1
|
Pham TTQ, Kuo YC, Chang WL, Weng HJ, Huang YH. Double-sided niche regulation in skin stem cell and cancer: mechanisms and clinical applications. Mol Cancer 2025; 24:147. [PMID: 40399946 PMCID: PMC12093937 DOI: 10.1186/s12943-025-02289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/03/2025] [Indexed: 05/23/2025] Open
Abstract
The niche microenvironment plays a crucial role in regulating the fate of normal skin stem cells (SSCs) and cancer stem cells (CSCs). Therapeutically targeting the CSC niche holds promise as an effective strategy; however, the dual effects of shared SSC niche signaling in CSCs have contributed to the aggressive characteristics of tumors and poor survival rates in skin cancer patients. The lack of a clear underlying mechanism has significantly hindered drug development for effective treatment. This article explores recent advances in understanding how niche factors regulate cell fate determination between skin stem cells and skin CSCs, along with their clinical implications. The dual roles of key components of the adhesive niche, including the dermo-epidermal junction and adherens junction, various cell types-especially immune cells and fibroblasts-as well as major signaling pathways such as Sonic hedgehog (Shh), Wingless-related integration site (Wnt)/β-catenin, YAP (Yes-associated protein)/TAZ (transcriptional coactivator with PDZ-binding motif), and Notch, are highlighted. Additionally, recent advances in clinical trials and drug development targeting these pathways are discussed. Overall, this review provides valuable insights into the complex interactions between skin cancer stem cells and their microenvironment, laying the groundwork for future research and clinical strategies.
Collapse
Affiliation(s)
- Trang Thao Quoc Pham
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Wei-Ling Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hao-Jui Weng
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yen-Hua Huang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Gadre P, Markova P, Ebrahimkutty M, Jiang Y, Bouzada FM, Watt FM. Emergence and properties of adult mammalian epidermal stem cells. Dev Biol 2024; 515:129-138. [PMID: 39059680 DOI: 10.1016/j.ydbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this review we discuss how the mammalian interfollicular epidermis forms during development, maintains homeostasis, and is repaired following wounding. Recent studies have provided new insights into the relationship between the stem cell compartment and the differentiating cell layers; the ability of differentiated cells to dedifferentiate into stem cells; and the epigenetic memory of epidermal cells following wounding.
Collapse
Affiliation(s)
- Purna Gadre
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Pavlina Markova
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Yidan Jiang
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Francisco M Bouzada
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Fiona M Watt
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
3
|
Dermitzakis I, Chatzi D, Kyriakoudi SA, Evangelidis N, Vakirlis E, Meditskou S, Theotokis P, Manthou ME. Skin Development and Disease: A Molecular Perspective. Curr Issues Mol Biol 2024; 46:8239-8267. [PMID: 39194704 DOI: 10.3390/cimb46080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Skin, the largest organ in the human body, is a crucial protective barrier that plays essential roles in thermoregulation, sensation, and immune defence. This complex organ undergoes intricate processes of development. Skin development initiates during the embryonic stage, orchestrated by molecular cues that control epidermal specification, commitment, stratification, terminal differentiation, and appendage growth. Key signalling pathways are integral in coordinating the development of the epidermis, hair follicles, and sweat glands. The complex interplay among these pathways is vital for the appropriate formation and functionality of the skin. Disruptions in multiple molecular pathways can give rise to a spectrum of skin diseases, from congenital skin disorders to cancers. By delving into the molecular mechanisms implicated in developmental processes, as well as in the pathogenesis of diseases, this narrative review aims to present a comprehensive understanding of these aspects. Such knowledge paves the way for developing innovative targeted therapies and personalised treatment approaches for various skin conditions.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Chatzi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stella Aikaterini Kyriakoudi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Evangelidis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
4
|
Winge MCG, Kellman LN, Guo K, Tang JY, Swetter SM, Aasi SZ, Sarin KY, Chang ALS, Khavari PA. Advances in cutaneous squamous cell carcinoma. Nat Rev Cancer 2023:10.1038/s41568-023-00583-5. [PMID: 37286893 DOI: 10.1038/s41568-023-00583-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2023] [Indexed: 06/09/2023]
Abstract
Human malignancies arise predominantly in tissues of epithelial origin, where the stepwise transformation from healthy epithelium to premalignant dysplasia to invasive neoplasia involves sequential dysregulation of biological networks that govern essential functions of epithelial homeostasis. Cutaneous squamous cell carcinoma (cSCC) is a prototype epithelial malignancy, often with a high tumour mutational burden. A plethora of risk genes, dominated by UV-induced sun damage, drive disease progression in conjunction with stromal interactions and local immunomodulation, enabling continuous tumour growth. Recent studies have identified subpopulations of SCC cells that specifically interact with the tumour microenvironment. These advances, along with increased knowledge of the impact of germline genetics and somatic mutations on cSCC development, have led to a greater appreciation of the complexity of skin cancer pathogenesis and have enabled progress in neoadjuvant immunotherapy, which has improved pathological complete response rates. Although measures for the prevention and therapeutic management of cSCC are associated with clinical benefit, the prognosis remains poor for advanced disease. Elucidating how the genetic mechanisms that drive cSCC interact with the tumour microenvironment is a current focus in efforts to understand, prevent and treat cSCC.
Collapse
Affiliation(s)
- Mårten C G Winge
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Laura N Kellman
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Konnie Guo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA
| | - Jean Y Tang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Susan M Swetter
- Department of Dermatology, Stanford University, Redwood City, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA
| | - Sumaira Z Aasi
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Kavita Y Sarin
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Anne Lynn S Chang
- Department of Dermatology, Stanford University, Redwood City, CA, USA
| | - Paul A Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA.
- Department of Dermatology, Stanford University, Redwood City, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Stanford Program in Cancer Biology, Stanford University, Stanford, CA, USA.
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
5
|
Ye Z, Kilic G, Dabelsteen S, Marinova IN, Thøfner JF, Song M, Rudjord-Levann AM, Bagdonaite I, Vakhrushev SY, Brakebusch CH, Olsen JV, Wandall HH. Characterization of TGF-β signaling in a human organotypic skin model reveals that loss of TGF-βRII induces invasive tissue growth. Sci Signal 2022; 15:eabo2206. [DOI: 10.1126/scisignal.abo2206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transforming growth factor–β (TGF-β) signaling regulates various aspects of cell growth and differentiation and is often dysregulated in human cancers. We combined genetic engineering of a human organotypic three-dimensional (3D) skin model with global quantitative proteomics and phosphoproteomics to dissect the importance of essential components of the TGF-β signaling pathway, including the ligands TGF-β1, TGF-β2, and TGF-β3, the receptor TGF-βRII, and the intracellular effector SMAD4. Consistent with the antiproliferative effects of TGF-β signaling, the loss of TGF-β1 or SMAD4 promoted cell cycling and delayed epidermal differentiation. The loss of TGF-βRII, which abrogates both SMAD4-dependent and SMAD4-independent downstream signaling, more strongly affected cell proliferation and differentiation than did loss of SMAD4, and it induced invasive growth. TGF-βRII knockout reduced cell-matrix interactions, and the production of matrix proteins increased the production of cancer-associated cell-cell adhesion proteins and proinflammatory mediators and increased mitogen-activated protein kinase (MAPK) signaling. Inhibiting the activation of the ERK and p38 MAPK pathways blocked the development of the invasive phenotype upon the loss of TGF-βRII. This study provides a framework for exploring TGF-β signaling pathways in human epithelial tissue homeostasis and transformation using genetic engineering, 3D tissue models, and high-throughput quantitative proteomics and phosphoproteomics.
Collapse
Affiliation(s)
- Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gülcan Kilic
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Section of Oral Biology and Immunopathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- Section of Oral Biology and Immunopathology, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Irina N. Marinova
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens F. B. Thøfner
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ming Song
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asha M. Rudjord-Levann
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cord H. Brakebusch
- Biotech Research and Innovation Centre, Biomedical Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jesper V. Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H. Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Rico-Leo EM, Lorenzo-Martín LF, Román ÁC, Bustelo XR, Merino JM, Fernández-Salguero PM. Aryl hydrocarbon receptor controls skin homeostasis, regeneration, and hair follicle cycling by adjusting epidermal stem cell function. Stem Cells 2021; 39:1733-1750. [PMID: 34423894 DOI: 10.1002/stem.3443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022]
Abstract
Skin integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. While interfollicular epidermal progenitors control normal homeostasis, hair follicle stem cells residing within the bulge provide regenerative potential during hair cycle and in response to wounding. The aryl hydrocarbon receptor (AhR) modulates cell plasticity and differentiation and its overactivation results in severe skin lesions in humans. However, its physiological role in skin homeostasis and hair growth is unknown. Reconstitution assays grafting primary keratinocytes and dermal fibroblasts into nude mice and 3-D epidermal equivalents revealed a positive role for AhR in skin regeneration, epidermal differentiation, and stem cell maintenance. Furthermore, lack of receptor expression in AhR-/- mice delayed morphogenesis and impaired hair regrowth with a phenotype closely correlating with a reduction in suprabasal bulge stem cells (α6low CD34+ ). Moreover, RNA-microarray and RT-qPCR analyses of fluorescence-activated cell sorting (FACS)-isolated bulge stem cells revealed that AhR depletion impaired transcriptional signatures typical of both epidermal progenitors and bulge stem cells but upregulated differentiation markers likely compromising their undifferentiated phenotype. Altogether, our findings support that AhR controls skin regeneration and homeostasis by ensuring epidermal stem cell identity and highlights this receptor as potential target for the treatment of cutaneous pathologies.
Collapse
Affiliation(s)
- Eva María Rico-Leo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | | | - Ángel Carlos Román
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Xosé Ramón Bustelo
- Centro de Investigación del Cáncer and CIBERONC, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Jaime María Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| | - Pedro María Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Badajoz, Spain
| |
Collapse
|
7
|
Khan IZ, Del Guzzo CA, Shao A, Cho J, Du R, Cohen AO, Owens DM. The CD200-CD200R axis promotes squamous cell carcinoma metastasis via regulation of cathepsin K. Cancer Res 2021; 81:5021-5032. [PMID: 34183355 DOI: 10.1158/0008-5472.can-20-3251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/05/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
The CD200-CD200R immunoregulatory signaling axis plays an etiological role in the survival and spread of numerous cancers primarily through suppression of anti-tumor immune surveillance. Our previous work outlined a pro-metastatic role for the CD200-CD200R axis in cutaneous squamous cell carcinoma (cSCC) that is independent of direct T cell suppression but modulates the function of infiltrating myeloid cells. To identify effectors of the CD200-CD200R axis important for cSCC metastasis, we conducted RNA-Seq profiling of infiltrating CD11B+Cd200R+ cells isolated from CD200+ versus CD200-null cSCCs and identified the cysteine protease cathepsin K (Ctsk) to be highly upregulated in CD200+ cSCCs. CD11B+Cd200R+ cells expressed phenotypic markers associated with myeloid-derived suppressor cell-like cells and tumor-associated macrophages and were the primary source of Ctsk expression in cSCC. A Cd200R+ myeloid cell-cSCC co-culture system showed that induction of Ctsk was dependent on engagement of the CD200-CD200R axis, indicating that Ctsk is a target gene of this pathway in the cSCC tumor microenvironment. Inhibition of Ctsk, but not matrix metalloproteinases (MMP), significantly blocked cSCC cell migration in vitro. Finally, targeted CD200 disruption in tumor cells and Ctsk pharmacological inhibition significantly reduced cSCC metastasis in vivo. Collectively, these findings support the conclusion that CD200 stimulates cSCC invasion and metastasis via induction of Ctsk in CD200R+ infiltrating myeloid cells.
Collapse
Affiliation(s)
| | | | | | | | - Rong Du
- Dermatology, Columbia University
| | | | | |
Collapse
|
8
|
Miro C, Nappi A, Cicatiello AG, Di Cicco E, Sagliocchi S, Murolo M, Belli V, Troiani T, Albanese S, Amiranda S, Zavacki AM, Stornaiuolo M, Mancini M, Salvatore D, Dentice M. Thyroid Hormone Enhances Angiogenesis and the Warburg Effect in Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:cancers13112743. [PMID: 34205977 PMCID: PMC8199095 DOI: 10.3390/cancers13112743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Cancer cells rewire their metabolism to promote growth, survival, proliferation, and long-term maintenance. Aerobic glycolysis is a prominent trait of many cancers; contextually, glutamine addiction, enhanced glucose uptake and aerobic glycolysis sustain the metabolic needs of rapidly proliferating cancer cells. Thyroid hormone (TH) is a positive regulator of tumor progression and metastatic conversion of squamous cell carcinoma (SCC). Accordingly, overexpression of the TH activating enzyme, D2, is associated with metastatic SCC. The aim of our study was to assess the ability of TH and its activating enzyme in promoting key tracts of cancer progression such as angiogenesis, response to hypoxia and metabolic adaptation. By performing in vivo and in vitro studies, we demonstrate that TH induces VEGF-A in cancer cells and fosters aerobic glycolysis inducing pro-glycolytic mediators, thus implying that TH signal attenuation represents a therapeutic tool to contrast tumor angiogenesis and tumor progression. Abstract Cancer angiogenesis is required to support energetic demand and metabolic stress, particularly during conditions of hypoxia. Coupled to neo-vasculogenesis, cancer cells rewire metabolic programs to sustain growth, survival and long-term maintenance. Thyroid hormone (TH) signaling regulates growth and differentiation in a variety of cell types and tissues, thus modulating hyper proliferative processes such as cancer. Herein, we report that TH coordinates a global program of metabolic reprogramming and induces angiogenesis through up-regulation of the VEGF-A gene, which results in the enhanced proliferation of tumor endothelial cells. In vivo conditional depletion of the TH activating enzyme in a mouse model of cutaneous squamous cell carcinoma (SCC) reduces the concentration of TH in the tumoral cells and results in impaired VEGF-A production and attenuated angiogenesis. In addition, we found that TH induces the expression of the glycolytic genes and fosters lactate production, which are key traits of the Warburg effect. Taken together, our results reveal a TH–VEGF-A–HIF1α regulatory axis leading to enhanced angiogenesis and glycolytic flux, which may represent a target for SCC therapy.
Collapse
Affiliation(s)
- Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Annunziata Gaetana Cicatiello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
| | - Valentina Belli
- Laboratorio di Oncologia Molecolare, Dipartimento di Medicina di Precisione, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (V.B.); (T.T.)
| | - Teresa Troiani
- Laboratorio di Oncologia Molecolare, Dipartimento di Medicina di Precisione, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (V.B.); (T.T.)
| | - Sandra Albanese
- Institute of Biostructures and Bioimaging of the National Research Council, 80131 Naples, Italy; (S.A.); (M.M.)
| | - Sara Amiranda
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
| | - Ann Marie Zavacki
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 01451, USA;
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Marcello Mancini
- Institute of Biostructures and Bioimaging of the National Research Council, 80131 Naples, Italy; (S.A.); (M.M.)
| | - Domenico Salvatore
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (C.M.); (A.N.); (A.G.C.); (E.D.C.); (S.S.); (M.M.)
- CEINGE–Biotecnologie Avanzate Scarl, 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
9
|
Lichtenberger BM, Kasper M. Cellular heterogeneity and microenvironmental control of skin cancer. J Intern Med 2021; 289:614-628. [PMID: 32976658 DOI: 10.1111/joim.13177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
Healthy tissues harbour a surprisingly high number of cells that carry well-known cancer-causing mutations without impacting their physiological function. In recent years, strong evidence accumulated that the immediate environment of mutant cells profoundly impact their prospect of malignant progression. In this review, focusing on the skin, we investigate potential key mechanisms that ensure tissue homeostasis despite the presence of mutant cells, as well as critical factors that may nudge the balance from homeostasis to tumour formation. Functional in vivo studies and single-cell transcriptome analyses have revealed a tremendous cellular heterogeneity and plasticity within epidermal (stem) cells and their respective niches, revealing for example wild-type epithelial cells, fibroblasts or immune-cell subsets as critical in preventing cancer formation and malignant progression. It's the same cells, however, that can drive carcinogenesis. Therefore, understanding the abundance and molecular variation of cell types in health and disease, and how they interact and modulate the local signalling environment will thus be key for new therapeutic avenues in our battle against cancer.
Collapse
Affiliation(s)
- B M Lichtenberger
- From the, Skin and Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - M Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
10
|
Sunkara RR, Sarate RM, Setia P, Shah S, Gupta S, Chaturvedi P, Gera P, Waghmare SK. SFRP1 in Skin Tumor Initiation and Cancer Stem Cell Regulation with Potential Implications in Epithelial Cancers. Stem Cell Reports 2020; 14:271-284. [PMID: 31928951 PMCID: PMC7013199 DOI: 10.1016/j.stemcr.2019.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/30/2022] Open
Abstract
Wnt signaling is involved in the regulation of cancer stem cells (CSCs); however, the molecular mechanism involved is still obscure. SFRP1, a Wnt inhibitor, is downregulated in various human cancers; however, its role in tumor initiation and CSC regulation remains unexplored. Here, we used a skin carcinogenesis model, which showed early tumor initiation in Sfrp1−/− (Sfrp1 knockout) mice and increased tumorigenic potential of Sfrp1−/− CSCs. Expression profiling on Sfrp1−/− CSCs showed upregulation of genes involved in epithelial to mesenchymal transition, stemness, proliferation, and metastasis. Further, SOX-2 and SFRP1 expression was validated in human skin cutaneous squamous cell carcinoma, head and neck squamous cell carcinoma, and breast cancer. The data showed downregulation of SFRP1 and upregulation of SOX-2, establishing their inverse correlation. Importantly, we broadly uncover an inverse correlation of SFRP1 and SOX-2 in epithelial cancers that may be used as a potential prognostic marker in the management of cancer. Loss of Sfrp1 accelerates murine skin tumor initiation and SCC progression Sfrp1 loss enhances in vivo tumorigenic potential of murine skin CSCs We found enhanced EMT and Sox-2 in Sfrp1−/− murine skin SCC Sfrp1 and Sox-2 are inversely correlated in multiple human epithelial cancers
Collapse
Affiliation(s)
- Raghava R Sunkara
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Rahul M Sarate
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Priyanka Setia
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanket Shah
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | | | - Poonam Gera
- Cancer Research Institute, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Sanjeev K Waghmare
- Stem Cell Biology Group, Waghmare Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India.
| |
Collapse
|
11
|
Integrin-Mediated TGFβ Activation Modulates the Tumour Microenvironment. Cancers (Basel) 2019; 11:cancers11091221. [PMID: 31438626 PMCID: PMC6769837 DOI: 10.3390/cancers11091221] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 12/26/2022] Open
Abstract
TGFβ (transforming growth factor-beta) is a pleotropic cytokine with contrasting effects in cancer. In normal tissue and early tumours, TGFβ acts as a tumour suppressor, limiting proliferation and inducing apoptosis. However, these effects are eventually abrogated by the loss or inactivation of downstream signalling within the TGFβ pathway, and in established tumours, TGFβ then acts as a tumour promotor through multiple mechanisms including inducing epithelial-to-mesenchymal transition (EMT), promoting formation of cancer-associated fibroblasts (CAFs) and increasing angiogenesis. TGFβ is secrereted as a large latent complex and is embedded in the extracellular matrix or held on the surface of cells and must be activated before mediating its multiple functions. Thus, whilst TGFβ is abundant in the tumour microenvironment (TME), its functionality is regulated by local activation. The αv-integrins are major activators of latent-TGFβ. The potential benefits of manipulating the immune TME have been highlighted by the clinical success of immune-checkpoint inhibitors in a number of solid tumour types. TGFβ is a potent suppressor of T-cell-mediated immune surveillance and a key cause of resistance to checkpoint inhibitors. Therefore, as certain integrins locally activate TGFβ, they are likely to have a role in the immunosuppressive TME, although this remains to be confirmed. In this review, we discussed the role of TGFβ in cancer, the role of integrins in activating TGFβ in the TME, and the potential benefits of targeting integrins to augment immunotherapies.
Collapse
|
12
|
Wang M, Hinton JP, Gard JMC, Garcia JGN, Knudsen BS, Nagle RB, Cress AE. Integrin α6β4E variant is associated with actin and CD9 structures and modifies the biophysical properties of cell-cell and cell-extracellular matrix interactions. Mol Biol Cell 2019; 30:838-850. [PMID: 30865564 PMCID: PMC6589785 DOI: 10.1091/mbc.e18-10-0652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Integrin α6β4 is an essential, dynamic adhesion receptor for laminin 332 found on epithelial cells, required for formation of strong cell–extracellular matrix (ECM) adhesion and induced migration, and coordinated by regions of the β4C cytoplasmic domain. β4E, a unique splice variant of β4 expressed in normal tissue, contains a cytoplasmic domain of 231 amino acids with a unique sequence of 114 amino acids instead of β4C’s canonical 1089 amino acids. We determined the distribution of α6β4E within normal human glandular epithelium and its regulation and effect on cellular biophysical properties. Canonical α6β4C expressed in all basal cells, as expected, while α6β4E expressed within a subset of luminal cells. α6β4E expression was induced by three-dimensional culture conditions, activated Src, was reversible, and was stabilized by bortezomib, a proteasome inhibitor. α6β4C expressed in all cells during induced migration, whereas α6β4E was restricted to a subset of cells with increased kinetics of cell–cell and cell–ECM resistance properties. Interestingly, α6β4E presented in “ringlike” patterns measuring ∼1.75 × 0.72 microns and containing actin and CD9 at cell–ECM locations. In contrast, α6β4C expressed only within hemidesmosome-like structures containing BP180. Integrin α6β4E is an inducible adhesion isoform in normal epithelial cells that can alter biophysical properties of cell–cell and cell–ECM interactions.
Collapse
Affiliation(s)
- Mengdie Wang
- Cancer Biology Research Program, University of Arizona, Tucson, AZ 85724
| | - James P Hinton
- Cancer Biology Research Program, University of Arizona, Tucson, AZ 85724
| | - Jaime M C Gard
- Cancer Biology Research Program, University of Arizona, Tucson, AZ 85724
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, AZ 85724
| | - Beatrice S Knudsen
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA 90048
| | - Raymond B Nagle
- Department of Pathology, University of Arizona, Tucson, AZ 85724
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724.,University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
13
|
TGF-β-Induced Quiescence Mediates Chemoresistance of Tumor-Propagating Cells in Squamous Cell Carcinoma. Cell Stem Cell 2018; 21:650-664.e8. [PMID: 29100014 DOI: 10.1016/j.stem.2017.10.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/18/2017] [Accepted: 10/04/2017] [Indexed: 12/17/2022]
Abstract
Squamous cell carcinomas (SCCs) are heterogeneous tumors sustained by tumor-propagating cancer cells (TPCs). SCCs frequently resist chemotherapy through still unknown mechanisms. Here, we combine H2B-GFP-based pulse-chasing with cell-surface markers to distinguish quiescent from proliferative TPCs within SCCs. We find that quiescent TPCs resist DNA damage and exhibit increased tumorigenic potential in response to chemotherapy, whereas proliferative TPCs undergo apoptosis. Quiescence is regulated by TGF-β/SMAD signaling, which directly regulates cell-cycle gene transcription to control a reversible G1 cell-cycle arrest, independent of p21CIP function. Indeed, genetic or pharmacological TGF-β inhibition increases the susceptibility of TPCs to chemotherapy because it prevents entry into a quiescent state. These findings provide direct evidence that TPCs can reversibly enter a quiescent, chemoresistant state and thereby underscore the need for combinatorial approaches to improve treatment of chemotherapy-resistant SCCs.
Collapse
|
14
|
Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 2018; 557:322-328. [PMID: 29769669 DOI: 10.1038/s41586-018-0073-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/07/2018] [Indexed: 12/11/2022]
Abstract
Mammalian organs comprise an extraordinary diversity of cell and tissue types. Regenerative organs, such as the skin and gastrointestinal tract, use resident stem cells to maintain tissue function. Organs with a lower cellular turnover, such as the liver and lungs, mostly rely on proliferation of committed progenitor cells. In many organs, injury reveals the plasticity of both resident stem cells and differentiated cells. The ability of resident cells to maintain and repair organs diminishes with age, whereas, paradoxically, the risk of cancer increases. New therapeutic approaches aim to harness cell plasticity for tissue repair and regeneration while avoiding the risk of malignant transformation of cells.
Collapse
|
15
|
Das L, Gard JMC, Prekeris R, Nagle RB, Morrissey C, Knudsen BS, Miranti CK, Cress AE. Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer. Mol Cancer Res 2018; 16:1319-1331. [PMID: 29759989 DOI: 10.1158/1541-7786.mcr-17-0589] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/07/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
Abstract
The laminin-binding integrins, α3β1 and α6β1, are needed for tumor metastasis and their surface expression is regulated by endocytic recycling. β1 integrins share the Rab11 recycling machinery, but the trafficking of α3β1 and α6β1 are distinct by an unknown mechanism. Using a mouse PDX tumor model containing human metastatic prostate cancer, Rab11 family interacting protein 5 (Rab11-FIP5) was identified as a lead candidate for α6β1 trafficking. Rab11-FIP5 and its membrane-binding domain were required for α6β1 recycling, without affecting the other laminin-binding integrin (i.e., α3β1) or unrelated membrane receptors like CD44, transferrin receptor, or E-cadherin. Depletion of Rab11-FIP5 resulted in the intracellular accumulation of α6β1 in the Rab11 recycling compartment, loss of cell migration on laminin, and an unexpected loss of α6β1 recycling in cell-cell locations. Taken together, these data demonstrate that α6β1 is distinct from α3β1 via Rab11-FIP5 recycling and recycles in an unexpected cell-cell location.Implications: Rab11-FIP5-dependent α6β1 integrin recycling may be selectively targeted to limit migration of prostate cancer cells into laminin-rich tissues. Mol Cancer Res; 16(8); 1319-31. ©2018 AACR.
Collapse
Affiliation(s)
- Lipsa Das
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
| | - Jaime M C Gard
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Rytis Prekeris
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Raymond B Nagle
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Pathology, University of Washington, Seattle, Washington
| | | | | | - Cindy K Miranti
- Cellular and Molecular Medicine, The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Anne E Cress
- The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona. .,Cellular and Molecular Medicine, The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona.,Molecular and Cellular Biology, The University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Youssef M, Cuddihy A, Darido C. Long-Lived Epidermal Cancer-Initiating Cells. Int J Mol Sci 2017; 18:E1369. [PMID: 28654000 PMCID: PMC5535862 DOI: 10.3390/ijms18071369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 01/09/2023] Open
Abstract
Non-melanomatous skin cancers (NMSCs), which include basal and squamous cell carcinoma (BCC and SCC respectively), represent a significant burden on the population, as well as an economic load to the health care system; yet treatments of these preventable cancers remain ineffective. Studies estimate that there has been a 2-fold increase in the incidence of NMSCs between the 1960s and 1980s. The increase in cases of NMSCs, as well as the lack of effective treatments, makes the need for novel therapeutic approaches all the more necessary. To rationally develop more targeted treatments for NMSCs, a better understanding of the cell of origin, in addition to the underlying pathophysiological mechanisms that govern the development of these cancers, is urgently required. Research over the past few years has provided data supporting both a "bottom up" and "top down" mechanism of tumourigenesis. The "bottom up" concept involves a cancer stem cell originating in the basal compartment of the skin, which ordinarily houses the progenitor cells that contribute towards wound healing and normal cell turnover of overlying epidermal skin layers. The "top down" concept involves a more differentiated cell undergoing genetic modifications leading to dedifferentiation, giving rise to cancer initiating cells (CICs). This review explores both concepts, to paint a picture of the skin SCC cell of origin, the underlying biology, and also how this knowledge might be exploited to develop novel therapies.
Collapse
Affiliation(s)
- Marina Youssef
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3004, Australia.
| | - Andrew Cuddihy
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC 3052, Australia.
| | - Charbel Darido
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3004, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Grattan Street, Parkville, VIC 3052, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
17
|
Das L, Anderson TA, Gard JM, Sroka IC, Strautman SR, Nagle RB, Morrissey C, Knudsen BS, Cress AE. Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells. J Cell Biochem 2017; 118:1038-1049. [PMID: 27509031 PMCID: PMC5553695 DOI: 10.1002/jcb.25673] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/09/2016] [Indexed: 12/27/2022]
Abstract
Laminin binding integrins α6 (CD49f) and α3 (CD49c) are persistently but differentially expressed in prostate cancer (PCa). Integrin internalization is an important determinant of their cell surface expression and function. Using flow cytometry, and first order kinetic modeling, we quantitated the intrinsic internalization rates of integrin subunits in a single cycle of internalization. In PCa cell line DU145, α6 integrin internalized with a rate constant (kactual ) of 3.25 min-1 , threefold faster than α3 integrin (1.0 min-1 ), 1.5-fold faster than the vitronectin binding αv integrin (CD51) (2.2 min-1 ), and significantly slower than the unrelated transferrin receptor (CD71) (15 min-1 ). Silencing of α3 integrin protein expression in DU145, PC3, and PC3B1 cells resulted in up to a 1.71-fold increase in kactual for α6 integrin. The internalized α6 integrin was targeted to early endosomes but not to lamp1 vesicles. Depletion of α3 integrin expression resulted in redistribution of α6β4 integrin to an observed cell-cell staining pattern that is consistent with a suprabasal distribution observed in epidermis and early PIN lesions in PCa. Depletion of α3 integrin increased cell migration by 1.8-fold, which was dependent on α6β1 integrin. Silencing of α6 integrin expression however, had no significant effect on the kactual of α3 integrin or its distribution in early endosomes. These results indicate that α3 and α6 integrins have significantly different internalization kinetics and that coordination exists between them for internalization. J. Cell. Biochem. 118: 1038-1049, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lipsa Das
- Department of Cancer Biology, University of Arizona, Tucson, AZ 85724
| | - Todd A. Anderson
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Jaime M.C. Gard
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Isis C. Sroka
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | - Raymond B. Nagle
- Department of Pathology, University of Arizona, Tucson, AZ 85724
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | | | | | - Anne E. Cress
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85724
- The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
18
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
19
|
Harryman WL, Hinton JP, Rubenstein CP, Singh P, Nagle RB, Parker SJ, Knudsen BS, Cress AE. The Cohesive Metastasis Phenotype in Human Prostate Cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:221-231. [PMID: 27678419 PMCID: PMC5534328 DOI: 10.1016/j.bbcan.2016.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/27/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022]
Abstract
A critical barrier for the successful prevention and treatment of recurrent prostate cancer is detection and eradication of metastatic and therapy-resistant disease. Despite the fall in diagnoses and mortality, the reported incidence of metastatic disease has increased 72% since 2004. Prostate cancer arises in cohesive groups as intraepithelial neoplasia, migrates through muscle and leaves the gland via perineural invasion for hematogenous dissemination. Current technological advances have shown cohesive-clusters of tumor (also known as microemboli) within the circulation. Circulating tumor cell (CTC) profiles are indicative of disseminated prostate cancer, and disseminated tumor cells (DTC) are found in cohesive-clusters, a phenotypic characteristic of both radiation- and drug-resistant tumors. Recent reports in cell biology and informatics, coupled with mass spectrometry, indicate that the integrin adhesome network provides an explanation for the biophysical ability of cohesive-clusters of tumor cells to invade thorough muscle and nerve microenvironments while maintaining adhesion-dependent therapeutic resistance. Targeting cohesive-clusters takes advantage of the known ability of extracellular matrix (ECM) adhesion to promote tumor cell survival and represents an approach that has the potential to avoid the progression to drug- and radiotherapy-resistance. In the following review we will examine the evidence for development and dissemination of cohesive-clusters in metastatic prostate cancer.
Collapse
Affiliation(s)
- William L Harryman
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - James P Hinton
- Cancer Biology Graduate Program, The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Cynthia P Rubenstein
- Cancer Biology Graduate Program, The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Parminder Singh
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Raymond B Nagle
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Sarah J Parker
- Cedars Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Beatrice S Knudsen
- Cedars Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Anne E Cress
- The University of Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|
20
|
Blanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J, Sajini A, Tanna H, Cortés-Garrido R, Gkatza N, Dietmann S, Frye M. Stem cell function and stress response are controlled by protein synthesis. Nature 2016; 534:335-40. [PMID: 27306184 PMCID: PMC5040503 DOI: 10.1038/nature18282] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/21/2016] [Indexed: 12/18/2022]
Abstract
Whether protein synthesis and cellular stress response pathways interact to control stem cell function is currently unknown. Here we show that mouse skin stem cells synthesize less protein than their immediate progenitors in vivo, even when forced to proliferate. Our analyses reveal that activation of stress response pathways drives both a global reduction of protein synthesis and altered translational programmes that together promote stem cell functions and tumorigenesis. Mechanistically, we show that inhibition of post-transcriptional cytosine-5 methylation locks tumour-initiating cells in this distinct translational inhibition programme. Paradoxically, this inhibition renders stem cells hypersensitive to cytotoxic stress, as tumour regeneration after treatment with 5-fluorouracil is blocked. Thus, stem cells must revoke translation inhibition pathways to regenerate a tissue or tumour.
Collapse
Affiliation(s)
- Sandra Blanco
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Roberto Bandiera
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Martyna Popis
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Shobbir Hussain
- Department of Biology & Biochemistry, University of Bath,
Claverton Down, Bath BA2 7AY, United Kingdom
| | - Patrick Lombard
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Jelena Aleksic
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Abdulrahim Sajini
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Hinal Tanna
- University of Cambridge, CR-UK, Cambridge Institute, Li Ka Shing
Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Rosana Cortés-Garrido
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Nikoletta Gkatza
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Sabine Dietmann
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| | - Michaela Frye
- Wellcome Trust – Medical Research Council Cambridge Stem Cell
Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United
Kingdom
| |
Collapse
|
21
|
Tang K, Cai Y, Joshi S, Tovar E, Tucker SC, Maddipati KR, Crissman JD, Repaskey WT, Honn KV. Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Mol Cancer 2015; 14:111. [PMID: 26037302 PMCID: PMC4453211 DOI: 10.1186/s12943-015-0382-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/08/2015] [Indexed: 11/28/2022] Open
Abstract
Background Integrins and enzymes of the eicosanoid pathway are both well-established contributors to cancer. However, this is the first report of the interdependence of the two signaling systems. In a screen for proteins that interacted with, and thereby potentially regulated, the human platelet-type 12-lipoxygenase (12-LOX, ALOX12), we identified the integrin β4 (ITGB4). Methods Using a cultured mammalian cell model, we have demonstrated that ITGB4 stimulation leads to recruitment of 12-LOX from the cytosol to the membrane where it physically interacts with the integrin to become enzymatically active to produce 12(S)-HETE, a known bioactive lipid metabolite that regulates numerous cancer phenotypes. Results The net effect of the interaction was the prevention of cell death in response to starvation. Additionally, regulation of β4-mediated, EGF-stimulated invasion was shown to be dependent on 12-LOX, and downstream Erk signaling in response to ITGB4 activation also required 12-LOX. Conclusions This is the first report of an enzyme of the eicosanoid pathway being recruited to and regulated by activated β4 integrin. Integrin β4 has recently been shown to induce expansion of prostate tumor progenitors and there is a strong correlation between stage/grade of prostate cancer and 12-LOX expression. The 12-LOX enzymatic product, 12(S)-HETE, regulates angiogenesis and cell migration in many cancer types. Therefore, disruption of integrin β4-12LOX interaction could reduce the pro-inflammatory oncogenic activity of 12-LOX. This report on the consequences of 12-LOX and ITGB4 interaction sets a precedent for the linkage of integrin and eicosanoid biology through direct protein-protein association. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0382-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keqin Tang
- Department of Radiation Oncology, John D. Dingell VA Medical Center, 48201, Detroit, MI, USA. .,Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Yinlong Cai
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Sangeeta Joshi
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA. .,Present address: Roswell Park Cancer Institute, 14263, Buffalo, New York, USA.
| | - Elizabeth Tovar
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA. .,Program in Cancer Biology, Wayne State University School of Medicine, 48202, Detroit, MI, USA. .,Present address: Van Andel Institute, 49503, Grand Rapids, MI, USA.
| | - Stephanie C Tucker
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - Krishna Rao Maddipati
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - John D Crissman
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| | - William T Repaskey
- Department of Internal Medicine, University of Michigan, 48109, Ann Arbor, MI, USA.
| | - Kenneth V Honn
- Department of Pathology, Bioactive Lipids Research Program, Wayne State University School of Medicine, Karmanos Cancer Institute, 431 Chemistry Building, 48202, Detroit, MI, USA.
| |
Collapse
|
22
|
Vay C, Hosch SB, Stoecklein NH, Klein CA, Vallböhmer D, Link BC, Yekebas EF, Izbicki JR, Knoefel WT, Scheunemann P. Integrin expression in esophageal squamous cell carcinoma: loss of the physiological integrin expression pattern correlates with disease progression. PLoS One 2014; 9:e109026. [PMID: 25398092 PMCID: PMC4232252 DOI: 10.1371/journal.pone.0109026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/28/2014] [Indexed: 12/17/2022] Open
Abstract
The integrins are a family of heterodimeric transmembrane signaling receptors that mediate the adhesive properties of epithelial cells affecting cell growth and differentiation. In many epithelial malignancies, altered integrin expression is associated with tumor progression and often correlates with unfavorable prognosis. However, only few studies have investigated the role of integrin expression in esophageal squamous cell carcinoma (ESCC). Using a novel quantifying immunofluorescence-staining assay, we investigated the expression of the integrins α2β1, α3β1, α6β1, and α6β4 in primary ESCC of 36 patients who underwent surgical resection. Magnitude and distribution of expression were analyzed in primary tumor samples and autologous esophageal squamous epithelium. The persistence of the physiologically polarized expression of the subunits α6, β1, and β4 in the tumor tissue was significantly associated with prolonged relapse-free survival (p = 0.028, p = 0.034, p = 0.006). In contrast, patients with reduced focal α6 expression at the tumor invasion front shared a significantly shortened relapse-free survival compared to patients with strong α6 expression at their stromal surfaces, as it was regularly observed in normal esophageal epithelium (p = 0.001). Multivariate regression analysis identified the maintenance of strong α6 immunoreactivity at the invasion front as an independent prognostic factor for increased relapse-free and disease-specific survival (p = 0.003; p = 0.003). Our findings suggest that alterations in both pattern and magnitude of integrin expression may play a major role in the disease progression of ESCC patients. Particularly, the distinct expression of the integrins α6β4 and α6β1 at the invasion front as well as the maintenance of a polarized integrin expression pattern in the tumor tissue may serve as valuable new markers to assess the aggressiveness of ESCC.
Collapse
Affiliation(s)
- Christian Vay
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Stefan B. Hosch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Vascular, and Visceral Surgery, Ingolstadt Medical Center, Ingolstadt, Germany
| | - Nikolas H. Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph A. Klein
- Division of Oncogenomics, Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Daniel Vallböhmer
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Björn-Christian Link
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Emre F. Yekebas
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfram T. Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Scheunemann
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
- Department of General, Visceral, and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Pediatric Surgery, University Hospital Rostock, Rostock, Germany
| |
Collapse
|
23
|
Hamilla SM, Stroka KM, Aranda-Espinoza H. VE-cadherin-independent cancer cell incorporation into the vascular endothelium precedes transmigration. PLoS One 2014; 9:e109748. [PMID: 25275457 PMCID: PMC4183660 DOI: 10.1371/journal.pone.0109748] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/10/2014] [Indexed: 12/31/2022] Open
Abstract
Metastasis is accountable for 90% of cancer deaths. During metastasis, tumor cells break away from the primary tumor, enter the blood and the lymph vessels, and use them as highways to travel to distant sites in the body to form secondary tumors. Cancer cell migration through the endothelium and into the basement membrane represents a critical step in the metastatic cascade, yet it is not well understood. This process is well characterized for immune cells that routinely transmigrate through the endothelium to sites of infection, inflammation, or injury. Previous studies with leukocytes have demonstrated that this step depends heavily on the activation status of the endothelium and subendothelial substrate stiffness. Here, we used a previously established in vitro model of the endothelium and live cell imaging, in order to observe cancer cell transmigration and compare this process to leukocytes. Interestingly, cancer cell transmigration includes an additional step, which we term ‘incorporation’, into the endothelial cell (EC) monolayer. During this phase, cancer cells physically displace ECs, leading to the dislocation of EC VE-cadherin away from EC junctions bordering cancer cells, and spread into the monolayer. In some cases, ECs completely detach from the matrix. Furthermore, cancer cell incorporation occurs independently of the activation status and the subendothelial substrate stiffness for breast cancer and melanoma cells, a notable difference from the process by which leukocytes transmigrate. Meanwhile, pancreatic cancer cell incorporation was dependent on the activation status of the endothelium and changed on very stiff subendothelial substrates. Collectively, our results provide mechanistic insights into tumor cell extravasation and demonstrate that incorporation is one of the earliest steps.
Collapse
Affiliation(s)
- Susan M. Hamilla
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Anderson LR, Owens TW, Naylor MJ. Integrins in development and cancer. Biophys Rev 2014; 6:191-202. [PMID: 28510181 PMCID: PMC5418411 DOI: 10.1007/s12551-013-0123-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023] Open
Abstract
The correct control of cell fate decisions is critical for metazoan development and tissue homeostasis. It is established that the integrin family of cell surface receptors regulate cell fate by mediating cell-cell and cell-extracellular matrix (ECM) interactions. However, our understanding of how the different family members control discrete aspects of cell biology, and how this varies between tissues and is temporally regulated, is still in its infancy. An emerging area of investigation aims to understand how integrins translate changes in tension in the surrounding microenvironment into biological responses. This is particularly pertinent due to changes in the mechanical properties of the ECM having been linked to diseases, such as cancer. In this review, we provide an overview of the roles integrins play in important developmental processes, such as proliferation, polarity, apoptosis, differentiation and maintenance of "stemness". We also discuss recent advances in integrin mechanobiology and highlight the involvement of integrins and aberrant ECM in cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
25
|
Lv G, Lv T, Qiao S, Li W, Gao W, Zhao X, Wang J. RNA interference targeting human integrin α6 suppresses the metastasis potential of hepatocellular carcinoma cells. Eur J Med Res 2013; 18:52. [PMID: 24304619 PMCID: PMC4176986 DOI: 10.1186/2047-783x-18-52] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/14/2013] [Indexed: 01/18/2023] Open
Abstract
Background Increased metastasis has been proved to be associated with a poor prognosis for hepatocellular carcinoma (HCC). There are higher-level expressions of integrin α6 in the tissues of HCC patients with a higher fatality rate. The aim of this study is to investigate the effect of short hairpin RNA (shRNA) silencing integrin α6 expression on the proliferation and metastasis in HCC cell lines. Methods Two human HCC cell lines, HepG2 and Bel-7402 were transfected with shRNA targeting human integrin α6. Protein and mRNA expression level were determined by western blot and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to detect the transfected efficacy. The metastasis potential of HCC cells was evaluated by their proliferation, adhesion and invasion abilities. Cell proliferation was measured by MTT assay. Adhesion ability was measured by adhesion and spreading assays. The expression of matrix metalloproteinases (MMPs) was measured by qRT-PCR. The potential of invasion was measured by qRT-PCR and Transwell chamber assay. PI3K inhibitor LY294002 was used to explore the signal pathways of integrin α6 in HCC cells. Results Western blot and qRT-PCR detection showed that over 75% of integrin α6 expression in HCC cells was through knockdown by shRNA. Proliferation, adhesion, spreading and invasion of HepG2 and Bel-7402 cells were dramatically decreased in cells transfected with shRNA compared to the control cells. P-ERK and p-AKT were reduced by shRNA targeting integrin α6 and PI3K inhibitor LY294002. Conclusion Knockdown integrin α6 can inhibit the proliferation and metastasis of HCC cells through PI3K/ARK and MAPK/ERK signal pathways by shRNA in vitro. Integrin α6 can mediate the metastasis potential, and can be used as a candidate target for therapy in HCC resulting in improved patients’ survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jikun Wang
- The First Affiliated Hospital of Liaoning Medical College, Jinzhou 121001, China.
| |
Collapse
|
26
|
Nyström A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L. Collagen VII plays a dual role in wound healing. J Clin Invest 2013; 123:3498-509. [PMID: 23867500 PMCID: PMC3726167 DOI: 10.1172/jci68127] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/09/2013] [Indexed: 01/01/2023] Open
Abstract
Although a host of intracellular signals is known to contribute to wound healing, the role of the cell microenvironment in tissue repair remains elusive. Here we employed 2 different mouse models of genetic skin fragility to assess the role of the basement membrane protein collagen VII (COL7A1) in wound healing. COL7A1 secures the attachment of the epidermis to the dermis, and its mutations cause a human skin fragility disorder coined recessive dystrophic epidermolysis bullosa (RDEB) that is associated with a constant wound burden. We show that COL7A1 is instrumental for skin wound closure by 2 interconnected mechanisms. First, COL7A1 was required for re-epithelialization through organization of laminin-332 at the dermal-epidermal junction. Its loss perturbs laminin-332 organization during wound healing, which in turn abrogates strictly polarized expression of integrin α6β4 in basal keratinocytes and negatively impacts the laminin-332/integrin α6β4 signaling axis guiding keratinocyte migration. Second, COL7A1 supported dermal fibroblast migration and regulates their cytokine production in the granulation tissue. These findings, which were validated in human wounds, identify COL7A1 as a critical player in physiological wound healing in humans and mice and may facilitate development of therapeutic strategies not only for RDEB, but also for other chronic wounds.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Daniela Velati
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Venugopal R. Mittapalli
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Anja Fritsch
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Johannes S. Kern
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Department of Dermatology, University Medical Center, Freiburg, Germany.
Freiburg Institute for Advanced Studies, School of Life Sciences — LifeNet, Freiburg, Germany
| |
Collapse
|
27
|
Abstract
Integrins are transmembrane receptors that mediate cell adhesion to neighboring cells and to the extracellular matrix. Here, the various modes in which integrin-mediated adhesion regulates intracellular signaling pathways impinging on cell survival, proliferation, and differentiation are considered. Subsequently, evidence that integrins also control crucial signaling cascades in cancer cells is discussed. Lastly, the important role of integrin signaling in tumor cells as well as in stromal cells that support cancer growth, metastasis, and therapy resistance indicates that integrin signaling may be an attractive target for (combined) cancer therapy strategies. Current approaches to target integrins in this context are reviewed.
Collapse
|
28
|
Gustafson-Wagner E, Stipp CS. The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate α3β1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms. PLoS One 2013; 8:e61834. [PMID: 23613949 PMCID: PMC3629153 DOI: 10.1371/journal.pone.0061834] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/15/2013] [Indexed: 01/16/2023] Open
Abstract
Integrin α3β1 potently promotes cell motility on its ligands, laminin-332 and laminin-511, and this may help to explain why α3β1 has repeatedly been linked to breast carcinoma progression and metastasis. The pro-migratory functions of α3β1 depend strongly on lateral interactions with cell surface tetraspanin proteins. Tetraspanin CD151 interacts directly with the α3 integrin subunit and links α3β1 integrin to other tetraspanins, including CD9 and CD81. Loss of CD151 disrupts α3β1 association with other tetraspanins and impairs α3β1-dependent motility. However, the extent to which tetraspanins other than CD151 are required for specific α3β1 functions is unclear. To begin to clarify which aspects of α3β1 function require which tetraspanins, we created breast carcinoma cells depleted of both CD9 and CD81 by RNA interference. Silencing both of these closely related tetraspanins was required to uncover their contributions to α3β1 function. We then directly compared our CD9/CD81-silenced cells to CD151-silenced cells. Both CD9/CD81-silenced cells and CD151-silenced cells showed delayed α3β1-dependent cell spreading on laminin-332. Surprisingly, however, once fully spread, CD9/CD81-silenced cells, but not CD151-silenced cells, displayed impaired α3β1-dependent directed motility and altered front-rear cell morphology. Also unexpectedly, the CD9/CD81 complex, but not CD151, was required to promote α3β1 association with PKCα in breast carcinoma cells, and a PKC inhibitor mimicked aspects of the CD9/CD81-silenced cell motility defect. Our data reveal overlapping, but surprisingly distinct contributions of specific tetraspanins to α3β1 integrin function. Importantly, some of CD9/CD81's α3β1 regulatory functions may not require CD9/CD81 to be physically linked to α3β1 by CD151.
Collapse
Affiliation(s)
| | - Christopher S. Stipp
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
29
|
Welser-Alves JV, Boroujerdi A, Tigges U, Wrabetz L, Feltri ML, Milner R. Endothelial β4 integrin is predominantly expressed in arterioles, where it promotes vascular remodeling in the hypoxic brain. Arterioscler Thromb Vasc Biol 2013; 33:943-53. [PMID: 23471230 DOI: 10.1161/atvbaha.112.300566] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Laminin is a major component of the vascular basal lamina, implying that laminin receptors, such as α6β1 and α6β4 integrins, may regulate vascular remodeling and homeostasis. Previous studies in the central nervous system have shown that β4 integrin is expressed by only a fraction of cerebral vessels, but defining the vessel type and cellular source of β4 integrin has proved controversial. The goal of this study was to define the class of vessel and cell type expressing β4 integrin in cerebral vessels and to examine its potential role in vascular remodeling. APPROACH AND RESULTS Dual-immunofluorescence showed that β4 integrin is expressed predominantly in arterioles, both in the central nervous system and in peripheral organs. Cell-specific knockouts of β4 integrin revealed that β4 integrin expression in cerebral vessels is derived from endothelial cells, not astrocytes or smooth muscle cells. Lack of endothelial β4 integrin had no effect on vascular development, integrity, or endothelial proliferation, but in the hypoxic central nervous system, its absence led to defective arteriolar remodeling and associated transforming growth factor-β signaling. CONCLUSIONS These results define high levels of β4 integrin in arteriolar endothelial cells and demonstrate a novel link among β4 integrin, transforming growth factor-β signaling, and arteriolar remodeling in cerebral vessels.
Collapse
Affiliation(s)
- Jennifer V Welser-Alves
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
30
|
Integrin-associated CD151 drives ErbB2-evoked mammary tumor onset and metastasis. Neoplasia 2013; 14:678-89. [PMID: 22952421 DOI: 10.1593/neo.12922] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/01/2012] [Accepted: 07/04/2012] [Indexed: 12/14/2022] Open
Abstract
ErbB2+ human breast cancer is a major clinical problem. Prior results have suggested that tetraspanin CD151 might contribute to ErbB2-driven breast cancer growth, survival, and metastasis. In other cancer types, CD151 sometimes supports tumor growth and metastasis. However, a definitive test of CD151 effects on de novo breast cancer initiation, growth, and metastasis has not previously been done. We used CD151 gene-deleted mice expressing the MMTV-ErbB2 transgene to show that CD151 strongly supports ErbB2+ mammary tumor initiation and metastasis. Delayed tumor onset (by 70-100 days) in the absence of CD151 was accompanied by reduced survival of mammary epithelial cells and impaired activation of FAK- and MAPK-dependent pathways. Both primary tumors and metastatic nodules showed smooth, regular borders, consistent with a less invasive phenotype. Furthermore, consistent with impaired oncogenesis and decreased metastasis, CD151-targeted MCF-10A/ErbB2 cells showed substantial decreases in three-dimensional colony formation, EGF-stimulated tumor cell motility, invasion, and transendothelial migration. These CD151-dependent functions were largely mediated through α6β4 integrin. Moreover, CD151 ablation substantially prevented PKC- and EGFR/ERK-dependent α6β4 integrin phosphorylation, consistent with retention of epithelial cell polarity and intermediate filament cytoskeletal connections, which helps to explain diminished metastasis. Finally, clinical data analyses revealed a strong correlation between CD151 and ErbB2 expression and metastasis-free survival of breast cancer patients. In conclusion, we provide strong evidence that CD151 collaborates with LB integrins (particularly α6β4 and ErbB2 (and EGFR) receptors to regulate multiple signaling pathways, thereby driving mammary tumor onset, survival, and metastasis. Consequently, CD151 is a useful therapeutic target in malignant ErbB2+ breast cancer.
Collapse
|
31
|
Association study of integrins beta 1 and beta 2 gene polymorphism and papillary thyroid cancer. Am J Surg 2013; 205:631-5. [PMID: 23388428 DOI: 10.1016/j.amjsurg.2012.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/24/2012] [Accepted: 05/10/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND We investigated whether single nucleotide polymorphisms (SNPs) of integrin beta 1 (ITGB1) and integrin beta 2 (ITGB2) contribute to the development of papillary thyroid cancer (PTC). METHODS Two synonymous SNPs (rs2230396 and rs2298141) of ITGB1 and 1 synonymous SNP (rs2352326), 1 5' URT-region SNP (rs2070947), and 1 promoter SNP (rs2070946) of ITGB2 SNPs were genotyped using direct sequencing in 94 patients with PTC and 213 healthy controls. Genetic data were analyzed using SNPStats (http://bioinfo.iconcologia.net/SNPstats), Helix Tree (Golden Helix Inc, Bozeman, MT), and SNPAnalyzer (ISTECH Corp, Goyang City, Republic of Korea). RESULTS The promoter SNP (rs2070946) of ITGB2 was significantly associated with the development of PTC (dominant model, log-additive model). The G allele frequencies of the promoter SNP (rs2070946) of ITBG2 in patients with PTC (19.9%) were increased by about 2-fold compared with controls (10.2%). CONCLUSIONS Our results suggest that a promoter SNP (rs2070946) of ITGB2 might be associated with a risk of PTC.
Collapse
|
32
|
Tracing the cellular origin of cancer. Nat Cell Biol 2013; 15:126-34. [DOI: 10.1038/ncb2657] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/20/2012] [Indexed: 12/13/2022]
|
33
|
Loss of integrin α3 prevents skin tumor formation by promoting epidermal turnover and depletion of slow-cycling cells. Proc Natl Acad Sci U S A 2012; 109:21468-73. [PMID: 23236172 DOI: 10.1073/pnas.1204614110] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Progression through the various stages of skin tumorigenesis is correlated with an altered expression of the integrin α3β1, suggesting that it plays an important role in the tumorigenic process. Using epidermis-specific Itga3 KO mice subjected to the 7,12-dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate two-stage skin carcinogenesis protocol, we demonstrate that efficient tumor development is critically dependent on the presence of α3β1. In the absence of α3β1, tumor initiation is dramatically decreased because of increased epidermal turnover, leading to a loss of DMBA-initiated label-retaining keratinocytes. Lineage tracing revealed emigration of α3-deficient keratinocytes residing in the bulge of the hair follicle toward the interfollicular epidermis. Furthermore, tumor growth and cell proliferation were strongly reduced in mice with an epidermis-specific deletion of Itga3. However, the rate of progression of α3β1-null squamous cell carcinomas to undifferentiated, invasive carcinomas was increased. Therefore, α3β1 critically affects skin carcinogenesis with opposing effects early and late in tumorigenesis.
Collapse
|
34
|
Sotiropoulou PA, Blanpain C. Development and homeostasis of the skin epidermis. Cold Spring Harb Perspect Biol 2012; 4:a008383. [PMID: 22751151 DOI: 10.1101/cshperspect.a008383] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.
Collapse
|
35
|
Thieu K, Ruiz ME, Owens DM. Cells of origin and tumor-initiating cells for nonmelanoma skin cancers. Cancer Lett 2012; 338:82-8. [PMID: 22579650 DOI: 10.1016/j.canlet.2012.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/26/2012] [Accepted: 05/03/2012] [Indexed: 01/01/2023]
Abstract
The epidermis of the skin is a multilayered stratified epithelium whose primary function is to provide a barrier against our external environment. As a result, cells in the epidermis are subject to constant assault from environmental pathogens, many of which can cause deleterious mutations. However, most of these mutations do not lead to skin cancer. One explanation is that most genetic hits are sustained by mature or transit cells with limited proliferative capacity and only stem cells that acquire genetic alterations have the potential to propagate a frank tumor. In this mini-review we will discuss recent studies that provide some of the first genetic evidence to support a stem cell origin for a number of skin cancer types.
Collapse
Affiliation(s)
- Khanh Thieu
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
36
|
Maalouf SW, Theivakumar S, Owens DM. Epidermal α6β4 integrin stimulates the influx of immunosuppressive cells during skin tumor promotion. J Dermatol Sci 2012; 66:108-18. [PMID: 22464766 DOI: 10.1016/j.jdermsci.2012.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/10/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Induction of α6β4 integrin in the differentiated epidermal cell layers in skin is a hallmark of human cutaneous squamous cell carcinoma (SCC) pathogenesis and stimulates chemically induced SCC formation in Invα6β4 transgenic mice, which exhibit persistent expression of α6β4 in the suprabasal epidermal layers. However, the molecular basis for the support of SCC development by suprabasal α6β4 is not fully understood. OBJECTIVE We examined the relevance for suprabasal α6β4 expression in the epidermis for the recruitment of immunosuppressive leukocytes during the early stages of tumor promotion. METHODS In this study, we made use of the Invα6β4 transgenic mouse model, which exhibits expression of α6β4 integrin in the suprabasal layers of the epidermis driven by the involucrin promoter. First, we examined protein lysates from Invα6β4 transgenic skin using a pro-inflammatory cytokine array panel. Next, we immunofluorescence labeling of murine skin sections was employed to immunophenotype tumor promoter-treated Invα6β4 transgenic skin. Finally, a macrophage colony stimulating factor (M-CSF) neutralizing antibody strategy was administered to resolve Invα6β4 transgenic skin inflammation. RESULTS Employing the Invα6β4 transgenic mouse model, we show that suprabasal α6β4 integrin expression selectively alters the profile of secreted pro-inflammatory molecules by epidermal cells, in particular CXCL5 and M-CSF, in response to acute tumor promoter treatment. The induction of CXCL5 and M-CSF in Invα6β4 transgenic epidermis was shortly followed by an exacerbated influx of CD200R(+) myeloid-derived suppressor cells (MDSCs), which co-expressed the M-CSF receptor, and FoxP3(+) Treg cells compared to wild-type mice. As a result, the levels of activated CD4(+) T lymphocytes were dramatically diminished in Invα6β4 transgenic compared to wild-type skin, whereas similar levels of lymphocyte activation were observed in the peripheral blood. Finally, 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced CD200R(+) infiltrative cells and epidermal proliferation were suppressed in Invα6β4 mice treated with M-CSF neutralizing antibodies. CONCLUSIONS We conclude that aberrant expression of α6β4 integrin in post-mitotic epidermal keratinocytes stimulates a pro-tumorigenic skin microenvironment by augmenting the influx of immunosuppressive granular cells during tumor promotion.
Collapse
Affiliation(s)
- Samar W Maalouf
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
37
|
Poulson ND, Lechler T. Asymmetric cell divisions in the epidermis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:199-232. [PMID: 22449491 DOI: 10.1016/b978-0-12-394306-4.00012-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Generation of three-dimensional tissues with distinct cell types is required for the development of all organs. On its own, mitotic spindle orientation allows tissues to change in length or shape. In combination with intrinsic or extrinsic cues, this can also be coupled to the generation of diverse cell fates-a process known as asymmetric cell division (ACD). Understanding ACDs has been greatly aided by studies in invertebrate model systems, where genetics and live imaging have provided the basis for much of what we know. ACDs also drive the development and differentiation of the epidermis in mammals. While similar to the invertebrate models, the epidermis is distinct in balancing symmetric and asymmetric divisions to yield a tissue of the correct surface area and thickness. Here, we review the roles of spindle orientation in driving both morphogenesis and cell fate decisions. We highlight the epidermis as a unique model system to study not only basic mechanisms of ACD but also their regulation during development.
Collapse
Affiliation(s)
- Nicholas D Poulson
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
38
|
Janich P, Pascual G, Merlos-Suárez A, Batlle E, Ripperger J, Albrecht U, Cheng HYM, Obrietan K, Di Croce L, Benitah SA. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 2011; 480:209-14. [PMID: 22080954 DOI: 10.1038/nature10649] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 10/19/2011] [Indexed: 12/17/2022]
Abstract
Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.
Collapse
Affiliation(s)
- Peggy Janich
- Center for Genomic Regulation and UPF, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bachelor MA, Lu Y, Owens DM. L-3-Phosphoserine phosphatase (PSPH) regulates cutaneous squamous cell carcinoma proliferation independent of L-serine biosynthesis. J Dermatol Sci 2011; 63:164-72. [PMID: 21726982 PMCID: PMC3152677 DOI: 10.1016/j.jdermsci.2011.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/19/2011] [Accepted: 06/02/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND L-3-Phosphoserine phosphatase (PSPH) is a highly conserved and widely expressed member of the haloacid dehalogenase superfamily and the rate-limiting enzyme in l-serine biosynthesis. We previously found Psph expression to be uniquely upregulated in a α6β4 integrin transgenic mouse model that is predisposed to epidermal hyperproliferation and squamous cell carcinoma (SCC) formation implicating a role for Psph in epidermal homeostasis. OBJECTIVE We examined the status of PSPH in normal skin epidermis and skin tumors along with its sub-cellular localization in epidermal keratinocytes and its requirement for squamous cell carcinoma (SCC) proliferation. METHODS First, an immunohistochemical study was performed for PSPH in normal skin and skin cancer specimens and in cultured keratinocytes. Next, biochemical analyses were performed to confirm localization of PSPH and to identify candidate binding proteins. Finally, proliferation and apoptosis studies were performed in human SCC and normal keratinocytes, respectively, transduced with vectors encoding small hairpin RNAs targeting PSPH or overexpressing a phosphatase-deficient PSPH mutant. RESULTS PSPH is expressed throughout the proliferative layer of the epidermis and hair follicles in rodent and human skin and is highly induced in SCC. In keratinocytes, PSPH is a cytoplasmic protein that primarily localizes to endosomes and is present primarily as a homodimer. Knock down of PSPH dramatically diminished SCC cell proliferation and cyclin D1 levels in the presence of exogenous of l-serine production suggesting a non-canonical role for PSPH in epithelial carcinogenesis. CONCLUSIONS Psph is highly induced in proliferative normal keratinocytes and in skin tumors. PSPH appears to be critical for the proliferation of SCC cells; however, this phenomenon may not involve the phosphoserine metabolic pathway.
Collapse
Affiliation(s)
- Michael A. Bachelor
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yan Lu
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | - David M. Owens
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
40
|
Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nat Rev Mol Cell Biol 2011; 12:565-80. [PMID: 21860392 DOI: 10.1038/nrm3175] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To provide a stable environmental barrier, the epidermis requires an integrated network of cytoskeletal elements and cellular junctions. Nevertheless, the epidermis ranks among the body's most dynamic tissues, continually regenerating itself and responding to cutaneous insults. As keratinocytes journey from the basal compartment towards the cornified layers, they completely reorganize their adhesive junctions and cytoskeleton. These architectural components are more than just rivets and scaffolds - they are active participants in epidermal morphogenesis that regulate epidermal polarization, signalling and barrier formation.
Collapse
|
41
|
Alameda JP, Moreno-Maldonado R, Fernández-Aceñero MJ, Navarro M, Page A, Jorcano JL, Bravo A, Ramírez Á, Casanova ML. Increased IKKα expression in the basal layer of the epidermis of transgenic mice enhances the malignant potential of skin tumors. PLoS One 2011; 6:e21984. [PMID: 21755017 PMCID: PMC3130791 DOI: 10.1371/journal.pone.0021984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/14/2011] [Indexed: 11/19/2022] Open
Abstract
Non-melanoma skin cancer is the most frequent type of cancer in humans. In this study we demonstrate that elevated IKKα expression in murine epidermis increases the malignancy potential of skin tumors. We describe the generation of transgenic mice overexpressing IKKα in the basal, proliferative layer of the epidermis and in the outer root sheath of hair follicles. The epidermis of K5-IKKα transgenic animals shows several alterations such as hyperproliferation, mislocalized expression of integrin-α6 and downregulation of the tumor suppressor maspin. Treatment of the back skin of mice with the mitogenic agent 12-O-tetradecanoylphorbol-13-acetate causes in transgenic mice the appearance of different preneoplastic changes such as epidermal atypia with loss of cell polarity and altered epidermal tissue architecture, while in wild type littermates this treatment only leads to the development of benign epidermal hyperplasia. Moreover, in skin carcinogenesis assays, transgenic mice carrying active Ha-ras (K5-IKKα-Tg.AC mice) develop invasive tumors, instead of the benign papillomas arising in wild type-Tg-AC mice also bearing an active Ha-ras. Therefore we provide evidence for a tumor promoter role of IKKα in skin cancer, similarly to what occurs in other neoplasias, including hepatocarcinomas and breast, prostate and colorectal cancer. The altered expression of cyclin D1, maspin and integrin-α6 in skin of transgenic mice provides, at least in part, the molecular bases for the increased malignant potential found in the K5-IKKα skin tumors.
Collapse
Affiliation(s)
| | | | | | - Manuel Navarro
- Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | - Angustias Page
- Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | | | - Ana Bravo
- Department of Veterinary Clinical Sciences, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
| | - Ángel Ramírez
- Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | | |
Collapse
|
42
|
Abstract
Squamous cell carcinoma (SCC) is the second most frequent skin cancer. The cellular origin of SCC remains controversial. Here, we used mouse genetics to determine the epidermal cell lineages at the origin of SCC. Using mice conditionally expressing a constitutively active KRas mutant (G12D) and an inducible CRE recombinase in different epidermal lineages, we activated Ras signaling in different cellular compartments of the skin epidermis and determined from which epidermal compartments Ras activation induces squamous tumor formation. Expression of mutant KRas in hair follicle bulge stem cells (SCs) and their immediate progeny (hair germ and outer root sheath), but not in their transient amplifying matrix cells, led to benign squamous skin tumor (papilloma). Expression of KRas(G12D) in interfollicular epidermis also led to papilloma formation, demonstrating that squamous tumor initiation is not restricted to the hair follicle lineages. Whereas no malignant tumor was observed after KRas(G12D) expression alone, expression of KRas(G12D) combined with the loss of p53 induced invasive SCC. Our studies demonstrate that different epidermal lineages including bulge SC are competent to initiate papilloma formation and that multiple genetic hits in the context of oncogenic KRas are required for the development of invasive SCC.
Collapse
|
43
|
Hsu A, Esmaeli B, Hayek B, Hossain MG, Shinder R, Lazar AJ, McCarty JH. Analysis of αv integrin protein expression in human eyelid and periorbital squamous cell carcinomas. J Cutan Pathol 2011; 38:570-5. [PMID: 21375561 DOI: 10.1111/j.1600-0560.2011.01687.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alpha v integrins are receptors for many extracellular matrix (ECM) protein ligands, including latent transforming growth factor betas (TGFβs). Various studies in mice have shown that ablation of genes encoding αv integrin or TGFβ signaling pathway components leads to spontaneous squamous cell carcinomas (SCCs) in the conjunctiva and periocular skin. Here, we have analyzed patterns of αv integrin protein expression and TGFβ signaling in human eyelid and periorbital SCC samples. METHODS An anti-αv integrin antibody was used to immunostain 19 eyelid and periorbital SCC samples. Additionally, tissue lysates from resected normal eyelid and SCC samples were analyzed by immunoblotting for αv integrin protein. Tumor sections were also immunostained with an antibody directed against Smad2, an intracellular signaling protein that is phosphorylated by TGFβ receptors. RESULTS Alpha v integrin protein was highly expressed in the invasive and less-differentiated components of human SCCs. Lower levels of αv integrin protein were detected in more differentiated components of tumors, as well as in SCC in situ. Patterns of phosphorylated Smad2 immunoreactivity correlated with levels αv integrin expression. CONCLUSIONS Alpha v integrin was expressed at robust levels in tumor cells representing less differentiated, more invasive components of SCC; by contrast, well-differentiated cells as well as SCC in situ expressed low levels of αv integrin protein.
Collapse
Affiliation(s)
- Adam Hsu
- Section of Ophthalmology, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhou Y, Chakraborty S, Liu S. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT. Theranostics 2011; 1:58-82. [PMID: 21547153 PMCID: PMC3086616 DOI: 10.7150/thno/v01p0058] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The integrin family is a group of transmembrane glycoprotein comprised of 19 α- and 8 β-subunits that are expressed in 25 different α/β heterodimeric combinations on the cell surface. Integrins play critical roles in many physiological processes, including cell attachment, proliferation, bone remodeling, and wound healing. Integrins also contribute to pathological events such as thrombosis, atherosclerosis, tumor invasion, angiogenesis and metastasis, infection by pathogenic microorganisms, and immune dysfunction. Among 25 members of the integrin family, the α(v)β(3) is studied most extensively for its role of tumor growth, progression and angiogenesis. In contrast, the α(IIb)β(3 )is expressed exclusively on platelets, facilitates the intercellular bidirectional signaling ("inside-out" and "outside-in") and allows the aggregation of platelets during vascular injury. The α(IIb)β(3) plays an important role in thrombosis by its activation and binding to fibrinogen especially in arterial thrombosis due to the high blood flow rate. In the resting state, the α(IIb)β(3) on platelets does not bind to fibrinogen; on activation, the conformation of platelet is altered and the binding sites of α(IIb)β(3 )are exposed for fibrinogen to crosslink platelets. Over the last two decades, integrins have been proposed as the molecular targets for diagnosis and therapy of cancer, thrombosis and other diseases. Several excellent review articles have appeared recently to cover a broad range of topics related to the integrin-targeted radiotracers and their nuclear medicine applications in tumor imaging by single photon emission computed tomography (SPECT) or a positron-emitting radionuclide for positron emission tomography (PET). This review will focus on recent developments of α(v)β(3)-targeted radiotracers for imaging tumors and the use of α(IIb)β(3)-targeted radiotracers for thrombosis imaging, and discuss different approaches to maximize the targeting capability of cyclic RGD peptides and improve the radiotracer excretion kinetics from non-cancerous organs. Improvement of target uptake and target-to-background ratios is critically important for target-specific radiotracers.
Collapse
Affiliation(s)
| | | | - Shuang Liu
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
45
|
Mierke CT, Frey B, Fellner M, Herrmann M, Fabry B. Integrin α5β1 facilitates cancer cell invasion through enhanced contractile forces. J Cell Sci 2011; 124:369-83. [PMID: 21224397 DOI: 10.1242/jcs.071985] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration through connective tissue, or cell invasion, is a fundamental biomechanical process during metastasis formation. Cell invasion usually requires cell adhesion to the extracellular matrix through integrins. In some tumors, increased integrin expression is associated with increased malignancy and metastasis formation. Here, we have studied the invasion of cancer cells with different α5β1 integrin expression levels into loose and dense 3D collagen fiber matrices. Using a cell sorter, we isolated from parental MDA-MB-231 breast cancer cells two subcell lines expressing either high or low amounts of α5β1 integrins (α5β1(high) or α5β1(low) cells, respectively). α5β1(high) cells showed threefold increased cell invasiveness compared to α5β1(low) cells. Similar results were obtained for 786-O kidney and T24 bladder carcinoma cells, and cells in which the α5 integrin subunit was knocked down using specific siRNA. Knockdown of the collagen receptor integrin subunit α2 also reduced invasiveness, but to a lesser degree than knockdown of integrin subunit α5. Fourier transform traction microscopy revealed that the α5β1(high) cells generated sevenfold greater contractile forces than α5β1(low) cells. Cell invasiveness was reduced after addition of the myosin light chain kinase inhibitor ML-7 in α5β1(high) cells, but not in α5β1(low) cells, suggesting that α5β1 integrins enhance cell invasion through enhanced transmission and generation of contractile forces.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute for Experimental Physics I, Soft Matter Physics Division, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
46
|
Tumour-microenvironmental interactions: paths to progression and targets for treatment. Semin Cancer Biol 2010; 20:128-38. [DOI: 10.1016/j.semcancer.2010.06.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 06/24/2010] [Indexed: 01/01/2023]
|
47
|
Stepp MA, Pal-Ghosh S, Tadvalkar G, Rajjoub L, Jurjus RA, Gerdes M, Ryscavage A, Cataisson C, Shukla A, Yuspa SH. Loss of syndecan-1 is associated with malignant conversion in skin carcinogenesis. Mol Carcinog 2010; 49:363-73. [PMID: 20082322 DOI: 10.1002/mc.20609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Syndecan-1 (sdc-1) is a cell surface proteoglycan that mediates the interaction of cells with their matrix, influencing attachment, migration, and response to growth factors. In keratinocytes, loss of sdc-1 delays wound healing, reduces migration, and increases Transforming growth factor beta (TGFbeta) 1 expression. In this study we show that sdc-1 expression is significantly reduced in basal cell, squamous cell, and metastatic human skin cancers compared to normal human skin. In experimental mouse skin tumor induction, compared to wildtype (wt) BALB/c mice, papilloma formation in sdc-1 null mice was reduced by 50% and the percent of papillomas converting to squamous cell carcinoma (SCC) was enhanced. sdc-1 expression on wt mouse papillomas decreased as they converted to SCC. Furthermore, papillomas forming on sdc-1 null mice expressed suprabasal alpha3 and beta4 integrins; suprabasal beta4 integrin is a marker of a high risk for progression. While the proliferative response to phorbol-12-myristate-13-acetate (TPA) did not differ among the genotypes, sdc-1 null mice had an enhanced inflammatory response and retained higher levels of total TGFbeta1 within their skin after TPA treatment. sdc-1 null keratinocytes, transduced in vitro by oncogenic ras(Ha), expressed higher levels of beta4 integrin and had enhanced pSmad2 signaling and reduced senescence when compared to wt ras(Ha)-transduced keratinocytes. When ras(Ha)-transduced cells of both genotypes were grafted onto nude mice, null tumors converted to SCC with higher frequency confirming the skin painting experiments. These data indicate that sdc-1 is important both early in the development of skin tumors and in progression of skin cancers suggesting that reduced expression of sdc-1 could be a useful marker for progression in neoplastic skin lesions.
Collapse
Affiliation(s)
- Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jensen KB, Driskell RR, Watt FM. Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat Protoc 2010; 5:898-911. [PMID: 20431535 DOI: 10.1038/nprot.2010.39] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this protocol, we describe how to isolate keratinocytes from adult mouse epidermis, fractionate them into different sub-populations on the basis of cell surface markers and examine their function in an in vivo skin reconstitution assay with disaggregated neonatal dermal cells. We also describe how the isolated keratinocytes can be subjected to clonal analysis in vitro and in vivo and how to enrich for hair follicle-inducing dermal papilla cells in the dermal preparation. Using these approaches, it is possible to compare the capacity of different populations of adult epidermal stem cells to proliferate and to generate progeny that differentiate along the different epidermal lineages. Isolating, fractionating and grafting cells for the skin reconstitution assay is normally spread over 2 d. Clonal growth in culture is assessed after 14 d, while evaluation of the grafts is carried out after 4-5 weeks.
Collapse
Affiliation(s)
- Kim B Jensen
- Laboratory for Epidermal Stem Cell Biology, Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
49
|
Stumpfova M, Ratner D, Desciak EB, Eliezri YD, Owens DM. The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res 2010; 70:2962-72. [PMID: 20332223 PMCID: PMC2848906 DOI: 10.1158/0008-5472.can-09-4380] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD200 (OX-2) is a cell surface glycoprotein that imparts immune privileges by suppressing alloimmune and autoimmune responses through its receptor, CD200R, expressed primarily on myeloid cells. The ability of CD200 to suppress myeloid cell activation is critical for maintaining normal tissue homeostasis but may also enhance the survival of migratory neoplastic cells. We show that CD200 expression is largely absent in well-differentiated primary squamous cell carcinoma (SCC) of the skin, but is highly induced in SCC metastases to the lymph node and other solid tissues. CD200 does not influence the proliferative or invasive capacity of SCC cells or their ability to reconstitute primary skin tumors. However, loss of CD200 impairs the ability of SCC cells to metastasize and seed secondary tumors, indicating that the survival of CD200(+) SCC cells may depend on their ability to interact with CD200R(+) immune cells. The predominant population of CD200R(+) stromal cells was CD11b(+)Gr-1(+) myeloid-derived suppressor cells, which release elevated levels of granulocyte colony-stimulating factor and granulocyte macrophage colony-stimulating factor when in the presence of SCC cells in a CD200-dependent manner. Collectively, our findings implicate CD200 as a hallmark of SCC metastasis and suggest that the ability of CD200(+) SCC keratinocytes to directly engage and modulate CD200R(+) myeloid-derived suppressor cells is essential to metastatic survival.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Surface/biosynthesis
- Antigens, Surface/metabolism
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/immunology
- Carcinoma, Squamous Cell/secondary
- Cell Growth Processes/immunology
- Female
- Gene Knockdown Techniques
- Humans
- Keratinocytes/cytology
- Keratinocytes/immunology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/metabolism
- Mice
- Orexin Receptors
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/metabolism
- Skin Neoplasms/chemically induced
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Tetradecanoylphorbol Acetate
Collapse
Affiliation(s)
- Magda Stumpfova
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Desirée Ratner
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Edward B. Desciak
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - Yehuda D. Eliezri
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | - David M. Owens
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
- Department of Dermatology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
50
|
Abstract
Within the integrin family of cell adhesion receptors, integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 make up a laminin-binding subfamily. The literature is divided on the role of these laminin-binding integrins in metastasis, with different studies indicating either pro- or antimetastatic functions. The opposing roles of the laminin-binding integrins in different settings might derive in part from their unusually robust associations with tetraspanin proteins. Tetraspanins organise integrins into multiprotein complexes within discrete plasma membrane domains termed tetraspanin-enriched microdomains (TEMs). TEM association is crucial to the strikingly rapid cell migration mediated by some of the laminin-binding integrins. However, emerging data suggest that laminin-binding integrins also promote the stability of E-cadherin-based cell-cell junctions, and that tetraspanins are essential for this function as well. Thus, TEM association endows the laminin-binding integrins with both pro-invasive functions (rapid migration) and anti-invasive functions (stable cell junctions), and the composition of TEMs in different cell types might help determine the balance between these opposing activities. Unravelling the tetraspanin control mechanisms that regulate laminin-binding integrins will help to define the settings where inhibiting the function of these integrins would be helpful rather than harmful, and may create opportunities to modulate integrin activity in more sophisticated ways than simple functional blockade.
Collapse
|