1
|
Abe M, Yanagawa M, Hiroshima M, Kobayashi T, Sako Y. Bilateral regulation of EGFR activity and local PI(4,5)P 2 dynamics in mammalian cells observed with superresolution microscopy. eLife 2024; 13:e101652. [PMID: 39513999 PMCID: PMC11548882 DOI: 10.7554/elife.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Anionic lipid molecules, including phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), are implicated in the regulation of epidermal growth factor receptor (EGFR). However, the role of the spatiotemporal dynamics of PI(4,5)P2 in the regulation of EGFR activity in living cells is not fully understood, as it is difficult to visualize the local lipid domains around EGFR. Here, we visualized both EGFR and PI(4,5)P2 nanodomains in the plasma membrane of HeLa cells using super-resolution single-molecule microscopy. The EGFR and PI(4,5)P2 nanodomains aggregated before stimulation with epidermal growth factor (EGF) through transient visits of EGFR to the PI(4,5)P2 nanodomains. The degree of coaggregation decreased after EGF stimulation and depended on phospholipase Cγ, the EGFR effector hydrolyzing PI(4,5)P2. Artificial reduction in the PI(4,5)P2 content of the plasma membrane reduced both the dimerization and autophosphorylation of EGFR after stimulation with EGF. Inhibition of PI(4,5)P2 hydrolysis after EGF stimulation decreased phosphorylation of EGFR-Thr654. Thus, EGFR kinase activity and the density of PI(4,5)P2 around EGFR molecules were found to be mutually regulated.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku UniversitySendaiJapan
| | - Michio Hiroshima
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratory of Single Molecule Biology, Graduate School of Frontier Biosciences, Osaka UniversityOsakaJapan
| | - Toshihide Kobayashi
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de PharmacieIllkirchFrance
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering ResearchWakoJapan
| |
Collapse
|
2
|
Supuramanian SS, Dsa S, Harihar S. Molecular interaction of metastasis suppressor genes and tumor microenvironment in breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:912-932. [PMID: 37970212 PMCID: PMC10645471 DOI: 10.37349/etat.2023.00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/03/2023] [Indexed: 11/17/2023] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-related deaths in women worldwide where the process of metastasis is a major contributor to the mortality associated with this disease. Metastasis suppressor genes are a group of genes that play a crucial role in preventing or inhibiting the spread of cancer cells. They suppress the metastasis process by inhibiting colonization and by inducing dormancy. These genes function by regulating various cellular processes in the tumor microenvironment (TME), such as cell adhesion, invasion, migration, and angiogenesis. Dysregulation of metastasis suppressor genes can lead to the acquisition of an invasive and metastatic phenotype and lead to poor prognostic outcomes. The components of the TME generally play a necessary in the metastasis progression of tumor cells. This review has identified and elaborated on the role of a few metastatic suppressors associated with the TME that have been shown to inhibit metastasis in BC by different mechanisms, such as blocking certain cell signaling molecules involved in cancer cell migration, invasion, enhancing immune surveillance of cancer cells, and promoting the formation of a protective extracellular matrix (ECM). Understanding the interaction of metastatic suppressor genes and the components of TME has important implications for the development of novel therapeutic strategies to target the metastatic cascade. Targeting these genes or their downstream signaling pathways offers a promising approach to inhibiting the spread of cancer cells and improves patient outcomes.
Collapse
Affiliation(s)
| | - Sid Dsa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
3
|
Sugiyama MG, Brown AI, Vega-Lugo J, Borges JP, Scott AM, Jaqaman K, Fairn GD, Antonescu CN. Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling. Nat Commun 2023; 14:2681. [PMID: 37160944 PMCID: PMC10170156 DOI: 10.1038/s41467-023-38390-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology. EGFR is activated by ligand binding, triggering receptor dimerization, activation of kinase activity, and intracellular signaling. EGFR is transiently confined within various plasma membrane nanodomains, yet how this may contribute to regulation of EGFR ligand binding is poorly understood. To resolve how EGFR nanoscale compartmentalization gates ligand binding, we developed single-particle tracking methods to track the mobility of ligand-bound and total EGFR, in combination with modeling of EGFR ligand binding. In comparison to unliganded EGFR, ligand-bound EGFR is more confined and distinctly regulated by clathrin and tetraspanin nanodomains. Ligand binding to unliganded EGFR occurs preferentially in tetraspanin nanodomains, and disruption of tetraspanin nanodomains impairs EGFR ligand binding and alters the conformation of the receptor's ectodomain. We thus reveal a mechanism by which EGFR confinement within tetraspanin nanodomains regulates receptor signaling at the level of ligand binding.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada
| | - Aidan I Brown
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jesus Vega-Lugo
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jazlyn P Borges
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, La Trobe University, Melbourne, VIC, Australia
| | - Khuloud Jaqaman
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gregory D Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON, Canada.
| |
Collapse
|
4
|
Tetraspanins interweave EV secretion, endosomal network dynamics and cellular metabolism. Eur J Cell Biol 2022; 101:151229. [DOI: 10.1016/j.ejcb.2022.151229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 12/19/2022] Open
|
5
|
Kim JE, Kim E, Lee JW. TM4SF5-Mediated Regulation of Hepatocyte Transporters during Metabolic Liver Diseases. Int J Mol Sci 2022; 23:ijms23158387. [PMID: 35955521 PMCID: PMC9369364 DOI: 10.3390/ijms23158387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is found in up to 30% of the world’s population and can lead to hepatocellular carcinoma (HCC), which has a poor 5-year relative survival rate of less than 40%. Clinical therapeutic strategies are not very successful. The co-occurrence of metabolic disorders and inflammatory environments during the development of steatohepatitis thus needs to be more specifically diagnosed and treated to prevent fatal HCC development. To improve diagnostic and therapeutic strategies, the identification of molecules and/or pathways responsible for the initiation and progression of chronic liver disease has been explored in many studies, but further study is still required. Transmembrane 4 L six family member 5 (TM4SF5) has been observed to play roles in the regulation of metabolic functions and activities in hepatocytes using in vitro cell and in vivo animal models without or with TM4SF5 expression in addition to clinical liver tissue samples. TM4SF5 is present on the membranes of different organelles or vesicles and cooperates with transporters for fatty acids, amino acids, and monocarbohydrates, thus regulating nutrient uptake into hepatocytes and metabolism and leading to phenotypes of chronic liver diseases. In addition, TM4SF5 can remodel the immune environment by interacting with immune cells during TM4SF5-mediated chronic liver diseases. Because TM4SF5 may act as an NAFLD biomarker, this review summarizes crosstalk between TM4SF5 and nutrient transporters in hepatocytes, which is related to chronic liver diseases.
Collapse
|
6
|
Xu J, Cao W, Shao A, Yang M, Andoh V, Ge Q, Pan HW, Chen KP. Metabolomics of Esophageal Squamous Cell Carcinoma Tissues: Potential Biomarkers for Diagnosis and Promising Targets for Therapy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7819235. [PMID: 35782075 PMCID: PMC9246618 DOI: 10.1155/2022/7819235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Background The incidence of esophageal squamous cell carcinoma in China ranks first in the world. The early diagnosis technology is underdeveloped, and the prognosis is poor, which seriously threatens the quality of life of the Chinese people. Epidemiological findings are related to factors such as diet, living habits, and age. The specific mechanism is not clear yet. Metabolomics is a kind of omics that simultaneously and quantitatively analyzes the comprehensive profile of metabolites in living systems. It has unique advantages in the study of the diagnosis and pathogenesis of tumor-related diseases, especially in the search for biomarkers. Therefore, it is desirable to perform metabolic profiling analysis of cancer tissues through metabolomics to find potential biomarkers for the diagnosis and treatment of esophageal squamous cell carcinoma. Methods HPLC-TOF-MS/MS technology and Illumina Hiseq Xten Sequencing was used for the analysis of 210 pairs of matched esophageal squamous cell carcinoma tissues and normal tissues in Zhenjiang City, Jiangsu Province, a high-incidence area of esophageal cancer in China. Bioinformatics analysis was also performed. Results Through metabolomic and transcriptomic analysis, this study found that a total of 269 differential metabolites were obtained in esophageal squamous cell carcinoma and normal tissues, and 48 differential metabolic pathways were obtained through KEGG enrichment analysis. After further screening and identification, 12 metabolites with potential biomarkers to differentiate esophageal squamous cell carcinoma from normal tissues were obtained. Conclusions From the metabolomic data, 4 unknown compounds were found to be abnormally expressed in esophageal squamous cell carcinoma for the first time, such as 9,10-epoxy-12,15-octadecadienoate; 3 metabolites were found in multiple abnormal expression in another tumor, but upregulation or downregulation was found for the first time in esophageal cancer, such as oleoyl glycine; at the same time, it was further confirmed that five metabolites were abnormally expressed in esophageal squamous cell carcinoma, which was similar to the results of other studies, such as PE.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Weiping Cao
- The Fourth People's Hospital of Zhenjiang, Zhenjiang, Jiangsu 212001, China
| | - Aizhong Shao
- Department of Cardiothorac Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ming Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Qi Ge
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hui-wen Pan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ke-ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Bu J, Zhong W, Li M, He S, Zhang M, Zhang Y, Li Y. CD82 palmitoylation site mutations at Cys5+Cys74 affect EGFR internalization and metabolism through recycling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:400-408. [PMID: 35538033 PMCID: PMC9828285 DOI: 10.3724/abbs.2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tetraspanin CD82 often participates in regulating the function of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-Met). Palmitoylation is a post-translational modification that contributes to tetraspanin web formation and affects tetraspanin-dependent cell signaling. However, the molecular mechanisms by which CD82 palmitoylation affects the localization and stability of EGFR and c-Met have not yet been elucidated. This study focuses on the expression and distribution of EGFR and c-Met in breast cancer as well as the related metabolic pathways and molecular mechanisms associated with different CD82 palmitoylation site mutations. The results show that CD82 with a palmitoylation mutation at Cys5+Cys74 can promote the internalization of EGFR. EGFR is internalized and strengthened by direct binding to CD82 with the tubulin assistance and located at the recycling endosome. After studying the recycling pathway marker proteins Rab11a and FIP2, we found that formation of the EGFR/CD82/Rab11a/FIP2 complex promotes the internalization and metabolism of EGFR through the recycling pathway and results in the re-expression of EGFR and CD82 on the cell membrane.
Collapse
Affiliation(s)
- Jingya Bu
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Weiliang Zhong
- Department of Orthopaedics Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116011China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalian116011China
| | - Meixian Li
- Department of Clinical LaboratoryJiangxi Maternal and Child Health HospitalNanchang330000China.
| | - Shuiqing He
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Mingzhe Zhang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Yu Zhang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Ying Li
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China,Correspondence address. Tel: +86-17709875388; E-mail:
| |
Collapse
|
8
|
Viera M, Yip GWC, Shen HM, Baeg GH, Bay BH. Targeting CD82/KAI1 for Precision Therapeutics in Surmounting Metastatic Potential in Breast Cancer. Cancers (Basel) 2021; 13:4486. [PMID: 34503296 PMCID: PMC8431267 DOI: 10.3390/cancers13174486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Metastasis is the main cause of mortality in breast cancer patients. There is an unmet need to develop therapies that can impede metastatic spread. Precision oncology has shown great promise for the treatment of cancers, as the therapeutic approach is tailored to a specific group of patients who are likely to benefit from the treatment, rather than the traditional approach of "one size fits all". CD82, also known as KAI1, a glycoprotein belonging to the tetraspanin family and an established metastasis suppressor, could potentially be exploited to hinder metastases in breast cancer. This review explores the prospect of targeting CD82 as an innovative therapeutic approach in precision medicine for breast cancer patients, with the goal of preventing cancer progression and metastasis. Such an approach would entail the selection of a subset of breast cancer patients with low levels of CD82, and instituting an appropriate treatment scheme tailored towards restoring the levels of CD82 in this group of patients. Proposed precision treatment regimens include current modalities of treating breast cancer, in combination with either clinically approved drugs that could restore the levels of CD82, CD82 peptide mimics or non-coding RNA-based therapeutics.
Collapse
Affiliation(s)
- Maximillian Viera
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| | - George Wai Cheong Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Faculty of Health Sciences, University of Macau, Taipa, China
| | - Gyeong Hun Baeg
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
- Ciechanover Institute of Precision and Regenerative Medicine, School of Life and Health Sciences, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (M.V.); (G.W.C.Y.)
| |
Collapse
|
9
|
CD82 and Gangliosides Tune CD81 Membrane Behavior. Int J Mol Sci 2021; 22:ijms22168459. [PMID: 34445169 PMCID: PMC8395132 DOI: 10.3390/ijms22168459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
Tetraspanins are a family of transmembrane proteins that form a network of protein–protein interactions within the plasma membrane. Within this network, tetraspanin are thought to control the lateral segregation of their partners at the plasma membrane through mechanisms involving specific lipids. Here, we used a single molecule tracking approach to study the membrane behavior of tetraspanins in mammary epithelial cells and demonstrate that despite a common overall behavior, each tetraspanin (CD9, CD81 and CD82) has a specific signature in terms of dynamics. Furthermore, we demonstrated that tetraspanin dynamics on the cell surface are dependent on gangliosides. More specifically, we found that CD82 expression increases the dynamics of CD81 and alters its localization at the plasma membrane, this has no effect on the behavior of CD9. Our results provide new information on the ability of CD82 and gangliosides to differentially modulate the dynamics and organization of tetraspanins at the plasma membrane and highlight that its lipid and protein composition is involved in the dynamical architecture of the tetraspanin web. We predict that CD82 may act as a regulator of the lateral segregation of specific tetraspanins at the plasma membrane while gangliosides could play a crucial role in establishing tetraspanin-enriched areas.
Collapse
|
10
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
11
|
Khan I, Steeg PS. Endocytosis: a pivotal pathway for regulating metastasis. Br J Cancer 2021; 124:66-75. [PMID: 33262521 PMCID: PMC7782782 DOI: 10.1038/s41416-020-01179-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
A potentially important aspect in the regulation of tumour metastasis is endocytosis. This process consists of internalisation of cell-surface receptors via pinocytosis, phagocytosis or receptor-mediated endocytosis, the latter of which includes clathrin-, caveolae- and non-clathrin or caveolae-mediated mechanisms. Endocytosis then progresses through several intracellular compartments for sorting and routing of cargo, ending in lysosomal degradation, recycling back to the cell surface or secretion. Multiple endocytic proteins are dysregulated in cancer and regulate tumour metastasis, particularly migration and invasion. Importantly, four metastasis suppressor genes function in part by regulating endocytosis, namely, the NME, KAI, MTSS1 and KISS1 pathways. Data on metastasis suppressors identify a new point of dysregulation operative in tumour metastasis, alterations in signalling through endocytosis. This review will focus on the multicomponent process of endocytosis affecting different steps of metastasis and how metastatic-suppressor genes use endocytosis to suppress metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
Dodla P, Bhoopalan V, Khoo SK, Miranti C, Sridhar S. Gene expression analysis of human prostate cell lines with and without tumor metastasis suppressor CD82. BMC Cancer 2020; 20:1211. [PMID: 33298014 PMCID: PMC7724878 DOI: 10.1186/s12885-020-07675-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Tetraspanin CD82 is a tumor metastasis suppressor that is known to down regulate in various metastatic cancers. However, the exact mechanism by which CD82 prevents cancer metastasis is unclear. This study aims to identify genes that are regulated by CD82 in human prostate cell lines. METHODS We used whole human genome microarray to obtain gene expression profiles in a normal prostate epithelial cell line that expressed CD82 (PrEC-31) and a metastatic prostate cell line that does not express CD82 (PC3). Then, siRNA silencing was used to knock down CD82 expression in PrEC-31 while CD82 was re-expressed in PC3 to acquire differentially-expressed genes in the respective cell line. RESULTS Differentially-expressed genes with a P < 0.05 were identified in 3 data sets: PrEC-31 (+CD82) vs PrEC-31(-CD82), PC3-57 (+CD82) vs. PC3-5 V (-CD82), and PC3-29 (+CD82) vs. PC3-5 V (-CD82). Top 25 gene lists did not show overlap within the data sets, except (CALB1) the calcium binding protein calbindin 1 which was significantly up-regulated (2.8 log fold change) in PrEC-31 and PC3-29 cells that expressed CD82. Other most significantly up-regulated genes included serine peptidase inhibitor kazal type 1 (SPINK1) and polypeptide N-acetyl galactosaminyl transferase 14 (GALNT14) and most down-regulated genes included C-X-C motif chemokine ligand 14 (CXCL14), urotensin 2 (UTS2D), and fibroblast growth factor 13 (FGF13). Pathways related with cell proliferation and angiogenesis, migration and invasion, cell death, cell cycle, signal transduction, and metabolism were highly enriched in cells that lack CD82 expression. Expression of two mutually inclusive genes in top 100 gene lists of all data sets, runt-related transcription factor (RUNX3) and trefoil factor 3 (TFF3), could be validated with qRT-PCR. CONCLUSION Identification of genes and pathways regulated by CD82 in this study may provide additional insights into the role that CD82 plays in prostate tumor progression and metastasis, as well as identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Pushpaja Dodla
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Vanitha Bhoopalan
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Cindy Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Suganthi Sridhar
- Department of Integrative Biology, University of South Florida, 140, 7Th Avenue S, University of South Florida, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
13
|
Tetraspanins: useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov Today 2020; 26:56-68. [PMID: 33137483 DOI: 10.1016/j.drudis.2020.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Tetraspanins constitute a well-conserved superfamily of four-span small membrane proteins (TM4SF), with >30 members in humans, with important roles in numerous mechanisms of cell biology. Moreover, tetraspanins associate with either specific partner proteins or another tetraspanin, generating a network of interactions involved in cell and membrane compartmentalization and having a role in cellular development, proliferation, activation, motility, and membrane fusions. Therefore, tetraspanins are considered regulators of cellular signaling and are often depicted as 'molecular facilitators'. In view of these many physiological functions, it is likely that these molecules are important actors in pathological processes. In this review, we present the main characteristics of this superfamily, providing a more detailed description of some significant representatives and discuss their relevance as potential targets for the design and development of small-molecule therapeutics in different pathologies.
Collapse
|
14
|
Yao N, Wang CR, Liu MQ, Li YJ, Chen WM, Li ZQ, Qi Q, Lu JJ, Fan CL, Chen MF, Qi M, Li XB, Hong J, Zhang DM, Ye WC. Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth. Signal Transduct Target Ther 2020; 5:214. [PMID: 33033232 PMCID: PMC7544691 DOI: 10.1038/s41392-020-00251-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.
Collapse
Affiliation(s)
- Nan Yao
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Chen-Ran Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Ming-Qun Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying-Jie Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zheng-Qiu Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Qi Qi
- School of Medicine, Jinan University, Guangzhou, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun-Lin Fan
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Min-Feng Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Ming Qi
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiao-Bo Li
- College of Pharmacy, Jinan University, Guangzhou, China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Jian Hong
- School of Medicine, Jinan University, Guangzhou, China
| | - Dong-Mei Zhang
- College of Pharmacy, Jinan University, Guangzhou, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China.
| | - Wen-Cai Ye
- College of Pharmacy, Jinan University, Guangzhou, China. .,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China.
| |
Collapse
|
15
|
Oosterheert W, Xenaki KT, Neviani V, Pos W, Doulkeridou S, Manshande J, Pearce NM, Kroon-Batenburg LM, Lutz M, van Bergen En Henegouwen PM, Gros P. Implications for tetraspanin-enriched microdomain assembly based on structures of CD9 with EWI-F. Life Sci Alliance 2020; 3:3/11/e202000883. [PMID: 32958604 PMCID: PMC7536822 DOI: 10.26508/lsa.202000883] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023] Open
Abstract
Crystal and single-particle cryo-EM structures reveal how the tetraspanin CD9 interacts with its prototypical partner EWI-F and provide a new concatenation model for the assembly of tetraspanin-enriched microdomains. Tetraspanins are eukaryotic membrane proteins that contribute to a variety of signaling processes by organizing partner-receptor molecules in the plasma membrane. How tetraspanins bind and cluster partner receptors into tetraspanin-enriched microdomains is unknown. Here, we present crystal structures of the large extracellular loop of CD9 bound to nanobodies 4C8 and 4E8 and, the cryo-EM structure of 4C8-bound CD9 in complex with its partner EWI-F. CD9–EWI-F displays a tetrameric arrangement with two central EWI-F molecules, dimerized through their ectodomains, and two CD9 molecules, one bound to each EWI-F transmembrane helix through CD9-helices h3 and h4. In the crystal structures, nanobodies 4C8 and 4E8 bind CD9 at loops C and D, which is in agreement with the 4C8 conformation in the CD9–EWI-F complex. The complex varies from nearly twofold symmetric (with the two CD9 copies nearly anti-parallel) to ca. 50° bent arrangements. This flexible arrangement of CD9–EWI-F with potential CD9 homo-dimerization at either end provides a “concatenation model” for forming short linear or circular assemblies, which may explain the occurrence of tetraspanin-enriched microdomains.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Katerina T Xenaki
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Viviana Neviani
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Wouter Pos
- uniQure Biopharma, Amsterdam, The Netherlands
| | - Sofia Doulkeridou
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jip Manshande
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Nicholas M Pearce
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Loes Mj Kroon-Batenburg
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Martin Lutz
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Paul Mp van Bergen En Henegouwen
- Department of Biology, Cell Biology, Neurobiology and Biophysics, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Department of Chemistry, Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
16
|
Huang X, Li Y, He X, Chen Y, Wei W, Yang X, Ma K. Gangliosides and CD82 inhibit the motility of colon cancer by downregulating the phosphorylation of EGFR at different tyrosine sites and signaling pathways. Mol Med Rep 2020; 22:3994-4002. [PMID: 33000220 DOI: 10.3892/mmr.2020.11467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/15/2020] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that (GM3), a ganglioside, suppresses hepatoma cell motility and migration by inhibiting phosphorylation of EGFR and the activity of the PI3K/AKT signaling pathway. Therefore, the aim of the present study was to investigate whether the combined treatment of CD82 with gangliosides can exert a synergistic inhibitory effect on cell motility and migration. Epidermal growth factor receptor (EGFR) signaling was studied for its role in the mechanism through which CD82 and gangliosides synergistically inhibit the motility and migration of SW620 human colon adenocarcinoma cells. GM3 and/or GM2 treatment, and/or overexpression of CD82 was performed in SW620 cells. High-performance thin layer chromatography, reverse transcription-quantitative PCR, western blotting and flow cytometry assays were used to confirm the content changes of GM2, GM3 and CD82. In addition, the phosphorylation of EGFR, MAPK and Akt were evaluated by western blot analysis. SW620 cell motility was investigated using wound healing analysis and chemotaxis migration assay. The combination of GM3 and GM2 with CD82 was found to markedly suppress EGF-stimulated SW620 cell motility compared with the individual factors or combination of GM2 or GM3 with CD82 by inhibiting the phosphorylation of EGFR. The results suggested that CD82 in combination with either GM2 or GM3 can exert a synergistic inhibitory effect on cell motility and migration; however, the synergistic mechanisms elicited by GM2 or GM3 with CD82 differ.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ying Li
- Department of Clinical Laboratory, The Second Affiliated Hospital, Dalian, Liaoning 116023, P.R. China
| | - Xin He
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yang Chen
- Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wei Wei
- Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Keli Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
17
|
Ferrero Restelli F, Fontanet PA, De Vincenti AP, Falzone TL, Ledda F, Paratcha G. Tetraspanin1 promotes NGF signaling by controlling TrkA receptor proteostasis. Cell Mol Life Sci 2020; 77:2217-2233. [PMID: 31440771 PMCID: PMC11104797 DOI: 10.1007/s00018-019-03282-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 11/27/2022]
Abstract
The molecular mechanisms that control the biosynthetic trafficking, surface delivery, and degradation of TrkA receptor are essential for proper nerve growth factor (NGF) function, and remain poorly understood. Here, we identify Tetraspanin1 (Tspan1) as a critical regulator of TrkA signaling and neuronal differentiation induced by NGF. Tspan1 is expressed by developing TrkA-positive dorsal root ganglion (DRG) neurons and its downregulation in sensory neurons inhibits NGF-mediated axonal growth. In addition, our data demonstrate that Tspan1 forms a molecular complex with the immature form of TrkA localized in the endoplasmic reticulum (ER). Finally, knockdown of Tspan1 reduces the surface levels of TrkA by promoting its preferential sorting towards the autophagy/lysosomal degradation pathway. Together, these data establish a novel homeostatic role of Tspan1, coordinating the biosynthetic trafficking and degradation of TrkA, regardless the presence of NGF.
Collapse
Affiliation(s)
- Facundo Ferrero Restelli
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Paula Aldana Fontanet
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Ana Paula De Vincenti
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Tomás Luis Falzone
- Laboratorio de Transporte Axonal y Enfermedades Neurodegenerativas, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
| | - Fernanda Ledda
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), CONICET, Buenos Aires, Argentina
| | - Gustavo Paratcha
- División de Neurobiología Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina, University of Buenos Aires (UBA), CP1121, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Navarro-Hernandez IC, López-Ortega O, Acevedo-Ochoa E, Cervantes-Díaz R, Romero-Ramírez S, Sosa-Hernández VA, Meza-Sánchez DE, Juárez-Vega G, Pérez-Martínez CA, Chávez-Munguía B, Galván-Hernández A, Antillón A, Ortega-Blake I, Santos-Argumedo L, Hernández-Hernández JM, Maravillas-Montero JL. Tetraspanin 33 (TSPAN33) regulates endocytosis and migration of human B lymphocytes by affecting the tension of the plasma membrane. FEBS J 2020; 287:3449-3471. [PMID: 31958362 DOI: 10.1111/febs.15216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/20/2019] [Accepted: 01/16/2020] [Indexed: 12/31/2022]
Abstract
B lymphocytes are a leukocyte subset capable of developing several functions apart from differentiating into antibody-secreting cells. These processes are triggered by external activation signals that induce changes in the plasma membrane properties, regulated by the formation of different lipid-bilayer subdomains that are associated with the underlying cytoskeleton through different linker molecules, thus allowing the functional specialization of regions within the membrane. Among these, there are tetraspanin-enriched domains. Tetraspanins constitute a superfamily of transmembrane proteins that establish lateral associations with other molecules, determining its activity and localization. In this study, we identified TSPAN33 as an active player during B-lymphocyte cytoskeleton and plasma membrane-related phenomena, including protrusion formation, adhesion, phagocytosis, and cell motility. By using an overexpression model of TSPAN33 in human Raji cells, we detected a specific distribution of this protein that includes membrane microvilli, the Golgi apparatus, and extracellular vesicles. Additionally, we identified diminished phagocytic ability and altered cell adhesion properties due to the aberrant expression of integrins. Accordingly, these cells presented an enhanced migratory phenotype, as shown by its augmented chemotaxis and invasion rates. When we evaluated the mechanic response of cells during fibronectin-induced spreading, we found that TSPAN33 expression inhibited changes in roughness and membrane tension. Contrariwise, TSPAN33 knockdown cells displayed opposite phenotypes to those observed in the overexpression model. Altogether, our data indicate that TSPAN33 represents a regulatory element of the adhesion and migration of B lymphocytes, suggesting a novel implication of this tetraspanin in the control of the mechanical properties of their plasma membrane.
Collapse
Affiliation(s)
- Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Orestes López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico
| | - Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Facultad De Medicina, Universidad Nacional Autónoma De México, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| | - César A Pérez-Martínez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Armando Antillón
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Iván Ortega-Blake
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico
| |
Collapse
|
19
|
Kgk D, Kumari S, G S, Malla RR. Marine natural compound cyclo(L-leucyl-L-prolyl) peptide inhibits migration of triple negative breast cancer cells by disrupting interaction of CD151 and EGFR signaling. Chem Biol Interact 2019; 315:108872. [PMID: 31669320 DOI: 10.1016/j.cbi.2019.108872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
Cyclo (L-Leucyl-L-Prolyl) peptide/CLP is a marine natural metabolite and well recognized as an antimicrobial and antioxidant agent with limited studies on anticancer activity. The current study aims to determine the effect of CLP on migration and growth of triple negative breast cancer cell lines. The anti-growth potential was evaluated by MTT, BrdU and TUNEL assays; DNA damage by γH2AX and Dead green assays; antimigration activity by Boyden chamber invasion and wound healing assays. Interaction of CLP with CD151 was resolved by PatchDock. Effect of CLP on the expression of transmembrane CD151 was evaluated by cell-based ELISA assay. The interaction between CD151 and EGFR was predicted by using FireDoc Web server. Impact of CLP on the interaction of CD151 with EGFR was evaluated by co-immunoprecipitation assay. The effect of CLP on the cell cycle and its controlling proteins was determined by Western blotting. CLP reduced the viability of MDA-MB-231 and MDA-MB-468 TNBC cell lines but not human breast healthy epithelial cell line (MCF-12A) similar to eribulin, standard. CLP also inhibited proliferation; cell cycle and migration. It induced DNA strand breaks, DNA damage, and cell death. It showed the most favorable interactions with CD151 in in silico docking and significantly reduced the expression of membrane-bound CD151 proteins. FireDoc Web study predicted the association between CD151 and EGFR with -29.13 kcal/mol of binding energy. CLP reduced the interaction of CD151 with EGFR along with the expression of cyclin D, CDK4, PAK, RAC1, and P27kiP1. This study concludes that CLP suppresses growth and migration by attenuating cell cycle of TNBC cell lines via EGFR and CD151 signaling. Thus, exploring the EGFR and CD151 signaling pathway targeted by CLP may provide a new approach in the treatment of TNBC.
Collapse
Affiliation(s)
- Deepak Kgk
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Shailender G
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, GIS, GITAM (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
20
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
21
|
Huang ZM, Li PL, Yang P, Hou XD, Yang YL, Xu X, Xu F. Overexpression of CMTM7 inhibits cell growth and migration in liver cancer. Kaohsiung J Med Sci 2019; 35:332-340. [PMID: 30903681 DOI: 10.1002/kjm2.12058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/27/2022] Open
Abstract
Chemokine-like factor (CKLF)-like, MAL and related proteins for vesicle trafficking and membrane link (MARVEL) transmembrane domain-containing family proteins (CMTMs) have significant roles in the immune system, in male reproduction, as well as in tumorigenesis. Previous studies have shown that CMTM family member 7 (CMTM7) was broadly expressed in various normal tissues, but not in lung, gastric, esophageal, pancreas, and cervix cancers. To explore its relationship with liver cancer, we examined the expression of CMTM7 in liver cancers and its correlation with clinical and pathological conditions. We found that CMTM7 expression was markedly reduced in liver cancer tissues, and negatively correlated with TNM staging and tumor metastasis. In vitro studies showed that enforced expression of CMTM7 inhibited the cell growth and migration of liver cancer cells. Further analysis revealed that CMTM7 suppressed AKT signaling and induced cell cycle arrest at the G0/G1 phase in the liver cancer cells, likely as the consequent of decreased levels of cyclin D1, cyclin-dependent kinase 4 (CDK4), and CDK6, and increased p27 expression. Thus, CMTM7 functions as a tumor suppressor in liver cancer through suppressing cell cycle progression.
Collapse
Affiliation(s)
- Zi-Ming Huang
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Emergency Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Peng-Ling Li
- Department of Respiratory Care, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Peng Yang
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiao-Dan Hou
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Yi-Li Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Xin Xu
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, China
| | - Feng Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Zhang T, de Waard AA, Wuhrer M, Spaapen RM. The Role of Glycosphingolipids in Immune Cell Functions. Front Immunol 2019; 10:90. [PMID: 30761148 PMCID: PMC6361815 DOI: 10.3389/fimmu.2019.00090] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) exhibit a variety of functions in cellular differentiation and interaction. Also, they are known to play a role as receptors in pathogen invasion. A less well-explored feature is the role of GSLs in immune cell function which is the subject of this review article. Here we summarize knowledge on GSL expression patterns in different immune cells. We review the changes in GSL expression during immune cell development and differentiation, maturation, and activation. Furthermore, we review how immune cell GSLs impact membrane organization, molecular signaling, and trans-interactions in cellular cross-talk. Another aspect covered is the role of GSLs as targets of antibody-based immunity in cancer. We expect that recent advances in analytical and genome editing technologies will help in the coming years to further our knowledge on the role of GSLs as modulators of immune cell function.
Collapse
Affiliation(s)
- Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Antonius A de Waard
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Zou F, Wang X, Han X, Rothschild G, Zheng SG, Basu U, Sun J. Expression and Function of Tetraspanins and Their Interacting Partners in B Cells. Front Immunol 2018; 9:1606. [PMID: 30072987 PMCID: PMC6058033 DOI: 10.3389/fimmu.2018.01606] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/27/2018] [Indexed: 01/26/2023] Open
Abstract
Tetraspanins are transmembrane proteins that modulate multiple diverse biological processes, including signal transduction, cell–cell communication, immunoregulation, tumorigenesis, cell adhesion, migration, and growth and differentiation. Here, we provide a systematic review of the involvement of tetraspanins and their partners in the regulation and function of B cells, including mechanisms associated with antigen presentation, antibody production, cytokine secretion, co-stimulator expression, and immunosuppression. Finally, we direct our focus to the signaling mechanisms, evolutionary conservation aspects, expression, and potential therapeutic strategies that could be based on tetraspanins and their interacting partners.
Collapse
Affiliation(s)
- Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xu Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xinxin Han
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Song Guo Zheng
- Department of Medicine, Milton S. Hershey Medical Center at Penn State University, Pennsylvania, PA, United States.,Center for Clinic Immunology, Third Affiliated Hospital at Sun Yat-Sen University, Guangzhou, China
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
24
|
Zhu Y, Ailane N, Sala-Valdés M, Haghighi-Rad F, Billard M, Nguyen V, Saffroy R, Lemoine A, Rubinstein E, Boucheix C, Greco C. Multi-factorial modulation of colorectal carcinoma cells motility - partial coordination by the tetraspanin Co-029/tspan8. Oncotarget 2018; 8:27454-27470. [PMID: 28418857 PMCID: PMC5432348 DOI: 10.18632/oncotarget.16247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Colorectal carcinoma cells Isreco1 display an ability to migrate controlled by a complex set of signals issued from the membrane. By comparing cells infected by mycoplasmas and mycoplasmas free cells, we have established that basal 2D migration is dependent on a double signal mediated by the collagen receptors integrins alpha1/2 and the Toll-Like receptor TLR2. The signal issued from mycoplasmas can be replaced by a TLR2 ligand and the functional effect is neutralized by silencing of MyD88. Following previous observation that downregulation of E-cadherin/p120 catenin increases cell motility, we now report that EGFR or CD44 inhibition have a similar effect on cell motility that is restricted to tetraspanin Co-029/tspan8 transduced IsrecoI cells (Is1-Co029). The modulation of cell migration linked to EGFR or CD44 can be neutralized by antagonizing Co-029 with the mAb Ts29.1 or by RNA interference. Altogether these data point to a crucial role of Co-029 in the modulation of colon cancer cell motility which could be related to the protumoral effect reported for this tetraspanin. Among surface molecules able to mediate Co-029 function, E-cadherin, EGFR and CD44 appear as likely candidates.
Collapse
Affiliation(s)
- Yingying Zhu
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France.,Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Naouel Ailane
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France
| | - Monica Sala-Valdés
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France
| | - Farhad Haghighi-Rad
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France
| | - Martine Billard
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France
| | - Viet Nguyen
- Université Paris-Sud 11, Paris, France.,Inserm, UMS-33, SFR André Lwoff, Villejuif, France
| | - Raphael Saffroy
- Université Paris-Sud 11, Paris, France.,Inserm UMR-S 1193, SFR André Lwoff, Villejuif, France.,AP HP, Hôpital Paul-Brousse, Department of Biochemistry, Villejuif, France
| | - Antoinette Lemoine
- Université Paris-Sud 11, Paris, France.,Inserm UMR-S 1193, SFR André Lwoff, Villejuif, France.,AP HP, Hôpital Paul-Brousse, Department of Biochemistry, Villejuif, France
| | - Eric Rubinstein
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France
| | - Claude Boucheix
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France
| | - Céline Greco
- Inserm, UMR-S 935, SFR André Lwoff, Villejuif, France.,Université Paris-Sud 11, Paris, France.,AP HP, Hôpital Necker, Department of Pain and Palliative Medicine, Paris, France
| |
Collapse
|
25
|
Miller J, Dreyer TF, Bächer AS, Sinner EK, Heinrich C, Benge A, Gross E, Preis S, Rother J, Roberts A, Nelles G, Miteva T, Reuning U. Differential tumor biological role of the tumor suppressor KAI1 and its splice variant in human breast cancer cells. Oncotarget 2018; 9:6369-6390. [PMID: 29464079 PMCID: PMC5814219 DOI: 10.18632/oncotarget.23968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/23/2017] [Indexed: 01/30/2023] Open
Abstract
The tetraspanin and tumor suppressor KAI1 is downregulated or lost in many cancers which correlates with poor prognosis. KAI1 acts via physical/functional crosstalk with other membrane receptors. Also, a splice variant of KAI1 (KAI1-SP) has been identified indicative of poor prognosis. We here characterized differential effects of the two KAI1 variants on tumor biological events involving integrin (αvß3) and/or epidermal growth factor receptor (EGF-R). In MDA-MB-231 and -435 breast cancer cells, differential effects were documented on the expression levels of the tumor biologically relevant integrin αvß3 which colocalized with KAI1-WT but not with KAI1-SP. Cellular motility was assessed by video image processing, including motion detection and vector analysis for the quantification and visualization of cell motion parameters. In MDA-MB-231 cells, KAI1-SP provoked a quicker wound gap closure and higher closure rates than KAI1-WT, also reflected by different velocities and average motion amplitudes of singular cells. KAI1-SP induced highest cell motion adjacent to the wound gap borders, whereas in MDA-MB-435 cells a comparable induction of both KAI1 variants was noticed. Moreover, while KAI1-WT reduced cell growth, KAI1-SP significantly increased it going along with a pronounced EGF-R upregulation. KAI1-SP-induced cell migration and proliferation was accompanied by the activation of the focal adhesion and Src kinase. Our findings suggest that splicing of KAI1 does not only abrogate its tumor suppressive functions, but even more, promotes tumor biological effects in favor of cancer progression and metastasis.
Collapse
Affiliation(s)
- Julia Miller
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Tobias F Dreyer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anne Sophie Bächer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva-Kathrin Sinner
- BOKU, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Christine Heinrich
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anke Benge
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva Gross
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Sarah Preis
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Jan Rother
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Anthony Roberts
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Tzenka Miteva
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Ute Reuning
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
26
|
Zhu J, Miao C, Liu S, Tian Y, Zhang C, Liang C, Xu A, Cao Q, Wang Z. Prognostic role of CD82/KAI1 in multiple human malignant neoplasms: a meta-analysis of 31 studies. Onco Targets Ther 2017; 10:5805-5816. [PMID: 29263677 PMCID: PMC5724410 DOI: 10.2147/ott.s150349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tetraspanin CD82, also known as KAI1, was revealed as an attractive prognostic tumor biomarker in recent studies. However, some results of these studies remained debatable and inconclusive. Therefore, we conducted a meta-analysis to clarify the precise predictive value of CD82 in various neoplasms. Qualified studies were identified up to April 27, 2017, by searching PubMed, EMBASE, and the Web of Science. In total, 29 eligible studies were ultimately enrolled in this meta-analysis. Pooled hazard ratios (HRs) with 95% CIs of overall survival and disease/recurrence/progression-free survival were calculated to evaluate the correct prognostic role of CD82. Statistical analysis demonstrated that high expression of CD82 was significantly associated with enhanced overall survival (HR =0.56, 95% CI: 0.47–0.67) and disease/recurrence/progression-free survival (HR =0.42, 95% CI: 0.30–0.59) in cancer patients. Furthermore, we also conducted the subgroup analysis and the results revealed that CD82 was associated with favorable outcomes in cancer patients. Taken together, CD82 could be a promising biomarker for predicting the prognosis of patients with malignant neoplasms, and the biological functions of CD82 are of great research value of the subject.
Collapse
Affiliation(s)
- Jundong Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Cao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Zhu J, Liang C, Hua Y, Miao C, Zhang J, Xu A, Zhao K, Liu S, Tian Y, Dong H, Zhang C, Li P, Su S, Qin C, Wang Z. The metastasis suppressor CD82/KAI1 regulates cell migration and invasion via inhibiting TGF-β 1/Smad signaling in renal cell carcinoma. Oncotarget 2017; 8:51559-51568. [PMID: 28881668 PMCID: PMC5584269 DOI: 10.18632/oncotarget.18086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022] Open
Abstract
The tetraspanin KAI1/CD82 was identified as a tumor metastasis suppressor that downregulated in various malignant cell types. However, the function of CD82 and its underlying anti-metastasis role in renal cell carcinoma (RCC) is still unraveled. Here, we investigated the expression of CD82 in RCC and explored its regulatory mechanism in RCC cell lines. We found that CD82 was down-regulated in RCC tissues and cells and its expression was significantly associated with histological grade(p=0.041), tumour stage (p=0.036) and tumor size(p=0.020) by analyzing tissue microarrays. After upregulation of CD82 through lentivirus, reduced ability of migration and invasion in Caki-1 cells were detected. In contrast, gene silencing of CD82 by small interfering RNA promoted metastatic and invasive potential of 786-O cells. Furthermore, Western blot was performed to identify the influence of CD82 on MMP family and TGF-β1/Smad pathway in RCC. Subsequently, upregulating protein level of TGF-β1 with the overexpression of CD82 could rescue the malignant behaviors inhibited by CD82 which indicated that CD82 played its inhibitory role in RCC partially by attenuating the expression of TGF-β1. Taken together, CD82 played a prominent role in migration and invasion of RCC cells and it might exhibit its inhibitory role in RCC metastasis via block TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jundong Zhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yibo Hua
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Aiming Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Zhao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ye Tian
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huiyu Dong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shifeng Su
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Termini CM, Gillette JM. Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol 2017; 5:34. [PMID: 28428953 PMCID: PMC5382171 DOI: 10.3389/fcell.2017.00034] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Tetraspanins are molecular scaffolds that distribute proteins into highly organized microdomains consisting of adhesion, signaling, and adaptor proteins. Many reports have identified interactions between tetraspanins and signaling molecules, finding unique downstream cellular consequences. In this review, we will explore these interactions as well as the specific cellular responses to signal activation, focusing on tetraspanin regulation of adhesion-mediated (integrins/FAK), receptor-mediated (EGFR, TNF-α, c-Met, c-Kit), and intracellular signaling (PKC, PI4K, β-catenin). Additionally, we will summarize our current understanding for how tetraspanin post-translational modifications (palmitoylation, N-linked glycosylation, and ubiquitination) can regulate signal propagation. Many of the studies outlined in this review suggest that tetraspanins offer a potential therapeutic target to modulate aberrant signal transduction pathways that directly impact a host of cellular behaviors and disease states.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| |
Collapse
|
29
|
Seipold L, Saftig P. The Emerging Role of Tetraspanins in the Proteolytic Processing of the Amyloid Precursor Protein. Front Mol Neurosci 2016; 9:149. [PMID: 28066176 PMCID: PMC5174118 DOI: 10.3389/fnmol.2016.00149] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022] Open
Abstract
Tetraspanins are a family of ubiquitously expressed and conserved proteins, which are characterized by four transmembrane domains and the formation of a short and a large extracellular loop (LEL). Through interaction with other tetraspanins and transmembrane proteins such as growth factors, receptors and integrins, tetraspanins build a wide ranging and membrane spanning protein network. Such tetraspanin-enriched microdomains (TEMs) contribute to the formation and stability of functional signaling complexes involved in cell activation, adhesion, motility, differentiation, and malignancy. There is increasing evidence showing that the tetraspanins also regulate the proteolysis of the amyloid precursor protein (APP) by physically interacting with the APP secretases. CD9, CD63, CD81, Tspan12, Tspan15 are among the tetraspanins involved in the intracellular transport and in the stabilization of the gamma secretase complex or ADAM10 as the major APP alpha secretase. They also directly regulate, most likely in concert with other tetraspanins, the proteolytic function of these membrane embedded enzymes. Despite the knowledge about the interaction of tetraspanins with the secretases not much is known about their physiological role, their importance in Alzheimer's Disease and their exact mode of action. This review aims to summarize the current knowledge and open questions regarding the biology of tetraspanins and the understanding how these proteins interact with APP processing pathways. Ultimately, it will be of interest if tetraspanins are suitable targets for future therapeutical approaches.
Collapse
Affiliation(s)
- Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel (CAU) Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel (CAU) Kiel, Germany
| |
Collapse
|
30
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
31
|
Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J, Sun Y, Han X, Zhang XA. Tetraspanin CD82: a suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev 2016; 34:619-33. [PMID: 26335499 DOI: 10.1007/s10555-015-9585-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetraspanin CD82 suppresses the progression and metastasis of a wide range of solid malignant tumors. However, its roles in tumorigenesis and hematopoietic malignancy remain unclear. Ubiquitously expressed CD82 restrains cell migration and cell invasion by modulating both cell-matrix and cell-cell adhesiveness and confining outside-in pro-motility signaling. This restraint at least contributes to, if not determines, the metastasis-suppressive activity and, also likely, the physiological functions of CD82. As a modulator of cell membrane heterogeneity, CD82 alters microdomains, trafficking, and topography of the membrane by changing the membrane molecular landscape. The functional activities of membrane molecules and the cytoskeletal interaction of the cell membrane are subsequently altered, followed by changes in cellular functions. Given its pathological and physiological importance, CD82 is a promising candidate for clinically predicting and blocking tumor progression and metastasis and also an emerging model protein for mechanistically understanding cell membrane organization and heterogeneity.
Collapse
Affiliation(s)
- Jin Feng
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dao-Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhou Yan
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Jiexin Zhang
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
32
|
ErbB receptors and tetraspanins: Casting the net wider. Int J Biochem Cell Biol 2016; 77:68-71. [PMID: 27262234 DOI: 10.1016/j.biocel.2016.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/15/2023]
|
33
|
Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling. Cell Signal 2015; 27:1963-76. [PMID: 26163824 DOI: 10.1016/j.cellsig.2015.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.
Collapse
|
34
|
Molino D, Nola S, Lam SM, Verraes A, Proux-Gillardeaux V, Boncompain G, Perez F, Wenk M, Shui G, Danglot L, Galli T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein in membrane domains transport and homeostasis. CELLULAR LOGISTICS 2015. [PMID: 26196023 PMCID: PMC4501207 DOI: 10.1080/21592799.2015.1025182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Biological membranes in eukaryotes contain a large variety of proteins and lipids often distributed in domains in plasma membrane and endomembranes. Molecular mechanisms responsible for the transport and the organization of these membrane domains along the secretory pathway still remain elusive. Here we show that vesicular SNARE TI-VAMP/VAMP7 plays a major role in membrane domains composition and transport. We found that the transport of exogenous and endogenous GPI-anchored proteins was altered in fibroblasts isolated from VAMP7-knockout mice. Furthermore, disassembly and reformation of the Golgi apparatus induced by Brefeldin A treatment and washout were impaired in VAMP7-depleted cells, suggesting that loss of VAMP7 expression alters biochemical properties and dynamics of the Golgi apparatus. In addition, lipid profiles from these knockout cells indicated a defect in glycosphingolipids homeostasis. We conclude that VAMP7 is required for effective transport of GPI–anchored proteins to cell surface and that VAMP7-dependent transport contributes to both sphingolipids and Golgi homeostasis.
Collapse
Key Words
- BFA, Brefeldin A
- Cer, Ceramide
- ER, Endoplasmic Reticulum
- GM3, ganglioside monosialic acid 3
- GPI, Glycosylphosphatidylinositol
- GSL, Glycosphingolipids
- GlcCer, Glucosylceramide
- Golgi apparatus
- LC, Long Chain
- PI, Phosphatidylinositide
- PM, Plasma Membrane
- SM, Sphingomyelin
- SNARE
- TGN, = Trans-Golgi Network
- TI-VAMP/VAMP7
- TI-VAMP/VAMP7, Tetanus neurotoxin-insensitive vesicle-associated membrane protein / Vesicle associated membrane protein 7
- VLC, very long vhain
- VSVG, Vesicular Stomatitis Virus Glycoprotein
- exocytosis
- sphingolipids
Collapse
Affiliation(s)
- Diana Molino
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France ; Ecole Normale Supérieure-PSL Research University; Département de Chimie; Sorbonne Universités - UPMC Univ Paris 06 ; CNRS UMR 8640 PASTEUR ; Paris, France
| | - Sébastien Nola
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences ; Beijing, China
| | - Agathe Verraes
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | - Véronique Proux-Gillardeaux
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | | | | | - Markus Wenk
- Department of Biochemistry; National University of Singapore; Yong Loo Lin School of Medicine ; Singapore
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences ; Beijing, China
| | - Lydia Danglot
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| | - Thierry Galli
- INSERM; U950; Membrane Traffic in Health and Disease ; Paris, France ; Univ Paris Diderot ; Sorbonne Paris Cité; ERL U950 ; Paris, France ; CNRS; UMR 7592; Institut Jacques Monod ; Paris, France
| |
Collapse
|
35
|
Huang MJ, Hu RH, Chou CH, Hsu CL, Liu YW, Huang J, Hung JS, Lai IR, Juan HF, Yu SL, Wu YM, Huang MC. Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget 2015; 6:5650-65. [PMID: 25730904 PMCID: PMC4467392 DOI: 10.18632/oncotarget.3117] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
O-glycosylation is a common protein modification. Aberrant O-glycosylation is associated with many cancers. GALNT1 is a GalNAc-transferase that initiates protein O-glycosylation. We found that GALNT1 is frequently up-regulated in hepatocellular carcinoma (HCC) and is associated with poor patient survival. Overexpression of GALNT1 increased and knockdown decreased HCC cell migration and invasion. Knockdown of GALNT1 inhibited EGF-induced migration and invasion. Knockdown of GALNT1 decreased EGFR activation and increased EGFR degradation, by decreasing EGFR O-glycosylation. This study demonstrates that down-regulation of GALNT1 is sufficient to suppress malignant phenotype of HCC cells by decreasing EGFR signaling. Thus, GALNT1 is a potential target in HCC.
Collapse
Affiliation(s)
- Miao-Juei Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Rey-Heng Hu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Hsing Chou
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ya-Wen Liu
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - John Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ji-Shiang Hung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yao-Ming Wu
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Wang GP, Han XF. CD9 modulates proliferation of human glioblastoma cells via epidermal growth factor receptor signaling. Mol Med Rep 2015; 12:1381-6. [PMID: 25760022 DOI: 10.3892/mmr.2015.3466] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 01/02/2015] [Indexed: 12/14/2022] Open
Abstract
The tetraspanin CD9 has previously been shown to be involved in various cellular activities, including proliferation and migration. In addition, CD9 has been shown to be associated with epidermal growth factor receptor (EGFR). A common characteristic of glioblastoma multiforme histology is EGFR amplification, which affects signal transduction processes. The anti-proliferative effects of CD9 have been linked to EGFR signaling pathways, including phosphorylation of phosphoinositide-3-kinase (PI3K)/Akt and activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinase (Erk). The present study demonstrated that CD9 decreased the phosphorylation of EGFR at specific sites. In addition, CD9 attenuated EGFR signaling of PI3K/Akt and MAPK/Erk, which was associated with cell growth and proliferation. Conversely, small hairpin RNA-mediated knockdown of CD9 expression enhanced the activation of EGFR signal transduction pathways, including PI3K/Akt and MAPK/Erk. These results suggested that the mechanism underlying CD9-induced suppression of cell proliferation may involve the inhibition of phosphorylation of EGFR and the activity of PI3K/Akt and MAPK/Erk signaling pathways.
Collapse
Affiliation(s)
- Gong-Ping Wang
- First Department of Neurosurgery, Xianyang Hospital of Yanan University, Central Hospital of 20th Bureau of China Railway Group, Xianyang, Shaanxi 712000, P.R. China
| | - Xiao-Fang Han
- Department of Medical Teaching, Xianyang Hospital of Yanan University, Central Hospital of 20th Bureau of China Railway Group, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
37
|
Upheber S, Karle A, Miller J, Schlaugk S, Gross E, Reuning U. Alternative splicing of KAI1 abrogates its tumor-suppressive effects on integrin αvβ3-mediated ovarian cancer biology. Cell Signal 2014; 27:652-62. [PMID: 25435431 DOI: 10.1016/j.cellsig.2014.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023]
Abstract
Loss or downregulation of the tumor-suppressor KAI1 correlates with poor cancer patient prognosis. KAI1 functions by interacting with other proteins, including integrin cell adhesion and signaling receptors. We previously showed that KAI1 physically and functionally crosstalks with the tumor-biologically relevant integrin αvβ3, thereby suppressing ovarian cancer cell migration and proliferation. Interestingly, in metastases, a KAI1 splice variant had been identified, indicating poor patient prognosis. Thus, we here characterized differential effects of the two KAI1 proteins upon their cellular restoration. Opposite to KAI1, KAI1-splice reduced αvβ3-mediated cell adhesion, thereby inducing cell migration. This was accompanied by elevated αvβ3 levels and drastically elevated focal adhesion kinase activation, however, without any obvious colocalization with αvβ3, as observed for KAI1. Moreover, codistribution of KAI1 with the cell/cell-adhesion molecule E-cadherin was abrogated in KAI1-splice. Whereas KAI1 diminished cell proliferative activity, KAI1-splice prominently enhanced cell proliferation concomitant with elevated transcription and cell-surface expression of the epidermal growth factor receptor. Thus KAI1-splice does not only counteract the tumor-suppressive actions of KAI1, but - beyond that - promotes αvβ3-mediated biological functions in favor of tumor progression and metastasis.
Collapse
Affiliation(s)
- Sina Upheber
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Alexandra Karle
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Julia Miller
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Stephanie Schlaugk
- Division of Tumor Genetics, Department for Obstetrics & Gynecology, Technische Universitaet Muenchen, Germany
| | - Eva Gross
- Division of Tumor Genetics, Department for Obstetrics & Gynecology, Technische Universitaet Muenchen, Germany
| | - Ute Reuning
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany.
| |
Collapse
|
38
|
Abstract
Tetraspanins are a family of proteins with four transmembrane domains that play a role in many aspects of cell biology and physiology; they are also used by several pathogens for infection and regulate cancer progression. Many tetraspanins associate specifically and directly with a limited number of proteins, and also with other tetraspanins, thereby generating a hierarchical network of interactions. Through these interactions, tetraspanins are believed to have a role in cell and membrane compartmentalization. In this Cell Science at a Glance article and the accompanying poster, we describe the basic principles underlying tetraspanin-based assemblies and highlight examples of how tetraspanins regulate the trafficking and function of their partner proteins that are required for the normal development and function of several organs, including, in humans, the eye, the kidney and the immune system.
Collapse
Affiliation(s)
- Stéphanie Charrin
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Stéphanie Jouannet
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Claude Boucheix
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Eric Rubinstein
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| |
Collapse
|
39
|
Wu J, Liang S, Bergholz J, He H, Walsh EM, Zhang Y, Xiao ZX. ΔNp63α activates CD82 metastasis suppressor to inhibit cancer cell invasion. Cell Death Dis 2014; 5:e1280. [PMID: 24901051 PMCID: PMC4611714 DOI: 10.1038/cddis.2014.239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 04/02/2014] [Accepted: 04/22/2014] [Indexed: 12/21/2022]
Abstract
P63 is a p53 family member involved in multiple facets of biology, including embryonic development, cell proliferation, differentiation, survival, apoptosis, senescence and aging. The p63 gene encodes multiple protein isoforms either with (TAp63) or without (ΔNp63) the N-terminal transactivation domain. Amounting evidence suggests that p63 can function as a tumor suppressor, yet the precise molecular mechanisms, and particularly the specific roles of TAp63 and ΔNp63 in cancer progression, are still largely unclear. Here, we demonstrated that ΔNp63α, the predominant isoform expressed in epithelial cells and squamous cell carcinomas, inhibits cell invasion. Affymetrix gene expression profiling, combined with gain- and loss-of-function analyses and chromatin immunoprecipitation, indicated that cluster of differentiation 82 (CD82), a documented metastasis suppressor, is a direct transcriptional target of ΔNp63α. Expression of ΔNp63α inhibited outgrowth in Matrigel and cancer cell invasion, which was largely reversed by specific ablation of CD82. Conversely, ΔNp63α knockdown led to increased cell invasion, which was reversed by ectopic expression of CD82. Moreover, inhibition of glycogen synthase kinase-3β (GSK3β) by either pharmacological inhibitors or by RNA interference resulted in the downregulation of ΔNp63α and CD82 expression, concomitant with increased cell invasion, independently of β-catenin. Furthermore, decreased expression of p63 and CD82 is correlated with cancer progression. Taken together, this study reveals that ΔNp63α upregulates CD82 to inhibit cell invasion, and suggests that GSK3β can regulate cell invasion by modulating the ΔNp63α–CD82 axis.
Collapse
Affiliation(s)
- J Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - S Liang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - J Bergholz
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - H He
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - E M Walsh
- Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Y Zhang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| | - Z-X Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610014, China
| |
Collapse
|
40
|
Gutiérrez-Gil B, Arranz JJ, Pong-Wong R, García-Gámez E, Kijas J, Wiener P. Application of selection mapping to identify genomic regions associated with dairy production in sheep. PLoS One 2014; 9:e94623. [PMID: 24788864 PMCID: PMC4006912 DOI: 10.1371/journal.pone.0094623] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/19/2014] [Indexed: 11/18/2022] Open
Abstract
In Europe, especially in Mediterranean areas, the sheep has been traditionally exploited as a dual purpose species, with income from both meat and milk. Modernization of husbandry methods and the establishment of breeding schemes focused on milk production have led to the development of "dairy breeds." This study investigated selective sweeps specifically related to dairy production in sheep by searching for regions commonly identified in different European dairy breeds. With this aim, genotypes from 44,545 SNP markers covering the sheep autosomes were analysed in both European dairy and non-dairy sheep breeds using two approaches: (i) identification of genomic regions showing extreme genetic differentiation between each dairy breed and a closely related non-dairy breed, and (ii) identification of regions with reduced variation (heterozygosity) in the dairy breeds using two methods. Regions detected in at least two breeds (breed pairs) by the two approaches (genetic differentiation and at least one of the heterozygosity-based analyses) were labeled as core candidate convergence regions and further investigated for candidate genes. Following this approach six regions were detected. For some of them, strong candidate genes have been proposed (e.g. ABCG2, SPP1), whereas some other genes designated as candidates based on their association with sheep and cattle dairy traits (e.g. LALBA, DGAT1A) were not associated with a detectable sweep signal. Few of the identified regions were coincident with QTL previously reported in sheep, although many of them corresponded to orthologous regions in cattle where QTL for dairy traits have been identified. Due to the limited number of QTL studies reported in sheep compared with cattle, the results illustrate the potential value of selection mapping to identify genomic regions associated with dairy traits in sheep.
Collapse
Affiliation(s)
| | | | - Ricardo Pong-Wong
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| | | | - James Kijas
- Animal, Food and Health Sciences, CSIRO, Brisbane, Australia
| | - Pamela Wiener
- The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, Midlothian, United Kingdom
| |
Collapse
|
41
|
Wu YB, Huang YS, Xu YP, Sun YF, Yu DL, Zhang XQ, Long X, Zhu SQ, Zhou JL, Xu JJ. A high level of TM4SF5 is associated with human esophageal cancer progression and poor patient survival. Dig Dis Sci 2013; 58:2623-33. [PMID: 23633159 DOI: 10.1007/s10620-013-2690-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 04/13/2013] [Indexed: 12/09/2022]
Abstract
PURPOSE We investigated expression of TM4SF5 and its involvement in human esophageal cancer (HEC). METHODS We analyzed TM4SF5 expression in normal esophageal epithelial cells (HEEC), in four HEC cell lines, and in 20 HEC clinical tissue samples and matched nontumor samples. The effect of TM4SF5 on HEC cell proliferation and metastasis and invasion was assessed, and the relationship between TM4SF5 and integrin β1 was determined. Finally, TM4SF5 and integrin β1 expression were further examined by use of immunohistochemistry (IHC) and tissue microarray analysis, and the prognostic use of TM4SF5 and integrin β1 in HEC was evaluated. RESULTS TM4SF5 was more highly expressed in HEC cells and in HEC tissues than in HEEC and matched nontumor tissues. Down-regulation of TM4SF5 in KYSE150 cells reduced cell proliferation and metastasis and invasion whereas metastasis and invasion by KYSE510 increased after TM4SF5 cDNA transfection. In HEC cells, TM4SF5 formed a complex with integrin β1, and interference with integrin β1 in KYSE510-TM4SF5 cells markedly inhibited cell invasion on laminin 5. Our findings also showed that TM4SF5 and integrin β1 overexpression correlated with low differentiation and high stage (p<0.05, respectively). Postoperative 5-year overall survival of patients with TM4SF5low and/or integrin β1low was higher than for patients with TM4SF5high and/or integrin β1high. Multivariate analysis demonstrated that TM4SF5 and integrin β1 co-overexpression was an independent prognostic marker for HEC. CONCLUSION TM4SF5 is positively associated with HEC invasiveness. The combination of TM4SF5 with integrin β1 could potentially serve as a novel marker for predicting HEC prognosis.
Collapse
Affiliation(s)
- Yong-bing Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li Y, Huang X, Zhang J, Li Y, Ma K. Synergistic inhibition of cell migration by tetraspanin CD82 and gangliosides occurs via the EGFR or cMet-activated Pl3K/Akt signalling pathway. Int J Biochem Cell Biol 2013; 45:2349-58. [PMID: 23968914 DOI: 10.1016/j.biocel.2013.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/28/2013] [Accepted: 08/04/2013] [Indexed: 10/26/2022]
Abstract
The metastasis suppressor CD82/KAI-1, which is a member of the tetraspanin superfamily, has been proposed to exert its activity together with glycosphingolipids. However, the mechanism of CD82 inhibition has not been fully elucidated. The present study aimed to investigate the synergistic inhibition of cell migration by the tetraspanin CD82 and gangliosides and to correlate this inhibition with activation of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (HGFR/cMet) in Hepa1-6 cell lines, whose motility and migration is stimulated by epidermal growth factor (EGF) and hepatocyte growth factor (HGF) in vitro. We found that Hepa1-6 cells transfected with the CD82 gene exhibited decreased migration in response to EGF and HGF. EGF-stimulated phosphorylation of EGFR at Tyr1173 was inhibited in these cells, which contributed to the attenuation of EGFR. Ectopic expression of CD82 in Hepa1-6 cells inhibited HGF-stimulated tyrosine phosphorylation of cMet at Tyr1313 and Tyr1365 without affecting the expression of cMet. These inhibitory effects were enhanced when CD82 was introduced with Ganglioside GM3 alone or GM2/GM3. Reduction of CD82 expression by RNA interference together with depletion of glycosphingolipids with P4 significantly enhanced cell motility and increased the expression of EGFR and its phosphorylation at Tyr1173 in response to EGF. Increased cell motility and HGF-dependent activation of cMet at Tyr1313 and Tyr1365 resulted from decreased CD82 levels and increased GM3. Furthermore, CD82 expression selectively attenuated EGFR and cMet signalling via phosphatidylinositol 3-kinase/Akt but had no affect on the activity of the MAPK signalling pathway. These results suggest that the synergistic effects of CD82 and GM3 or GM2/GM3 on EGFR expression and phosphorylation and cMet activation are responsible for CD82 inhibition of EGF- and HGF-dependent cell motility and migration of Hepa1-6 cells.
Collapse
Affiliation(s)
- Ying Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | | | | | | | | |
Collapse
|
43
|
A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth. Oncogene 2013; 33:3109-18. [PMID: 23893243 DOI: 10.1038/onc.2013.282] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022]
Abstract
Deletion of 3p12-22 is frequent in multiple cancer types, indicating the presence of critical tumor-suppressor genes (TSGs) at this region. We studied a novel candidate TSG, CMTM7, located at the 3p22.3 CMTM-gene cluster, for its tumor-suppressive functions and related mechanisms. The three CMTM genes, CMTM6, 7 and 8, are broadly expressed in human normal adult tissues and normal epithelial cell lines. Only CMTM7 is frequently silenced or downregulated in esophageal and nasopharyngeal cell lines, but uncommon in other carcinoma cell lines. Immunostaining of tissue microarrays for CMTM7 protein showed its downregulation or absence in esophageal, gastric, pancreatic, liver, lung and cervix tumor tissues. Promoter CpG methylation and loss of heterozygosity were both found contributing to CMTM7 downregulation. Ectopic expression of CMTM7 in carcinoma cells inhibits cell proliferation, motility and tumor formation in nude mice, but not in immortalized normal cells, suggesting a tumor inhibitory role of CMTM7. The tumor-suppressive function of CMTM7 is associated with its role in G1/S cell cycle arrest, through upregulating p27 and downregulating cyclin-dependent kinase 2 (CDK2) and 6 (CDK6). Moreover, CMTM7 could promote epidermal growth factor receptor (EGFR) internalization, and further suppress AKT signaling pathway. Thus, our findings suggest that CMTM7 is a novel 3p22 tumor suppressor regulating G1/S transition and EGFR/AKT signaling during tumor pathogenesis.
Collapse
|
44
|
CD82 blocks cMet activation and overcomes hepatocyte growth factor effects on oligodendrocyte precursor differentiation. J Neurosci 2013; 33:7952-60. [PMID: 23637186 DOI: 10.1523/jneurosci.5836-12.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms that regulate oligodendrocyte (OL) precursor migration and differentiation are important in normal development and in demyelinating/remyelinating conditions. We previously found that the tetraspanin CD82 is far more highly expressed in O4(+) OL precursors of the adult rat brain than those of the neonatal brain. CD82 has been physically linked to cMet, the hepatocyte growth factor (HGF) receptor, in tumor cells, and this interaction decreases downstream signaling. We show here that CD82 inhibits the HGF activation of cMet in neonatal and adult rat OL precursors. CD82 expression is sufficient to allow precursor differentiation into mature OLs even in the presence of HGF. In contrast, CD82 downregulation in adult O4(+)/CD82(+) cells inhibits their differentiation, decreases their accumulation of myelin proteins, and causes a reversion to less mature stages. CD82 expression in neonatal O4(+)/CD82(-) cells also blocks Rac1 activation, suggesting a possible regulatory effect on cytoskeletal organization and mobility. Thus, CD82 is a negative regulator of HGF/cMet during OL development and overcomes HGF inhibitory regulation of OL precursor maturation.
Collapse
|
45
|
Gellersen B, Wolf A, Kruse M, Schwenke M, Bamberger AM. Human Endometrial Stromal Cell-Trophoblast Interactions: Mutual Stimulation of Chemotactic Migration and Promigratory Roles of Cell Surface Molecules CD82 and CEACAM11. Biol Reprod 2013; 88:80. [DOI: 10.1095/biolreprod.112.106724] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
46
|
Liu WM, Zhang F, Moshiach S, Zhou B, Huang C, Srinivasan K, Khurana S, Zheng Y, Lahti JM, Zhang XA. Tetraspanin CD82 inhibits protrusion and retraction in cell movement by attenuating the plasma membrane-dependent actin organization. PLoS One 2012; 7:e51797. [PMID: 23251627 PMCID: PMC3522597 DOI: 10.1371/journal.pone.0051797] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/12/2012] [Indexed: 11/18/2022] Open
Abstract
To determine how tetraspanin KAI1/CD82, a tumor metastasis suppressor, inhibits cell migration, we assessed which cellular events critical for motility are altered by KAI1/CD82 and how KAI1/CD82 regulates these events. We found that KAI1/CD82-expressing cells typically exhibited elongated cellular tails and diminished lamellipodia. Live imaging demonstrated that the polarized protrusion and retraction of the plasma membrane became deficient upon KAI1/CD82 expression. The deficiency in developing these motility-related cellular events was caused by poor formations of actin cortical network and stress fiber and by aberrant dynamics in actin organization. Rac1 activity was reduced by KAI1/CD82, consistent with the diminution of lamellipodia and actin cortical network; while the growth factor-stimulated RhoA activity was blocked by KAI1/CD82, consistent with the loss of stress fiber and attenuation in cellular retraction. Upon KAI1/CD82 expression, Rac effector cofilin was not enriched at the cell periphery to facilitate lamellipodia formation while Rho kinase exhibited a significantly lower activity leading to less retraction. Phosphatidylinositol 4, 5-biphosphate, which initiates actin polymerization from the plasma membrane, became less detectable at the cell periphery in KAI1/CD82-expressing cells. Moreover, KAI1/CD82-induced phenotypes likely resulted from the suppression of multiple signaling pathways such as integrin and growth factor signaling. In summary, at the cellular level KAI1/CD82 inhibited polarized protrusion and retraction events by disrupting actin reorganization; at the molecular level, KAI1/CD82 deregulated Rac1, RhoA, and their effectors cofilin and Rho kinase by perturbing the plasma membrane lipids.
Collapse
Affiliation(s)
- Wei M. Liu
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Feng Zhang
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Simon Moshiach
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Bin Zhou
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Chao Huang
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Kamalakkannan Srinivasan
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Seema Khurana
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Yi Zheng
- Division of Experimental Hematology, Cincinnati Children's Hospital, Cincinnati, Ohio, United States of America
| | - Jill M. Lahti
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Xin A. Zhang
- Vascular Biology and Cancer Centers and Departments of Medicine and Molecular Science, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
47
|
Iwasaki T, Takeda Y, Maruyama K, Yokosaki Y, Tsujino K, Tetsumoto S, Kuhara H, Nakanishi K, Otani Y, Jin Y, Kohmo S, Hirata H, Takahashi R, Suzuki M, Inoue K, Nagatomo I, Goya S, Kijima T, Kumagai T, Tachibana I, Kawase I, Kumanogoh A. Deletion of tetraspanin CD9 diminishes lymphangiogenesis in vivo and in vitro. J Biol Chem 2012; 288:2118-31. [PMID: 23223239 DOI: 10.1074/jbc.m112.424291] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetraspanins have emerged as key players in malignancy and inflammatory diseases, yet little is known about their roles in angiogenesis, and nothing is known about their involvement in lymphangiogenesis. We found here that tetraspanins are abundantly expressed in human lymphatic endothelial cells (LEC). After intrathoracic tumor implantation, metastasis to lymph nodes was diminished and accompanied by decreased angiogenesis and lymphangiogenesis in tetraspanin CD9-KO mice. Moreover, lymphangiomas induced in CD9-KO mice were less pronounced with decreased lymphangiogenesis compared with those in wild-type mice. Although mouse LEC isolated from CD9-KO mice showed normal adhesion, lymphangiogenesis was markedly impaired in several assays (migration, proliferation, and cable formation) in vitro and in the lymphatic ring assay ex vivo. Consistent with these findings in mouse LEC, knocking down CD9 in human LEC also produced decreased migration, proliferation, and cable formation. Immunoprecipitation analysis demonstrated that deletion of CD9 in LEC diminished formation of functional complexes between VEGF receptor-3 and integrins (α5 and α9). Therefore, knocking down CD9 in LEC attenuated VEGF receptor-3 signaling, as well as downstream signaling such as Erk and p38 upon VEGF-C stimulation. Finally, double deletion of CD9/CD81 in mice caused abnormal development of lymphatic vasculature in the trachea and diaphragm, suggesting that CD9 and a closely related tetraspanin CD81 coordinately play an essential role in physiological lymphangiogenesis. In conclusion, tetraspanin CD9 modulates molecular organization of integrins in LEC, thereby supporting several functions required for lymphangiogenesis.
Collapse
Affiliation(s)
- Takeo Iwasaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Florin L, Sapp M, Spoden GA. Host-cell factors involved in papillomavirus entry. Med Microbiol Immunol 2012; 201:437-48. [PMID: 22972234 DOI: 10.1007/s00430-012-0270-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/27/2012] [Indexed: 12/21/2022]
Abstract
Papillomaviruses infect skin and mucosa where they induce warts and cancers. For entry to occur, they sequentially engage numerous host proteins, allowing them to deliver their genetic information into target cells. This multistep process starts with initial binding via its L1 major capsid protein, followed by structural changes of the capsid on the cell surface, engagement of different receptors, and endocytosis. The post-entry phase includes capsid disassembly, endosomal escape of a complex of the minor capsid protein L2 and the viral genome, its transport into the nucleus, and accumulation at nuclear substructures. This review summarizes the current knowledge of the papillomavirus entry pathway and the role of cellular proteins involved in this course of events.
Collapse
Affiliation(s)
- Luise Florin
- Department of Medical Microbiology and Hygiene, University Medical Centre of the Johannes Gutenberg University, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany.
| | | | | |
Collapse
|
49
|
Hepatitis C virus induces epidermal growth factor receptor activation via CD81 binding for viral internalization and entry. J Virol 2012; 86:10935-49. [PMID: 22855500 DOI: 10.1128/jvi.00750-12] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR.
Collapse
|
50
|
An inverse relationship between KAI1 expression, invasive ability, and MMP-2 expression and activity in bladder cancer cell lines. Urol Oncol 2012; 30:502-8. [DOI: 10.1016/j.urolonc.2010.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 11/23/2022]
|