1
|
Schneider L, Rabe KS, Domínguez CM, Niemeyer CM. Hapten-Decorated DNA Nanostructures Decipher the Antigen-Mediated Spatial Organization of Antibodies Involved in Mast Cell Activation. ACS NANO 2023; 17:6719-6730. [PMID: 36990450 PMCID: PMC10100567 DOI: 10.1021/acsnano.2c12647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The immunological response of mast cells is controlled by the multivalent binding of antigens to immunoglobulin E (IgE) antibodies bound to the high-affinity receptor FcεRI on the cell membrane surface. However, the spatial organization of antigen-antibody-receptor complexes at the nanometer scale and the structural constraints involved in the initial events at the cell surface are not yet fully understood. For example, it is unclear what influence the affinity and nanoscale distance between the binding partners involved have on the activation of mast cells to degranulate inflammatory mediators from storage granules. We report the use of DNA origami nanostructures (DON) functionalized with different arrangements of the haptenic 2,4-dinitrophenyl (DNP) ligand to generate multivalent artificial antigens with full control over valency and nanoscale ligand architecture. To investigate the spatial requirements for mast cell activation, the DNP-DON complexes were initially used in surface plasmon resonance (SPR) analysis to study the binding kinetics of isolated IgE under physiological conditions. The most stable binding was observed in a narrow window of approximately 16 nm spacing between haptens. In contrast, affinity studies with FcεRI-linked IgE antibodies on the surface of rat basophilic leukemia cells (RBL-2H3) indicated virtually no distance-dependent variations in the binding of the differently structured DNP-DON complexes but suggested a supramolecular oligovalent nature of the interaction. Finally, the use of DNP-DON complexes for mast cell activation revealed that antigen-directed tight assembly of antibody-receptor complexes is the critical factor for triggering degranulation, even more critical than ligand valence. Our study emphasizes the significance of DNA nanostructures for the study of fundamental biological processes.
Collapse
|
2
|
Authentic and Ectopically Expressed MRGPRX2 Elicit Similar Mechanisms to Stimulate Degranulation of Mast Cells. Cells 2021; 10:cells10020376. [PMID: 33673037 PMCID: PMC7918488 DOI: 10.3390/cells10020376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
The identification of the Mas-related G-protein-coupled receptors (Mrgpr) as targets of diverse stimuli of mast cells (MCs), including neuropeptides and pseudo-allergy causing drugs, has placed these receptors at a prime position in MC research. However, the species-dependent diversity of these receptors raises the need for an adequate model for investigating the human MRGPRX2 receptor. RBL-2H3 cells, stably transfected with MRGPRX2 (RBL-MRGPRX2), are increasingly used for this purpose. Therefore, we investigated whether ectopically expressed MRGPRX2, in rat MCs, recapitulates its authentic signaling. To this purpose, we performed a broad comparative study of the responses of human LAD-2 MCs that express MRGPRX2 endogenously, and RBL-MRGPRX2 cells to compound 48/80, substance P and vancomycin, three proto-type ligands of MRGPRX2. We demonstrate that both models share similar dose-response relationships, kinetics and sensitivities to a wide range of signaling targeting drugs. Therefore, our results indicate that ectopically expressed MRGPRX2 preserves the signaling pathways employed to evoke human MC degranulation, which we show to rely on ERK1/2 MAP kinases, phospholipase C (PLC) and autophagy-related signaling. Importantly, we also show that the underlying mechanisms of MRGPRX2-triggered MC degranulation in either LAD-2 or RBL-MRGPRX2 cells are different from those elicited by its rodent orthologs.
Collapse
|
3
|
Colucci-Guyon E, Batista AS, Oliveira SDS, Blaud M, Bellettini IC, Marteyn BS, Leblanc K, Herbomel P, Duval R. Ultraspecific live imaging of the dynamics of zebrafish neutrophil granules by a histopermeable fluorogenic benzochalcone probe. Chem Sci 2019; 10:3654-3670. [PMID: 30996961 PMCID: PMC6432617 DOI: 10.1039/c8sc05593a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/12/2019] [Indexed: 12/13/2022] Open
Abstract
Neutrophil granules (NGs) are key components of the innate immune response and mark the development of neutrophilic granulocytes in mammals. However, there has been no specific fluorescent vital stain up to now to monitor their dynamics within a whole live organism. We rationally designed a benzochalcone fluorescent probe (HAB) featuring high tissue permeability and optimal photophysics such as elevated quantum yield, pronounced solvatochromism and target-induced fluorogenesis. Phenotypic screening identified HAB as the first cell- and organelle-specific small-molecule fluorescent tracer of NGs in live zebrafish larvae, with no labeling of other cell types or organelles. HAB staining was independent of the state of neutrophil activation, labeling NGs of both resting and phagocytically active neutrophils with equal specificity. By high-resolution live imaging, we documented the dynamics of HAB-stained NGs during phagocytosis. Upon zymosan injection, labeled NGs were rapidly recruited to the forming phagosomes. Despite being a reversible ligand, HAB could not be displaced by high concentrations of pharmacologically relevant competing chalcones, indicating that this specific labeling was the result of the HAB's precise physicochemical signature rather than a general feature of chalcones. However, one of the competitors was discovered as a promising interstitial fluorescent tracer illuminating zebrafish histology, similarly to BODIPY-ceramide. As a yellow-emitting histopermeable vital stain, HAB functionally and spectrally complements most genetically incorporated fluorescent tags commonly used in live zebrafish biology, holding promise for the study of neutrophil-dependent responses relevant to human physiopathology such as developmental defects, inflammation and infection. Furthermore, HAB intensely labeled isolated live human neutrophils at the level of granulated subcellular structures consistent with human NGs, suggesting that the labeling of NGs by HAB is not restricted to the zebrafish model but also relevant to mammalian systems.
Collapse
Affiliation(s)
- Emma Colucci-Guyon
- Institut Pasteur , Unité Macrophages et Développement de l'Immunité , Paris , 75015 , France .
- CNRS , UMR 3738 , Paris , France
| | - Ariane S Batista
- Nanotechnology Engineering Program , Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia - COPPE , Universidade Federal do Rio de Janeiro , Rio de Janeiro , 21941-972 , Brazil
| | | | - Magali Blaud
- LCRB , CNRS , Université Paris 5 , Sorbonne Paris Cité , Paris , 75006 , France
| | - Ismael C Bellettini
- Departamento de Ciências Exatas e Educaçao , Universidade Federal de Santa Catarina , Blumenau , 89036-256 , Brazil
| | - Benoit S Marteyn
- Institut Pasteur , Unité de Pathogénie Microbienne Moléculaire , Paris , 75015 , France
- INSERM , UMR 786 , Paris , France
| | - Karine Leblanc
- BioCIS , CNRS , Université Paris-Sud 11 , Châtenay-Malabry , 92290 , France
| | - Philippe Herbomel
- Institut Pasteur , Unité Macrophages et Développement de l'Immunité , Paris , 75015 , France .
- CNRS , UMR 3738 , Paris , France
| | - Romain Duval
- MERIT , IRD , Université Paris 5 , Sorbonne Paris Cité , Paris , 75006 , France .
| |
Collapse
|
4
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
5
|
Wakefield DL, Holowka D, Baird B. The FcεRI Signaling Cascade and Integrin Trafficking Converge at Patterned Ligand Surfaces. Mol Biol Cell 2017; 28:mbc.E17-03-0208. [PMID: 28794269 PMCID: PMC5687038 DOI: 10.1091/mbc.e17-03-0208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 01/10/2023] Open
Abstract
We examined the spatial targeting of early and downstream signaling mediated by the IgE receptor (FcεRI) in RBL mast cells utilizing surface-patterned 2,4 dinitrophenyl (DNP) ligands. Micron-sized features of DNP are presented as densely immobilized conjugates of bovine serum albumin (DNP-BSA) or mobile in a supported lipid bilayer (DNP-SLB). Although soluble anti-DNP IgE binds uniformly across features for both pattern types, IgE bound to FcεRI on cells shows distinctive distributions: uniform for DNP-SLB and edge-concentrated for DNP-BSA. These distributions of IgE-FcεRI propagate to the spatial recruitment of early signaling proteins, including spleen tyrosine kinase (Syk), linker for activation of T cells (LAT), and activated phospholipase C gamma 1 (PLCγ1), which all localize with engaged receptors. We found stimulated polymerization of F-actin is not required for Syk recruitment but is progressively involved in the recruitment of LAT and PLCγ1. We further found β1- and β3-integrins colocalize with IgE-FcεRI at patterned ligand surfaces as cells spread. This recruitment corresponds to directed exocytosis of recycling endosomes (REs) containing these integrins and their fibronectin ligand. Together, our results show targeting of signaling components, including integrins, to regions of clustered IgE-FcεRI in processes that depend on stimulated actin polymerization and outward trafficking of REs.
Collapse
Affiliation(s)
- Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
- Current address: Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, California, 91010
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
6
|
Wilson JD, Shelby SA, Holowka D, Baird B. Rab11 Regulates the Mast Cell Exocytic Response. Traffic 2016; 17:1027-41. [PMID: 27288050 DOI: 10.1111/tra.12418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023]
Abstract
Stimulated exocytic events provide a means for physiological communication and are a hallmark of the mast cell-mediated allergic response. In mast cells these processes are triggered by antigen crosslinking of IgE bound to its high-affinity receptor, FcϵRI, on the cell surface. Here we use the endosomal v-SNARE VAMP8, and the lysosomal hydrolase β-hexosaminidase (β-Hex), each C-terminally fused to super-ecliptic pHluorin, to monitor stimulated exocytosis. Using these pHluorin-tagged constructs, we monitor stimulated exocytosis by fluorimetry and visualize individual exocytic events with total internal reflection (TIRF) microscopy. Similar to constitutive recycling endosome (RE) trafficking, we find that stimulated RE exocytosis, monitored by VAMP8, is attenuated by expression of dominant negative (S25N) Rab11. Stimulated β-Hex exocytosis is also reduced in the presence of S25N Rab11, suggesting that expression of this mutant broadly impacts exocytosis. Interestingly, pretreatment with inhibitors of actin polymerization, cytochalasin D or latrunculin A, substantially restores both RE and lysosome exocytosis in cells expressing S25N Rab11. Conversely, stabilizing F-actin with jasplakinolide inhibits antigen-stimulated exocytosis but is not additive with S25N Rab11-mediated inhibition, suggesting that these reagents inhibit related processes. Together, our results suggest that Rab11 participates in the regulation necessary for depolymerization of the actin cytoskeleton during stimulated exocytosis in mast cells.
Collapse
Affiliation(s)
- Joshua D Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Sarah A Shelby
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853-1301, USA
| |
Collapse
|
7
|
Sánchez MF, Dodes Traian MM, Levi V, Carrer DC. One-Photon Lithography for High-Quality Lipid Bilayer Micropatterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11943-11950. [PMID: 26452154 DOI: 10.1021/acs.langmuir.5b02934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A relevant question in cell biology with broad implications in biomedicine is how the organization and dynamics of interacting membranes modulate signaling cascades that involve cell-cell contact. The functionalization of surfaces with supported lipid bilayers containing tethered proteins is a particularly useful method to present ligands with membrane-like mobility to cells. Here, we present a method to generate micrometer-sized patches of lipid bilayers decorated with proteins. The method uses an economic microcontact printing technique based on one-photon lithography that can be easily implemented in a commercial laser scanning microscope. We verified that both proteins and lipids freely diffuse within the patterned bilayer, as assessed by z-scan fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. These results suggest that the supported lipid bilayer patterns constitute an optimal system to explore processes involving direct interactions between cells. We also illustrate possible applications of this method by exploring the interaction of cells expressing the Fas receptor and patterns of lipid bilayers containing an agonist antibody against Fas.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba , Friuli 2434, CC389, 5000 Córdoba, Argentina
| | - Martín M Dodes Traian
- Departamento de Química Biológica-IQUIBICEN Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria , 1428 Buenos Aires, Argentina
| | - Valeria Levi
- Departamento de Química Biológica-IQUIBICEN Facultad de Ciencias Exactas, Universidad de Buenos Aires, Ciudad Universitaria , 1428 Buenos Aires, Argentina
| | - Dolores C Carrer
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET-Universidad Nacional de Córdoba , Friuli 2434, CC389, 5000 Córdoba, Argentina
| |
Collapse
|
8
|
Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence. Nat Commun 2015; 6:6174. [PMID: 25629393 DOI: 10.1038/ncomms7174] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/22/2014] [Indexed: 02/02/2023] Open
Abstract
Mast cells are tissue-resident immune cells that play a key role in inflammation and allergy. Here we show that interaction of mast cells with antibody-targeted cells induces the polarized exocytosis of their granules resulting in a sustained exposure of effector enzymes, such as tryptase and chymase, at the cell-cell contact site. This previously unidentified mast cell effector mechanism, which we name the antibody-dependent degranulatory synapse (ADDS), is triggered by both IgE- and IgG-targeted cells. ADDSs take place within an area of cortical actin cytoskeleton clearance in the absence of microtubule organizing centre and Golgi apparatus repositioning towards the stimulating cell. Remarkably, IgG-mediated degranulatory synapses also occur upon contact with opsonized Toxoplasma gondii tachyzoites resulting in tryptase-dependent parasite death. Our results broaden current views of mast cell degranulation by revealing that human mast cells form degranulatory synapses with antibody-targeted cells and pathogens for dedicated secretion and defence.
Collapse
|
9
|
Min A, Lee YA, Kim KA, El-Benna J, Shin MH. NOX2-derived ROS-mediated surface translocation of BLT1 is essential for exocytosis in human eosinophils induced by LTB4. Int Arch Allergy Immunol 2014; 165:40-51. [PMID: 25323785 DOI: 10.1159/000366277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/01/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leukotriene B4 (LTB4) is a proinflammatory lipid mediator that elicits eosinophil exocytosis, leading to allergic inflammation. However, the detailed intracellular signaling mechanisms of eosinophil exocytosis induced by LTB4 are poorly understood. Herein, we report that NADPH oxidase (NOX)2-derived reactive oxygen species (ROS)-mediated BLT1 migration to the cell surface is required for exocytosis in human eosinophils induced by LTB4. METHODS Peripheral blood eosinophils were purified and stimulated for up to 60 min with LTB4. The signaling role of NOX2-derived ROS in BLT1-dependent exocytosis in LTB4-stimulated eosinophils was investigated. RESULTS Stimulating eosinophils with LTB4 induced intracellular ROS production and surface upregulation of the exocytosis marker protein CD63 via BLT1-mediated signaling. LTB4 induced p47(phox) phosphorylation and 91(phox) expression required for NOX2 activation in a BLT1-dependent manner. Pretreatment with NOX2 inhibitors, but not mitochondria inhibitor, prevented LTB4-induced ROS generation and exocytosis. At 30 min after stimulation with LTB4, BLT1 expression at the cell surface was upregulated. LTB4-triggered surface upregulation of BLT1 was also blocked by inhibition of ROS generation with NOX2 inhibitors. Moreover, stimulation for 30 min with LTB4 resulted in the interaction of BLT1 with NOX2 by immunoprecipitation. LTB4-induced ROS generation, surface upregulation of BLT1 and exocytosis was also inhibited by pretreatment with a lipid raft disruptor, protein kinase C inhibitor, or Src kinase inhibitor. CONCLUSION These results suggest that NOX2-derived ROS-mediated BLT1 trafficking to the cell surface plays a key role in the exocytosis of human eosinophils induced by LTB4.
Collapse
Affiliation(s)
- Arim Min
- Department of Environmental Medical Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
10
|
Ma SH, Sun YN, Ren CY, Ouyang JF, Hou YM, Wang Y. Application of optical imaging technology on the in vitro assessment of mast cell degranulation. RSC Adv 2014. [DOI: 10.1039/c4ra05887a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new approach for anaphylactoid reaction assessment is proposed and it could be applied in allergen screening in drug safety and allergen detection in clinic.
Collapse
Affiliation(s)
- Shu-hua Ma
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease
- Experimental Research Center
- China Academy of Chinese Medical Sciences
- Beijing, China
| | - Ya-nan Sun
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease
- Experimental Research Center
- China Academy of Chinese Medical Sciences
- Beijing, China
| | - Chuan-yun Ren
- Dongzhimen Hospital
- Beijing University of Chinese Medicine
- Beijing, China
| | - Jing-feng Ouyang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease
- Experimental Research Center
- China Academy of Chinese Medical Sciences
- Beijing, China
| | - Yan-ming Hou
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease
- Experimental Research Center
- China Academy of Chinese Medical Sciences
- Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of TCM Basic Research on Prevention and Treatment of Major Disease
- Experimental Research Center
- China Academy of Chinese Medical Sciences
- Beijing, China
| |
Collapse
|
11
|
Azouz NP, Matsui T, Fukuda M, Sagi-Eisenberg R. Decoding the regulation of mast cell exocytosis by networks of Rab GTPases. THE JOURNAL OF IMMUNOLOGY 2012; 189:2169-80. [PMID: 22826321 DOI: 10.4049/jimmunol.1200542] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exocytosis is a key event in mast cell functions. By this process, mast cells release inflammatory mediators, contained in secretory granules (SGs), which play important roles in immunity and wound healing but also provoke allergic and inflammatory responses. The mechanisms underlying mast cell exocytosis remained poorly understood. An essential step toward deciphering the mechanisms behind exocytosis is the identification of the cellular components that regulate this process. Because Rab GTPases regulate specific trafficking pathways, we screened 44 Rabs for their functional impacts on exocytosis triggered by the FcεRI or combination of Ca ²⁺ ionophore and phorbol ester. Because exocytosis involves the continuous reorganization of the actin cytoskeleton, we also repeated our screen in the presence of cytochalasin D that inhibits actin polymerization. In this paper, we report on the identification of 30 Rabs as regulators of mast cell exocytosis, the involvement of 26 of which has heretofore not been recognized. Unexpectedly, these Rabs regulated exocytosis in a stimulus-dependent fashion, unless the actin skeleton was disrupted. Functional clustering of the identified Rabs suggested their classification as Rabs involved in SGs biogenesis or Rabs that control late steps of exocytosis. The latter could be further divided into Rabs that localize to the SGs and Rabs that regulate transport from the endocytic recycling compartment. Taken together, these findings unveil the Rab networks that control mast cell exocytosis and provide novel insights into their mechanisms of action.
Collapse
Affiliation(s)
- Nurit P Azouz
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
12
|
Holowka D, Calloway N, Cohen R, Gadi D, Lee J, Smith NL, Baird B. Roles for ca(2+) mobilization and its regulation in mast cell functions. Front Immunol 2012; 3:104. [PMID: 22586429 PMCID: PMC3346949 DOI: 10.3389/fimmu.2012.00104] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/16/2012] [Indexed: 01/08/2023] Open
Abstract
Mobilization of Ca2+ in response to IgE receptor-mediated signaling is a key process in many aspects of mast cell function. Here we summarize our current understanding of the molecular bases for this process and the roles that it plays in physiologically relevant mast cell biology. Activation of IgE receptor signaling by antigen that crosslinks these complexes initiates Ca2+ mobilization as a fast wave that is frequently followed by a series of Ca2+ oscillations which are dependent on Ca2+ influx-mediated by coupling of the endoplasmic reticulum luminal Ca2+ sensor STIM1 to the calcium release activated calcium channel protein Orai1. Granule exocytosis depends on this process, together with the activation of protein kinase C isoforms, and specific roles for these signaling steps are beginning to be understood. Ca2+ mobilization also plays important roles in stimulated exocytosis of recycling endosomes and newly synthesized cytokines, as well as in antigen-mediated chemotaxis of rat mucosal mast cells. Phosphoinositide metabolism plays key roles in all of these processes, and we highlight these roles in several cases.
Collapse
Affiliation(s)
- David Holowka
- Department of Chemistry and Chemical Biology, Cornell University Ithaca, NY, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Köberle M, Kaesler S, Kempf W, Wölbing F, Biedermann T. Tetraspanins in mast cells. Front Immunol 2012; 3:106. [PMID: 22783251 PMCID: PMC3346162 DOI: 10.3389/fimmu.2012.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/17/2012] [Indexed: 01/01/2023] Open
Abstract
Mast cells (MC) are key mediators of the immune system, most prominently known for their role in eliciting harmful allergic reactions. Mast cell mediator release (e.g. by degranulation) is triggered by FcεRI recognition of antigen – IgE complexes. Until today no therapeutic targeting of this and other mast cell activation pathways is established. Among possible new candidates there are tetraspanins that have been described on MC already several years ago. Tetraspanins are transmembrane proteins acting as scaffolds, mediating local clustering of their interaction partners, and thus amplify their activities. More recently, tetraspanins were also found to exert intrinsic receptor functions. Tetraspanins have been found to be crucial components of fundamental biological processes like cell motility and adhesion. In immune cells, they not only boost the effectiveness of antigen presentation by clustering MHC molecules, they are also key players in all kinds of degranulation events and immune receptor clustering. This review focuses on the contribution of tetraspanins clustered with FcεRI or residing in granule membranes to classical MC functions but also undertakes an outlook on the possible contribution of tetraspanins to newly described mast cell functions and discusses possible targets for drug development.
Collapse
Affiliation(s)
- Martin Köberle
- Department of Dermatology, Eberhard Karls University Tübingen Tübingen, Germany
| | | | | | | | | |
Collapse
|
14
|
Zhang B, Weng Z, Sismanopoulos N, Asadi S, Therianou A, Alysandratos KD, Angelidou A, Shirihai O, Theoharides TC. Mitochondria distinguish granule-stored from de novo synthesized tumor necrosis factor secretion in human mast cells. Int Arch Allergy Immunol 2012; 159:23-32. [PMID: 22555146 DOI: 10.1159/000335178] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 10/28/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Mast cells are immune cells derived from hematopoietic precursors that mature in the tissue microenvironment. Mast cells are critical for allergic, immune and inflammatory processes, many of which involve tumor necrosis factor (TNF). These cells uniquely store TNF in their secretory granules. Upon stimulation, mast cells rapidly (30 min) secrete β-hexosaminidase and granule-stored TNF through degranulation, but also increase TNF mRNA and release de novo synthesized TNF 24 h later. The regulation of these two distinct pathways is poorly understood. METHODS Human LAD2 leukemic mast cells are stimulated by substance P. TNF secretion and gene expression were measured by ELISA and real-time PCR, and mitochondrial dynamics was observed in live cells under confocal microscopy. Cell energy consumption was measured in terms of oxygen consumption rate. RESULTS Here, we show that granule-stored TNF is preformed, and its secretion from LAD2 mast cells stimulated by substance P (1) exhibits higher energy consumption and is inhibited by the mitochondrial ATP pump blocker oligomycin, (2) shows rapid increase in intracellular calcium levels, and (3) exhibits reversible mitochondrial translocation, from a perinuclear distribution to the cell surface, as compared to de novo synthesized TNF release induced by lipopolysaccharide. This mitochondrial translocation is confirmed using primary human umbilical cord blood-derived mast cells stimulated by an allergic trigger (IgE/streptavidin). CONCLUSION Our findings indicate that unique mitochondrial functions distinguish granule-stored from newly synthesized TNF release from human mast cells, thus permitting the versatile involvement of mast cells in different biological processes.
Collapse
Affiliation(s)
- Bodi Zhang
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cohen R, Corwith K, Holowka D, Baird B. Spatiotemporal resolution of mast cell granule exocytosis reveals correlation with Ca2+ wave initiation. J Cell Sci 2012; 125:2986-94. [PMID: 22393234 DOI: 10.1242/jcs.102632] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mast cell activation initiated by antigen-mediated crosslinking of IgE receptors results in stimulated exocytosis of secretory lysosomes in the process known as degranulation. Much has been learned about the molecular mechanisms important for this process, including the crucial role of Ca(2+) mobilization, but spatio-temporal relationships between stimulated Ca(2+) mobilization and granule exocytosis are incompletely understood. Here we use a novel imaging-based method that uses fluorescein isothiocyanate (FITC)-dextran as a reporter for granule exocytosis in RBL mast cells and takes advantage of the pH sensitivity of FITC. We demonstrate the selectivity of FITC-dextran, accumulated by fluid-phase uptake, as a marker for secretory lysosomes, and we characterize its capacity to delineate different exocytotic events, including full fusion, kiss-and-run transient fusion and compound exocytosis. Using this method, we find strong dependence of degranulation kinetics on the duration of cell to substrate attachment. We combine imaging of degranulation and Ca(2+) dynamics to demonstrate a spatial relationship between the sites of Ca(2+) wave initiation in extended cell protrusions and exocytosis under conditions of limited antigen stimulation. In addition, we find that the spatially proximal Ca(2+) signaling and secretory events correlate with participation of TRPC1 channels in Ca(2+) mobilization.
Collapse
Affiliation(s)
- Roy Cohen
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA
| | | | | | | |
Collapse
|
16
|
Sekula-Neuner S, Maier J, Oppong E, Cato ACB, Hirtz M, Fuchs H. Allergen arrays for antibody screening and immune cell activation profiling generated by parallel lipid dip-pen nanolithography. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:585-91. [PMID: 22278752 DOI: 10.1002/smll.201101694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 09/21/2011] [Indexed: 05/24/2023]
Abstract
Multiple-allergen testing for high throughput and high sensitivity requires the development of miniaturized immunoassays that allow for a large test area and require only a small volume of the test analyte, which is often available only in limited amounts. Developing such miniaturized biochips containing arrays of test allergens needs application of a technique able to deposit molecules at high resolution and speed while preserving its functionality. Lipid dip-pen nanolithography (L-DPN) is an ideal technique to create such biologically active surfaces, and it has already been successfully applied for the direct, nanoscale deposition of functional proteins, as well as for the fabrication of biochemical templates for selective adsorption. The work presented here shows the application of L-DPN for the generation of arrays of the ligand 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] onto glass surfaces as a model system for detection of allergen-specific Immunoglobin E (IgE) antibodies and for mast cell activation profiling.
Collapse
Affiliation(s)
- Sylwia Sekula-Neuner
- Karlsruher Institut für Technologie (KIT), Institut für Nanotechnologie (INT), Karlsruhe Nano Micro Facility (KNMF), 76021 Karlsruhe Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Chirumbolo S. Basophil Activation Test in Allergy: Time for an Update? Int Arch Allergy Immunol 2012; 158:99-114. [DOI: 10.1159/000331312] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
|
18
|
Nanofabrication for the analysis and manipulation of membranes. Ann Biomed Eng 2011; 40:1356-66. [PMID: 22143598 DOI: 10.1007/s10439-011-0479-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
Recent advancements and applications of nanofabrication have enabled the characterization and control of biological membranes at submicron scales. This review focuses on the application of nanofabrication towards the nanoscale observing, patterning, sorting, and concentrating membrane components. Membranes on living cells are a necessary component of many fundamental cellular processes that naturally incorporate nanoscale rearrangement of the membrane lipids and proteins. Nanofabrication has advanced these understandings, for example, by providing 30 nm resolution of membrane proteins with metal-enhanced fluorescence at the tip of a scanning probe on fixed cells. Naturally diffusing single molecules at high concentrations on live cells have been observed at 60 nm resolution by confining the fluorescence excitation light through nanoscale metallic apertures. The lateral reorganization on the plasma membrane during membrane-mediated signaling processes has been examined in response to nanoscale variations in the patterning and mobility of the signal-triggering molecules. Further, membrane components have been separated, concentrated, and extracted through on-chip electrophoretic and microfluidic methods. Nanofabrication provides numerous methods for examining and manipulating membranes for both greater understandings of membrane processes as well as for the application of membranes to other biophysical methods.
Collapse
|
19
|
Labrousse AM, Meunier E, Record J, Labernadie A, Beduer A, Vieu C, Ben Safta T, Maridonneau-Parini I. Frustrated phagocytosis on micro-patterned immune complexes to characterize lysosome movements in live macrophages. Front Immunol 2011; 2:51. [PMID: 22566841 PMCID: PMC3341964 DOI: 10.3389/fimmu.2011.00051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/19/2011] [Indexed: 11/13/2022] Open
Abstract
Lysosome mobilization is a key cellular process in phagocytes for bactericidal activities and trans-matrix migration. The molecular mechanisms that regulate lysosome mobilization are still poorly known. Lysosomes are hard to track as they move toward phagosomes throughout the cell volume. In order to anticipate cell regions where lysosomes are recruited to, human and RAW264.7 macrophages were seeded on surfaces that were micro-patterned with immune complexes (ICs) as 4 μm-side squares. Distances between IC patterns were adapted to optimize cell spreading in order to constrain lysosome movements mostly in two dimensions. FcΓ receptors triggered local frustrated phagocytosis, frustrated phagosomes appeared as rings of F-actin dots around the IC patterns as early as 5 min after cells made contact with the substratum. Frustrated phagosomes recruited actin-associated proteins (vinculin, paxillin, and gelsolin). The fusion of lysosomes with frustrated phagosomes was shown by the release of beta-hexosaminidase and the recruitment of Lamp1 to frustrated phagosomes. Lysosomes of RAW264.7 macrophages were labeled with cathepsin-D-mCherry to visualize their movements toward frustrated phagosomes. Lysosomes saltatory movements were markedly slowed down compared to cells layered on non-opsonized patterns. In addition, the linearity of the trajectories and the frequency and duration of contacts of lysosomes with frustrated phagosomes were measured. Our experimental set-up is the first step toward deciphering molecular mechanisms which are involved in lysosome movements in the cytoplasm (speed, directionality, and interaction with phagosomes), and opens the door to approaches such as RNA interference, pharmacological inhibition, or mutant expression.
Collapse
Affiliation(s)
- Arnaud M Labrousse
- UMR5089, CNRS, Institut de Pharmacologie et de Biologie Structurale Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Trikić MZ, Monk P, Roehl H, Partridge LJ. Regulation of zebrafish hatching by tetraspanin cd63. PLoS One 2011; 6:e19683. [PMID: 21625559 PMCID: PMC3098263 DOI: 10.1371/journal.pone.0019683] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/05/2011] [Indexed: 12/22/2022] Open
Abstract
Tetraspanins cause the clustering of membrane proteins into a level of organisation essential for cellular function. Given the importance and complicated nature of this mechanism, we attempted a novel approach to identify the function of a single component in a biologically relevant context. A morpholino knockdown strategy was used to investigate the role of cd63, a membrane protein associated with intracellular transport and a melanoma marker, in embryonic zebrafish. By using three separate morpholinos targeting cd63, we were able to identify a specific phenotype. Strikingly, morphant fish failed to hatch due to the lack of secreted proteolytic enzymes required for chorion-softening. The morphology of the hatching gland at both the cellular and intracellular levels was disorganised, suggesting a role for cd63 in the functioning of this organ. This work identifies a specific role for cd63 in the zebrafish embryo and provides evidence for the suitability of zebrafish as a model system for the investigation of tetraspanin enriched microdomains.
Collapse
Affiliation(s)
- Michael Z Trikić
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Jin C, Shelburne CP, Li G, Potts EN, Riebe KJ, Sempowski GD, Foster WM, Abraham SN. Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation. J Clin Invest 2011; 121:941-55. [PMID: 21285515 PMCID: PMC3049384 DOI: 10.1172/jci43584] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/01/2010] [Indexed: 11/17/2022] Open
Abstract
Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and a cellular infiltrate dominated by eosinophils. Numerous epidemiological studies have related the exacerbation of allergic asthma with an increase in ambient inhalable particulate matter from air pollutants. This is because inhalable particles efficiently deliver airborne allergens deep into the airways, where they can aggravate allergic asthma symptoms. However, the cellular mechanisms by which inhalable particulate allergens (pAgs) potentiate asthmatic symptoms remain unknown, in part because most in vivo and in vitro studies exploring the pathogenesis of allergic asthma use soluble allergens (sAgs). Using a mouse model of allergic asthma, we found that, compared with their sAg counterparts, pAgs triggered markedly heightened airway hyperresponsiveness and pulmonary eosinophilia in allergen-sensitized mice. Mast cells (MCs) were implicated in this divergent response, as the differences in airway inflammatory responses provoked by the physical nature of the allergens were attenuated in MC-deficient mice. The pAgs were found to mediate MC-dependent responses by enhancing retention of pAg/IgE/FcεRI complexes within lipid raft–enriched, CD63(+) endocytic compartments, which prolonged IgE/FcεRI-initiated signaling and resulted in heightened cytokine responses. These results reveal how the physical attributes of allergens can co-opt MC endocytic circuitry and signaling responses to aggravate pathological responses of allergic asthma in mice.
Collapse
Affiliation(s)
- Cong Jin
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27514, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The majority of cells of the immune system are specialized secretory cells, whose function depends on regulated exocytosis. The latter is mediated by vesicular transport involving the sorting of specialized cargo into the secretory granules (SGs), thereby generating the transport vesicles; their transport along the microtubules and eventually their signal-dependent fusion with the plasma membrane. Each of these steps is tightly controlled by mechanisms, which involve the participation of specific sorting signals on the cargo proteins and their recognition by cognate adaptor proteins, posttranslational modifications of the cargo proteins and multiple GTPases and SNARE proteins. In some of the cells (i.e. mast cells, T killer cells) an intimate connection exists between the secretory system and the endocytic one, whereby the SGs are lysosome related organelles (LROs) also referred to as secretory lysosomes. Herein, we discuss these mechanisms in health and disease states.
Collapse
Affiliation(s)
- Anat Benado
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
23
|
Paumet F, Wesolowski J, Garcia-Diaz A, Delevoye C, Aulner N, Shuman HA, Subtil A, Rothman JE. Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS One 2009; 4:e7375. [PMID: 19823575 PMCID: PMC2756591 DOI: 10.1371/journal.pone.0007375] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 09/15/2009] [Indexed: 11/24/2022] Open
Abstract
Pathogens use diverse molecular machines to penetrate host cells and manipulate intracellular vesicular trafficking. Viruses employ glycoproteins, functionally and structurally similar to the SNARE proteins, to induce eukaryotic membrane fusion. Intracellular pathogens, on the other hand, need to block fusion of their infectious phagosomes with various endocytic compartments to escape from the degradative pathway. The molecular details concerning the mechanisms underlying this process are lacking. Using both an in vitro liposome fusion assay and a cellular assay, we showed that SNARE-like bacterial proteins block membrane fusion in eukaryotic cells by directly inhibiting SNARE-mediated membrane fusion. More specifically, we showed that IncA and IcmG/DotF, two SNARE-like proteins respectively expressed by Chlamydia and Legionella, inhibit the endocytic SNARE machinery. Furthermore, we identified that the SNARE-like motif present in these bacterial proteins encodes the inhibitory function. This finding suggests that SNARE-like motifs are capable of specifically manipulating membrane fusion in a wide variety of biological environments. Ultimately, this motif may have been selected during evolution because it is an efficient structural motif for modifying eukaryotic membrane fusion and thus contribute to pathogen survival.
Collapse
Affiliation(s)
- Fabienne Paumet
- Thomas Jefferson University, Department of Microbiology and Immunology, Philadelphia, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hammond S, Wagenknecht-Wiesner A, Veatch SL, Holowka D, Baird B. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis. J Struct Biol 2009; 168:161-7. [PMID: 19427382 PMCID: PMC2767321 DOI: 10.1016/j.jsb.2009.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/20/2022]
Abstract
In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.
Collapse
Affiliation(s)
- Stephanie Hammond
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| | | | - Sarah L. Veatch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853
| |
Collapse
|
25
|
Bohnacker T, Marone R, Collmann E, Calvez R, Hirsch E, Wymann MP. PI3K Adaptor Subunits Define Coupling to Degranulation and Cell Motility by Distinct PtdIns(3,4,5)P3 Pools in Mast Cells. Sci Signal 2009; 2:ra27. [DOI: 10.1126/scisignal.2000259] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
26
|
Zhou YD, Fang XF, Cui ZJ. UVA-induced calcium oscillations in rat mast cells. Cell Calcium 2009; 45:18-28. [PMID: 18602157 DOI: 10.1016/j.ceca.2008.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/27/2008] [Accepted: 05/20/2008] [Indexed: 02/07/2023]
Abstract
UVA is a major bio-active component in solar irradiation, and is shown to have immunomodulatory and anti-inflammatory effects. The detailed molecular mechanism of UVA action in regard to calcium signaling in mast cells, however, is not fully understood. In this study, it was found that UVA induced ROS formation and cytosolic calcium oscillations in individual rat mast cells. Exogenously added H2O2 and hypoxanthine/xanthine oxidase (HX/XOD) mimicked UVA effects on cytosolic calcium increases. Regular calcium oscillation induced by UVA irradiation was inhibited completely by the phosphatidylinositol-specific phospholipase C inhibitor U73122, but U73343 was without effect. Tetrandrine, a calcium entry blocker, or calcium-free buffer abolished UVA-induced calcium oscillations. L-type calcium channel blocker nifedipine and stores-operated calcium channel blocker SK&F96365 had no such inhibitory effect. ROS induction by UVA was abolished after pre-incubation with anti-oxidant NAC or with NAD(P)H oxidase inhibitor DPI; such treatment also made UVA-induced calcium oscillation to disappear. UVA irradiation did not increase mast cell diameter, but it made mast cell structure more granular. Spectral confocal imaging revealed that the emission spectrum of the endogenous fluorophore in single mast cell contained a sizable peak which corresponded to that of NAD(P)H. Taken together, these data suggest that UVA in rat mast cells could activate NAD(P)H oxidase, to produce ROS, which in turn activates phospholipase C signaling, to trigger regular cytosolic calcium oscillation.
Collapse
Affiliation(s)
- Yan Dong Zhou
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | | | | |
Collapse
|
27
|
Torres AJ, Wu M, Holowka D, Baird B. Nanobiotechnology and Cell Biology: Micro- and Nanofabricated Surfaces to Investigate Receptor-Mediated Signaling. Annu Rev Biophys 2008; 37:265-88. [DOI: 10.1146/annurev.biophys.36.040306.132651] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in microfabrication and nanofabrication are opening new opportunities to investigate complicated questions of cell biology in ways not before possible. In particular, the spatial regulation of cellular processes can be examined by engineering the chemical and physical environment to which the cell responds. Lithographic methods and selective chemical modification schemes can provide biocompatible surfaces that control cellular interactions on the micron and submicron scales on which cells are organized. Combined with fluorescence microscopy and other approaches of cell biology, a widely expanded toolbox is becoming available. This review illustrates the potential of these integrated engineering tools, with an emphasis on patterned surfaces, for investigating fundamental mechanisms of receptor-mediated signaling in cells. We highlight progress made with immune cells and in particular with the IgE receptor system, which has been valuable for developing technology to gain new information about spatial regulation in signaling events.
Collapse
Affiliation(s)
- Alexis J. Torres
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Min Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|