Phosphate Uptake and Allocation - A Closer Look at Arabidopsis thaliana L. and Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2016; 7:1198. [PMID: 27574525 PMCID: PMC4983557 DOI: 10.3389/fpls.2016.01198] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 05/17/2023]
Abstract
This year marks the 20th anniversary of the discovery and characterization of the two Arabidopsis PHT1 genes encoding the phosphate transporter in Arabidopsis thaliana. So far, multiple inorganic phosphate (Pi) transporters have been described, and the molecular basis of Pi acquisition by plants has been well-characterized. These genes are involved in Pi acquisition, allocation, and/or signal transduction. This review summarizes how Pi is taken up by the roots and further distributed within two plants: A. thaliana and Oryza sativa L. by plasma membrane phosphate transporters PHT1 and PHO1 as well as by intracellular transporters: PHO1, PHT2, PHT3, PHT4, PHT5 (VPT1), SPX-MFS and phosphate translocators family. We also describe the role of the PHT1 transporters in mycorrhizal roots of rice as an adaptive strategy to cope with limited phosphate availability in soil.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of WrocławWrocław, Poland
| | | |
Collapse
|
17
|
Kalidhasan N, Joshi D, Bhatt TK, Gupta AK. Identification of key genes involved in root development of tomato using expressed sequence tag analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:491-503. [PMID: 26600676 PMCID: PMC4646861 DOI: 10.1007/s12298-015-0304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/19/2015] [Accepted: 06/09/2015] [Indexed: 05/11/2023]
Abstract
Root system of plants are actually fascinating structures, not only critical for plant development, but also important for storage and conduction. Due to its agronomic importance, identification of genes involved in root development has been a subject of intense study. Tomato is the one of the most consumed vegetables in the world. Tomato has been used as model system for dicot plants because of its small genome, well-established transformation techniques and well-constructed physical map. The present study is targeted to identify of root specific genes expressed temporally and also gene(s) involved in lateral root and profuse root development. A total of 890 ESTs were identified from five EST libraries constructed using SSH approach which included temporal gene regulation (early and late) and genes involved in morphogenetic traits (lateral and profuse rooting). One hundred sixty-one unique ESTs identified from various libraries were categorized based on their putative functions and deposited in NCBI-dbEST database. In addition, 36 ESTs were selected for validation of their expression by RT-PCR. The present findings will help in shedding light to the unexplored developmental process of root growth in tomato and plant in general.
Collapse
Affiliation(s)
- N. Kalidhasan
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
| | - Deepti Joshi
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Tarun Kumar Bhatt
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| | - Aditya Kumar Gupta
- />Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021 India
- />Department of Biotechnology, School of LifeSciences, Central University of Rajasthan, Bandarsindri, 305801 India
| |
Collapse
|
18
|
Barberon M, Geldner N. Radial transport of nutrients: the plant root as a polarized epithelium. PLANT PHYSIOLOGY 2014; 166:528-37. [PMID: 25136061 PMCID: PMC4213085 DOI: 10.1104/pp.114.246124] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/15/2014] [Indexed: 05/18/2023]
Abstract
In higher plants, roots acquire water and soil nutrients and transport them upward to their aerial parts. These functions are closely related to their anatomical structure; water and nutrients entering the root first move radially through several concentric layers of the epidermis, cortex, and endodermis before entering the central cylinder. The endodermis is the innermost cortical cell layer that features rings of hydrophobic cell wall material called the Casparian strips, which functionally resemble tight junctions in animal epithelia. Nutrient uptake from the soil can occur through three different routes that can be interconnected in various ways: the apoplastic route (through the cell wall), the symplastic route (through cellular connections), and a coupled trans-cellular route (involving polarized influx and efflux carriers). This Update presents recent advances in the radial transport of nutrients highlighting the coupled trans-cellular pathway and the roles played by the endodermis as a barrier.
Collapse
Affiliation(s)
- Marie Barberon
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Chen A, Chen X, Wang H, Liao D, Gu M, Qu H, Sun S, Xu G. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato. BMC PLANT BIOLOGY 2014; 14:61. [PMID: 24618087 PMCID: PMC4007770 DOI: 10.1186/1471-2229-14-61] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/04/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Phosphorus (P) deficiency is one of the major nutrient stresses limiting plant growth. The uptake of P by plants is well considered to be mediated by a number of high-affinity phosphate (Pi) transporters belonging to the Pht1 family. Although the Pht1 genes have been extensively identified in several plant species, there is a lack of systematic analysis of the Pht1 gene family in any solanaceous species thus far. RESULTS Here, we report the genome-wide analysis, phylogenetic evolution and expression patterns of the Pht1 genes in tomato (Solanum lycopersicum). A total of eight putative Pht1 genes (LePT1 to 8), distributed on three chromosomes (3, 6 and 9), were identified through extensive searches of the released tomato genome sequence database. Chromosomal organization and phylogenetic tree analysis suggested that the six Pht1 paralogues, LePT1/3, LePT2/6 and LePT4/5, which were assigned into three pairs with very close physical distance, were produced from recent tandem duplication events that occurred after Solanaceae splitting with other dicot families. Expression analysis of these Pht1 members revealed that except LePT8, of which the transcript was undetectable in all tissues, the other seven paralogues showed differential but partial-overlapping expression patterns. LePT1 and LePT7 were ubiquitously expressed in all tissues examined, and their transcripts were induced abundantly in response to Pi starvation; LePT2 and LePT6, the two paralogues harboring identical coding sequence, were predominantly expressed in Pi-deficient roots; LePT3, LePT4 and LePT5 were strongly activated in the roots colonized by arbuscular mycorrhizal fungi under low-P, but not high-P condition. Histochemical analysis revealed that a 1250-bp LePT3 promoter fragment and a 471-bp LePT5 promoter fragment containing the two elements, MYCS and P1BS, were sufficient to direct the GUS reporter expression in mycorrhizal roots and were limited to distinct cells harboring AM fungal structures. Additionally, the four paralogues, LePT1, LePT2, LePT6 and LePT7, were very significantly down-regulated in the mycorrhizal roots under low Pi supply condition. CONCLUSIONS The results obtained from this study provide new insights into the evolutionary expansion, functional divergence and genetic redundancy of the Pht1 genes in response to Pi deficiency and mycorrhizal symbiosis in tomato.
Collapse
Affiliation(s)
- Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dehua Liao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Song H, Yin Z, Chao M, Ning L, Zhang D, Yu D. Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. PLANT, CELL & ENVIRONMENT 2014; 37:462-72. [PMID: 23889314 DOI: 10.1111/pce.12170] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 05/18/2023]
Abstract
Phosphate (Pi) remobilization within a plant is critical for plant survival under Pi-limiting conditions. In this paper, a soybean Pi transporter gene, GmPT1, was characterized. A marked induction of GmPT1 transcript was observed in young leaves, mature leaves and lateral roots during long-term Pi starvation. Transgenic tobacco plants containing the GmPT1 gene were obtained using an Agrobacterium-mediated transformation system. Compared with wild-type plants, transgenic plants showed significant increases in phosphorus-use efficiency (PUE), photosystem II (PSII) function, total dry weight and seed weight under Pi-deficient conditions. GmPT1 expression levels and PUE were determined in a soybean recombinant inbred line population during a pot experiment that was conducted to measure chlorophyll fluorescence parameters, photosynthetic rate (PN ) and seed yield. Correlation analysis revealed that GmPT1 expression levels had significantly positive correlations with seed yield, PUE, PN and the quantum yield of PSII primary photochemistry (ΦPSII ). Expression quantitative trait loci (eQTL) mapping for GmPT1 revealed two eQTLs, one of which coincided with both the physical location of GmPT1 and a QTL associated with seed yield. These results suggest that GmPT1 plays a role in Pi remobilization, and it may be possible to improve soybean seed yields under Pi-limiting conditions by modulating GmPT1 expression levels.
Collapse
Affiliation(s)
- Haina Song
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | |
Collapse
|
21
|
Casieri L, Gallardo K, Wipf D. Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. PLANTA 2012; 235:1431-47. [PMID: 22535379 DOI: 10.1007/s00425-012-1645-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/02/2012] [Indexed: 05/03/2023]
Abstract
Sulphur is an essential macronutrient for plant growth, development and response to various abiotic and biotic stresses due to its key role in the biosynthesis of many S-containing compounds. Sulphate represents a very small portion of soil S pull and it is the only form that plant roots can uptake and mobilize through H(+)-dependent co-transport processes implying sulphate transporters. Unlike the other organically bound forms of S, sulphate is normally leached from soils due to its solubility in water, thus reducing its availability to plants. Although our knowledge of plant sulphate transporters has been growing significantly in the past decades, little is still known about the effect of the arbuscular mycorrhiza interaction on sulphur uptake. Carbon, nitrogen and sulphur measurements in plant parts and expression analysis of genes encoding putative Medicago sulphate transporters (MtSULTRs) were performed to better understand the beneficial effects of mycorrhizal interaction on Medicago truncatula plants colonized by Glomus intraradices at different sulphate concentrations. Mycorrhization significantly promoted plant growth and sulphur content, suggesting increased sulphate absorption. In silico analyses allowed identifying eight putative MtSULTRs phylogenetically distributed over the four sulphate transporter groups. Some putative MtSULTRs were transcribed differentially in roots and leaves and affected by sulphate concentration, while others were more constitutively transcribed. Mycorrhizal-inducible and -repressed MtSULTRs transcripts were identified allowing to shed light on the role of mycorrhizal interaction in sulphate uptake.
Collapse
Affiliation(s)
- Leonardo Casieri
- Pôle Interactions Plantes-Microorganismes, ERL 6300 CNRS, UMR1347 INRA/Agrosup/Université de Bourgogne Agroécologie, 17 Rue Sully, BP 86510, 21065, Dijon Cedex, France.
| | | | | |
Collapse
|
22
|
Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H, Krapp A. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. THE PLANT CELL 2012; 24:245-58. [PMID: 22227893 PMCID: PMC3289576 DOI: 10.1105/tpc.111.092221] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/20/2011] [Accepted: 12/14/2011] [Indexed: 05/18/2023]
Abstract
Plants have evolved a variety of mechanisms to adapt to N starvation. NITRATE TRANSPORTER2.4 (NRT2.4) is one of seven NRT2 family genes in Arabidopsis thaliana, and NRT2.4 expression is induced under N starvation. Green fluorescent protein and β-glucuronidase reporter analyses revealed that NRT2.4 is a plasma membrane transporter expressed in the epidermis of lateral roots and in or close to the shoot phloem. The spatiotemporal expression pattern of NRT2.4 in roots is complementary with that of the major high-affinity nitrate transporter NTR2.1. Functional analysis in Xenopus laevis oocytes and in planta showed that NRT2.4 is a nitrate transporter functioning in the high-affinity range. In N-starved nrt2.4 mutants, nitrate uptake under low external supply and nitrate content in shoot phloem exudates was decreased. In the absence of NRT2.1 and NRT2.2, loss of function of NRT2.4 (triple mutants) has an impact on biomass production under low nitrate supply. Together, our results demonstrate that NRT2.4 is a nitrate transporter that has a role in both roots and shoots under N starvation.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoshinari A, Kasai K, Fujiwara T, Naito S, Takano J. Polar localization and endocytic degradation of a boron transporter, BOR1, is dependent on specific tyrosine residues. PLANT SIGNALING & BEHAVIOR 2012; 7:46-9. [PMID: 22301967 PMCID: PMC3357367 DOI: 10.4161/psb.7.1.18527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Boron (B) is essential for plants, but is toxic in excess. Plants have to strictly regulate the uptake and translocation of B. In Arabidopsis thaliana root cells, a boric acid channel, NIP5;1, and a boric acid/borate exporter, BOR1, localize to the outer (facing soil) and inner plasma membrane domains, respectively, under B limitation. The opposite polar localizations of the importer and exporter would enable plant roots to transport B efficiently towards the xylem. In addition, accumulation of the B transporters is controlled by B conditions. When plants are shifted from low to high B conditions, NIP5;1 transcript accumulation is down-regulated through mRNA degradation. The BOR1 protein is transported to the trans-Golgi network/early endosome and multivesicular body and finally degraded in the vacuole. We have recently shown that both the polar localization and the endocytic degradation of BOR1 are controlled by at least two tyrosine residues in a large loop located in the cytosol. We also showed that ubiquitination is required for the endocytic degradation of BOR1. Here, we analyzed possible involvement of an additional tyrosine residue (Y414) in the loop region and discuss the pathway of the BOR1 trafficking for polar localization and endocytic degradation of BOR1.
Collapse
Affiliation(s)
- Akira Yoshinari
- Division of Life Science; Graduate School of Life Science; Hokkaido University; Sapporo, Japan
| | - Koji Kasai
- Division of Applied Biological Chemistry; Graduate School of Agricultural and Life Science; The University of Tokyo; Tokyo, Japan
| | - Toru Fujiwara
- Division of Applied Biological Chemistry; Graduate School of Agricultural and Life Science; The University of Tokyo; Tokyo, Japan
| | - Satoshi Naito
- Division of Life Science; Graduate School of Life Science; Hokkaido University; Sapporo, Japan
- Division of Applied Bioscience; Graduate School of Agriculture; Hokkaido University; Sapporo, Japan
| | - Junpei Takano
- Division of Applied Bioscience; Graduate School of Agriculture; Hokkaido University; Sapporo, Japan
- Correspondence to: Junpei Takano;
| |
Collapse
|
24
|
Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud MC. Phosphate Import in Plants: Focus on the PHT1 Transporters. FRONTIERS IN PLANT SCIENCE 2011; 2:83. [PMID: 22645553 PMCID: PMC3355772 DOI: 10.3389/fpls.2011.00083] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/03/2011] [Indexed: 05/17/2023]
Abstract
The main source of phosphorus for plants is inorganic phosphate (Pi), which is characterized by its poor availability and low mobility. Uptake of this element from the soil relies heavily upon the PHT1 transporters, a specific family of plant plasma membrane proteins that were identified by homology with the yeast PHO84 Pi transporter. Since the discovery of PHT1 transporters in 1996, various studies have revealed that their function is controlled by a highly complex network of regulation. This review will summarize the current state of research on plant PHT1 multigenic families, including physiological, biochemical, molecular, cellular, and genetics studies.
Collapse
Affiliation(s)
- Laurent Nussaume
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Satomi Kanno
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Hélène Javot
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Elena Marin
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Nathalie Pochon
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Amal Ayadi
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| | - Tomoko M. Nakanishi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-kuTokyo, Japan 113-8657
| | - Marie-Christine Thibaud
- IBEB-SBVME Laboratoire de Biologie du Développement des Plantes, UMR6191 CNRS-Commissariat à l’Energie Atomique et aux Energies Alternatives Cadarache, Université Aix-Marseille, F-13108 Saint-Paul-lez-DuranceFrance
| |
Collapse
|
25
|
Smith SE, Jakobsen I, Grønlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. PLANT PHYSIOLOGY 2011; 156:1050-7. [PMID: 21467213 PMCID: PMC3135927 DOI: 10.1104/pp.111.174581] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 04/04/2011] [Indexed: 05/18/2023]
Affiliation(s)
- Sally E Smith
- Soils Group, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Adelaide 5005, Australia.
| | | | | | | |
Collapse
|
26
|
Wu Z, Zhao J, Gao R, Hu G, Gai J, Xu G, Xing H. Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max. PLoS One 2011; 6:e19752. [PMID: 21698287 PMCID: PMC3115949 DOI: 10.1371/journal.pone.0019752] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/15/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Phosphorus is one of the macronutrients essential for plant growth and development. The acquisition and translocation of phosphate are pivotal processes of plant growth. In a large number of plants, phosphate uptake by roots and translocation within the plant are presumed to occur via a phosphate/proton cotransport mechanism. PRINCIPAL FINDINGS We cloned two cDNAs from soybean (Glycine max), GmPT1 and GmPT2, which show homology to the phosphate/proton cotransporter PHO84 from the budding yeast Saccharomyces cerevisiae. The amino acid sequence of the products predicted from GmPT1 and GmPT2 share 61% and 63% identity, respectively, with the PHO84 in amino acid sequence. The deduced structure of the encoded proteins revealed 12 membrane-spanning domains with a central hydrophilic region. The molecular mass values are ∼58.7 kDa for GmPT1 and ∼58.6 kDa for GmPT2. Transiently expressed GFP-protein fusions provide direct evidence that the two Pi transporters are located in the plasma membrane. Uptake of radioactive orthophosphate by the yeast mutant MB192 showed that GmPT1 and GmPT2 are dependent on pH and uptake is reduced by the addition of uncouplers of oxidative phosphorylation. The K(m) for phosphate uptake by GmPT1 and GmPT2 is 6.65 mM and 6.63 mM, respectively. A quantitative real time RT-PCR assay indicated that these two genes are expressed in the roots and shoots of seedlings whether they are phosphate-deficient or not. Deficiency of phosphorus caused a slight change of the expression levels of GmPT1 and GmPT2. CONCLUSIONS The results of our experiments show that the two phosphate transporters have low affinity and the corresponding genes are constitutively expressed. Thereby, the two phosphate transporters can perform translocation of phosphate within the plant.
Collapse
Affiliation(s)
- Zhaoyun Wu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jinming Zhao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ruifang Gao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guanjun Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Han Xing
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics. J Biosci Bioeng 2011; 111:326-32. [DOI: 10.1016/j.jbiosc.2010.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/09/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022]
|
28
|
Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:227-50. [PMID: 21391813 DOI: 10.1146/annurev-arplant-042110-103846] [Citation(s) in RCA: 600] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.
Collapse
Affiliation(s)
- Sally E Smith
- Soils Group, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
29
|
Miao J, Sun J, Liu D, Li B, Zhang A, Li Z, Tong Y. Characterization of the promoter of phosphate transporter TaPHT1.2 differentially expressed in wheat varieties. J Genet Genomics 2009; 36:455-66. [PMID: 19683668 DOI: 10.1016/s1673-8527(08)60135-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/12/2023]
Abstract
TaPHT1.2 is a functional, root predominantly expressed and low phosphate (Pi) inducible high-affinity Pi transporter in wheat, which is more abundant in the roots of P-efficient wheat genotypes (e.g., Xiaoyan 54) than in P-inefficient genotypes (e.g., Jing 411) under both Pi-deficient and Pi-sufficient conditions. To characterize TaPHT1.2 further, we genetically mapped a TaPHT1.2 transporter, TaPHT1.2-D1, on the long arm of chromosome 4D using a recombinant inbred line population derived from Xiaoyan 54 and Jing 411, and isolated a1,302 bp fragment of the TaPHT1.2-D1 promoter (PrTaPHT1.2-D1) from Xiaoyan 54. TaPHT1.2-D1 shows collinearity with OsPHT1.2 that has previously been reported to mediate the translocation of Pi from roots to shoots. PrTaPHT1.2-D contains a number of Pi-starvation responsive elements, including P1BS, WRKY-binding W-box, and helix-loop-helix-binding elements. PrTaPHT1.2-D1 was then used to drive expression of beta-glucuronidase (GUS) reporter gene in Arabidopsis through Agrobacterium-mediated transformation. Histochemical analysis of transgenic Arabidopsis plants showed that the reporter gene was specifically induced by Pi-starvation and predominantly expressed in the roots. As there is only one SNP between the TaPHT1.2-D1 promoters of Xiaoyan 54 and Jing 411, and this SNP does not exist within the Pi-starvation responsive elements, the differential expression of TaPHT1.2 in Xiaoyan 54 and Jing 411 may not be caused by this SNP.
Collapse
Affiliation(s)
- Jun Miao
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Miller AJ, Shen Q, Xu G. Freeways in the plant: transporters for N, P and S and their regulation. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:284-90. [PMID: 19481499 DOI: 10.1016/j.pbi.2009.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 05/13/2023]
Abstract
This review focuses on plant acquisition and transport of the inorganic forms of nitrogen, phosphorus and sulfur. Families of membrane transporters have been identified and several members are well characterised. Although some families are large, specific members may be expressed in a particular membrane or cell type, or at certain times during development. Therefore, each transporter can have specific activities and the concept of functional redundancy is questionable. Structurally related proteins can mediate all transport steps within the plant, including uptake from the soil. Although transport mechanisms and membrane locations may be different, a picture is emerging that suggests sequence homology can be a reasonable indicator of the nutrient that is transported by each protein.
Collapse
Affiliation(s)
- Anthony J Miller
- Centre for Soils and Ecosystem Function, Rothamsted Research, Hertfordshire, UK.
| | | | | |
Collapse
|
31
|
Miwa K, Kamiya T, Fujiwara T. Homeostasis of the structurally important micronutrients, B and Si. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:307-311. [PMID: 19481495 DOI: 10.1016/j.pbi.2009.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 04/24/2009] [Accepted: 04/24/2009] [Indexed: 05/27/2023]
Abstract
This review focuses on recent advances in understanding the transport mechanisms of two elements, B and Si in plants. Both are present as noncharged molecules in soil solution as boric acid and silicic acid. Both function in apoplast: pectic polysaccharides crosslinked with borate and polymers of hydrated silica are important for the physical strength of plant cells. In recent years, molecular genetics revealed analogous transport systems of B and Si. Combinations of NIP channels and exporters localized to distal and proximal sides, allow efficient trans-cellular transport of the nutrients. Polar localization, observed in these transport molecules, is likely to be a key to regulate directional transport of nutrients.
Collapse
Affiliation(s)
- Kyoko Miwa
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
32
|
Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. THE NEW PHYTOLOGIST 2009; 181:950-959. [PMID: 19140941 DOI: 10.1111/j.1469-8137.2008.02721.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants colonized by arbuscular mycorrhizal (AM) fungi take up phosphate (Pi)via the mycorrhizal and the direct Pi uptake pathway. Our understanding of the molecular mechanisms involved in the regulation of these pathways is just emerging.Here, we have analyzed the molecular physiology of mycorrhizal Pi uptake in the tomato (Solanum lycopersicum) variety Micro-Tom and integrated the data obtained with studies on chemical signaling in mycorrhiza-inducible Pi transporter gene regulation.At high plant phosphorus (P) status, the mycorrhizal Pi uptake pathway was almost completely repressed and the mycorrhiza-inducible Pi transporter genes were down-regulated. A high plant P status also suppressed the activation of the mycorrhiza-specific StPT3 promoter fragment by phospholipid extracts containing the mycorrhiza signal lysophosphatidylcholine.Our results suggest that the mycorrhizal Pi uptake pathway is controlled at least partially by the plant host. This control involves components in common
Collapse
Affiliation(s)
- Réka Nagy
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland
| | - David Drissner
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland
| | - Nikolaus Amrhein
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Universitätstrasse 2, CH-8092 Zurich, Switzerland
| | - Iver Jakobsen
- National Laboratory for Sustainable Energy (Risø DTU), Technical University of Denmark, Biosystems Department, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Marcel Bucher
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland
- Present address: University of Cologne, Institute of Botany, Gyrhofstrasse 15, D-50931 Cologne, Germany
| |
Collapse
|
33
|
Smith FA, Grace EJ, Smith SE. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. THE NEW PHYTOLOGIST 2009; 182:347-358. [PMID: 19207688 DOI: 10.1111/j.1469-8137.2008.02753.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Symbiosis is well recognized as a major force in plant ecology and evolution. However, there is considerable uncertainty about the functional, ecological and evolutionary benefits of the very widespread facultative arbuscular mycorrhizal (AM) associations, in which the plants can grow and reproduce whether or not they are colonized by AM fungi. Here we address the significance of new research findings that are overturning conventional views that facultative AM associations can be likened to parasitic fungus-plant associations. Specifically, we address the occurrence and importance of phosphate uptake via AM fungi that does not result in increases in total phosphorus (P) uptake or in plant growth, and possible signalling between AM fungi and plants that can result in plant growth depressions even when fungal colonization remains very low. We conclude that, depending on the individual AM fungi that are present, the role of facultative AM associations in the field, especially in relation to plant competition, may be much more subtle than has been previously envisaged.
Collapse
Affiliation(s)
- F Andrew Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, SA 5005, Australia
| | - Emily J Grace
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, SA 5005, Australia
| | - Sally E Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, Waite Campus, University of Adelaide, SA 5005, Australia
| |
Collapse
|
34
|
Rosewarne GM, Smith FA, Schachtman DP, Smith SE. Localization of proton-ATPase genes expressed in arbuscular mycorrhizal tomato plants. MYCORRHIZA 2007; 17:249-258. [PMID: 17216501 DOI: 10.1007/s00572-006-0101-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 12/14/2006] [Indexed: 05/13/2023]
Abstract
In arbuscular mycorrhizal symbioses, solutes such as phosphate are transferred to the plant in return for photoassimilates. The uptake mechanism is probably facilitated by a proton gradient generated by proton H(+)-ATPases. We investigated expression of Lycopersicon esculentum Mill. H(+)-ATPases in mycorrhizal and non-mycorrhizal plants to determine if any are specifically regulated in response to colonization. Tissue expression and cellular localization of H(+)-ATPases were determined by RNA gel blot analysis and in situ hybridization of mycorrhizal and non-mycorrhizal roots. LHA1, LHA2, and LHA4 had high levels of expression in roots and were expressed predominantly in epidermal cells. LHA1 and LHA4 were also expressed in cortical cells containing arbuscules. The presence of arbuscules in root sections was correlated with lower levels of expression of these two isoforms in the epidermis. These results suggest that LHA1 and LHA4 expression is decreased in epidermal cells located in regions of the root that contain arbuscules. This provides evidence of differential regulation between molecular mechanisms involved in proton-coupled nutrient transfer either from the soil or fungus to the plant.
Collapse
Affiliation(s)
| | - F Andrew Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, 5005, SA, Australia
| | - Daniel P Schachtman
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO, 63132, USA
| | - Sally E Smith
- Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, 5005, SA, Australia
| |
Collapse
|
35
|
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. THE NEW PHYTOLOGIST 2007; 173:11-26. [PMID: 17176390 DOI: 10.1111/j.1469-8137.2006.01935.x] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phosphorus (P) is an essential plant nutrient and one of the most limiting in natural habitats as well as in agricultural production world-wide. The control of P acquisition efficiency and its subsequent uptake and translocation in vascular plants is complex. The physiological role of key cellular structures in plant P uptake and underlying molecular mechanisms are discussed in this review, with emphasis on phosphate transport across the cellular membrane at the root and arbuscular-mycorrhizal (AM) interfaces. The tools of molecular genetics have facilitated novel approaches and provided one of the major driving forces in the investigation of the basic transport mechanisms underlying plant P nutrition. Genetic engineering holds the potential to modify the system in a targeted way at the root-soil or AM symbiotic interface. Such approaches should assist in the breeding of crop plants that exhibit improved P acquisition efficiency and thus require lower inputs of P fertilizer for optimal growth. Whether engineering of P transport systems can contribute to enhanced P uptake will be discussed.
Collapse
Affiliation(s)
- Marcel Bucher
- ETH Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland.
| |
Collapse
|
36
|
Chen A, Hu J, Sun S, Xu G. Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. THE NEW PHYTOLOGIST 2007; 173:817-831. [PMID: 17286830 DOI: 10.1111/j.1469-8137.2006.01962.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, orthologous genes of six phosphate transporter (PiT) genes, which are members of the Pht1 and Pht2 families in tomato and potato, have been cloned from the solanaceous species pepper, eggplant and tobacco. Overall, expressions of these genes in pepper, eggplant and tobacco showed similar patterns to those in tomato and potato: P-starvation enhancement in both leaves and roots for Pht1;1, P-depletion induction exclusively in roots for Pht1;2, mycorrhizal enhancement for Pht1;3, and mycorrhizal induction for both Pht1;4 and Pht1;5. In the roots of nonmycorrhizal eggplant, SmPht1;3, SmPht1;4 and SmPht1;5 were also expressed under extreme P starvation. Mycorrhizal symbiosis under high-P supply conditions reduced plant growth, with concurrent enhancement of Pht1;2 expression in the roots of pepper as well as eggplant. In addition, the mycorrhizal symbiosis down-regulated the expression of Pht2;1 genes greatly in the leaves of pepper and tobacco. The discrepancies between the evolutionary distances of the PiT genes and their expression patterns among the five species suggest greater complexity in function of PiT in plants than previously expected.
Collapse
Affiliation(s)
- Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiang Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
37
|
Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:186-97. [PMID: 16547863 DOI: 10.1055/s-2005-873052] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maize is one of the most important crops in the developing world, where adverse soil conditions and low fertilizer input are the two main constraints for stable food supply. Understanding the molecular and biochemical mechanisms involved in nutrient uptake is expected to support the development of future breeding strategies aimed at improving maize productivity on infertile soils. Phosphorus is the least mobile macronutrient in the soils and it is often limiting plant growth. In this work, five genes encoding Pht1 phosphate transporters which contribute to phosphate uptake and allocation in maize were identified. In phosphate-starved plants, transcripts of most of the five transporters were present in roots and leaves. Independent of the phosphate supply, expression of two genes was predominant in pollen or in roots colonized by symbiotic mycorrhizal fungi, respectively. Interestingly, high transcript levels of the mycorrhiza-inducible gene were also detectable in leaves of phosphate-starved plants. Thus, differential expression of Pht1 phosphate transporters in maize suggests involvement of the encoded proteins in diverse processes, including phosphate uptake from soil and transport at the symbiotic interface in mycorrhizas, phosphate (re)translocation in the shoot, and phosphate uptake during pollen tube growth.
Collapse
Affiliation(s)
- R Nagy
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Experimental Station Eschikon 33, 8315 Lindau, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:236-50. [PMID: 15807785 DOI: 10.1111/j.1365-313x.2005.02364.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Solanaceous species are among the >200 000 plant species worldwide forming a mycorrhiza, that is, a root living in symbiosis with soil-borne arbuscular-mycorrhizal (AM) fungi. An important parameter of this symbiosis, which is vital for ecosystem productivity, agriculture, and horticulture, is the transfer of phosphate (Pi) from the AM fungus to the plant, facilitated by plasma membrane-spanning Pi transporter proteins. The first mycorrhiza-specific plant Pi transporter to be identified, was StPT3 from potato [Nature414 (2004) 462]. Here, we describe novel Pi transporters from the solanaceous species tomato, LePT4, and its orthologue StPT4 from potato, both being members of the Pht1 family of plant Pi transporters. Phylogenetic tree analysis demonstrates clustering of both LePT4 and StPT4 with the mycorrhiza-specific Pi transporter from Medicago truncatula [Plant Cell, 14 (2002) 2413] and rice [Proc. Natl Acad. Sci. USA, 99 (2002) 13324], respectively, but not with StPT3, indicating that two non-orthologous mycorrhiza-responsive genes encoding Pi transporters are co-expressed in the Solanaceae. The cloned promoter regions from both genes, LePT4 and StPT4, exhibit a high degree of sequence identity and were shown to direct expression exclusively in colonized cells when fused to the GUS reporter gene, in accordance with the abundance of LePT4 and StPT4 transcripts in mycorrhized roots. Furthermore, extensive sequencing of StPT4-like clones and subsequent expression analysis in potato and tomato revealed the presence of a close paralogue of StPT4 and LePT4, named StPT5 and LePT5, respectively, representing a third Pi transport system in solanaceous species which is upregulated upon AM fungal colonization of roots. Knock out of LePT4 in the tomato cv. MicroTom indicated considerable redundancy between LePT4 and other Pi transporters in tomato.
Collapse
Affiliation(s)
- Réka Nagy
- Federal Institute of Technology (ETH) Zurich, Institute of Plant Sciences, Plant Biochemistry & Physiology Group, Experimental Station Eschikon 33, CH-8315 Lindau, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|