1
|
Shojaei Jeshvaghani Z, Mijnders M, Muffels I, van Beekhuizen S, Kotlarz D, Lindemans CA, Koletzko S, Klein C, Mokry M, Nieuwenhuis E, Kuijk E. TTC7A missense variants in intestinal disease can be classified by molecular and cellular phenotypes. Hum Mol Genet 2025; 34:313-326. [PMID: 39675053 DOI: 10.1093/hmg/ddae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Biallelic mutations in tetratricopeptide repeat domain 7A (TTC7A) give rise to intestinal and immune disorders. However, our understanding of the genotype-phenotype relationship is limited, because TTC7A variants are mostly compound heterozygous and the disease phenotypes are highly diverse. This study aims to clarify how different TTC7A variants impact the severity of intestinal epithelial disorders. We individually characterized the molecular and cellular consequences of 11 different TTC7A missense mutations in TTC7A knockout Caco-2 cells. We examined variant-specific RNA expression profiles, TTC7A protein abundance, and endoplasmic reticulum (ER) stress by using RNA sequencing and imaging flow cytometry. For six variants we detected no significant alterations on these assays, suggesting that protein function may not be severely compromised. However, for five variants we observed molecular phenotypes, with overlapping gene expression signatures between specific variants. Remarkably, the TTC7AE71K variant displayed a unique expression profile, along with reduced TTC7A RNA and protein expression, which set it apart from all other variants. The findings from this study offer a better understanding of the role of specific TTC7A variants in disease and provide a framework for the classification of the variants based on the severity of impact. We propose a classification system for TTC7A variants that could help diagnosis, guide future treatment decisions and may aid in developing effective molecular therapies for patients that carry specific TTC7A variants.
Collapse
Affiliation(s)
- Zahra Shojaei Jeshvaghani
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marjolein Mijnders
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Irena Muffels
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
| | - Sander van Beekhuizen
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstraße 4, 80337 Munich , Germany
| | - Caroline A Lindemans
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Stem Cell Transplantation, Princess Maximá Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, Netherlands
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstraße 4, 80337 Munich , Germany
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn 11-082, Poland
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Lindwurmstraße 4, 80337 Munich , Germany
| | - Michal Mokry
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Edward Nieuwenhuis
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
- Rare Disease Center, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Ewart Kuijk
- Division of Pediatric Gastroenterology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Lundlaan 6 3584 EA Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Lundlaan 6 3584 EA Utrecht, The Netherlands
| |
Collapse
|
2
|
Outla Z, Prechova M, Korelova K, Gemperle J, Gregor M. Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks. Open Biol 2025; 15:240208. [PMID: 39875099 PMCID: PMC11774597 DOI: 10.1098/rsob.240208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks. Such hardwiring is facilitated by plakins, a family of giant modular proteins which serve as 'molecular bridges' between different cytoskeletal filaments and multiprotein adhesion complexes. Dysfunction of cytoskeletal crosslinking compromises epithelial biomechanics and structural integrity. Subsequent loss of barrier function leads to disturbed tissue homeostasis and pathological consequences such as skin blistering or intestinal inflammation. In this article, we highlight the importance of the cytolinker protein plectin for the functional organization of epithelial cytoskeletal networks. In particular, we focus on the ability of plectin to act as an integrator of the epithelial cytoarchitecture that defines the biomechanics of the whole tissue. Finally, we also discuss the role of cytoskeletal crosslinking in emerging aspects of epithelial mechanobiology that are critical for the maintenance of epithelial homeostasis.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Jakub Gemperle
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
3
|
Kumar A, Jayawardena D, Priyamvada S, Anbazhagan AN, Chatterjee I, Saksena S, Dudeja PK. SLC26A3 (DRA, the Congenital Chloride Diarrhea Gene): A Novel Therapeutic Target for Diarrheal Diseases. Cell Mol Gastroenterol Hepatol 2024; 19:101452. [PMID: 39736385 PMCID: PMC12003007 DOI: 10.1016/j.jcmgh.2024.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/22/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
Diarrhea associated with enteric infections, gut inflammation, and genetic defects poses a major health burden and results in significant morbidity and mortality. Impaired fluid and electrolyte absorption or secretion in the intestine are the hallmark of diarrhea. Electroneutral NaCl absorption in the mammalian GI tract involves the coupling of Na+/H+ and Cl-/HCO3- exchangers. SLC26A3 (Down Regulated in Adenoma, DRA) is the major anion exchanger involved in luminal Cl- absorption and HCO3- secretion. Mutations in the SLC26A3 gene cause a severe disease called congenital chloride diarrhea (CLD). Multiple studies have shown that DRA function or expression is downregulated in infectious diarrheal disorders caused by EPEC, C rodentium, Salmonella, Clostridioides difficile and Cryptosporidium parvum infection. In addition, DRA levels are severely depleted in colonic mucosa of IBD patients and in mouse models of IBD (eg, DSS, TNBS, adoptive T-cell transfer, anti-CD-40, and IL-10 KO colitis). In addition, genetic defects exhibiting diarrhea including microvillus inclusion disease (MVID), keratin-8 depletion, knock-out mouse models of transcriptional factors (eg, CDX-2 and HNF1α/1β) also exhibit severe down regulation of DRA. Also, recent studies have shown that DRA is not only critical for chloride absorption but also plays a key role in maintaining gut epithelial barrier integrity, microbiome composition, and has now emerged as an IBD susceptibility gene. In this review, we provide strong evidence that DRA may serve as a novel therapeutic target with dual benefits in not only correcting diarrheal phenotype but also improving gut barrier integrity and inflammation in pathogen infection or IBD.
Collapse
Affiliation(s)
- Anoop Kumar
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Dulari Jayawardena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Shubha Priyamvada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Arivarasu N Anbazhagan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Ishita Chatterjee
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois; Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
4
|
Nyström JH, Heikkilä TRH, Thapa K, Pulli I, Törnquist K, Toivola DM. Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism. Am J Physiol Gastrointest Liver Physiol 2024; 327:G438-G453. [PMID: 38860856 PMCID: PMC11427106 DOI: 10.1152/ajpgi.00220.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8-/-) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8-/- colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8-/- colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8-/- Caco-2 cells. Furthermore, K8-/- Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8-/- Caco-2 cells and in vivo in K8-/- mouse colonocytes, and reexpression of K8 into K8-/- Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca2+ is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca2+. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca2+ signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.NEW & NOTEWORTHY In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca2+ dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.
Collapse
Affiliation(s)
- Joel H Nyström
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Taina R H Heikkilä
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Keshav Thapa
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Ilari Pulli
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Kid Törnquist
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku and Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Toivola DM, Polari L, Schwerd T, Schlegel N, Strnad P. The keratin-desmosome scaffold of internal epithelia in health and disease - The plot is thickening. Curr Opin Cell Biol 2024; 86:102282. [PMID: 38000362 DOI: 10.1016/j.ceb.2023.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Keratin (K) intermediate filaments are attached to desmosomes and constitute the orchestrators of epithelial cell and tissue architecture. While their relevance in the epidermis is well recognized, our review focuses on their emerging importance in internal epithelia. The significance of keratin-desmosome scaffolds (KDSs) in the intestine is highlighted by transgenic mouse models and individuals with inflammatory bowel disease who display profound KDS alterations. In lung, high K8 expression defines a transitional cell subset during regeneration, and K8 variants are associated with idiopathic pulmonary fibrosis. Inherited variants in desmosomal proteins are overrepresented in idiopathic lung fibrosis, and familiar eosinophilic esophagitis. K18 serum fragments are established hepatocellular injury markers that correlate with the extent of histological inflammation. K17 expression is modified in multiple tumors, and K17 levels might be of prognostic relevance. These data should spur further studies on biological roles of these versatile tissue protectors and efforts on their therapeutic targeting.
Collapse
Affiliation(s)
- Diana M Toivola
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| | - Lauri Polari
- Cell Biology, Biosciences and InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, 80337 Munich, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
Elahimanesh M, Najafi M. Cross talk between bacterial and human gene networks enriched using ncRNAs in IBD disease. Sci Rep 2023; 13:7704. [PMID: 37169818 PMCID: PMC10175251 DOI: 10.1038/s41598-023-34780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term inflammatory immune-mediated gut illness with several extra-intestinal complications. The aims of this study were to identify a novel network-based meta-analysis approach on the basis of the combinations of the differentially expressed genes (DEGs) from microarray data, to enrich the functional modules from human protein-protein interaction (PPI) and gene ontology (GO) data, and to profile the ncRNAs on the genes involved in IBD. The gene expression profiles of GSE126124, GSE87473, GSE75214, and GSE95095 are obtained from the Gene Expression Omnibus (GEO) database based on the study criteria between 2017 and 2022. The DEGs were screened by the R software. DEGs were then used to examine gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The ncRNAs including the miRNAs and ceRNAs were predicted on the PPIs visualized using Cytoscape. Enrichment analysis of genes with differential expression (n = 342) using KEGG and GO showed that the signaling pathways related with staphylococcus aureus and pertussis bacterial infections may stimulate the immune system and exacerbate IBD via the interaction with human proteins including Fibrinogen gamma chain (FGG), Keratin 10 (KRT10), and Toll like receptor 4 (TLR4). By building a ceRNA network, lncRNA XIST and NEAT1 were determined by affecting common miRNAs, hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-6763-5p, hsa-miR-4436a, and hsa-miR-520a-5p. Additionally, the chromosome regions including NM_001039703 and NM_006267, which produce the most potent circRNAs play a significant role in the ceRNA network of IBD. Also, we predicted the siRNAs that would be most effective against the bacterial genes in staphylococcus aureus and pertussis infections. These findings suggested that three genes (FGG, KRT10, and TLR4), six miRNAs (hsa-miR-6875-5p, hsa-miR-1908-5p, hsa-miR-186-5p, hsa-miR-4436a, hsa-miR-520a-5p, and hsa-miR-6763-5p), two lncRNAs (XIST and NEAT1), and chromosomal regions including NM_001039703 and NM_006267 with the production of the most effective circRNAs are involved in the ncRNA-associated ceRNA network of IBD. These ncRNA profiles are related to the described gene functions and may play therapeutic targets in controlling inflammatory bowel disease.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
8
|
Roles of Keratins in Intestine. Int J Mol Sci 2022; 23:ijms23148051. [PMID: 35887395 PMCID: PMC9317181 DOI: 10.3390/ijms23148051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Keratins make up a major portion of epithelial intermediate filament proteins. The widely diverse keratins are found in both the small and large intestines. The human intestine mainly expresses keratins 8, 18, 19, and 20. Many of the common roles of keratins are for the integrity and stability of the epithelial cells. The keratins also protect the cells and tissue from stress and are biomarkers for some diseases in the organs. Although an increasing number of studies have been performed regarding keratins, the roles of keratin in the intestine have not yet been fully understood. This review focuses on discussing the roles of keratins in the intestine. Diverse studies utilizing mouse models and samples from patients with intestinal diseases in the search for the association of keratin in intestinal diseases have been summarized.
Collapse
|
9
|
A Novel Inflammation-Related Gene Signature for Overall Survival Prediction and Comprehensive Analysis in Pediatric Patients with Wilms Tumor. DISEASE MARKERS 2022; 2022:2651105. [PMID: 35578692 PMCID: PMC9107364 DOI: 10.1155/2022/2651105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
Wilms tumor (WT) is a common pediatric renal cancer, with a poor prognosis and high-risk recurrence in some patients. The inflammatory microenvironment is gradually gaining attention in WT. In this study, novel inflammation-related signatures and prognostic model were explored and integrated using bioinformatics analysis. The mRNA profile of pediatric patients with WT and inflammation-related genes (IRGs) were acquired from Therapeutically Available Research to Generate Effective Treatments (TARGET) and Gene Set Enrichment Analysis (GSEA) databases, respectively. Then, a novel prognostic model founded on 7-IRGs signature (BICC1, CSPP1, KRT8, MYCN, NELFA, NXN, and RNF113A) was established by the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression to stratify pediatric patients with WT into high- and low-risk groups successfully. And a stable performance of the prognostic risk model was verified in predicting overall survival (OS) by receiver-operating characteristic (ROC) curves, Kaplan-Meier (KM) curves, and independent prognostic analysis (p < 0.05). In addition, a novel nomogram integrating risk scores with good robustness was developed and validated by C-index, ROC, and calibration plots. The potential function and pathway were explored via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and GSEA, with mainly inflammation and immune-related biological processes. The higher-risk scores, the lower immune infiltration, as shown in the single-sample GSEA (ssGSEA) and tumor microenvironment (TME) analysis. The drug sensitivity analysis showed that regulating 7-IRGs signature has a significant correlation with the chemotherapy drugs of WT patients. In summary, this study defined a prognostic risk model and nomogram based on 7-IRGs signature, which may provide novel insights into clinical prognosis and inflammatory study in WT patients. Besides, enhancing immune infiltration based on inflammatory response and regulating 7-IRGs signature are beneficial to ameliorating the efficacy in WT patients.
Collapse
|
10
|
Murray KA, Hughes MP, Hu CJ, Sawaya MR, Salwinski L, Pan H, French SW, Seidler PM, Eisenberg DS. Identifying amyloid-related diseases by mapping mutations in low-complexity protein domains to pathologies. Nat Struct Mol Biol 2022; 29:529-536. [PMID: 35637421 PMCID: PMC9205782 DOI: 10.1038/s41594-022-00774-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 04/08/2022] [Indexed: 01/19/2023]
Abstract
Proteins including FUS, hnRNPA2, and TDP-43 reversibly aggregate into amyloid-like fibrils through interactions of their low-complexity domains (LCDs). Mutations in LCDs can promote irreversible amyloid aggregation and disease. We introduce a computational approach to identify mutations in LCDs of disease-associated proteins predicted to increase propensity for amyloid aggregation. We identify several disease-related mutations in the intermediate filament protein keratin-8 (KRT8). Atomic structures of wild-type and mutant KRT8 segments confirm the transition to a pleated strand capable of amyloid formation. Biochemical analysis reveals KRT8 forms amyloid aggregates, and the identified mutations promote aggregation. Aggregated KRT8 is found in Mallory-Denk bodies, observed in hepatocytes of livers with alcoholic steatohepatitis (ASH). We demonstrate that ethanol promotes KRT8 aggregation, and KRT8 amyloids co-crystallize with alcohol. Lastly, KRT8 aggregation can be seeded by liver extract from people with ASH, consistent with the amyloid nature of KRT8 aggregates and the classification of ASH as an amyloid-related condition.
Collapse
Affiliation(s)
- Kevin A. Murray
- grid.19006.3e0000 0000 9632 6718Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA USA
| | - Michael P. Hughes
- grid.19006.3e0000 0000 9632 6718Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA USA
| | - Carolyn J. Hu
- grid.19006.3e0000 0000 9632 6718Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA USA
| | - Michael R. Sawaya
- grid.19006.3e0000 0000 9632 6718Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA USA
| | - Lukasz Salwinski
- grid.19006.3e0000 0000 9632 6718Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA USA
| | - Hope Pan
- grid.19006.3e0000 0000 9632 6718Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA USA
| | - Samuel W. French
- grid.19006.3e0000 0000 9632 6718Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA USA
| | - Paul M. Seidler
- grid.42505.360000 0001 2156 6853Department of Pharmacology and Pharmaceutical Science, University of Southern California, Los Angeles, CA USA
| | - David S. Eisenberg
- grid.19006.3e0000 0000 9632 6718Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute, Molecular Biology Institute, and Howard Hughes Medical Institute, UCLA, Los Angeles, CA USA
| |
Collapse
|
11
|
Stenvall CGA, Tayyab M, Grönroos TJ, Ilomäki MA, Viiri K, Ridge KM, Polari L, Toivola DM. Targeted deletion of keratin 8 in intestinal epithelial cells disrupts tissue integrity and predisposes to tumorigenesis in the colon. Cell Mol Life Sci 2021; 79:10. [PMID: 34951664 PMCID: PMC8709826 DOI: 10.1007/s00018-021-04081-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 01/08/2023]
Abstract
Keratin 8 (K8) is the main intestinal epithelial intermediate filament protein with proposed roles for colonic epithelial cell integrity. Here, we used mice lacking K8 in intestinal epithelial cells (floxed K8 and Villin-Cre1000 and Villin-CreERt2) to investigate the cell-specific roles of intestinal epithelial K8 for colonocyte function and pathologies. Intestinal epithelial K8 deletion decreased K8 partner proteins, K18-K20, 75-95%, and the remaining keratin filaments were located at the colonocyte apical regions with type II K7, which decreased 30%. 2-Deoxy-2-[18F]-fluoroglucose positron emission tomography in vivo imaging identified a metabolic phenotype in the lower gut of the conditional K8 knockouts. These mice developed intestinal barrier leakiness, mild diarrhea, and epithelial damage, especially in the proximal colon. Mice exhibited shifted differentiation from enterocytes to goblet cells, displayed longer crypts and an increased number of Ki67 + transit-amplifying cells in the colon. Significant proproliferative and regenerative signaling occurred in the IL-22, STAT3, and pRb pathways, with minor effects on inflammatory parameters, which, however, increased in aging mice. Importantly, colonocyte K8 deletion induced a dramatically increased sensitivity to azoxymethane-induced tumorigenesis. In conclusion, intestinal epithelial K8 plays a significant role in colonocyte epithelial integrity maintenance, proliferation regulation and tumor suppression.
Collapse
Affiliation(s)
- Carl-Gustaf A Stenvall
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Mina Tayyab
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Tove J Grönroos
- Turku PET Centre, University of Turku, Turku, Finland
- Medicity Research Laboratories, University of Turku, Turku, Finland
| | - Maria A Ilomäki
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland
| | - Karen M Ridge
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, BioCity, Tykistökatu 6A, N20520, Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
12
|
Wu J, Niu J, Li M, Miao Y. Keratin 1 maintains the intestinal barrier in ulcerative colitis. Genes Genomics 2021; 43:1389-1402. [PMID: 34562265 DOI: 10.1007/s13258-021-01166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The intestinal mechanical barrier plays a key role in the pathogenesis of ulcerative colitis (UC). Our previous study showed keratin 1 (KRT1) was downregulated in UC, but the mechanism by which KRT1 affects the intestinal barrier remains unknown. OBJECTIVES To explore the mechanism of KRT1 in the intestinal barrier in UC. METHODS Colonic tissues were collected from 20 UC patients before and after mucosal healing (MH) and 15 healthy controls. The expression of KRT1 was measured by PCR, western blotting and immunohistochemistry (IHC). A dextran sulfate sodium (DSS)-induced colitis model was established in krt1 transgenic (TG) mice, and the mice were treated with methylprednisolone (MP) to explore the role of KRT1 in the intestinal barrier. Inflammation was evaluated through the DAI score, colon, spleen and H&E. The expression of KRT1 and tight junction (TJ) proteins in mouse was analysed by the same methods. RESULTS The transcription and expression of KRT1 in UC was decreased and recovered after MH but did not reach the level of the healthy controls. Similar to the clinical results, the expression of krt1 was decreased in DSS-induced colitis and upregulated after MP. Moreover, the krt1 TG group exhibited less inflammation than wild-type (WT) group. The expression of Occludin and ZO-1 decreased after DSS induction, the decreases in Occludin and ZO-1 in the krt1 TG group were lower than WT group, which was significantly increased after MP, while the expression of Claudin-2 exhibited the opposite effect. CONCLUSIONS Keratin 1 maintains the intestinal barrier by upregulating TJ proteins in UC.
Collapse
Affiliation(s)
- Jing Wu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Junkun Niu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Road, Kunming, 650032, Yunnan, China.
- Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan, China.
| |
Collapse
|
13
|
Evans CA, Corfe BM. Colorectal keratins: Integrating nutrition, metabolism and colorectal health. Semin Cell Dev Biol 2021; 128:103-111. [PMID: 34481710 DOI: 10.1016/j.semcdb.2021.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023]
Abstract
The colon mucosa is lined with crypts of circa 300 cells, forming a continuous barrier whose roles include absorption of water, recovery of metabolic energy sources (notably short chain fatty acids), secretion of a protective mucus barrier, and physiological signalling. There is high turnover and replenishment of cells in the mucosa, disruption of this may lead to bowel pathologies including cancer and inflammatory bowel disease. Keratins have been implicated in the processes of cell death, epithelial integrity, response to inflammation and as a result are often described as guardians of the colonic epithelium. Keratin proteins carry extensive post-translational modifications, the cofactors for kinases, acetyl transferases and other modification-regulating enzymes are themselves products of metabolism. A cluster of studies has begun to reveal a bidirectional relationship between keratin form and function and metabolism. In this paper we hypothesise a mechanistic interaction between keratins and metabolism is governed through regulation of post-translational modifications and may contribute significantly to the normal functioning of the colon, placing keratins at the centre of a nutrition-metabolism-health triangle.
Collapse
Affiliation(s)
- Caroline A Evans
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin St, S1 3JD Sheffield, United Kingdom
| | - Bernard M Corfe
- Population Health Sciences Institute, Human Nutrition Research Centre, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, United Kingdom.
| |
Collapse
|
14
|
Tomsits P, Clauss S, Kääb S. Genetic insight into sick sinus syndrome. Is there a pill for it or how far are we on the translational road to personalized medicine? Eur Heart J 2021; 42:1972-1975. [PMID: 33860310 DOI: 10.1093/eurheartj/ehab209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Philipp Tomsits
- University Hospital Munich, Ludwig-Maximilians University Munich (LMU), Department of Medicine I, Campus Grosshadern, Marchioninistrasse 15, D-81377 Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany.,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistrasse 27, D-81377 Munich, Germany
| | - Sebastian Clauss
- University Hospital Munich, Ludwig-Maximilians University Munich (LMU), Department of Medicine I, Campus Grosshadern, Marchioninistrasse 15, D-81377 Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany.,Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistrasse 27, D-81377 Munich, Germany
| | - Stefan Kääb
- University Hospital Munich, Ludwig-Maximilians University Munich (LMU), Department of Medicine I, Campus Grosshadern, Marchioninistrasse 15, D-81377 Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|
15
|
Thorolfsdottir RB, Sveinbjornsson G, Aegisdottir HM, Benonisdottir S, Stefansdottir L, Ivarsdottir EV, Halldorsson GH, Sigurdsson JK, Torp-Pedersen C, Weeke PE, Brunak S, Westergaard D, Pedersen OB, Sorensen E, Nielsen KR, Burgdorf KS, Banasik K, Brumpton B, Zhou W, Oddsson A, Tragante V, Hjorleifsson KE, Davidsson OB, Rajamani S, Jonsson S, Torfason B, Valgardsson AS, Thorgeirsson G, Frigge ML, Thorleifsson G, Norddahl GL, Helgadottir A, Gretarsdottir S, Sulem P, Jonsdottir I, Willer CJ, Hveem K, Bundgaard H, Ullum H, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Holm H, Stefansson K. Genetic insight into sick sinus syndrome. Eur Heart J 2021; 42:1959-1971. [PMID: 36282123 PMCID: PMC8140484 DOI: 10.1093/eurheartj/ehaa1108] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/24/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Aims The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. Methods and results We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1–1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10−20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). Conclusion We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jon K Sigurdsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Christian Torp-Pedersen
- Department of Clinical Research and Cardiology, Nordsjaelland Hospital, Dyrehavevej 29, Hillerød 3400, Denmark
| | - Peter E Weeke
- Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ole B Pedersen
- Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, Naestved 4700, Denmark
| | - Erik Sorensen
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Kaspar R Nielsen
- Department of Clinical Immunology, Aalborg University Hospital North, Urbansgade 36, Aalborg 9000, Denmark
| | - Kristoffer S Burgdorf
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ben Brumpton
- Department of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, Trondheim 7030, Norway
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA
| | - Asmundur Oddsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | - Kristjan E Hjorleifsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Department of Computing and Mathematical Sciences, California Institute of Technology, 1200 E California Blvd. MC 305-16, Pasadena, CA 91125, USA
| | | | | | - Stefan Jonsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Bjarni Torfason
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Cardiothoracic Surgery, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Atli S Valgardsson
- Department of Cardiothoracic Surgery, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Michael L Frigge
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Anna Helgadottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | - Patrick Sulem
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Immunology, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109-2218, USA.,Department of Internal Medicine: Cardiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109 -5368, USA.,Department of Human Genetics, University of Michigan, 4909 Buhl Building, 1241 E. Catherine St., Ann Arbor, MI 48109 -5618, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, Trondheim 7491, Norway.,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim 7491, Norway.,HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Forskningsveien 2, Levanger 7600, Norway
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen 2100, Denmark.,Statens Serum Institut, Artillerivej 5, Copenhagen 2300, Denmark
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland.,Department of Medicine, Landspitali-The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Hjardarhagi 4, Reykjavik 107, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland.,Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | | |
Collapse
|
16
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
17
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
18
|
Gouveia M, Zemljič-Jokhadar Š, Vidak M, Stojkovič B, Derganc J, Travasso R, Liovic M. Keratin Dynamics and Spatial Distribution in Wild-Type and K14 R125P Mutant Cells-A Computational Model. Int J Mol Sci 2020; 21:E2596. [PMID: 32283594 PMCID: PMC7177522 DOI: 10.3390/ijms21072596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Keratins are one of the most abundant proteins in epithelial cells. They form a cytoskeletal filament network whose structural organization seriously conditions its function. Dynamic keratin particles and aggregates are often observed at the periphery of mutant keratinocytes related to the hereditary skin disorder epidermolysis bullosa simplex, which is due to mutations in keratins 5 and 14. To account for their emergence in mutant cells, we extended an existing mathematical model of keratin turnover in wild-type cells and developed a novel 2D phase-field model to predict the keratin distribution inside the cell. This model includes the turnover between soluble, particulate and filamentous keratin forms. We assumed that the mutation causes a slowdown in the assembly of an intermediate keratin phase into filaments, and demonstrated that this change is enough to account for the loss of keratin filaments in the cell's interior and the emergence of keratin particles at its periphery. The developed mathematical model is also particularly tailored to model the spatial distribution of keratins as the cell changes its shape.
Collapse
Affiliation(s)
- Marcos Gouveia
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Špela Zemljič-Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| | - Biljana Stojkovič
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Rui Travasso
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| |
Collapse
|
19
|
Thomas M, Ladoux B, Toyama Y. Desmosomal Junctions Govern Tissue Integrity and Actomyosin Contractility in Apoptotic Cell Extrusion. Curr Biol 2020; 30:682-690.e5. [DOI: 10.1016/j.cub.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/22/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
|
20
|
Meir M, Burkard N, Ungewiß H, Diefenbacher M, Flemming S, Kannapin F, Germer CT, Schweinlin M, Metzger M, Waschke J, Schlegel N. Neurotrophic factor GDNF regulates intestinal barrier function in inflammatory bowel disease. J Clin Invest 2019; 129:2824-2840. [PMID: 31205031 PMCID: PMC6597228 DOI: 10.1172/jci120261] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Impaired intestinal epithelial barrier (IEB) function with loss of desmosomal junctional protein desmoglein 2 (DSG2) is a hallmark in the pathogenesis of inflammatory bowel disease (IBD). While previous studies have reported that glial cell line-derived neurotrophic factor (GDNF) promotes IEB function, the mechanisms are poorly understood. We hypothesized that GDNF is involved in the loss of DSG2, resulting in impaired IEB function as seen in IBD. In the inflamed intestine of patients with IBD, there was a decrease in GDNF concentrations accompanied by a loss of DSG2, changes of the intermediate filament system, and increased phosphorylation of p38 MAPK and cytokeratins. DSG2-deficient and RET-deficient Caco2 cells revealed that GDNF specifically recruits DSG2 to the cell borders, resulting in increased DSG2-mediated intercellular adhesion via the RET receptor. Challenge of Caco2 cells and enteroids with proinflammatory cytokines as well as dextran sulfate sodium-induced (DSS-induced) colitis in C57Bl/6 mice led to impaired IEB function with reduced DSG2 mediated by p38 MAPK-dependent phosphorylation of cytokeratins. GDNF blocked all inflammation-induced changes in the IEB. GDNF attenuates inflammation-induced impairment of IEB function caused by the loss of DSG2 through p38 MAPK-dependent phosphorylation of cytokeratin. The reduced GDNF in patients with IBD indicates a disease-relevant contribution to the development of IEB dysfunction.
Collapse
Affiliation(s)
- Michael Meir
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Natalie Burkard
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Hanna Ungewiß
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Diefenbacher
- Department of Biochemistry and Molecular Biochemistry, University of Wuerzburg, Wuerzburg, Germany
| | - Sven Flemming
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Felix Kannapin
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Schweinlin
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Marco Metzger
- Department for Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Fraunhofer ISC, Translational Centre Regenerative Medicine TLC-RT, Wuerzburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Vascular and Pediatric Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
21
|
Intermediate Filaments as Effectors of Cancer Development and Metastasis: A Focus on Keratins, Vimentin, and Nestin. Cells 2019; 8:cells8050497. [PMID: 31126068 PMCID: PMC6562751 DOI: 10.3390/cells8050497] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Intermediate filament (IF) proteins make up the largest family of cytoskeletal proteins in metazoans, and are traditionally known for their roles in fostering structural integrity in cells and tissues. Remarkably, individual IF genes are tightly regulated in a fashion that reflects the type of tissue, its developmental and differentiation stages, and biological context. In cancer, IF proteins serve as diagnostic markers, as tumor cells partially retain their original signature expression of IF proteins. However, there are also characteristic alterations in IF gene expression and protein regulation. The use of high throughput analytics suggests that tumor-associated alterations in IF gene expression have prognostic value. Parallel research is also showing that IF proteins directly and significantly impact several key cellular properties, including proliferation, death, migration, and invasiveness, with a demonstrated impact on the development, progression, and characteristics of various tumors. In this review, we draw from recent studies focused on three IF proteins most associated with cancer (keratins, vimentin, and nestin) to highlight how several “hallmarks of cancer” described by Hanahan and Weinberg are impacted by IF proteins. The evidence already in hand establishes that IF proteins function beyond their classical roles as markers and serve as effectors of tumorigenesis.
Collapse
|
22
|
Moriggi M, Pastorelli L, Torretta E, Tontini GE, Capitanio D, Bogetto SF, Vecchi M, Gelfi C. Contribution of Extracellular Matrix and Signal Mechanotransduction to Epithelial Cell Damage in Inflammatory Bowel Disease Patients: A Proteomic Study. Proteomics 2017; 17. [PMID: 29027377 DOI: 10.1002/pmic.201700164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/18/2017] [Indexed: 12/14/2022]
Abstract
This study utilizes 2D-DIGE (difference gel etrophoresis), isotope-coded protein labeling and biochemical assays to characterize protein alteration in ulcerative colitis (UC) and Crohn's disease (CD) in human epithelial cell and mucosal biopsies in inflammatory bowel disease (IBD)-affected patients. The aim of this study is to identify the key molecular signatures involved in epithelial cell structure of IBDs. In non-inflamed UC (QUC) keratins, vimentin, and focal adhesion kinase (7) increased, whereas vinculin and de-tyrosinated α-tubulin decreased; inflammation (IUC) exacerbated molecular changes, being collagen type VI alpha 1 chain (COL6A1), tenascin-C and vimentin increased. In non-inflamed CD (QCD), tenascin C, de-tyrosinated α-tubulin, vinculin, FAK, and Rho-associated protein kinase 1 (ROCK1) decreased while vimentin increased. In inflamed CD (ICD), COL6A1, vimentin and integrin alpha 4 increased. In QUC, cell metabolism is characterized by a decrease of the tricarboxylic acid cycle enzymes and a decrease of short/branched chain specific acyl-CoA dehydrogenase, fatty acid synthase, proliferator-activated receptors alpha, and proliferator-activated receptors gamma. In QCD a metabolic rewiring occurs, as suggested by glycerol-3-phosphate dehydrogenase (GPD2), pyruvate dehydrogenase E1 component subunit beta, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, and 4-trimethylaminobutyraldehyde dehydrogenase increment, while dihydrolipoyl dehydrogenase decreased. Macroautophagy is activated in QUC and IUC, with increased levels of p62, HSC70, major vault protein, myosin heavy chain 9, whereas it is blunted in QCD and ICD. The differing pattern of extracellular matrix, cytoskeletal derangements, cellular metabolism, and autophagy in UC and CD may contribute to the pathophysiological understanding of these disorders and serve as diagnostic markers in IBD patients.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Luca Pastorelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Gian Eugenio Tontini
- Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Maurizio Vecchi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Gastroenterology and Digestive Endoscopy UnitIRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Clinical Proteomics Unit, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
23
|
Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017; 312:G628-G634. [PMID: 28360031 PMCID: PMC5495917 DOI: 10.1152/ajpgi.00455.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 01/31/2023]
Abstract
Intermediate filament proteins (IFs), such as cytoplasmic keratins in epithelial cells and vimentin in mesenchymal cells and the nuclear lamins, make up one of the three major cytoskeletal protein families. Whether in digestive organs or other tissues, IFs share several unique features including stress-inducible overexpression, abundance, cell-selective and differentiation state expression, and association with >80 human diseases when mutated. Whereas most IF mutations cause disease, mutations in simple epithelial keratins 8, 18, or 19 or in lamin A/C predispose to liver disease with or without other tissue manifestations. Keratins serve major functions including protection from apoptosis, providing cellular and subcellular mechanical integrity, protein targeting to subcellular compartments, and scaffolding and regulation of cell-signaling processes. Keratins are essential for Mallory-Denk body aggregate formation that occurs in association with several liver diseases, whereas an alternate type of keratin and lamin aggregation occurs upon liver involvement in porphyria. IF-associated diseases have no known directed therapy, but high-throughput drug screening to identify potential therapies is an appealing ongoing approach. Despite the extensive current knowledge base, much remains to be discovered regarding IF physiology and pathophysiology in digestive and nondigestive organs.
Collapse
Affiliation(s)
- M. Bishr Omary
- Department of Molecular and Integrative Physiology and Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Keratin 8 reduces colonic permeability and maintains gut microbiota homeostasis, protecting against colitis and colitis-associated tumorigenesis. Oncotarget 2017; 8:96774-96790. [PMID: 29228570 PMCID: PMC5722522 DOI: 10.18632/oncotarget.18241] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/13/2017] [Indexed: 12/17/2022] Open
Abstract
Keratin 8 (CK8) is the major component of the intermediate filaments of simple or single-layered epithelia. Gene targeting mice model suggest that CK8 is involved in colonic active ion transport, colorectal hyperplasia and inflammation. In the present study, we found that CK8 is downregulated in the colon during DSS-induced colitis and AOM/DSS-induced colitis-associated colorectal cancer (CAC) development. In human patients with colon cancer, CK8 is downregulated. Using CK8 heterozygous knockout mice (CK8+/-), we found that CK8+/- mice are highly susceptible to DSS-induced colitis and more prone to AOM/DSS-induced CAC than wild type (WT) mice. The colonic permeability is increased with DSS or AOM/DSS treatment, leading to alteration of gut microbiota in CK8+/- mice with CAC. Metagenomic analysis of fecal microbiota suggests Firmicutes and Proteobacteria are increased in CK8+/- mice with CAC, while Bacteroidetes and Verrucomicrobia are decreased. Antibiotic treatment decreases the incidence of colorectal cancer tumorigenesis and TLR4 inhibitor attenuates the susceptibility of CK8+/- mice to DSS-induced colitis. These data suggest CK8 protects mice from colitis and colitis-associated colorectal cancer by modulating colonic permeability and gut microbiota composition homeostasis.
Collapse
|
25
|
Dong X, Liu Z, Lan D, Niu J, Miao J, Yang G, Zhang F, Sun Y, Wang K, Miao Y. Critical role of Keratin 1 in maintaining epithelial barrier and correlation of its down-regulation with the progression of inflammatory bowel disease. Gene 2017; 608:13-19. [DOI: 10.1016/j.gene.2017.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022]
|
26
|
Taya S, Kakehashi A, Wongpoomchai R, Gi M, Ishii N, Wanibuchi H. Preventive Effects of Spirogyra neglecta and a Polysaccharide Extract against Dextran Sodium Sulfate Induced Colitis in Mice. Asian Pac J Cancer Prev 2017; 17:2235-45. [PMID: 27221924 DOI: 10.7314/apjcp.2016.17.4.2235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ulcerative colitis (UC) results from colonic epithelial barrier defects and impaired mucosal immune responses. In this study, we aimed to investigate the modifying effects of a Spirogyra neglecta extract (SNE), a polysaccharide extract (PE) and a chloroform fraction (CF) on dextran sodium sulfate (DSS)-induced colitis in mice and to determine the mechanisms. To induce colitis, ICR mice received 3% DSS in their drinking water for 7 days. Seven days preceding the DSS treatment, oral administration of SNE, PE and CF at doses of 50, 25 and 0.25 mg/kg body weight (low dose), 200, 100 and 1 mg/kg body weight (high dose) and vehicle was started and continued for 14 days. Histologic findings showed that DSS-induced damage of colonic epithelial structure and inflammation was attenuated in mice pre-treated with SNE, PE and CF. Furthermore, SNE and PE significantly protected colonic epithelial cells from DSS-induced cell cycle arrest, while SNE, PE and CF significantly diminished apoptosis. Proteome analysis demonstrated that SNE and PE might ameliorate DSS-induced colitis by inducing antioxidant enzymes, restoring impaired mitochondria function, and regulating inflammatory cytokines, proliferation and apoptosis. These results suggest that SNE and PE could prevent DSS-induced colitis in ICR mice by protection against and/or aiding recovery from damage to the colonic epithelium, reducing ROS and maintaining normal mitochondrial function and apoptosis.
Collapse
Affiliation(s)
- Sirinya Taya
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, Asahi-machi, Abeno-ku, Osaka, Japan E-mail : wani@ med.osaka-cu.ac.jp
| | | | | | | | | | | |
Collapse
|
27
|
Geisler F, Gerhardus H, Carberry K, Davis W, Jorgensen E, Richardson C, Bossinger O, Leube RE. A novel function for the MAP kinase SMA-5 in intestinal tube stability. Mol Biol Cell 2016; 27:3855-3868. [PMID: 27733627 PMCID: PMC5170608 DOI: 10.1091/mbc.e16-02-0099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
In vivo evidence links SMA-5 to the maintenance of the apical domain in the Caenorhabditis elegans intestine. sma-5 mutations induce morphological and biochemical changes of the intermediate filament system, demonstrating the close relationship between posttranslational modification and structural integrity of the evolutionarily conserved intestinal cytoskeleton. Intermediate filaments are major cytoskeletal components whose assembly into complex networks and isotype-specific functions are still largely unknown. Caenorhabditis elegans provides an excellent model system to study intermediate filament organization and function in vivo. Its intestinal intermediate filaments localize exclusively to the endotube, a circumferential sheet just below the actin-based terminal web. A genetic screen for defects in the organization of intermediate filaments identified a mutation in the catalytic domain of the MAP kinase 7 orthologue sma-5(kc1). In sma-5(kc1) mutants, pockets of lumen penetrate the cytoplasm of the intestinal cells. These membrane hernias increase over time without affecting epithelial integrity and polarity. A more pronounced phenotype was observed in the deletion allele sma-5(n678) and in intestine-specific sma-5(RNAi). Besides reduced body length, an increased time of development, reduced brood size, and reduced life span were observed in the mutants, indicating compromised food uptake. Ultrastructural analyses revealed that the luminal pockets include the subapical cytoskeleton and coincide with local thinning and gaps in the endotube that are often enlarged in other regions. Increased intermediate filament phosphorylation was detected by two-dimensional immunoblotting, suggesting that loss of SMA-5 function leads to reduced intestinal tube stability due to altered intermediate filament network phosphorylation.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Harald Gerhardus
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Katrin Carberry
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Erik Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
28
|
Deek J, Hecht F, Rossetti L, Wißmiller K, Bausch AR. Mechanics of soft epithelial keratin networks depend on modular filament assembly kinetics. Acta Biomater 2016; 43:218-229. [PMID: 27403885 DOI: 10.1016/j.actbio.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/04/2016] [Accepted: 07/09/2016] [Indexed: 11/15/2022]
Abstract
UNLABELLED Structural adaptability is a pivotal requirement of cytoskeletal structures, enabling their reorganization to meet the cellular needs. Shear stress, for instance, results in large morphological network changes of the human soft epithelial keratin pair K8:K18, and is accompanied by an increase in keratin phosphorylation levels. Yet the mechanisms responsible for the disruption of the network structure in vivo remain poorly understood. To understand the effect of the stress-related site-specific phosphorylation of the K8:K18 pair, we created phosphomimicry mutants - K8(S431E), K8(S73E), K18(S52E) - in vitro, and investigated the various steps of keratin assembly from monomer to network structure using fluorescence and electron microscopy, and using rheology characterized their network mechanical properties. We find that the addition of a charged group produces networks with depleted intra-connectivity, which translates to a mechanically weaker and more deformable network. This large variation in network structure is achieved by the formation of shorter mutant filaments, which exhibit differing assembly kinetics and a manifestly reduced capacity to form the extended structures characteristic of the wild-type system. The similarity in outcome for all the phosphomimicry mutants explored points to a more general mechanism of structural modulation of intermediate filaments via phosphorylation. Understanding the role of kinetic effects in the construction of these cytoskeletal biopolymer networks is critical to elucidating their structure-function properties, providing new insight for the design of keratin-inspired biomaterials. STATEMENT OF SIGNIFICANCE Structural remodeling of cytoskeletal networks accompanies many cellular processes. Interestingly, levels of phosphorylation of the human soft epithelial keratin pair K8:K18 increase during their stress-related structural remodeling. Our multi-scale study sheds light on the poorly understood mechanism with which site-specific phosphorylation induces disruption of the keratin network structure in vivo. We show how phosphorylation reduces keratin filament length, an effect that propagates through to the mesoscopic structure, resulting in the formation of connectivity-depleted and mechanically weaker networks. We determine that the intrinsically-set filament-to-filament attractions that drive bundle assembly give rise to the structural variability by enabling the formation of kinetically-arrested structures. Overall, our results shed light on how self-assembled intermediate filament structures can be tailored to exhibit different structural functionalities.
Collapse
Affiliation(s)
- Joanna Deek
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Fabian Hecht
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Leone Rossetti
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Katharina Wißmiller
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Andreas R Bausch
- Lehrstuhl für Zellbiophysik E27, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
29
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|
30
|
Misiorek JO, Lähdeniemi IAK, Nyström JH, Paramonov VM, Gullmets JA, Saarento H, Rivero-Müller A, Husøy T, Taimen P, Toivola DM. Keratin 8-deletion induced colitis predisposes to murine colorectal cancer enforced by the inflammasome and IL-22 pathway. Carcinogenesis 2016; 37:777-786. [PMID: 27234655 DOI: 10.1093/carcin/bgw063] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/12/2016] [Indexed: 12/30/2022] Open
Abstract
Keratins (K) are intermediate filament proteins important in protection from cellular stress. K8, K18 and K19 are the main components of keratin filaments in colonic epithelia but their role in intestinal diseases remains ambiguous. A function for keratins in intestinal health is supported by the K8-knock-out (K8(-/-)) mouse which manifests an early chronic ulcerative colitis-like inflammatory bowel disease and epithelial hyperproliferation. We tested whether K8(-/-) mice are more susceptible to colorectal cancer (CRC) compared to K8 wild type (K8(+/+)), and K8 heterozygote (K8(+/-)) mice showing increased proliferation but no inflammation. K8(-/-) mice did not develop CRC spontaneously, but had dramatically increased numbers of tumors in the distal colon in the azoxymethane (AOM) and Apc(Min/+) CRC models while neither K8(+/+) nor K8(+/-) mice were susceptible. Upregulation of IL-22 in combination with a complete loss of its negative regulator IL-22BP, and increased downstream STAT3-signaling in K8(-/-) and K8(-/-)Apc(Min/+) colonic epithelia confirmed that the IL-22 pathway, important in inflammation, proliferation and tissue regeneration, was activated. The nearly total loss of IL-22BP correlated with an activated inflammasome leading to increased cleaved caspase-1, and the putative IL-22BP inhibitor, IL-18, as well as a decrease in ALDH1/2. Ablation of K8 in a colorectal cancer cell line similarly resulted in increased IL-18 and decreased ALDH1/2. K8/K18 co-immunoprecipitated with pro-caspase-1, a component of the inflammasome in the colon, which suggests that keratins modulate inflammasome activity and protect the colon from inflammation and tumorigenesis. The K8-null mouse models also provide novel epithelial-derived robust colon-specific CRC models.
Collapse
Affiliation(s)
- Julia O Misiorek
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Iris A K Lähdeniemi
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Joel H Nyström
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
| | - Valeriy M Paramonov
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Physiology, Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | - Josef A Gullmets
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
| | - Helena Saarento
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Adolfo Rivero-Müller
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland
| | - Trine Husøy
- Department of Food, Water and Cosmetics, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Pekka Taimen
- Department of Pathology, University of Turku and Turku University Hospital, Turku 20520, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland and
| | - Diana M Toivola
- Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland
- Turku Center for Disease Modeling, University of Turku, Turku 20520, Finland
| |
Collapse
|
31
|
Geisler F, Leube RE. Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells 2016; 5:cells5030029. [PMID: 27355965 PMCID: PMC5040971 DOI: 10.3390/cells5030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/15/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Intermediate filaments are abundant cytoskeletal components of epithelial tissues. They have been implicated in overall stress protection. A hitherto poorly investigated area of research is the function of intermediate filaments as a barrier to microbial infection. This review summarizes the accumulating knowledge about this interaction. It first emphasizes the unique spatial organization of the keratin intermediate filament cytoskeleton in different epithelial tissues to protect the organism against microbial insults. We then present examples of direct interaction between viral, bacterial, and parasitic proteins and the intermediate filament system and describe how this affects the microbe-host interaction by modulating the epithelial cytoskeleton, the progression of infection, and host response. These observations not only provide novel insights into the dynamics and function of intermediate filaments but also indicate future avenues to combat microbial infection.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany.
| |
Collapse
|
32
|
Abstract
The brush border on the apical surface of enterocytes is a highly specialized structure well-adapted for efficient digestion and nutrient transport, whilst at the same time providing a protective barrier for the intestinal mucosa. The brush border is constituted of a densely ordered array of microvilli, protrusions of the plasma membrane, which are supported by actin-based microfilaments and interacting proteins and anchored in an apical network of actomyosin and intermediate filaments, the so-called terminal web. The highly dynamic, specialized apical domain is both an essential partner for the gut microbiota and an efficient signalling platform that enables adaptation to physiological stimuli from the external and internal milieu. Nevertheless, genetic alterations or various pathological stresses, such as infection, inflammation, and mechanical or nutritional alterations, can jeopardize this equilibrium and compromise intestinal functions. Long-time neglected, the intestinal brush-border shall be enlightening again as the central actor of the complex but essential intestinal homeostasis. Here, we review the processes and components involved in brush border organization and discuss pathological mechanisms that can induce brush border defects and their physiological consequences.
Collapse
|
33
|
Annese V, Beaugerie L, Egan L, Biancone L, Bolling C, Brandts C, Dierickx D, Dummer R, Fiorino G, Gornet JM, Higgins P, Katsanos KH, Nissen L, Pellino G, Rogler G, Scaldaferri F, Szymanska E, Eliakim R. European Evidence-based Consensus: Inflammatory Bowel Disease and Malignancies. J Crohns Colitis 2015; 9:945-965. [PMID: 26294789 DOI: 10.1093/ecco-jcc/jjv141] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Vito Annese
- University Hospital Careggi, Department of Gastroenterology, Florence, Italy
| | - Laurent Beaugerie
- Department of Gastroenterology, AP-HP Hôpital Saint-Antoine, and UPMC Univ Paris 06, Paris, France
| | - Laurence Egan
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland
| | - Livia Biancone
- University Tor Vergata of Rome, GI Unit, Department of Systems Medicine, Rome, Italy
| | - Claus Bolling
- Agaplesion Markus Krankenhaus, Medizinische Klinik I, Frankfurt am Main, Germany
| | - Christian Brandts
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Daan Dierickx
- Department of Haematology, University Hospital Leuven, Leuven, Belgium
| | - Reinhard Dummer
- Department of Dermatology, University Zürich, Zürich, Switzerland
| | - Gionata Fiorino
- Gastroenterology Department, Humanitas Research Hospital, Rozzano, Italy
| | - Jean Marc Gornet
- Service d'hépatogastroentérologie, Hopital Saint-Louis, Paris, France
| | - Peter Higgins
- University of Michigan, Department of Internal Medicine, Ann Arbor, USA
| | | | - Loes Nissen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gianluca Pellino
- Second University of Naples, Unit of Colorectal Surgery, Department of Medical, Surgical, Neurological, Metabolic and Ageing Sciences, Naples, Italy
| | - Gerhard Rogler
- Klinik für Gastroenterologie und Hepatologie, UniversitätsSpital Zürich, Zürich, Switzerland
| | - Franco Scaldaferri
- Università Cattolica del Sacro Cuore, Department of Internal Medicine, Gastroenterology Division, Roma, Italy
| | - Edyta Szymanska
- Department of Pediatrics, Nutrition and Metabolic Disorders, Children's Memorial Health Institute, Warsaw, Poland
| | - Rami Eliakim
- Department of Gastroenterology and Hepatology, Sheba Medical Center & Sackler School of Medicine, Israel
| |
Collapse
|
34
|
Corfe BM, Majumdar D, Assadsangabi A, Marsh AMR, Cross SS, Connolly JB, Evans CA, Lobo AJ. Inflammation decreases keratin level in ulcerative colitis; inadequate restoration associates with increased risk of colitis-associated cancer. BMJ Open Gastroenterol 2015; 2:e000024. [PMID: 26462276 PMCID: PMC4599170 DOI: 10.1136/bmjgast-2014-000024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/21/2014] [Accepted: 01/04/2015] [Indexed: 01/08/2023] Open
Abstract
Background Keratins are intermediate filament (IF) proteins, which form part of the epithelial cytoskeleton and which have been implicated pathology of inflammatory bowel diseases (IBD). Methods In this study biopsies were obtained from IBD patients grouped by disease duration and subtype into eight categories based on cancer risk and inflammatory status: quiescent recent onset (<5 years) UC (ROUC); UC with primary sclerosing cholangitis; quiescent long-standing pancolitis (20–40 years) (LSPC); active colitis and non-inflamed proximal colonic mucosa; pancolitis with dysplasia-both dysplastic lesions (DT) and distal rectal mucosa (DR); control group without pathology. Alterations in IF protein composition across the groups were determined by quantitative proteomics. Key protein changes were validated by western immunoblotting and immunohistochemical analysis. Result Acute inflammation resulted in reduced K8, K18, K19 and VIM (all p<0.05) compared to controls and non inflamed mucosa; reduced levels of if– associated proteins were also seen in DT and DR. Increased levels of keratins in LSPC was noted relative to controls or ROUC (K8, K18, K19 and VIM, p<0.05). Multiple K8 forms were noted on immunoblotting, with K8 phosphorylation reduced in progressive disease along with an increase in VIM:K8 ratio. K8 levels and phosphorylation are reduced in acute inflammation but appear restored or elevated in subjects with clinical and endoscopic remission (LSPC) but not apparent in subjects with elevated risk of cancer. Conclusions These data suggest that keratin regulation in remission may influence subsequent cancer risk.
Collapse
Affiliation(s)
- Bernard M Corfe
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Insigneo Institute for in silico Medicine, University of Sheffield , Sheffield , UK
| | - Debabrata Majumdar
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Arash Assadsangabi
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Alexandra M R Marsh
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| | - Simon S Cross
- Academic Unit of Pathology, Department of Neuroscience, Faculty of Medicine, Dentistry & Health , University of Sheffield , Sheffield , UK
| | | | - Caroline A Evans
- Biological and Systems Engineering Group, Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK
| | - Alan J Lobo
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Gastroenterology Unit , Royal Hallamshire Hospital , Sheffield , UK
| |
Collapse
|
35
|
Evans CA, Rosser R, Waby JS, Noirel J, Lai D, Wright PC, Williams EA, Riley SA, Bury JP, Corfe BM. Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection. BMJ Open Gastroenterol 2015; 2:e000022. [PMID: 26462274 PMCID: PMC4599164 DOI: 10.1136/bmjgast-2014-000022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patients with adenomatous colonic polyps are at increased risk of developing further polyps suggesting field-wide alterations in cancer predisposition. The current study aimed to identify molecular alterations in the normal mucosa in the proximity of adenomatous polyps and to assess the modulating effect of butyrate, a chemopreventive compound produced by fermentation of dietary residues. METHODS A cross-sectional study was undertaken in patients with adenomatous polyps: biopsy samples were taken from the adenoma, and from macroscopically normal mucosa on the contralateral wall to the adenoma and from the mid-sigmoid colon. In normal subjects biopsies were taken from the mid-sigmoid colon. Biopsies were frozen for proteomic analysis or formalin-fixed for immunohistochemistry. Proteomic analysis was undertaken using iTRAQ workflows followed by bioinformatics analyses. A second dietary fibre intervention study arm used the same endpoints and sampling strategy at the beginning and end of a high-fibre intervention. RESULTS Key findings were that keratins 8, 18 and 19 were reduced in expression level with progressive proximity to the lesion. Lesional tissue exhibited multiple K8 immunoreactive bands and overall reduced levels of keratin. Biopsies from normal subjects with low faecal butyrate also showed depressed keratin expression. Resection of the lesion and elevation of dietary fibre intake both appeared to restore keratin expression level. CONCLUSION Changes in keratin expression associate with progression towards neoplasia, but remain modifiable risk factors. Dietary strategies may improve secondary chemoprevention. TRIAL REGISTRATION NUMBER ISRCTN90852168.
Collapse
Affiliation(s)
- Caroline A Evans
- Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK
| | - Ria Rosser
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK
| | - Jennifer S Waby
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Department of Biological Sciences , The University of Hull , Hull , UK
| | - Josselin Noirel
- Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK ; Conservatoire National des Arts et Mmétiers , Paris , France
| | - Daphne Lai
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Department of Geography , University of Sheffield , Sheffield , UK
| | - Phillip C Wright
- Department of Chemical and Biological Engineering , ChELSI Institute, University of Sheffield , Sheffield , UK
| | - Elizabeth A Williams
- Human Nutrition Unit, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK
| | - Stuart A Riley
- Department of Gastroenterology , Northern General Hospital , Sheffield , UK
| | - Jonathan P Bury
- Department of Pathology , Royal Hallamshire Hospital , Sheffield , UK
| | - Bernard M Corfe
- Molecular Gastroenterology Research Group, Department of Oncology , University of Sheffield, The Medical School , Sheffield , UK ; Insigneo Institute for in Silico Medicine, The University of Sheffield , Sheffield , UK
| |
Collapse
|
36
|
Cao YA, Hickerson RP, Seegmiller BL, Grapov D, Gross MM, Bessette MR, Phinney BS, Flores MA, Speaker TJ, Vermeulen A, Bravo AA, Bruckner AL, Milstone LM, Schwartz ME, Rice RH, Kaspar RL. Gene expression profiling in pachyonychia congenita skin. J Dermatol Sci 2015; 77:156-65. [PMID: 25656049 DOI: 10.1016/j.jdermsci.2015.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/26/2023]
Abstract
BACKGROUND Pachyonychia congenita (PC) is a skin disorder resulting from mutations in keratin (K) proteins including K6a, K6b, K16, and K17. One of the major symptoms is painful plantar keratoderma. The pathogenic sequelae resulting from the keratin mutations remain unclear. OBJECTIVE To better understand PC pathogenesis. METHODS RNA profiling was performed on biopsies taken from PC-involved and uninvolved plantar skin of seven genotyped PC patients (two K6a, one K6b, three K16, and one K17) as well as from control volunteers. Protein profiling was generated from tape-stripping samples. RESULTS A comparison of PC-involved skin biopsies to adjacent uninvolved plantar skin identified 112 differentially-expressed mRNAs common to patient groups harboring K6 (i.e., both K6a and K6b) and K16 mutations. Among these mRNAs, 25 encode structural proteins including keratins, small proline-rich and late cornified envelope proteins, 20 are related to metabolism and 16 encode proteases, peptidases, and their inhibitors including kallikrein-related peptidases (KLKs), and serine protease inhibitors (SERPINs). mRNAs were also identified to be differentially expressed only in K6 (81) or K16 (141) patient samples. Furthermore, 13 mRNAs were identified that may be involved in pain including nociception and neuropathy. Protein profiling, comparing three K6a plantar tape-stripping samples to non-PC controls, showed changes in the PC corneocytes similar, but not identical, to the mRNA analysis. CONCLUSION Many differentially-expressed genes identified in PC-involved skin encode components critical for skin barrier homeostasis including keratinocyte proliferation, differentiation, cornification, and desquamation. The profiling data provide a foundation for unraveling the pathogenesis of PC and identifying targets for developing effective PC therapeutics.
Collapse
Affiliation(s)
- Yu-An Cao
- TransDerm Inc., Santa Cruz, CA 95060, USA
| | | | | | - Dmitry Grapov
- University of California at Davis, Davis, CA 95616, USA
| | - Maren M Gross
- Dharmacon part of GE Healthcare, Lafayette, CO 80026, USA
| | | | | | | | | | | | - Albert A Bravo
- Podiatric Medicine and Surgery, Pittsfield, MA 01201, USA
| | - Anna L Bruckner
- University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | - Mary E Schwartz
- Pachyonychia Congenita Project, Salt Lake City, UT 84109, USA
| | - Robert H Rice
- University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
37
|
Zupancic T, Stojan J, Lane EB, Komel R, Bedina-Zavec A, Liovic M. Intestinal cell barrier function in vitro is severely compromised by keratin 8 and 18 mutations identified in patients with inflammatory bowel disease. PLoS One 2014; 9:e99398. [PMID: 24915158 PMCID: PMC4051775 DOI: 10.1371/journal.pone.0099398] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022] Open
Abstract
Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo.
Collapse
Affiliation(s)
- Tina Zupancic
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Jure Stojan
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Radovan Komel
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mirjana Liovic
- National Institute of Chemistry, Ljubljana, Slovenia
- Medical Centre for Molecular Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
38
|
Animal models of inflammatory bowel disease: a review. Inflammopharmacology 2014; 22:219-33. [PMID: 24906689 DOI: 10.1007/s10787-014-0207-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) represents a group of idiopathic chronic inflammatory intestinal conditions associated with various areas of the GI tract, including two types of inflammatory conditions, i.e., ulcerative colitis (UC) and Crohn's disease (CD). Both UC and CD are chronic inflammatory disorders of the intestine; in UC, inflammation starts in the rectum and generally extends proximally in a continuous manner through the entire colon. Bloody diarrhea, presence of blood and mucus mixed with stool, accompanied by lower abdominal cramping, are the characteristic symptoms of the disease. While in CD, inflammatory condition may affect any part of the GI tract from mouth to anus. It mainly causes abdominal pain, diarrhea, vomiting and weight loss. Although the basic etiology of IBD is unknown, there are several factors that may contribute to the pathogenesis of this disease, such as dysregulation of immune system or commensal bacteria, oxidative stress and inflammatory mediators. In order to understand these different etiological factors, a number of experimental models are available in the scientific research, including chemical-induced, spontaneous, genetically engineered and transgenic models. These models represent a major source of information about biological systems and are clinically relevant to the human IBD. Since there is less collective data available in one single article discussing about all these models, in this review an effort is made to study the outline of pathophysiology and various types of animal models used in the research study of IBD and other disease-related complications.
Collapse
|
39
|
Ahmed FE. Role of genes, the environment and their interactions in the etiology of inflammatory bowel diseases. Expert Rev Mol Diagn 2014; 6:345-63. [PMID: 16706738 DOI: 10.1586/14737159.6.3.345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Few of the studied genes demonstrate association with inflammatory bowel disease (IBD). Three mutations in the nucleotide-binding oligomerization domain 2 gene have consistently shown to be independent risk factors for Crohn's disease, but none of the alleles exhibited high sensitivity or specificity for IBD. Linkage analysis implicated several loci on various chromosomes, and epistasis has been demonstrated. The etiopathogenesis of IBD remains unknown, and environmental contribution to their pathogenesis is evident from genetic studies that demonstrated incomplete monozygotic twins concordandance rate for both Crohn's and ulcerative colitis. Smoking has shown an opposite effect on disease phenotype, with an adverse effect on disease course for Crohn's disease, but a slight beneficial effect in ulcerative colitis. The contribution of infectious agents to susceptibility to IBD appears to be strong. However, the role of nutrition on the etiology and therapy of IBD is not clear. Inconsistencies in environmental risk factors could be due to gene-environment interactions, making it essential to study the role of genetics and environmental contribution to the etiopathology of IBD. Transgenic or knockout mice, such as interleukin-10(-/-), T-cell receptor alpha(-/-), Galphai(2) (-/-) and N-cadherin(-/-), develop colitis-like inflammation similar to humans. Therefore, animal models must be further studied to explore mechanistic interactions.
Collapse
Affiliation(s)
- Farid E Ahmed
- The Brody School of Medicine at East Carolina University, Department of Radiation Oncology, Leo W Jenkins Cancer Center, Greenville, NC 27858, USA.
| |
Collapse
|
40
|
Affiliation(s)
- Rebecca L Haines
- Epithelial Biology Group, Institute of Medical Biology, Immunos, Singapore
| | | |
Collapse
|
41
|
Elliott JL, Der Perng M, Prescott AR, Jansen KA, Koenderink GH, Quinlan RA. The specificity of the interaction between αB-crystallin and desmin filaments and its impact on filament aggregation and cell viability. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120375. [PMID: 23530264 PMCID: PMC3638400 DOI: 10.1098/rstb.2012.0375] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CRYAB (αB-crystallin) is expressed in many tissues and yet the R120G mutation in CRYAB causes tissue-specific pathologies, namely cardiomyopathy and cataract. Here, we present evidence to demonstrate that there is a specific functional interaction of CRYAB with desmin intermediate filaments that predisposes myocytes to disease caused by the R120G mutation. We use a variety of biochemical and biophysical techniques to show that plant, animal and ascidian small heat-shock proteins (sHSPs) can interact with intermediate filaments. Nevertheless, the mutation R120G in CRYAB does specifically change that interaction when compared with equivalent substitutions in HSP27 (R140G) and into the Caenorhabditis elegans HSP16.2 (R95G). By transient transfection, we show that R120G CRYAB specifically promotes intermediate filament aggregation in MCF7 cells. The transient transfection of R120G CRYAB alone has no significant effect upon cell viability, although bundling of the endogenous intermediate filament network occurs and the mitochondria are concentrated into the perinuclear region. The combination of R120G CRYAB co-transfected with wild-type desmin, however, causes a significant reduction in cell viability. Therefore, we suggest that while there is an innate ability of sHSPs to interact with and to bind to intermediate filaments, it is the specific combination of desmin and CRYAB that compromises cell viability and this is potentially the key to the muscle pathology caused by the R120G CRYAB.
Collapse
Affiliation(s)
- Jayne L Elliott
- School of Biological and Biomedical Sciences, The University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | | | |
Collapse
|
42
|
Majumdar D, Tiernan JP, Lobo AJ, Evans CA, Corfe BM. Keratins in colorectal epithelial function and disease. Int J Exp Pathol 2012; 93:305-18. [PMID: 22974212 DOI: 10.1111/j.1365-2613.2012.00830.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Keratins are the largest subgroup of intermediate filament proteins, which are an important constituent of the cellular cytoskeleton. The principally expressed keratins (K) of the intestinal epithelium are K8, K18 and K19. The specific keratin profile of a particular epithelium provides it with strength and integrity. In the colon, keratins have been shown to regulate electrolyte transport, likely by targeting ion transporters to their correct location in the colonocytes. Keratins are highly dynamic and are subject to post-translational modifications including phosphorylation, acetylation and glycosylation. These affect the filament dynamics and hence solubility of keratins and may contribute to protection against degradation. Keratin null mice (K8(-/-) ) develop colitis, and abnormal keratin mutations have been shown to be associated with inflammatory bowel disease (IBD). Abnormal expression of K7 and K20 has been noted in colitis-associated dysplasia and cancers. In sporadic colorectal cancers (CRCs) may be useful in predicting tumour prognosis; a low K20 expression is noted in CRCs with high microsatellite instability; and keratins have been noted as dysregulated in peri-adenomatous fields. Caspase-cleaved fragment of K18 (M30) in the serum of patients with CRC has been used as a marker of cancer load and to assess response to therapy. These data suggest an emerging importance of keratins in maintaining normal function of the gastrointestinal epithelium as well as being a marker of various colorectal diseases. This review will primarily focus on the biology of these proteins, physiological functions and alterations in IBD and CRCs.
Collapse
Affiliation(s)
- Debabrata Majumdar
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, The Medical School, University of Sheffield, Sheffield, UK
| | | | | | | | | |
Collapse
|
43
|
Majumdar D, Rosser R, Havard S, Lobo AJ, Wright PC, Evans CA, Corfe BM. An integrated workflow for extraction and solubilization of intermediate filaments from colorectal biopsies for proteomic analysis. Electrophoresis 2012; 33:1967-74. [PMID: 22806461 DOI: 10.1002/elps.201100662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a technique for isolation and solubilization of intermediate filament (IF) proteins from colonic biopsies compatible with both gel electrophoresis and liquid chromatography "shotgun" proteomics using mass spectrometry (MS). This is important because changes in the IF proteome, particularly in keratin expression and modification, are noted in colonic mucosa of patients with colorectal cancer. Though keratins have traditionally been dissolved in high concentration of urea, the latter solvent precludes efficient proteolytic digestion by trypsin prior to gel-free LC-MS/MS approaches. The extraction of cytoskeletal proteins was initially evaluated using MCF-7 cancer cell lines using a published, differential detergent solubilization protocol. IF proteins were extracted from colonic biopsies using a combination of homogenization and sonication. Since comparable efficiency of solubilization was noted on the extracted IF from cell lines between urea and guanidine hydrochloride (GuHCl) in triethylammonium bicarbonate buffer, isolated proteins from endoscopic biopsies were solubilized in GuHCl. Using immunoblotting techniques, we successfully demonstrated isolation of keratins and preservation of posttranslational modifications (phosphorylation, acetylation). Dissolved proteins were tryptically digested and peptides analyzed by MS, showing the functionality of the workflow in shotgun proteomic applications, specifically compatibility of the workflow for isobaric tagging relative and absolute quantification based quantitation approaches.
Collapse
Affiliation(s)
- Debabrata Majumdar
- Molecular Gastroenterology Research Group, Academic Unit of Surgical Oncology, Department of Oncology, The Medical School, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Brouillard F, Fritsch J, Edelman A, Ollero M. Contribution of proteomics to the study of the role of cytokeratins in disease and physiopathology. Proteomics Clin Appl 2012; 2:264-85. [PMID: 21136830 DOI: 10.1002/prca.200780018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytokeratins (CKs), the most abundant group of cytoskeletal intermediate filaments, and proteomics are strongly connected. On the one hand, proteomics has been extremely useful to uncover new features and functions of CKs, on the other, the highly abundant CKs serve as an exceptional tool to test new technological developments in proteomics. As a result, proteomics has contributed to finding valuable associations of CKs with diseases as diverse as cancer, cystic fibrosis, steatohepatitis, viral and bacterial infection, keratoconus, vitreoretinopathy, preeclampsia or the chronic fatigue syndrome, as well as to characterizing their participation in a number of physiopathological processes, including drug resistance, response to toxicants, inflammation, stem cell differentiation, embryo development, and tissue repair. In some cases, like in cystic fibrosis, CKs have been described as potential therapeutic targets. The development of a specific field of proteomics where CKs become the main subject of research aims and hypotheses is suggested.
Collapse
Affiliation(s)
- Franck Brouillard
- INSERM, Unité 845, Paris, France; Faculté de Médecine René Descartes, Université Paris-Descartes, Plateau Protéomes IFR94, Paris, France
| | | | | | | |
Collapse
|
45
|
Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon. Proc Natl Acad Sci U S A 2011; 108:1445-50. [PMID: 21220329 DOI: 10.1073/pnas.1010833108] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Keratin 8 (K8) is a major intermediate filament protein present in enterocytes and serves an antiapoptotic function in hepatocytes. K8-null mice develop colonic hyperplasia and colitis that are reversed after antibiotic treatment. To investigate the pathways that underlie the mechanism of colonocyte hyperplasia and the normalization of the colonic phenotype in response to antibiotics, we performed genome-wide microarray analysis. Functional annotation of genes that are differentially regulated in K8(-/-) and K8(+/+) isolated colon crypts (colonocytes) identified apoptosis as a major altered pathway. Exposure of K8(-/-) colonocytes or colon organ ("organoid") cultures, but not K8(-/-) small intestine organoid cultures, to apoptotic stimuli showed, surprisingly, that they are resistant to apoptosis compared with their wild-type counterparts. This resistance is not related to inflammation per se because T-cell receptor α-null (TCR-α(-/-)) and wild-type colon cultures respond similarly upon induction of apoptosis. Following antibiotic treatment, K8(-/-) colonocytes and organ cultures become less resistant to apoptosis and respond similarly to the wild-type colonocytes. Antibiotics also normalize most differentially up-regulated genes, including survivin and β4-integrin. Treatment of K8(-/-) mice with anti-β4-integrin antibody up-regulated survivin, and induced phosphorylation of focal adhesion kinase with decreased activation of caspases. Therefore, unlike the proapoptotic effect of K8 mutation or absence in hepatocytes, lack of K8 confers resistance to colonocyte apoptosis in a microflora-dependent manner.
Collapse
|
46
|
Khan AQ, Bury JP, Brown SR, Riley SA, Corfe BM. Keratin 8 expression in colon cancer associates with low faecal butyrate levels. BMC Gastroenterol 2011; 11:2. [PMID: 21219647 PMCID: PMC3027188 DOI: 10.1186/1471-230x-11-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 01/10/2011] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Butyrate has been implicated in the mechanistic basis of the prevention of colorectal cancer by dietary fibre. Numerous in vitro studies have shown that butyrate regulates cell cycle and cell death. More recently we have shown that butyrate also regulates the integrity of the intermediate filament (IF) cytoskeleton in vitro. These and other data suggest a link between the role of diet and the implication of a central role for the keratin 8 (K8) as guardian of the colorectal epithelium. METHODS In this cross-sectional study possible links between butyrate levels, field effects and keratin expression in cancer were addressed directly by analysing how levels of expression of the IF protein K8 in tumours, in adjacent fields and at a distant landmark site may be affected by the level of butyrate in the colon microenvironment. An immunohistochemical scoring protocol for K8 was developed and applied to samples, findings were further tested by immunoblotting. RESULTS Levels of K8 in colorectal tumours are lower in subjects with higher levels of faecal butyrate. Immunoblotting supported this finding.Although there were no significant relationships with butyrate on the non-tumour tissues, there was a consistent trend in all measures of extent or intensity of staining towards a reduction in expression with elevated butyrate, consistent with the inverse association in tumours. CONCLUSIONS The data suggest that butyrate may associate with down-regulation of the expression of K8 in the cancerized colon. If further validated these findings may suggest the chemopreventive value of butyrate is limited to early stage carcinogenesis as low K8 expression is associated with a poor prognosis.
Collapse
Affiliation(s)
- Abdul Q Khan
- Department of Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2JF, UK
- Department of Gastroenterology, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Jonathan P Bury
- Department of Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2JF, UK
| | - Steven R Brown
- Department of Gastroenterology, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Stuart A Riley
- Department of Gastroenterology, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK
| | - Bernard M Corfe
- Department of Oncology, University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2JF, UK
| |
Collapse
|
47
|
Ding Y, Lu B, Chen D, Meng L, Shen Y, Chen S. Proteomic analysis of colonic mucosa in a rat model of irritable bowel syndrome. Proteomics 2010; 10:2620-30. [PMID: 20461717 DOI: 10.1002/pmic.200900572] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional disorders of the gastrointestinal tract. It is characterized by abdominal pain and changes in bowel habits. Various studies have investigated the pathophysiologic processes underlying IBS, but the mechanism remains poorly understood. In the present study, we established an IBS model and identified differentially expressed proteins in colon tissue of IBS rats compared with healthy controls by 2-D gel electrophoresis, MALDI-TOF-MS, and Western blot analysis. Our results showed that 13 of the 1396 protein spots on 2-D gel were differently expressed between the IBS and control groups. Ontological analysis of these proteins revealed primary roles in catalytic activity (protein disulfide-isomerase A3, glyoxalase I, cathepsin S, alpha-enolase), structural support (cytokeratin 8), antioxidant activity (peroxiredoxin-6), protein binding (transgelin, serpin peptidase inhibitor B5), and signal transduction (40S ribosomal protein SA). Protein disulfide-isomerase A3 and cytokeratin 8 overexpression in IBS were confirmed by Western blot. The findings indicate that multiple proteins are involved in IBS processes that influence intestinal tract immunity, inflammation, and nerve regulation. Our study provides useful candidate genes and proteins for further investigation.
Collapse
Affiliation(s)
- Ying Ding
- Department of Gastroenterology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, P R China
| | | | | | | | | | | |
Collapse
|
48
|
Luo YX, Cui J, Wang L, Chen DK, Peng JS, Lan P, Huang MJ, Huang YH, Cai SR, Hu KH, Li MT, Wang JP. Identification of cancer-associated proteins by proteomics and downregulation of β-tropomyosin expression in colorectal adenoma and cancer. Proteomics Clin Appl 2009; 3:1397-406. [PMID: 21136959 DOI: 10.1002/prca.200900070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 08/09/2009] [Accepted: 08/24/2009] [Indexed: 12/12/2022]
Abstract
Elucidating the molecular mechanism underlying the development of adenoma, the major precursor lesion of colorectal cancer (CRC), would provide a basis for early detection, prevention as well as treatment of CRC. Using the highly sensitive 2-D DIGE method coupled with MS, we identified 24 differentially expressed proteins in adenoma tissues compared with matched normal colonic mucosa and CRC tissues. Fifteen proteins were downregulated and three proteins were upregulated in adenoma tissues when compared with individual-matched normal colonic mucosa. Five proteins were downregulated, while one protein was upregulated in adenoma tissues when compared with matched CRC tissues. A protein, β-tropomyosin (TM-β), recently suggested to be a biomarker of esophageal squamous carcinoma, was downregulated in both adenoma and CRC tissues. Additionally, the reduction in the level of TM-β in adenoma and CRC tissues was further validated by Western blotting (p<0.05) and RT-PCR (p<0.001). Our findings suggest that downregulation of TM-β is involved in the early development of CRC and that differentially expressed proteins might serve as potential biomarkers for detection of CRC.
Collapse
Affiliation(s)
- Yan-Xin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P. R. China; Gastrointestinal Institute, Sun Yat-Sen University, Guangzhou, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest 2009; 119:1794-805. [PMID: 19587454 DOI: 10.1172/jci37762] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Simple epithelial keratins (SEKs) are found primarily in single-layered simple epithelia and include keratin 7 (K7), K8, K18-K20, and K23. Genetically engineered mice that lack SEKs or overexpress mutant SEKs have helped illuminate several keratin functions and served as important disease models. Insight into the contribution of SEKs to human disease has indicated that K8 and K18 are the major constituents of Mallory-Denk bodies, hepatic inclusions associated with several liver diseases, and are essential for inclusion formation. Furthermore, mutations in the genes encoding K8, K18, and K19 predispose individuals to a variety of liver diseases. Hence, as we discuss here, the SEK cytoskeleton is involved in the orchestration of several important cellular functions and contributes to the pathogenesis of human liver disease.
Collapse
Affiliation(s)
- M Bishr Omary
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
50
|
The molecular basis of human keratin disorders. Hum Genet 2009; 125:355-73. [DOI: 10.1007/s00439-009-0646-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/01/2023]
|