1
|
Park JH, Lee DG. Nitric Oxide initiates oxidative independent apoptosis-like death in Candida albicans by lupeol. Biochimie 2025:S0300-9084(25)00097-5. [PMID: 40414340 DOI: 10.1016/j.biochi.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Lupeol, a dietary triterpene-type phytochemical flavonoid, was investigated for its mode of action in Candida albicans by assessing reactive species generation. While increased intracellular nitric oxide (NO) levels were detected, negligible levels were observed for other reactive oxygen species (ROS) and peroxynitrite(ONOO-). The major NO scavenger L-NAME was applied in further experiments to determine whether NO was responsible for the observed processes. DNA damage, including fragmentation and condensation, occurred when the NO concentration increased. Additionally, G1 to S phase cell cycle arrest was induced, followed by mitochondrial dysfunction, including mitochondria mass variation and membrane depolarization. Consequently, typical apoptotic hallmarks such as caspase activation and phosphatidyl serine exposure were monitored. Thus, this study demonstrates that NO can exclusively exert lethal damage without the contribution of highly cytotoxic ROS. In conclusion, lupeol triggers downstream effects in fungal cells following DNA damage, mitochondrial dysfunction, cell cycle arrest, and caspase activation in response to apoptosis-like cell death under NO influence.
Collapse
Affiliation(s)
- Ji Hyun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea; Institute of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
2
|
Li L, Du C. Fungal Apoptosis-Related Proteins. Microorganisms 2024; 12:2289. [PMID: 39597678 PMCID: PMC11596484 DOI: 10.3390/microorganisms12112289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in the development and homeostasis maintenance of multicellular organisms. Apoptosis is a form of PCD that prevents pathological development by eliminating damaged or useless cells. Despite the complexity of fungal apoptosis mechanisms being similar to those of plants and metazoans, fungal apoptosis lacks the core regulatory elements of animal apoptosis. Apoptosis-like PCD in fungi can be triggered by a variety of internal and external factors, participating in biological processes such as growth, development, and stress response. Although the core regulatory elements are not fully understood, apoptosis-inducing factor and metacaspase have been found to be involved. This article summarizes various proteins closely related to fungal apoptosis, such as apoptosis-inducing factor, metacaspase, and inhibitors of apoptosis proteins, as well as their structures and functions. This research provides new strategies and ideas for the development of natural drugs targeting fungal apoptosis and the control of fungal diseases.
Collapse
Affiliation(s)
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
3
|
Chen M, Deng Y, Zheng M, Xiao R, Wang X, Liu B, He J, Wang J. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum. J Appl Microbiol 2024; 135:lxae048. [PMID: 38389225 DOI: 10.1093/jambio/lxae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
AIMS Stem rot caused by Fusarium concentricum is a new disease of Paris polyphylla reported by our research group. The present study investigates the growth inhibitory and apoptotic effects of Bacillus velezensis FJAT-54560 lipopeptide against F. concentricum. METHODS AND RESULTS HPLC preparation and LC-MS analysis results show that the crude lipopeptides secreted by Bacillus velezensis FJAT-54560 isolated from Jasminum sambac consist of C14-17 iturin A, C14 fengycin B, C16 fengycin A/A2, C18 fengycin A, C20 fengycin B2, C21 fengycin A2, C22-23 fengycin A, C12-16 surfactin A, and C15 surfactin A derivatives. The mass ratios (g/g) of iturin, fengycin, and surfactin in lipopeptides are 2.40, 67.51, and 30.08%, respectively. Through inhibition zone and inhibition rate experiments, we found that crude lipopeptides and purified fengycin exhibit strong antifungal activity against F. concentricum, including accumulation of reactive oxygen species, loss of mitochondrial membrane potential, DNA fragmentation, Ca2+ accumulation, chromatin condensation, and phosphatidylserine externalization. Transcriptomic analysis indicates that crude lipopeptide-induced apoptosis in F. concentricum cells may be mediated by apoptosis-inducing factors and apoptosis mediators and can serve as a metacaspase-independent model. CONCLUSION Lipopeptides from Bacillus velezensis FJAT-54560 can control the pathogenic fungus F. concentricum by inducing apoptosis.
Collapse
Affiliation(s)
- Meichun Chen
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Yingjie Deng
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Meixia Zheng
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Rongfeng Xiao
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Bo Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology & Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430000, China
| | - Jieping Wang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China
| |
Collapse
|
4
|
Saha N, Acharjee S, Tomar RS. Cdc73 is a major regulator of apoptosis-inducing factor 1 expression in Saccharomyces cerevisiae via H3K36 methylation. FEBS Lett 2024; 598:658-669. [PMID: 38467538 DOI: 10.1002/1873-3468.14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
Apoptosis-inducing factor 1 (AIF1) overexpression is intimately linked to the sensitivity of yeast cells towards hydrogen peroxide or acetic acid. Therefore, studying the mechanism of AIF1 regulation in the cell would provide a significant understanding of the factors guiding yeast apoptosis. In this report, we show the time-dependent induction of AIF1 under hydrogen peroxide stress. Additionally, we find that AIF1 expression in response to hydrogen peroxide is mediated by two transcription factors, Yap5 (DNA binding) and Cdc73 (non-DNA binding). Furthermore, substituting the H3K36 residue with another amino acid significantly abrogates AIF1 expression. However, substituting the lysine (K) in H3K4 or H3K79 with alanine (A) does not affect AIF1 expression level under hydrogen peroxide stress. Altogether, reduced AIF1 expression in cdc73Δ is plausibly due to reduced H3K36me3 levels in the cells.
Collapse
Affiliation(s)
- Nitu Saha
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Santoshi Acharjee
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
5
|
Kaushal V, Klim J, Skoneczna A, Kurlandzka A, Enkhbaatar T, Kaczanowski S, Zielenkiewicz U. Apoptotic Factors Are Evolutionarily Conserved Since Mitochondrial Domestication. Genome Biol Evol 2023; 15:evad154. [PMID: 37616576 PMCID: PMC10565124 DOI: 10.1093/gbe/evad154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The mechanisms initiating apoptotic programmed cell death in diverse eukaryotes are very similar. Basically, the mitochondrial permeability transition activates apoptotic proteases, DNases, and flavoproteins such as apoptosis-inducing factors (AIFs). According to the hypothesis of the endosymbiotic origin of apoptosis, these mechanisms evolved during mitochondrial domestication. Various phylogenetic analyses, including ours, have suggested that apoptotic factors were eubacterial protomitochondrial toxins used for killing protoeukaryotic hosts. Here, we tested whether the function of yeast Saccharomyces cerevisiae apoptotic proteases (metacaspases Mca1 and Nma111), DNase Nuc1, and flavoprotein Ndi1 can be substituted with orthologs from remotely related eukaryotes such as plants, protists, and eubacteria. We found that orthologs of remotely related eukaryotic and even eubacterial proteins can initiate apoptosis in yeast when triggered by chemical stresses. This observation suggests that apoptotic mechanisms have been maintained since mitochondrial domestication, which occurred approximately 1,800 Mya. Additionally, it supports the hypothesis that some of these apoptotic factors could be modified eubacterial toxins.
Collapse
Affiliation(s)
- Vandana Kaushal
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Joanna Klim
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Anna Kurlandzka
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Szymon Kaczanowski
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warszawa, Poland
| |
Collapse
|
6
|
Saha N, Swagatika S, Tomar RS. Investigation of the acetic acid stress response in Saccharomyces cerevisiae with mutated H3 residues. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:217-232. [PMID: 37746586 PMCID: PMC10513452 DOI: 10.15698/mic2023.10.806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Abstract
Enhanced levels of acetic acid reduce the activity of yeast strains employed for industrial fermentation-based applications. Therefore, unraveling the genetic factors underlying the regulation of the tolerance and sensitivity of yeast towards acetic acid is imperative for optimising various industrial processes. In this communication, we have attempted to decipher the acetic acid stress response of the previously reported acetic acid-sensitive histone mutants. Revalidation using spot-test assays and growth curves revealed that five of these mutants, viz., H3K18Q, H3S28A, H3K42Q, H3Q68A, and H3F104A, are most sensitive towards the tested acetic acid concentrations. These mutants demonstrated enhanced acetic acid stress response as evidenced by the increased expression levels of AIF1, reactive oxygen species (ROS) generation, chromatin fragmentation, and aggregated actin cytoskeleton. Additionally, the mutants exhibited active cell wall damage response upon acetic acid treatment, as demonstrated by increased Slt2-phosphorylation and expression of cell wall integrity genes. Interestingly, the mutants demonstrated increased sensitivity to cell wall stress-causing agents. Finally, screening of histone H3 N-terminal tail truncation mutants revealed that the tail truncations exhibit general sensitivity to acetic acid stress. Some of these N-terminal tail truncation mutants viz., H3 [del 1-24], H3 [del 1-28], H3 [del 9-24], and H3 [del 25-36] are also sensitive to cell wall stress agents such as Congo red and caffeine suggesting that their enhanced acetic acid sensitivity may be due to cell wall stress induced by acetic acid.
Collapse
Affiliation(s)
- Nitu Saha
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India
| | - Swati Swagatika
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
7
|
Kim S, Kim SH, Kweon E, Kim J. Apoptotic Factors, CaNma111 and CaYbh3, Function in Candida albicans Filamentation by Regulating the Hyphal Suppressors, Nrg1 and Tup1. J Microbiol 2023; 61:403-409. [PMID: 36972003 DOI: 10.1007/s12275-023-00034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023]
Abstract
The morphological switch from the yeast to hyphal form is a key virulence attribute of the opportunistic fungal pathogen, Candida albicans. Our recent report showed that deletion of the newly identified apoptotic factor, CaNma111 or CaYbh3, leads to hyperfilamentation and increased virulence in a mouse infection model. CaNma111 and CaYbh3 are homologs of the pro-apoptotic protease, HtrA2/Omi, and BH3-only protein, respectively. In this study, we examined the effects of CaNMA111 and CaYBH3 deletion mutations on the expression levels of the hypha-specific transcription factors, Cph1 (a hyphal activator), Nrg1 (a hyphal repressor), and Tup1 (a hyphal repressor). The protein levels of Nrg1 were decreased in Caybh3/Caybh3 cells while those of Tup1 were decreased in both Canma111/Canma111 and Caybh3/Caybh3 cells. These effects on Nrg1 and Tup1 proteins were retained during serum-induced filamentation and appear to explain the hyperfilamentation phenotypes of the CaNMA111 and CaYBH3 deletion mutants. Treatment with the apoptosis-inducing dose of farnesol decreased the Nrg1 protein levels in the wild-type strain and more evidently in Canma111/Canma111 and Caybh3/Caybh3 mutant strains. Together, our results suggest that CaNma111 and CaYbh3 are key regulators of Nrg1 and Tup1 protein levels in C. albicans.
Collapse
Affiliation(s)
- Suyoung Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Se Hyeon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eunjoong Kweon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
8
|
Bonomelli B, Busti S, Martegani E, Colombo S. Active Ras2 in mitochondria promotes regulated cell death in a cAMP/PKA pathway-dependent manner in budding yeast. FEBS Lett 2023; 597:298-308. [PMID: 36527174 DOI: 10.1002/1873-3468.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Previously, we showed that an aberrant accumulation of activated Ras in mitochondria correlates with an increase in apoptosis. In this article, we show that lack of trehalose-6P-synthase, known to trigger apoptosis in Saccharomyces cerevisiae, induces localization of active Ras proteins in mitochondria, confirming the above-mentioned correlation. Next, by characterizing the ras1Δ and ras2Δ mutants, we show that active Ras2 proteins, which accumulate in the mitochondria following addition of acetic acid (a pro-apoptotic stimulus), are likely the GTPases involved in regulated cell death, while active Ras1 proteins, constitutively localized in mitochondria, might be involved in a pro-survival molecular machinery. Finally, by characterizing the gpa2Δ and cyr1Δ mutants, in which the cAMP/PKA pathway is compromised, we show that active mitochondrial Ras proteins promote apoptosis through the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Barbara Bonomelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
9
|
Gebreegziabher Amare M, Westrick NM, Keller NP, Kabbage M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death. Fungal Genet Biol 2022; 162:103730. [PMID: 35998750 DOI: 10.1016/j.fgb.2022.103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/07/2022] [Indexed: 11/30/2022]
Abstract
Programmed cell death (PCD) is a tightly regulated process which is required for survival and proper development of all cellular life. Despite this ubiquity, the precise molecular underpinnings of PCD have been primarily characterized in animals. Attempts to expand our understanding of this process in fungi have proven difficult as core regulators of animal PCD are apparently absent in fungal genomes, with the notable exception of a class of proteins referred to as inhibitors of apoptosis proteins (IAPs). These proteins are characterized by the conservation of a distinct Baculovirus IAP Repeat (BIR) domain and animal IAPs are known to regulate a number of processes, including cellular death, development, organogenesis, immune system maturation, host-pathogen interactions and more. IAP homologs are broadly conserved throughout the fungal kingdom, but our understanding of both their mechanism and role in fungal development/virulence is still unclear. In this review, we provide a broad and comparative overview of IAP function across taxa, with a particular focus on fungal processes regulated by IAPs. Furthermore, their putative modes of action in the absence of canonical interactors will be discussed.
Collapse
Affiliation(s)
| | - Nathaniel M Westrick
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
10
|
Roles of the pro-apoptotic factors CaNma111 and CaYbh3 in apoptosis and virulence of Candida albicans. Sci Rep 2022; 12:7574. [PMID: 35534671 PMCID: PMC9085738 DOI: 10.1038/s41598-022-11682-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Candida albicans, a commensal and opportunistic pathogen, undergoes apoptosis in response to various stimuli, including hydrogen peroxide, acetic acid, and antifungal agents. Apoptotic processes are highly conserved among mammals, plants, and fungi, but little is known about the apoptosis-regulating factors in C. albicans. In this study, C. albicans homologs of the putative apoptosis factors were identified by database screening followed by overexpression analysis. CaNma111, a homolog of the pro-apoptotic mammalian HtrA2/Omi, and CaYbh3, a homolog of BH3-only protein, yielded increased apoptotic phenotypes upon overexpression. We showed that CaNma111 and CaYbh3 functions as pro-apoptotic regulators by examining intracellular ROS accumulation, DNA end breaks (TUNEL assay), and cell survival in Canma111/Canma111 and Caybh3/Caybh3 deletion strains. We found that the protein level of CaBir1, an inhibitor-of-apoptosis (IAP) protein, was down-regulated by CaNma111. Interestingly, the Canma111/Canma111 and Caybh3/Caybh3 deletion strains showed hyperfilamentation phenotypes and increased virulence in a mouse infection model. Together, our results suggest that CaNma111 and CaYbh3 play key regulatory roles in the apoptosis and virulence of C. albicans.
Collapse
|
11
|
From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi (Basel) 2021; 7:jof7121016. [PMID: 34946998 PMCID: PMC8704869 DOI: 10.3390/jof7121016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Proteases are involved in a broad range of physiological processes, including host invasion by fungal pathogens, and enzymatic inhibition is a key molecular mechanism controlling proteolytic activity. Importantly, inhibitors from natural or synthetic sources have demonstrated applications in biochemistry, biotechnology, and biomedicine. However, the need to discover new reservoirs of these inhibitory molecules with improved efficacy and target range has been underscored by recent protease characterization related to infection and antimicrobial resistance. In this regard, naturally-sourced inhibitors show promise for application in diverse biological systems due to high stability at physiological conditions and low cytotoxicity. Moreover, natural sources (e.g., plants, invertebrates, and microbes) provide a large reservoir of undiscovered and/or uncharacterized bioactive molecules involved in host defense against predators and pathogens. In this Review, we highlight discoveries of protease inhibitors from environmental sources, propose new opportunities for assessment of antifungal activity, and discuss novel applications to combat biomedically-relevant fungal diseases with in vivo and clinical purpose.
Collapse
|
12
|
Jeong JH, Kim SH, Kim J. CaBir1 functions as an inhibitor-of-apoptosis and affects caspase-like activitiy in Candida albicans. Fungal Genet Biol 2021; 154:103600. [PMID: 34197920 DOI: 10.1016/j.fgb.2021.103600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
CaMca1 is the only metacaspase in Candida albicans, which shows structural homology to the mammalian caspases. CaMca1 consists of the caspase domain, the P20 and P10 regions, and the conserved catalytic histidine-cysteine dyad that is required for executing apoptosis in C. albicans. However, little is known about the proteolytic processing of CaMca1 or its activation under apoptosis-inducing conditions. To understand the regulation of this process, we characterized CaBir1 which is the single IAP (inhibitor-of-apoptosis protein) in C. albicans. IAPs are a family of proteins whose members all harbor a BIR (baculovirus IAP repeat) domain and negatively regulate apoptosis by inhibiting caspases. We found that the Cabir1/Cabir1 deletion mutant exhibited increased apoptotic phenotypes, such as ROS accumulation, nuclear segmentation, and cell survival, under apoptosis-inducing conditions. Examination of CaMca1 cleavage patterns in response to various apoptotic stresses revealed that these cleavages were stress-specific and dependent on the catalytic histidine-cysteine residues of CaMca1. The Cabir1/Cabir1 mutation was not associated with altered CaMca1 processing with or without apoptotic stimuli, but the Cabir1/Cabir1 mutant exhibited significantly increased caspase-like activities. These results suggest that CaBir1 acts as an apoptosis inhibitor by regulating caspase-like activity, but not CaMca1 processing.
Collapse
Affiliation(s)
- Jeong-Hoon Jeong
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Se Hyeon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
13
|
Zimmermann A, Tadic J, Kainz K, Hofer SJ, Bauer MA, Carmona-Gutierrez D, Madeo F. Transcriptional and epigenetic control of regulated cell death in yeast. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:55-82. [PMID: 32334817 DOI: 10.1016/bs.ircmb.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unicellular organisms like yeast can undergo controlled demise in a manner that is partly reminiscent of mammalian cell death. This is true at the levels of both mechanistic and functional conservation. Yeast offers the combination of unparalleled genetic amenability and a comparatively simple biology to understand both the regulation and evolution of cell death. In this minireview, we address the capacity of the nucleus as a regulatory hub during yeast regulated cell death (RCD), which is becoming an increasingly central question in yeast RCD research. In particular, we explore and critically discuss the available data on stressors and signals that specifically impinge on the nucleus. Moreover, we also analyze the current knowledge on nuclear factors as well as on transcriptional control and epigenetic events that orchestrate yeast RCD. Altogether we conclude that the functional significance of the nucleus for yeast RCD in undisputable, but that further exploration beyond correlative work is necessary to disentangle the role of nuclear events in the regulatory network.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Jelena Tadic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Sebastian J Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria A Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
14
|
Proteomics insights into the responses of Saccharomyces cerevisiae during mixed-culture alcoholic fermentation with Lachancea thermotolerans. FEMS Microbiol Ecol 2019; 95:5550729. [DOI: 10.1093/femsec/fiz126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 08/14/2019] [Indexed: 01/25/2023] Open
Abstract
ABSTRACT
The response of Saccharomyces cerevisiae to cocultivation with Lachancea thermotolerans during alcoholic fermentations has been investigated using tandem mass tag (TMT)-based proteomics. At two key time-points, S. cerevisiae was sorted from single S. cerevisiae fermentations and from mixed fermentations using flow cytometry sorting. Results showed that the purity of sorted S. cerevisiae was above 96% throughout the whole mixed-culture fermentation, thereby validating our sorting methodology. By comparing protein expression of S. cerevisiae with and without L. thermotolerans, 26 proteins were identified as significantly regulated proteins at the early death phase (T1), and 32 significantly regulated proteins were identified at the late death phase (T2) of L. thermotolerans in mixed cultures. At T1, proteins involved in endocytosis, increasing nutrient availability, cell rescue and resistance to stresses were upregulated, and proteins involved in proline synthesis and apoptosis were downregulated. At T2, proteins involved in protein synthesis and stress responses were up- and downregulated, respectively. These data indicate that S. cerevisiae was stressed by the presence of L. thermotolerans at T1, using both defensive and fighting strategies to keep itself in a dominant position, and that it at T2 was relieved from stress, perhaps increasing its enzymatic machinery to ensure better survival.
Collapse
|
15
|
Vishvakarma R, Mishra A. Protective effect of a protease inhibitor from Agaricus bisporus on Saccharomyces cerevisiae cells against oxidative stress. Prep Biochem Biotechnol 2019; 49:244-254. [PMID: 30821200 DOI: 10.1080/10826068.2018.1536992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protease inhibitors are known to resist damage to host organisms against external threats, hence form a part of their defense system. This property of protease inhibitors was studied on protecting oxidatively stressed Saccharomyces cerevisiae yeast cells. The protease inhibitor was extracted from Agaricus bisporus, an edible mushroom. The inhibitor showed the presence of antioxidant activity as the purified inhibitor fraction gave an IC50 value of 45.13 ± 0.88 µg/mL and 33.30 ± 1.5 µg/mL when checked, respectively, by 2, 2-diphenyl-1-picrylhydrazyl, DPPH and 2, 2'-azo-bis(3-ethylbenzthiazoline-6- sulfonic acid), ABTS•+ scavenging activity. The yeast cells' survival rate (%), was determined through 3-(4, 5-dimethylthiazol-2-yl) - 2, 5-diphenyltetrazolium bromide, MTT assay, and it was found that in the presence of 2 mM H2O2 cell survival decreased to 26.33%, whereas when the experiment was conducted in the presence of protease inhibitor and 2 mM H2O2 cell survival percentage rose to 74%. The protease inhibitor's effect on the oxidatively stressed yeast cells was further studied by using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Confocal Microscopy to understand the morphological changes. The viable and non-viable cell populations were quantified using Fluorescence Assorted Cell Sorting (FACS) using propidium iodide, PI, 4', 6-diamidino-2-phenylindole, DAPI and 2', 7'-dichlorofluorescein, DCF dyes.
Collapse
Affiliation(s)
- Reena Vishvakarma
- a School of Biochemical Engineering , Indian Institute of Technology Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Abha Mishra
- a School of Biochemical Engineering , Indian Institute of Technology Banaras Hindu University , Varanasi , Uttar Pradesh , India
| |
Collapse
|
16
|
Ancestral State Reconstruction of the Apoptosis Machinery in the Common Ancestor of Eukaryotes. G3-GENES GENOMES GENETICS 2018; 8:2121-2134. [PMID: 29703784 PMCID: PMC5982838 DOI: 10.1534/g3.118.200295] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptotic cell death is a type of eukaryotic cell death. In animals, it regulates development, is involved in cancer suppression, and causes cell death during pathological aging of neuronal cells in neurodegenerative diseases such as Alzheimer's. Mitochondrial apoptotic-like cell death, a form of primordial apoptosis, also occurs in unicellular organisms. Here, we ask the question why the apoptosis machinery has been acquired and maintained in unicellular organisms and attempt to answer it by performing ancestral state reconstruction. We found indications of an ancient evolutionary arms race between protomitochondria and host cells, leading to the establishment of the currently existing apoptotic pathways. According to this reconstruction, the ancestral protomitochondrial apoptosis machinery contained both caspases and metacaspases, four types of apoptosis induction factors (AIFs), both fungal and animal OMI/HTR proteases, and various apoptotic DNases. This leads to the prediction that in extant unicellular eukaryotes, the apoptotic factors are involved in mitochondrial respiration and their activity is needed exclusively in aerobic conditions. We test this prediction experimentally using yeast and find that a loss of the main apoptotic factors is beneficial under anaerobic conditions yet deleterious under aerobic conditions in the absence of lethal stimuli. We also point out potential medical implications of these findings.
Collapse
|
17
|
Regulated Cell Death as a Therapeutic Target for Novel Antifungal Peptides and Biologics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5473817. [PMID: 29854086 PMCID: PMC5944218 DOI: 10.1155/2018/5473817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
The rise of microbial pathogens refractory to conventional antibiotics represents one of the most urgent and global public health concerns for the 21st century. Emergence of Candida auris isolates and the persistence of invasive mold infections that resist existing treatment and cause severe illness has underscored the threat of drug-resistant fungal infections. To meet these growing challenges, mechanistically novel agents and strategies are needed that surpass the conventional fungistatic or fungicidal drug actions. Host defense peptides have long been misunderstood as indiscriminant membrane detergents. However, evidence gathered over the past decade clearly points to their sophisticated and selective mechanisms of action, including exploiting regulated cell death pathways of their target pathogens. Such peptides perturb transmembrane potential and mitochondrial energetics, inducing phosphatidylserine accessibility and metacaspase activation in fungi. These mechanisms are often multimodal, affording target pathogens fewer resistance options as compared to traditional small molecule drugs. Here, recent advances in the field are examined regarding regulated cell death subroutines as potential therapeutic targets for innovative anti-infective peptides against pathogenic fungi. Furthering knowledge of protective host defense peptide interactions with target pathogens is key to advancing and applying novel prophylactic and therapeutic countermeasures to fungal resistance and pathogenesis.
Collapse
|
18
|
Zhu S, Luo F, Li J, Zhu B, Wang GX. Biocompatibility assessment of single-walled carbon nanotubes using Saccharomyces cerevisiae as a model organism. J Nanobiotechnology 2018; 16:44. [PMID: 29695232 PMCID: PMC5916727 DOI: 10.1186/s12951-018-0370-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Single-walled carbon nanotubes (SWCNTs) have many potential applications in various fields. Especially, the unique physicochemical properties make them as the prime candidates for applications in biomedical fields. However, biocompatibility of SWCNTs has been a major concern for their applications. In the study, biocompatibility of oxidized SWCNTs (O-SWCNTs) was assessed using Saccharomyces cerevisiae (S. cerevisiae) as a model organism. RESULTS Cell proliferation and viability were significantly changed after exposure to O-SWCNTs (188.2 and 376.4 mg/L) for 24 h. O-SWCNTs were internalized in cells and distributed in cytoplasm, vesicles, lysosomes and cell nucleus. The average O-SWCNTs contents in S. cerevisiae were ranged from 0.18 to 4.82 mg/g during the exposure from 0 to 24 h, and the maximum content was reached at 18 h after exposure. Both penetration and endocytosis were involved in the internalization of O-SWCNTs in S. cerevisiae, and endocytosis was the main pathway. Cellular structures and morphology were changed after exposure to O-SWCNTs, such as undulating appearance at the membrane, shrinking of the cytosol, increased numbers of lipid droplets and disruption of vacuoles. ROS and antioxidant enzymes activities were observably changed following exposure. For the treatment at 376.4 mg/L, 20.8% of the total cells was undergone apoptosis. Decrease of mitochondrial transmembrane potential and leakage of cytochrome c from mitochondria were observed after exposure. Moreover, expression levels of apoptosis-related genes were significantly increased. CONCLUSIONS O-SWCNTs can internalize in S. cerevisiae cells via direct penetration and endocytosis, and distribute in cytoplasm, vesicles, lysosomes and cell nucleus. Besides, O-SWCNTs (188.2 and 376.4 mg/L) can induce apoptosis in S. cerevisiae cells, and oxidative stress is involved in activation of the mitochondria-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Song Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Jian Li
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, 712100 Shaanxi China
| |
Collapse
|
19
|
Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3074769. [PMID: 29636840 PMCID: PMC5831759 DOI: 10.1155/2018/3074769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.
Collapse
|
20
|
Carmona-Gutierrez D, Bauer MA, Zimmermann A, Aguilera A, Austriaco N, Ayscough K, Balzan R, Bar-Nun S, Barrientos A, Belenky P, Blondel M, Braun RJ, Breitenbach M, Burhans WC, Büttner S, Cavalieri D, Chang M, Cooper KF, Côrte-Real M, Costa V, Cullin C, Dawes I, Dengjel J, Dickman MB, Eisenberg T, Fahrenkrog B, Fasel N, Fröhlich KU, Gargouri A, Giannattasio S, Goffrini P, Gourlay CW, Grant CM, Greenwood MT, Guaragnella N, Heger T, Heinisch J, Herker E, Herrmann JM, Hofer S, Jiménez-Ruiz A, Jungwirth H, Kainz K, Kontoyiannis DP, Ludovico P, Manon S, Martegani E, Mazzoni C, Megeney LA, Meisinger C, Nielsen J, Nyström T, Osiewacz HD, Outeiro TF, Park HO, Pendl T, Petranovic D, Picot S, Polčic P, Powers T, Ramsdale M, Rinnerthaler M, Rockenfeller P, Ruckenstuhl C, Schaffrath R, Segovia M, Severin FF, Sharon A, Sigrist SJ, Sommer-Ruck C, Sousa MJ, Thevelein JM, Thevissen K, Titorenko V, Toledano MB, Tuite M, Vögtle FN, Westermann B, Winderickx J, Wissing S, Wölfl S, Zhang ZJ, Zhao RY, Zhou B, Galluzzi L, Kroemer G, Madeo F. Guidelines and recommendations on yeast cell death nomenclature. MICROBIAL CELL (GRAZ, AUSTRIA) 2018; 5:4-31. [PMID: 29354647 PMCID: PMC5772036 DOI: 10.15698/mic2018.01.607] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/29/2017] [Indexed: 12/18/2022]
Abstract
Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the defi-nition of accidental, regulated, and programmed forms of cell death in yeast based on a series of morphological and biochemical criteria. Specifically, we provide consensus guidelines on the differ-ential definition of terms including apoptosis, regulated necrosis, and autophagic cell death, as we refer to additional cell death rou-tines that are relevant for the biology of (at least some species of) yeast. As this area of investigation advances rapidly, changes and extensions to this set of recommendations will be implemented in the years to come. Nonetheless, we strongly encourage the au-thors, reviewers and editors of scientific articles to adopt these collective standards in order to establish an accurate framework for yeast cell death research and, ultimately, to accelerate the pro-gress of this vibrant field of research.
Collapse
Affiliation(s)
| | - Maria Anna Bauer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andreas Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Andrés Aguilera
- Centro Andaluz de Biología, Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla, Sevilla, Spain
| | | | - Kathryn Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Rena Balzan
- Department of Physiology and Biochemistry, University of Malta, Msida, Malta
| | - Shoshana Bar-Nun
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Antonio Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, USA
- Department of Neurology, University of Miami Miller School of Medi-cine, Miami, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, USA
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078, Université de Bretagne Occidentale, Etablissement Français du Sang Bretagne, CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Ralf J. Braun
- Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - William C. Burhans
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sabrina Büttner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katrina F. Cooper
- Dept. Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, USA
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | | | - Ian Dawes
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, Texas, USA
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Birthe Fahrenkrog
- Laboratory Biology of the Nucleus, Institute for Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Kai-Uwe Fröhlich
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Center de Biotechnologie de Sfax, Sfax, Tunisia
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Paola Goffrini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Campbell W. Gourlay
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Chris M. Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College, Kingston, Ontario, Canada
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | | | - Jürgen Heinisch
- Department of Biology and Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Sebastian Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | | | - Helmut Jungwirth
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Katharina Kainz
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dimitrios P. Kontoyiannis
- Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Minho, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS & Université de Bordeaux, Bordeaux, France
| | - Enzo Martegani
- Department of Biotechnolgy and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Cristina Mazzoni
- Instituto Pasteur-Fondazione Cenci Bolognetti - Department of Biology and Biotechnology "C. Darwin", La Sapienza University of Rome, Rome, Italy
| | - Lynn A. Megeney
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Department of Medicine, Division of Cardiology, University of Ottawa, Ottawa, Canada
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heinz D. Osiewacz
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, United Kingdom
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Hay-Oak Park
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Tobias Pendl
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Stephane Picot
- Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-University Lyon, Lyon, France
- Institut of Parasitology and Medical Mycology, Hospices Civils de Lyon, Lyon, France
| | - Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis, Davis, California, USA
| | - Mark Ramsdale
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Mark Rinnerthaler
- Department of Cell Biology and Physiology, Division of Genetics, University of Salzburg, Salzburg, Austria
| | - Patrick Rockenfeller
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, Kassel, Germany
| | - Maria Segovia
- Department of Ecology, Faculty of Sciences, University of Malaga, Malaga, Spain
| | - Fedor F. Severin
- A.N. Belozersky Institute of physico-chemical biology, Moscow State University, Moscow, Russia
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Cornelia Sommer-Ruck
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Maria João Sousa
- Center of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven-Heverlee, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel B. Toledano
- Institute for Integrative Biology of the Cell (I2BC), SBIGEM, CEA-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mick Tuite
- Kent Fungal Group, School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee, Belgium
| | | | - Stefan Wölfl
- Institute of Pharmacy and Molecu-lar Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Zhaojie J. Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, USA
| | - Bing Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France
- INSERM, U1138, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
21
|
Nabili M, Moazeni M, Hedayati MT, Aryamlo P, Abdollahi Gohar A, Madani SM, Fathi H. Glabridin induces overexpression of two major apoptotic genes, MCA1 and NUC1 , in Candida albicans. J Glob Antimicrob Resist 2017; 11:52-56. [DOI: 10.1016/j.jgar.2017.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 07/05/2017] [Accepted: 08/09/2017] [Indexed: 02/01/2023] Open
|
22
|
Gonçalves AP, Heller J, Daskalov A, Videira A, Glass NL. Regulated Forms of Cell Death in Fungi. Front Microbiol 2017; 8:1837. [PMID: 28983298 PMCID: PMC5613156 DOI: 10.3389/fmicb.2017.01837] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022] Open
Abstract
Cell death occurs in all domains of life. While some cells die in an uncontrolled way due to exposure to external cues, other cells die in a regulated manner as part of a genetically encoded developmental program. Like other eukaryotic species, fungi undergo programmed cell death (PCD) in response to various triggers. For example, exposure to external stress conditions can activate PCD pathways in fungi. Calcium redistribution between the extracellular space, the cytoplasm and intracellular storage organelles appears to be pivotal for this kind of cell death. PCD is also part of the fungal life cycle, in which it occurs during sexual and asexual reproduction, aging, and as part of development associated with infection in phytopathogenic fungi. Additionally, a fungal non-self-recognition mechanism termed heterokaryon incompatibility (HI) also involves PCD. Some of the molecular players mediating PCD during HI show remarkable similarities to major constituents involved in innate immunity in metazoans and plants. In this review we discuss recent research on fungal PCD mechanisms in comparison to more characterized mechanisms in metazoans. We highlight the role of PCD in fungi in response to exogenic compounds, fungal development and non-self-recognition processes and discuss identified intracellular signaling pathways and molecules that regulate fungal PCD.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Jens Heller
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Asen Daskalov
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| | - Arnaldo Videira
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do PortoPorto, Portugal.,I3S - Instituto de Investigação e Inovação em SaúdePorto, Portugal
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, BerkeleyBerkeley, CA, United States
| |
Collapse
|
23
|
Zhu S, Luo F, Zhu B, Wang GX. Mitochondrial impairment and oxidative stress mediated apoptosis induced by α-Fe 2O 3 nanoparticles in Saccharomyces cerevisiae. Toxicol Res (Camb) 2017; 6:719-728. [PMID: 30090539 PMCID: PMC6062213 DOI: 10.1039/c7tx00123a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022] Open
Abstract
In this study, the potential toxicity of α-Fe2O3-NPs was investigated using a unicellular eukaryote model, Saccharomyces cerevisiae (S. cerevisiae). The results showed that cell viability and proliferation were significantly decreased (p < 0.01) following exposure to 100-600 mg L-1 for 24 h. The IC50 and LC50 values were 352 and 541 mg L-1, respectively. Toxic effects were attributed to α-Fe2O3-NPs rather than iron ions released from the NPs. α-Fe2O3-NPs were accumulated in the vacuole and cytoplasm, and the maximum accumulation (3.95 mg g-1) was reached at 12 h. About 48.6% of cells underwent late apoptosis/necrosis at 600 mg L-1, and the mitochondrial transmembrane potential was significantly decreased (p < 0.01) at 50-600 mg L-1. Biomarkers of oxidative stress [reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] and the expression of apoptosis-related genes (Yca1, Nma111, Nuc1 and SOD) were significantly changed after exposure. These combined results indicated that α-Fe2O3-NPs were rapidly internalized in S. cerevisiae, and the accumulated NPs induced cell apoptosis mediated by mitochondrial impairment and oxidative stress.
Collapse
Affiliation(s)
- Song Zhu
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Fei Luo
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Bin Zhu
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Gao-Xue Wang
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| |
Collapse
|
24
|
Zhu S, Luo F, Zhu B, Wang GX. Toxicological effects of graphene oxide on Saccharomyces cerevisiae. Toxicol Res (Camb) 2017; 6:535-543. [PMID: 30090522 PMCID: PMC6060721 DOI: 10.1039/c7tx00103g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022] Open
Abstract
Using Saccharomyces cerevisiae as an experimental model, the potential toxicity of graphene oxide (GO) was evaluated following exposure to 0-600 mg L-1 for 24 h. The results showed that cell proliferation was observably inhibited and the IC50 value was 352.704 mg L-1. Mortality showed a concentration-dependent increase, and was 19.3% at 600 mg L-1. A small number of cells were deformed and shrunken after exposure. The percentage of late apoptosis/necrosis showed a significant increase (p < 0.01) at 600 mg L-1 (19.16%) compared with the control (1.14%). The mitochondrial transmembrane potential was significantly decreased (p < 0.01) at 50-600 mg L-1, indicating that the apoptosis was related to mitochondrial impairment. Moreover, ROS was observably increased (p < 0.01) at 200, 400 and 600 mg L-1. The expressions of apoptosis-related genes (SOD, Yca1, Nma111 and Nuc1) were significantly changed. The results presented so far indicate that GO has the potential to cause adverse effects on organisms when released into the environment.
Collapse
Affiliation(s)
- Song Zhu
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Fei Luo
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Bin Zhu
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| | - Gao-Xue Wang
- College of Animal Science and Technology , Northwest A&F University , Yangling 712100 , China . ; ; ; Tel: +86 29 87092102
| |
Collapse
|
25
|
Moazeni M, Hedayati MT, Nabili M, Mousavi SJ, Abdollahi Gohar A, Gholami S. Glabridin triggers over-expression of MCA1 and NUC1 genes in Candida glabrata: Is it an apoptosis inducer? J Mycol Med 2017; 27:369-375. [PMID: 28595940 DOI: 10.1016/j.mycmed.2017.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 12/23/2022]
Abstract
The growing trends of emergence of antifungal-resistant Candida strains has recently been inspired the researchers to design new antifungal agents with novel mechanisms of action. Glabridin is an originally natural substrate with multiple biological activities which propose it as a novel anticancer, antimicrobial and antifungal agent. In the present study, the antifungal effect of glabridin against Candida glabrata isolates and its possible mechanism of action were investigated. The minimum inhibitory concentrations (MIC) for glabridin against fluconazole-resistant and fluconazole-SDD strains of C. glabrata were investigated using the Clinical and laboratory standards institute document M27-A3 and M27-S4 as a guideline. Possible alternations in the expression of two critical genes involved in yeast apoptosis, MCA1 and NUC1, were assayed by real-time PCR. DNA damage and chromatin condensation was investigated using DAPI staining. Although glabridin led to a significant decrease in MICs against fluconazole-resistant C. glabrata (MIC50: 8μg/mL), no significant decreased was shown for fluconazole-SDD strains. Therefore, a distinct azole-independent mechanism could be responsible for the inhibitory activity of glabridin. Overexpression of MCA1 and NUC1 genes in addition to DNA damage and chromatin condensation suggesting the involvement of apoptosis signaling in C. glabrata stains exposed to glabridin. This study suggests that glabridin might be considered as a novel naturally originated agent to fight against fluconazole-resistance C. glabrata strains.
Collapse
Affiliation(s)
- M Moazeni
- Invasive fungi research centre, Mazandaran university of medical sciences, Sari, Iran; Department of medical mycology and parasitology, school of medicine, Mazandaran university of medical sciences, 18th Km, Khazar abad road, 4847191971 Sari, Iran.
| | - M T Hedayati
- Invasive fungi research centre, Mazandaran university of medical sciences, Sari, Iran; Department of medical mycology and parasitology, school of medicine, Mazandaran university of medical sciences, 18th Km, Khazar abad road, 4847191971 Sari, Iran
| | - M Nabili
- Department of medical laboratory sciences, Sari branch, Islamic Azad university, Sari, Iran
| | - S J Mousavi
- Department of community medicine, Imam Khomeini hospital, Mazandaran university of medical sciences, Sari, Iran
| | - A Abdollahi Gohar
- Department of medical laboratory sciences, Sari branch, Islamic Azad university, Sari, Iran
| | - S Gholami
- Invasive fungi research centre, Mazandaran university of medical sciences, Sari, Iran; Department of medical mycology and parasitology, school of medicine, Mazandaran university of medical sciences, 18th Km, Khazar abad road, 4847191971 Sari, Iran
| |
Collapse
|
26
|
Caspase dependent apoptosis induced in yeast cells by nanosecond pulsed electric fields. Bioelectrochemistry 2017; 115:19-25. [DOI: 10.1016/j.bioelechem.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/18/2017] [Accepted: 01/31/2017] [Indexed: 02/03/2023]
|
27
|
Ren G, Ma A, Liu W, Zhuang X, Zhuang G. Bacterial signals N-acyl homoserine lactones induce the changes of morphology and ethanol tolerance in Saccharomyces cerevisiae. AMB Express 2016; 6:117. [PMID: 27873164 PMCID: PMC5118231 DOI: 10.1186/s13568-016-0292-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023] Open
Abstract
The bacterial quorum sensing signals N-acyl homoserine lactone (AHL) signals are able to regulate a diverse array of physiological activities, such as symbiosis, virulence and biofilm formation, depending on population density. Recently, it has been discovered that the bacterial quorum sensing (QS) signal molecules can induce extensive response of higher eukaryotes including plants and mammalian cells. However, little is known about the response of fungi reacting to these bacterial signals. Here we showed that Saccharomyces cerevisiae, as an ancient eukaryote and widely used for alcoholic beverage and bioethanol production, exposed to short-chain 3-OC6-HSL and long-chain C12-HSL appeared obvious changes in morphology and ethanol tolerance. AHLs could increase the frequency of cells with bipolar and multipolar buds, and these changes did not present distinct differences when induced by different types (3-OC6-HSL and C12-HSL) and varied concentrations (200 nM and 2 μM) of AHLs. Further investigation by flow cytometer displayed that the cells untreated by AHLs reduced cell size (decreased FSC) and enhanced intracellular density (increased in SSC), compared with the AHLs-induced cells after incubation 6 h. In addition, the long-chain C12-HSL could slightly increase the ethanol tolerance of S. cerevisiae while the short-chain HSL obviously decreased it. Our study would be valuable to further research on the interaction between prokaryotic and eukaryotic microbes, and be reference for industrial production of bioethanol.
Collapse
|
28
|
Cell-cycle involvement in autophagy and apoptosis in yeast. Mech Ageing Dev 2016; 161:211-224. [PMID: 27450768 DOI: 10.1016/j.mad.2016.07.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/16/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Regulation of the cell cycle and apoptosis are two eukaryotic processes required to ensure maintenance of genomic integrity, especially in response to DNA damage. The ease with which yeast, amongst other eukaryotes, can switch from cellular proliferation to cell death may be the result of a common set of biochemical factors which play dual roles depending on the cell's physiological state. A wide variety of homologues are shared between different yeasts and metazoans and this conservation confirms their importance. This review gives an overview of key molecular players involved in yeast cell-cycle regulation, and those involved in mechanisms which are induced by cell-cycle dysregulation. One such mechanism is autophagy which, depending on the severity and type of DNA damage, may either contribute to the cell's survival or death. Cell-cycle dysregulation due to checkpoint deficiency leads to mitotic catastrophe which in turn leads to programmed cell death. Molecular players implicated in the yeast apoptotic pathway were shown to play important roles in the cell cycle. These include the metacaspase Yca1p, the caspase-like protein Esp1p, the cohesin subunit Mcd1p, as well as the inhibitor of apoptosis protein Bir1p. The roles of these molecular players are discussed.
Collapse
|
29
|
Eisenberg-Bord M, Schuldiner M. Ground control to major TOM: mitochondria-nucleus communication. FEBS J 2016; 284:196-210. [PMID: 27283924 DOI: 10.1111/febs.13778] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/23/2016] [Accepted: 06/08/2016] [Indexed: 01/13/2023]
Abstract
Mitochondria have crucial functions in the cell, including ATP generation, iron-sulfur cluster biogenesis, nucleotide biosynthesis, and amino acid metabolism. All of these functions require tight regulation on mitochondrial activity and homeostasis. As mitochondria biogenesis is controlled by the nucleus and almost all mitochondrial proteins are encoded by nuclear genes, a tight communication network between mitochondria and the nucleus has evolved, which includes signaling cascades, proteins which are dual-localized to the two compartments, and sensing of mitochondrial products by nuclear proteins. All of these enable a crosstalk between mitochondria and the nucleus that allows the 'ground control' to get information on mitochondria's status. Such information facilitates the creation of a cellular balance of mitochondrial status with energetic needs. This communication also allows a transcriptional response in case mitochondrial function is impaired aimed to restore mitochondrial homeostasis. As mitochondrial dysfunction is related to a growing number of genetic diseases as well as neurodegenerative conditions and aging, elucidating the mechanisms governing the mitochondrial/nuclear communication should progress a better understanding of mitochondrial dysfunctions.
Collapse
Affiliation(s)
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
30
|
Falcone C, Mazzoni C. External and internal triggers of cell death in yeast. Cell Mol Life Sci 2016; 73:2237-50. [PMID: 27048816 PMCID: PMC4887522 DOI: 10.1007/s00018-016-2197-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
In recent years, yeast was confirmed as a useful eukaryotic model system to decipher the complex mechanisms and networks occurring in higher eukaryotes, particularly in mammalian cells, in physiological as well in pathological conditions. This article focuses attention on the contribution of yeast in the study of a very complex scenario, because of the number and interconnection of pathways, represented by cell death. Yeast, although it is a unicellular organism, possesses the basal machinery of different kinds of cell death occurring in higher eukaryotes, i.e., apoptosis, regulated necrosis and autophagy. Here we report the current knowledge concerning the yeast orthologs of main mammalian cell death regulators and executors, the role of organelles and compartments, and the cellular phenotypes observed in the different forms of cell death in response to external and internal triggers. Thanks to the ease of genetic manipulation of this microorganism, yeast strains expressing human genes that promote or counteract cell death, onset of tumors and neurodegenerative diseases have been constructed. The effects on yeast cells of some of these genes are also presented.
Collapse
Affiliation(s)
- Claudio Falcone
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cristina Mazzoni
- Pasteur Institute-Cenci Bolognetti Foundation; Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
31
|
Abstract
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.
Collapse
|
32
|
Fahrenkrog B. Histone modifications as regulators of life and death in Saccharomyces cerevisiae. MICROBIAL CELL 2015; 3:1-13. [PMID: 28357312 PMCID: PMC5354586 DOI: 10.15698/mic2016.01.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis or programmed cell death is an integrated, genetically controlled
suicide program that not only regulates tissue homeostasis of multicellular
organisms, but also the fate of damaged and aged cells of lower eukaryotes, such
as the yeast Saccharomyces cerevisiae. Recent years have
revealed key apoptosis regulatory proteins in yeast that play similar roles in
mammalian cells. Apoptosis is a process largely defined by characteristic
structural rearrangements in the dying cell that include chromatin condensation
and DNA fragmentation. The mechanism by which chromosomes restructure during
apoptosis is still poorly understood, but it is becoming increasingly clear that
altered epigenetic histone modifications are fundamental parameters that
influence the chromatin state and the nuclear rearrangements within apoptotic
cells. The present review will highlight recent work on the epigenetic
regulation of programmed cell death in budding yeast.
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Rue Profs. Jeener et Brachet 12; 6041 Charleroi, Belgium
| |
Collapse
|
33
|
Richard VR, Beach A, Piano A, Leonov A, Feldman R, Burstein MT, Kyryakov P, Gomez-Perez A, Arlia-Ciommo A, Baptista S, Campbell C, Goncharov D, Pannu S, Patrinos D, Sadri B, Svistkova V, Victor A, Titorenko VI. Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle 2015; 13:3707-26. [PMID: 25483081 DOI: 10.4161/15384101.2014.965003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA) elicits "liponecrosis," a mode of programmed cell death (PCD) which differs from the currently known PCD subroutines. Here, we report the following mechanism for liponecrotic PCD. Exogenously added POA is incorporated into POA-containing phospholipids that then amass in the endoplasmic reticulum membrane, mitochondrial membranes and the plasma membrane. The buildup of the POA-containing phospholipids in the plasma membrane reduces the level of phosphatidylethanolamine in its extracellular leaflet, thereby increasing plasma membrane permeability for small molecules and committing yeast to liponecrotic PCD. The excessive accumulation of POA-containing phospholipids in mitochondrial membranes impairs mitochondrial functionality and causes the excessive production of reactive oxygen species in mitochondria. The resulting rise in cellular reactive oxygen species above a critical level contributes to the commitment of yeast to liponecrotic PCD by: (1) oxidatively damaging numerous cellular organelles, thereby triggering their massive macroautophagic degradation; and (2) oxidatively damaging various cellular proteins, thus impairing cellular proteostasis. Several cellular processes in yeast exposed to POA can protect cells from liponecrosis. They include: (1) POA oxidation in peroxisomes, which reduces the flow of POA into phospholipid synthesis pathways; (2) POA incorporation into neutral lipids, which prevents the excessive accumulation of POA-containing phospholipids in cellular membranes; (3) mitophagy, a selective macroautophagic degradation of dysfunctional mitochondria, which sustains a population of functional mitochondria needed for POA incorporation into neutral lipids; and (4) a degradation of damaged, dysfunctional and aggregated cytosolic proteins, which enables the maintenance of cellular proteostasis.
Collapse
Key Words
- CFU, colony forming units
- CL, cardiolipin
- Cvt, cytoplasm-to-vacuole pathway
- ER, endoplasmic reticulum
- IMM, inner mitochondrial membrane
- LD, lipid droplets
- NL, neutral lipids
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PCD, programmed cell death
- PE, phosphatidylethanolamine
- PI, phosphatidylinositol
- PL, phospholipids
- PM, plasma membrane
- POA, palmitoleic acid
- PS, phosphatidylserine
- ROS, reactive oxygen species
- TAG, triacylglycerols
- WT, wild-type
- apoptosis
- autophagy
- cellular proteostasis
- lipid metabolism in cellular organelles
- mechanisms of programmed cell death
- mitochondria,
- mitophagy
- plasma membrane
- signal transduction
- yeast
Collapse
Affiliation(s)
- Vincent R Richard
- a Department of Biology ; Concordia University ; Montreal , QC Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tower J. Programmed cell death in aging. Ageing Res Rev 2015; 23:90-100. [PMID: 25862945 DOI: 10.1016/j.arr.2015.04.002] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/15/2015] [Accepted: 04/01/2015] [Indexed: 02/08/2023]
Abstract
Programmed cell death (PCD) pathways, including apoptosis and regulated necrosis, are required for normal cell turnover and tissue homeostasis. Mis-regulation of PCD is increasingly implicated in aging and aging-related disease. During aging the cell turnover rate declines for several highly-mitotic tissues. Aging-associated disruptions in systemic and inter-cell signaling combined with cell-autonomous damage and mitochondrial malfunction result in increased PCD in some cell types, and decreased PCD in other cell types. Increased PCD during aging is implicated in immune system decline, skeletal muscle wasting (sarcopenia), loss of cells in the heart, and neurodegenerative disease. In contrast, cancer cells and senescent cells are resistant to PCD, enabling them to increase in abundance during aging. PCD pathways limit life span in fungi, but whether PCD pathways normally limit adult metazoan life span is not yet clear. PCD is regulated by a balance of negative and positive factors, including the mitochondria, which are particularly subject to aging-associated malfunction.
Collapse
|
35
|
Voigt J, Woestemeyer J. Protease Inhibitors Cause Necrotic Cell Death in Chlamydomonas reinhardtii
by Inducing the Generation of Reactive Oxygen Species. J Eukaryot Microbiol 2015; 62:711-21. [DOI: 10.1111/jeu.12224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Juergen Voigt
- Institute for Biochemistry; Charité, Charité-Platz 1/Virchowweg 6; D-10117 Berlin Germany
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| | - Johannes Woestemeyer
- Institute of Microbiology; Friedrich-Schiller-University; Neugasse 24; D-07743 Jena Germany
| |
Collapse
|
36
|
Raju KK, Natarajan S, Kumar NS, Kumar DA, NM R. Role of cytoplasmic deadenylation and mRNA decay factors in yeast apoptosis. FEMS Yeast Res 2015; 15:fou006. [DOI: 10.1093/femsyr/fou006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
37
|
Çakır B, Tumer NE. Arabidopsis Bax Inhibitor-1 inhibits cell death induced by pokeweed antiviral protein in Saccharomyces cerevisiae. MICROBIAL CELL 2015; 2:43-56. [PMID: 28357275 PMCID: PMC5354556 DOI: 10.15698/mic2015.02.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Apoptosis is an active form of programmed cell death (PCD) that plays critical roles in the development, differentiation and resistance to pathogens in multicellular organisms. Ribosome inactivating proteins (RIPs) are able to induce apoptotic cell death in mammalian cells. In this study, using yeast as a model system, we showed that yeast cells expressing pokeweed antiviral protein (PAP), a single-chain ribosome-inactivating protein, exhibit apoptotic-like features, such as nuclear fragmentation and ROS production. We studied the interaction between PAP and AtBI-1 (Arabidopsis thaliana Bax Inhibitor-1), a plant anti-apoptotic protein, which inhibits Bax induced cell death. Cells expressing PAP and AtBI-1 were able to survive on galactose media compared to PAP alone, indicating a reduction in the cytotoxicity of PAP in yeast. However, PAP was able to depurinate the ribosomes and to inhibit total translation in the presence of AtBI-1. A C-terminally deleted AtBI-1 was able to reduce the cytotoxicity of PAP. Since anti-apoptotic proteins form heterodimers to inhibit the biological activity of their partners, we used a co-immunoprecipitation assay to examine the binding of AtBI-1 to PAP. Both full length and C-terminal deleted AtBI-1 were capable of binding to PAP. These findings indicate that PAP induces cell death in yeast and AtBI-1 inhibits cell death induced by PAP without affecting ribosome depurination and translation inhibition.
Collapse
Affiliation(s)
- Birsen Çakır
- Biotechnology Center for Agriculture and the Environment and the Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA. ; Department of Horticulture, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Nilgun E Tumer
- Biotechnology Center for Agriculture and the Environment and the Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
38
|
Rikhvanov EG, Fedoseeva IV, Varakina NN, Rusaleva TM, Fedyaeva AV. Mechanism of Saccharomyces cerevisiae yeast cell death induced by heat shock. Effect of cycloheximide on thermotolerance. BIOCHEMISTRY (MOSCOW) 2014; 79:16-24. [PMID: 24512659 DOI: 10.1134/s0006297914010039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mechanism of yeast cell death induced by heat shock was found to be dependent on the intensity of heat exposure. Moderate (45°C) heat shock strongly increased the generation of reactive oxygen species (ROS) and cell death. Pretreatment with cycloheximide (at 30°C) suppressed cell death, but produced no effect on ROS production. The protective effect was absent if cycloheximide was added immediately before heat exposure and the cells were incubated with the drug during the heat treatment and recovery period. The rate of ROS production and protective effect of cycloheximide on viability were significantly decreased in the case of severe (50°C) heat shock. Treatment with cycloheximide at 39°C inhibited the induction of Hsp104 synthesis and suppressed the development of induced thermotolerance to severe shock (50°C), but it had no effect on induced thermotolerance to moderate (45°C) heat shock. At the same time, Hsp104 effectively protected cells from death independently of the intensity of heat exposure. These data indicate that moderate heat shock induced programmed cell death in the yeast cells, and cycloheximide suppressed this process by inhibiting general synthesis of proteins.
Collapse
Affiliation(s)
- E G Rikhvanov
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Division of the Russian Academy of Sciences, Irkutsk, 664033, Russia.
| | | | | | | | | |
Collapse
|
39
|
Murik O, Elboher A, Kaplan A. Dehydroascorbate: a possible surveillance molecule of oxidative stress and programmed cell death in the green alga Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2014; 202:471-484. [PMID: 24345283 DOI: 10.1111/nph.12649] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/18/2013] [Indexed: 05/06/2023]
Abstract
Chlamydomonas reinhardtii tolerates relatively high H2 O2 levels that induce an array of antioxidant activities. However, rather than rendering the cells more resistant to oxidative stress, the cells become far more sensitive to an additional H2 O2 dose. If H2 O2 is provided 1.5-9 h after an initial dose, it induces programmed cell death (PCD) in the wild-type, but not in the dum1 mutant impaired in the mitochondrial respiratory complex III. This mutant does not exhibit a secondary oxidative burst 4-5 h after the inducing H2 O2 , nor does it activate metacaspase-1 after the second H2 O2 treatment. The intracellular dehydroascorbate level, a product of ascorbate peroxidase, increases under conditions leading to PCD. The addition of dehydroascorbate induces PCD in the wild-type and dum1 cultures, but higher levels are required in dum1 cells, where it is metabolized faster. The application of dehydroascorbate induces the expression of metacaspase-2, which is much stronger than the expression of metacaspase-1. The presence or absence of oxidative stress, in addition to the rise in internal dehydroascorbate, may determine which metacaspase is activated during Chlamydomonas PCD. Cell death is strongly affected by the timing of H2 O2 or dehydroascorbate admission to synchronously grown cultures, suggesting that the cell cycle phase may distinguish cells that perish from those that do not.
Collapse
Affiliation(s)
- Omer Murik
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Ahinoam Elboher
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
40
|
Wang CQ, Li X, Wang MQ, Qian J, Zheng K, Bian HW, Han N, Wang JH, Pan JW, Zhu MY. Protective effects of ETC complex III and cytochrome c against hydrogen peroxide-induced apoptosis in yeast. Free Radic Res 2014; 48:435-44. [PMID: 24437935 DOI: 10.3109/10715762.2014.885116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In mammals, the mitochondrial electron transfer components (ETC) complex III and cytochrome c (cyt c) play essential roles in reactive oxygen species (ROS)-induced apoptosis. However, in yeast, the functions of cyt c and other ETC components remain unclear. In this study, three ETC-defective yeast mutants qcr7Δ, cyc1Δcyc7Δ, and cox12Δ, lacking cyt c oxidoreductase (complex III), cyt c, and cyt c oxidase (complex IV), respectively, were used to test the roles of these proteins in the response of cells to hydrogen peroxide (H₂O₂). Mutants qcr7Δ and cyc1Δcyc7Δ displayed greater H₂O₂ sensitivity than the wild-type or cox12Δ mutant. Consistent with this, qcr7Δ and cyc1Δcyc7Δ produced higher ROS levels, displayed derepressed expression of the proapoptotic genes AIF1, NUC1, and NMA111, but not YCA1, at the mRNA level, and were more vulnerable to H₂O₂-induced apoptosis. Interestingly, mutants lacking these proapoptotic genes displayed enhanced H₂O₂ tolerance, but unaffected ROS accumulation. Furthermore, the overexpression of antiapoptotic genes (Bcl-2, Ced-9, AtBI-1, and PpBI-1) reduced the levels of AIF1, NUC1, and NMA111 mRNAs, and reduced H₂O₂-induced cell death. Our findings identify two ETC components as early-inhibitory members of the ROS-mediated apoptotic pathway, suggesting their essential roles in metabolizing H₂O₂, probably by providing reduced cyt c, allowing cyt c peroxidase to remove H₂O₂ from the cells.
Collapse
Affiliation(s)
- Chao-qun Wang
- Institute of Genetics, Key Laboratory for Cell and Gene Engineering of Zhejiang Province, College of Life Sciences, Zhejiang University , Hangzhou , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu X, Wang H, Liu L. Two non-exclusive strategies employed to protect Torulopsis glabrata against hyperosmotic stress. Appl Microbiol Biotechnol 2014; 98:3099-110. [PMID: 24562390 DOI: 10.1007/s00253-014-5589-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/25/2014] [Accepted: 02/01/2014] [Indexed: 11/29/2022]
Abstract
Several recent reports described an apoptosis-like programmed cell death (PCD) process in yeast in response to different environmental challenges. In this study, hyperosmotic stress caused by high NaCl concentration in culture medium induced cell death in the haploid yeast Torulopsis glabrata. Propidium iodide (PI) and PI/rhodamine-123 (Rh123) dual staining with flow cytometry showed that high salinity decreased intact cells by 16.5 %, increased necrotic cells by nearly twofold, and altered fermentative parameters appreciably. Morphological and biochemical indicators of apoptosis were apparent, specifically a decrease in mitochondrial membrane potential (∆Ψm), translocation of phosphatidylserine (PS) from the inner to the outer side of the plasma membrane, generation of reactive oxygen species (ROS), and involvement of caspase all while plasma membrane integrity was maintained. Additionally, it was found that overexpression of YCA1 drastically stimulated cell death, indicating that activation of metacaspase might lead to cell death. However, T. glabrata growth under hyperosmotic stress was enhanced when FIS1, HOG1, and GPD2 were overexpressed, or when exogenous proline or glutathione (GSH) were added into the cultures, both of which could repress caspase-3 activity. Thus, in these concrete cases of overexpression of anti-apoptotic or anti-necrotic factors and pharmacological manipulations, it decreased T. glabrata cell death that might help to achieve higher fermentative efficiency.
Collapse
Affiliation(s)
- Xiaoxia Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | | | | |
Collapse
|
42
|
Chin C, Donaghey F, Helming K, McCarthy M, Rogers S, Austriaco N. Deletion of AIF1 but not of YCA1/MCA1 protects Saccharomyces cerevisiae and Candida albicans cells from caspofungin-induced programmed cell death. MICROBIAL CELL 2014; 1:58-63. [PMID: 28357223 PMCID: PMC5348969 DOI: 10.15698/mic2014.01.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caspofungin was the first member of a new class of antifungals called echinocandins to be approved by a drug regulatory authority. Like the other echinocandins, caspofungin blocks the synthesis of β(1,3)-D-glucan of the fungal cell wall by inhibiting the enzyme, β(1,3)-D-glucan synthase. Loss of β(1,3)-D-glucan leads to osmotic instability and cell death. However, the precise mechanism of cell death associated with the cytotoxicity of caspofungin was unclear. We now provide evidence that Saccharomyces cerevisiae cells cultured in media containing caspofungin manifest the classical hallmarks of programmed cell death (PCD) in yeast, including the generation of reactive oxygen species (ROS), the fragmentation of mitochondria, and the production of DNA strand breaks. Our data also suggests that deleting AIF1 but not YCA1/MCA1 protects S. cerevisiae and Candida albicans from caspofungin-induced cell death. This is not only the first time that AIF1 has been specifically tied to cell death in Candida but also the first time that caspofungin resistance has been linked to the cell death machinery in yeast.
Collapse
Affiliation(s)
- Christopher Chin
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: University of Massachusetts School of Medicine, 55 Lake Ave. N., Worcester, MA 01655, U.S.A
| | - Faith Donaghey
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Katherine Helming
- Department of Biology, Providence College, Providence, RI 02918, U.S.A. ; Current address: Dana-Farber Cancer Institute, 44 Binney St., Boston, MA 02115, U.S.A
| | - Morgan McCarthy
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Stephen Rogers
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| | - Nicanor Austriaco
- Department of Biology, Providence College, Providence, RI 02918, U.S.A
| |
Collapse
|
43
|
Eisenberg T, Büttner S. Lipids and cell death in yeast. FEMS Yeast Res 2013; 14:179-97. [PMID: 24119111 PMCID: PMC4255311 DOI: 10.1111/1567-1364.12105] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/21/2013] [Accepted: 09/25/2013] [Indexed: 01/22/2023] Open
Abstract
Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction.
Collapse
Affiliation(s)
- Tobias Eisenberg
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | |
Collapse
|
44
|
Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:678473. [PMID: 24089630 PMCID: PMC3780702 DOI: 10.1155/2013/678473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/18/2013] [Accepted: 07/24/2013] [Indexed: 01/24/2023]
Abstract
We recently showed that activated Ras proteins are localized to the plasma membrane and in the nucleus in wild-type cells growing exponentially on glucose, while in the hxk2Δ strain they accumulated mainly in mitochondria. An aberrant accumulation of activated Ras in these organelles was previously reported and correlated to mitochondrial dysfunction, accumulation of ROS, and cell death. Here we show that addition of acetic acid to wild-type cells results in a rapid recruitment of Ras-GTP from the nucleus and the plasma membrane to the mitochondria, providing a further proof that Ras proteins might be involved in programmed cell death. Moreover, we show that Hxk2 protects against apoptosis in S. cerevisiae. In particular, cells lacking HXK2 and showing a constitutive accumulation of activated Ras at the mitochondria are more sensitive to acetic-acid-induced programmed cell death compared to the wild type strain. Indeed, deletion of HXK2 causes an increase of apoptotic cells with several morphological and biochemical changes that are typical of apoptosis, including DNA fragmentation, externalization of phosphatidylserine, and ROS production. Finally, our results suggest that apoptosis induced by lack of Hxk2 may not require the activation of Yca1, the metacaspase homologue identified in yeast.
Collapse
|
45
|
Carmona-Gutierrez D, Alavian-Ghavanini A, Habernig L, Bauer MA, Hammer A, Rossmann C, Zimmermann AS, Ruckenstuhl C, Büttner S, Eisenberg T, Sattler W, Malle E, Madeo F. The cell death protease Kex1p is essential for hypochlorite-induced apoptosis in yeast. Cell Cycle 2013; 12:1704-12. [PMID: 23656787 PMCID: PMC3713129 DOI: 10.4161/cc.24801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/24/2013] [Accepted: 04/24/2013] [Indexed: 11/19/2022] Open
Abstract
Following microbial pathogen invasion, the human immune system of activated phagocytes generates and releases the potent oxidant hypochlorous acid (HOCl), which contributes to the killing of menacing microorganisms. Though tightly controlled, HOCl generation by the myeloperoxidase-hydrogen peroxide-chloride system of neutrophils/monocytes may occur in excess and lead to tissue damage. It is thus of marked importance to delineate the molecular pathways underlying HOCl cytotoxicity in both microbial and human cells. Here, we show that HOCl induces the generation of reactive oxygen species (ROS), apoptotic cell death and the formation of specific HOCl-modified epitopes in the budding yeast Saccharomyces cerevisiae. Interestingly, HOCl cytotoxicity can be prevented by treatment with ROS scavengers, suggesting oxidative stress to mediate the lethal effect. The executing pathway involves the pro-apoptotic protease Kex1p, since its absence diminishes HOCl-induced production of ROS, apoptosis and protein modification. By characterizing HOCl-induced cell death in yeast and identifying a corresponding central executor, these results pave the way for the use of Saccharomyces cerevisiae in HOCl research, not least given that it combines both being a microorganism as well as a model for programmed cell death in higher eukaryotes.
Collapse
Affiliation(s)
| | - Ali Alavian-Ghavanini
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Lukas Habernig
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Maria Anna Bauer
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Astrid Hammer
- Institute of Cell Biology, Histology and Embryology; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Christine Rossmann
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | | | | | - Sabrina Büttner
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry; Center for Molecular Medicine; Medical University of Graz; Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| |
Collapse
|
46
|
Kazemzadeh L, Cvijovic M, Petranovic D. Boolean model of yeast apoptosis as a tool to study yeast and human apoptotic regulations. Front Physiol 2012; 3:446. [PMID: 23233838 PMCID: PMC3518040 DOI: 10.3389/fphys.2012.00446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/07/2012] [Indexed: 01/14/2023] Open
Abstract
Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested.
Collapse
Affiliation(s)
- Laleh Kazemzadeh
- Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden ; Digital Enterprise Research Institute, National University of Ireland Galway, Ireland
| | | | | |
Collapse
|
47
|
Ramsdale M. Programmed cell death in the cellular differentiation of microbial eukaryotes. Curr Opin Microbiol 2012; 15:646-52. [DOI: 10.1016/j.mib.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 01/22/2023]
|
48
|
Cui Y, Zhao S, Wu Z, Dai P, Zhou B. Mitochondrial release of the NADH dehydrogenase Ndi1 induces apoptosis in yeast. Mol Biol Cell 2012; 23:4373-82. [PMID: 22993213 PMCID: PMC3496611 DOI: 10.1091/mbc.e12-04-0281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ndi1, the yeast homologue of caspase-independent apoptosis inducer AMID, turns out to be a general, as well as a potent, yeast apoptotic factor. This protein normally acts at the first step in respiration but, when stressed, cleaves its protective N-terminal, escapes from the mitochondria, and switches to become apoptotic. Saccharomyces cerevisiae NDI1 codes for the internal mitochondrial ubiquinone oxidoreductase, which transfers electrons from NADH to ubiquinone in the respiratory chain. Previously we found that Ndi1 is a yeast homologue of the protein apoptosis-inducing factor–homologous mitochondrion-associated inducer of death and displays potent proapoptotic activity. Here we show that S. cerevisiae NDI1 is involved in apoptosis induced by various stimuli tested, including H2O2, Mn, and acetate acid, independent of Z-VAD-fmk (a caspase inhibitor) inhibition. Although Ndi1 also participates in respiration, its proapoptotic property is separable from the ubiquinone oxidoreductase activity. During apoptosis, the N-terminal of Ndi1 is cleaved off in the mitochondria, and this activated form then escapes out to execute its apoptotic function. The N-terminal cleavage appears to be essential for the manifestation of the full apoptotic activity, as the uncleaved form of Ndi1 exhibits much less growth-inhibitory activity. Our results thus indicate an important role of Ndi1 in the switch of life and death fates in yeast: during normal growth, Ndi1 assimilates electrons to the electron transport chain and initiates the respiration process to make ATP, whereas under stresses, it cleaves the toxicity-sequestering N-terminal cap, is released from the mitochondria, and becomes a cell killer.
Collapse
Affiliation(s)
- Yixian Cui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
49
|
Lisa-Santamaría P, Jiménez A, Revuelta JL. The protein factor-arrest 11 (Far11) is essential for the toxicity of human caspase-10 in yeast and participates in the regulation of autophagy and the DNA damage signaling. J Biol Chem 2012; 287:29636-47. [PMID: 22782902 DOI: 10.1074/jbc.m112.344192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The heterologous expression of human caspase-10 in Saccharomyces cerevisiae induces a lethal phenotype, which includes some hallmarks of apoptosis and autophagy, alterations in the intra-S checkpoint, and cell death. To determine the cellular processes and pathways that are responsible of the caspase-10-induced cell death we have designed a loss-of-function screening system to identify genes that are essential for the lethal phenotype. We observed that the ER-Golgi-localized family of proteins Far, MAPK signaling, the autophagy machinery, and several kinases and phosphatases are essential for caspase-10 toxicity. We also found that the expression of caspase-10 elicits a simultaneous activation of the MAP kinases Fus3, Kss1, and Slt2. Furthermore, the protein Far11, which is a target of MAP kinases, is essential for the dephosphorylation of Atg13 and, consequently, for the induction of autophagy. In addition, Far11 participates in the regulation of the DNA damage response through the dephosphorylation of Rad53. Finally, we have also demonstrated that Far11 is able to physically interact with the phosphatases Pph21, Pph22, and Pph3. Overall, our results indicate that the expression of human caspase-10 in S. cerevisiae activates an intracellular death signal that depends on the Far protein complex and that Far11 may function as a regulator subunit of phosphatases in different processes, thus representing a mechanistic link between them.
Collapse
Affiliation(s)
- Patricia Lisa-Santamaría
- Instituto de Biología Funcional y Genómica and Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | |
Collapse
|
50
|
Lee YJ, Huang X, Kropat J, Henras A, Merchant SS, Dickson RC, Chanfreau GF. Sphingolipid signaling mediates iron toxicity. Cell Metab 2012; 16:90-6. [PMID: 22768841 PMCID: PMC3653578 DOI: 10.1016/j.cmet.2012.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 03/04/2012] [Accepted: 06/14/2012] [Indexed: 01/24/2023]
Abstract
Iron constitutes a major source of toxicity due to its ability to generate reactive oxygen species that can damage cellular macromolecules. However, the precise mechanism by which exposure to high iron concentrations results in cellular toxicity remains unknown. Here we identify sphingolipid synthesis and signaling as a major mediator of iron toxicity in S. cerevisiae. Inhibition of sphingolipid synthesis by myriocin treatment or after overexpression of the negative regulator Orm2p confers resistance to high iron. High iron conditions upregulate sphingolipid synthesis, and increasing sphingolipid levels by inactivating Orm2p exacerbates sensitivity to iron. Toxicity is mediated by sphingolipid signaling, as inactivation of the sphingolipid-activated protein kinases Pkh1p and Ypk1p and of the transcription factor Smp1p also enhances resistance to high iron conditions. These results demonstrate an unexpected connection between sphingolipid flux and iron toxicity and show that activation of a signal transduction cascade contributes to iron-mediated cellular toxicity.
Collapse
Affiliation(s)
- Yueh-Jung Lee
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|