1
|
Kück U, Pöggeler S. STRIPAK, a fundamental signaling hub of eukaryotic development. Microbiol Mol Biol Rev 2024; 88:e0020523. [PMID: 39526753 DOI: 10.1128/mmbr.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
SUMMARYThe striatin-interacting phosphatase and kinase (STRIPAK) complex is involved in the regulation of many developmental processes in eukaryotic microorganisms and all animals, including humans. STRIPAK is a component of protein phosphatase 2A (PP2A), a highly conserved serine-threonine phosphatase composed of catalytic subunits (PP2Ac), a scaffolding subunit (PP2AA) and various substrate-directing B regulatory subunits. In particular, the B''' regulatory subunit called striatin has evoked major interest over the last 20 years. Studies in fungal systems have contributed substantially to our current knowledge about STRIPAK composition, assembly, and cellular localization, as well as its regulatory role in autophagy and the morphology of fungal development. STRIPAK represents a signaling hub with many kinases and thus integrates upstream and downstream information from many conserved eukaryotic signaling pathways. A profound understanding of STRIPAK's regulatory role in fungi opens the gateway to understanding the multifarious functions carried out by STRIPAK in higher eukaryotes, including its contribution to malignant cell growth.
Collapse
Affiliation(s)
- Ulrich Kück
- Allgemeine & Molekulare Botanik, Ruhr-University, Bochum, Germany
| | - Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Göttingen, Germany
| |
Collapse
|
2
|
Rehmani T, Dias AP, Applin BD, Salih M, Tuana BS. SLMAP3 is essential for neurulation through mechanisms involving cytoskeletal elements, ABP, and PCP. Life Sci Alliance 2024; 7:e202302545. [PMID: 39366759 PMCID: PMC11452652 DOI: 10.26508/lsa.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
SLMAP3 is a tail-anchored membrane protein that targets subcellular organelles and is believed to regulate Hippo signaling. The global loss of SLMAP3 causes late embryonic lethality in mice, with some embryos exhibiting neural tube defects such as craniorachischisis. We show here that SLMAP3 -/- embryos display reduced length and increased width of neural plates, signifying arrested convergent extension. The expression of planar cell polarity (PCP) components Dvl2/3 and the activity of the downstream targets ROCK2, cofilin, and JNK1/2 were dysregulated in SLMAP3 -/- E12.5 brains. Furthermore, the cytoskeletal proteins (γ-tubulin, actin, and nestin) and apical components (PKCζ and ZO-1) were mislocalized in neural tubes of SLMAP3 -/- embryos, with a subsequent decrease in colocalization of PCP proteins (Fzd6 and pDvl2). However, no changes in PCP or cytoskeleton proteins were found in cultured neuroepithelial cells depleted of SLMAP3, suggesting an essential requirement for SLMAP3 for these processes in vivo for neurulation. The loss of SLMAP3 had no impact on Hippo signaling in SLMAP3 -/- embryos, brains, and neural tubes. Proteomic analysis revealed SLMAP3 in an interactome with cytoskeletal components, including nestin, tropomyosin 4, intermediate filaments, plectin, the PCP protein SCRIB, and STRIPAK members in embryonic brains. These results reveal a crucial role of SLMAP3 in neural tube development by regulating the cytoskeleton organization and PCP pathway.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Ana Paula Dias
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Dias AP, Rehmani T, Salih M, Tuana B. Tail-anchored membrane protein SLMAP3 is essential for targeting centrosomal proteins to the nuclear envelope in skeletal myogenesis. Open Biol 2024; 14:240094. [PMID: 39378988 PMCID: PMC11461071 DOI: 10.1098/rsob.240094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 10/10/2024] Open
Abstract
The positioning and communication between the nucleus and centrosomes are essential in cell division, differentiation and tissue formation. During skeletal myogenesis, the nuclei become evenly spaced with the switch of the microtubule-organizing centre (MTOC) from the centrosome to the nuclear envelope (NE). We report that the tail-anchored sarcolemmal membrane associated protein 3 (SLMAP3), a component of the MTOC and NE, is crucial for myogenesis because its deletion in mice leads to a reduction in the NE-MTOC formation, mislocalization of the nuclei, dysregulation of the myogenic programme and abnormal embryonic myofibres. SLMAP3-/- myoblasts also displayed a similar disorganized distribution of nuclei with an aberrant NE-MTOC and defective myofibre formation and differentiation programming. We identified novel interactors of SLMAP3, including pericentrin, PCM1 (pericentriolar material 1), AKAP9 (A-kinase anchoring protein 9), kinesin-1 members Kif5B (kinesin family member 5B), KCL1 (kinesin light chain 1), KLC2 (kinesin light chain 2) and nuclear lamins, and observed that the distribution of centrosomal proteins at the NE together with Nesprin-1 was significantly altered by the loss of SLMAP3 in differentiating myoblasts. SLMAP3 is believed to negatively regulate Hippo signalling, but its loss was without impact on this pathway in developing muscle. These results reveal that SLMAP3 is essential for skeletal myogenesis through unique mechanisms involving the positioning of nuclei, NE-MTOC dynamics and gene programming.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada K1H 8M5
| |
Collapse
|
4
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
5
|
Rehmani T, Dias AP, Kamal M, Salih M, Tuana BS. Deletion of Sarcolemmal Membrane-Associated Protein Isoform 3 (SLMAP3) in Cardiac Progenitors Delays Embryonic Growth of Myocardium without Affecting Hippo Pathway. Int J Mol Sci 2024; 25:2888. [PMID: 38474134 DOI: 10.3390/ijms25052888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The slmap gene is alternatively spliced to generate many isoforms that are abundant in developing myocardium. The largest protein isoform SLMAP3 is ubiquitously expressed and has been linked to cardiomyopathy, Brugada syndrome and Hippo signaling. To examine any role in cardiogenesis, mice homozygous for floxed slmap allele were crossed with Nkx2.5-cre mice to nullify its expression in cardiac progenitors. Targeted deletion of the slmap gene resulted in the specific knockout (KO) of the SLMAP3 (~91 KDa) isoform without any changes in the expression of the SLMAP2 (~43 kDa) or the SLMAP1 (~35 kDa) isoforms which continued to accumulate to similar levels as seen in Wt embryonic hearts. The loss of SLMAP3 from cardiac progenitors resulted in decreased size of the developing embryonic hearts evident at E9.5 to E16.5 with four small chambers and significantly thinner left ventricles. The proliferative capacity assessed with the phosphorylation of histone 3 or with Ki67 in E12.5 hearts was not significantly altered due to SLMAP3 deficiency. The size of embryonic cardiomyocytes, marked with anti-Troponin C, revealed significantly smaller cells, but their hypertrophic response (AKT1 and MTOR1) was not significantly affected by the specific loss of SLMAP3 protein. Further, no changes in phosphorylation of MST1/2 or YAP were detected in SLMAP3-KO embryonic myocardium, ruling out any impact on Hippo signaling. Rat embryonic cardiomyocytes express the three SLMAP isoforms and their knockdown (KD) with sh-RNA, resulted in decreased proliferation and enhanced senescence but without any impact on Hippo signaling. Collectively, these data show that SLMAP is critical for normal cardiac development with potential for the various isoforms to serve compensatory roles. Our data imply novel mechanisms for SLMAP action in cardiac growth independent of Hippo signaling.
Collapse
Affiliation(s)
- Taha Rehmani
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Ana Paula Dias
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Marsel Kamal
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Moras E, Gandhi K, Narasimhan B, Brugada R, Brugada J, Brugada P, Krittanawong C. Genetic and Molecular Mechanisms in Brugada Syndrome. Cells 2023; 12:1791. [PMID: 37443825 PMCID: PMC10340412 DOI: 10.3390/cells12131791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Brugada syndrome is a rare hereditary arrhythmia disorder characterized by a distinctive electrocardiogram pattern and an elevated risk of ventricular arrhythmias and sudden cardiac death in young adults. Despite recent advances, it remains a complex condition, encompassing mechanisms, genetics, diagnosis, arrhythmia risk stratification, and management. The underlying electrophysiological mechanism of Brugada syndrome requires further investigation, with current theories focusing on abnormalities in repolarization, depolarization, and current-load match. The genetic basis of the syndrome is strong, with mutations found in genes encoding subunits of cardiac sodium, potassium, and calcium channels, as well as genes involved in channel trafficking and regulation. While the initial discovery of mutations in the SCN5A gene provided valuable insights, Brugada syndrome is now recognized as a multifactorial disease influenced by several loci and environmental factors, challenging the traditional autosomal dominant inheritance model. This comprehensive review aims to provide a current understanding of Brugada syndrome, focusing on its pathophysiology, genetic mechanisms, and novel models of risk stratification. Advancements in these areas hold the potential to facilitate earlier diagnosis, improve risk assessments, and enable more targeted therapeutic interventions.
Collapse
Affiliation(s)
- Errol Moras
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kruti Gandhi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bharat Narasimhan
- Debakey Cardiovascular Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ramon Brugada
- Cardiology, Cardiac Genetics Clinical Unit, Hospital Universitari Josep Trueta, Hospital Santa Caterina, 17007 Girona, Spain
- Cardiovascular Genetics Center and Clinical Diagnostic Laboratory, Institut d’Investigació Biomèdica Girona-IdIBGi, 17190 Salt, Spain
| | - Josep Brugada
- Cardiovascular Institute, Hospital Clínic, 08036 Barcelona, Spain
- Pediatric Arrhythmia Unit, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Department of Medicine, University of Barcelona, 08036 Barcelona, Spain
| | - Pedro Brugada
- Cardiovascular Division, Free University of Brussels (UZ Brussel) VUB, B-1050 Brussels, Belgium
- Medical Centre Prof. Brugada, B-9300 Aalst, Belgium
- Arrhythmia Unit, Helicopteros Sanitarios Hospital (HSH), Puerto Banús, 29603 Marbella, Spain
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Liu W, Li D, Lu T, Zhang H, Chen Z, Ruan Q, Zheng Z, Chen L, Guo J. Comprehensive analysis of RNA-binding protein SRSF2-dependent alternative splicing signature in malignant proliferation of colorectal carcinoma. J Biol Chem 2023; 299:102876. [PMID: 36623729 PMCID: PMC9926302 DOI: 10.1016/j.jbc.2023.102876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
Aberrant expression of serine/arginine-rich splicing factor 2 (SRSF2) can lead to tumorigenesis, but its molecular mechanism in colorectal cancer is currently unknown. Herein, we found SRSF2 to be highly expressed in human colorectal cancer (CRC) samples compared with normal tissues. Both in vitro and in vivo, SRSF2 significantly accelerated the proliferation of colon cancer cells. Using RNA-seq, we screened and identified 33 alternative splicing events regulated by SRSF2. Knockdown of SLMAP-L or CETN3-S splice isoform could suppress the growth of colon cancer cells, predicting their role in malignant proliferation of colon cancer cells. Mechanistically, the in vivo crosslinking immunoprecipitation assay demonstrated the direct binding of the RNA recognition motif of SRSF2 protein to SLMAP and CETN3 pre-mRNAs. SRSF2 activated the inclusion of SLMAP alternative exon 24 by binding to constitutive exon 25, while SRSF2 facilitated the exclusion of CETN3 alternative exon 5 by binding to neighboring exon 6. Knockdown of SRSF2, its splicing targets SLMAP-L, or CETN3-S caused colon cancer cells to arrest in G1 phase of the cell cycle. Rescue of SLMAP-L or CETN3-S splice isoform in SRSF2 knockdown colon cancer cells could effectively reverse the inhibition of cell proliferation by SRSF2 knockdown through mediating cell cycle progression. Importantly, the percentage of SLMAP exon 24 inclusion increased and CETN3 exon 5 inclusion decreased in CRC samples compared to paired normal samples. Collectively, our findings identify that SRSF2 dysregulates colorectal carcinoma proliferation at the molecular level of splicing regulation and reveal potential splicing targets in CRC patients.
Collapse
Affiliation(s)
- Weizhen Liu
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongfang Li
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ting Lu
- National Center for Colorectal Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haosheng Zhang
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Zhengxin Chen
- National Center for Colorectal Diseases, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qinli Ruan
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zihui Zheng
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Linlin Chen
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Jun Guo
- Key Laboratory of Drug Target and Drug for Degenerative Disease, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,Science and Technology Experimental Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Liang J, Jin W, Xu H. An efficient five-lncRNA signature for lung adenocarcinoma prognosis, with AL606489.1 showing sexual dimorphism. Front Genet 2022; 13:1052092. [PMID: 36531243 PMCID: PMC9748423 DOI: 10.3389/fgene.2022.1052092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is a sex-biased and easily metastatic malignant disease. A signature based on 5 long non-coding RNAs (lncRNAs) has been established to promote the overall survival (OS) prediction effect on LUAD.Methods: The RNA expression profiles of LUAD patients were obtained from The Cancer Genome Atlas. OS-associated lncRNAs were identified based on the differential expression analysis between LUAD and normal samples followed by survival analysis, univariate and multivariate Cox proportional hazards regression analyses. OS-associated lncRNA with sex dimorphism was determined based on the analysis of expression between males and females. Functional enrichment analysis of the Gene Ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was performed to explore the possible mechanisms of 5-lncRNA signatures.Results: A 5-lncRNA signature (composed of AC068228.1, SATB2-AS1, LINC01843, AC026355.1, and AL606489.1) was found to be effective in predicting high-risk LUAD patients as well as applicable to female and male subgroups and <65-year and ≥65-year age subgroups. The forecasted effect of the 5-lncRNA signature was more efficient and stable than the TNM stage and other clinical risk factors (such as sex and age). Functional enrichment analysis revealed that the mRNA co-expressed with these five OS-related lncRNAs was associated with RNA regulation within the nucleus. AL606489.1 demonstrated a sexual dimorphism that may be associated with microtubule activity.Conclusion: Our 5-lncRNA signature could efficaciously predict the OS of LUAD patients. AL606489.1 demonstrated gender dimorphism, which provides a new direction for mechanistic studies on sexual dimorphism.
Collapse
Affiliation(s)
- Jiali Liang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huaping Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Huaping Xu,
| |
Collapse
|
9
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
10
|
Specific Deletion of the FHA Domain Containing SLMAP3 Isoform in Postnatal Myocardium Has No Impact on Structure or Function. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11040018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sarcolemmal membrane-associated proteins (SLMAPs) belong to the superfamily of tail-anchored membrane proteins known to regulate diverse biological processes, including protein trafficking and signal transduction. Mutations in SLMAP have been linked to Brugada and defective sodium channel Nav1.5 shuttling. The SLMAP gene is alternatively spliced to generate numerous isoforms, broadly defined as SLMAP1 (~35 kDa), SLMAP2 (~45 kDa) and SLMAP3 (~80–95 kDa), which are highly expressed in the myocardium. The SLMAP3 isoform exhibits ubiquitous expression carrying an FHA domain and is believed to negatively regulate Hippo signaling to dictate cell growth/death and differentiation. Using the αMHC-MerCreMer-flox system to target the SLMAP gene, we specifically deleted the SLMAP3 isoform in postnatal mouse hearts without any changes in the expression of SLMAP1/SLMAP2 isoforms. The in vivo analysis of mice with SLMAP3 cardiac deficiency revealed no significant changes to heart structure or function in young or aged mice without or with isoproterenol-induced stress. SLMAP3-deficient hearts revealed no obvious differences in cardiac size, function or hypertrophic response. Further, the molecular analysis indicated that SLMAP3 loss had a minor impact on sodium channel (Nav1.5) expression without affecting cardiac electrophysiology in postnatal myocardium. Surprisingly, the loss of SLMAP3 did not impact Hippo signaling in postnatal myocardium. We conclude that the FHA domain-containing SLMAP3 isoform has no impact on Hippo signaling or sodium channels in postnatal myocardium, which is able to function and respond normally to stress in its absence. Whether SLMAP1/SMAP2 isoforms can compensate for the loss of SLMAP3 in the affairs of the postnatal heart remains to be determined.
Collapse
|
11
|
STRIPAK, a Key Regulator of Fungal Development, Operates as a Multifunctional Signaling Hub. J Fungi (Basel) 2021; 7:jof7060443. [PMID: 34206073 PMCID: PMC8226480 DOI: 10.3390/jof7060443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 01/26/2023] Open
Abstract
The striatin-interacting phosphatases and kinases (STRIPAK) multi subunit complex is a highly conserved signaling complex that controls diverse developmental processes in higher and lower eukaryotes. In this perspective article, we summarize how STRIPAK controls diverse developmental processes in euascomycetes, such as fruiting body formation, cell fusion, sexual and vegetative development, pathogenicity, symbiosis, as well as secondary metabolism. Recent structural investigations revealed information about the assembly and stoichiometry of the complex enabling it to act as a signaling hub. Multiple organellar targeting of STRIPAK subunits suggests how this complex connects several signaling transduction pathways involved in diverse cellular developmental processes. Furthermore, recent phosphoproteomic analysis shows that STRIPAK controls the dephosphorylation of subunits from several signaling complexes. We also refer to recent findings in yeast, where the STRIPAK homologue connects conserved signaling pathways, and based on this we suggest how so far non-characterized proteins may functions as receptors connecting mitophagy with the STRIPAK signaling complex. Such lines of investigation should contribute to the overall mechanistic understanding of how STRIPAK controls development in euascomycetes and beyond.
Collapse
|
12
|
Xie R, Wen F, Qin Y. The Dysregulation and Prognostic Analysis of STRIPAK Complex Across Cancers. Front Cell Dev Biol 2020; 8:625. [PMID: 32754603 PMCID: PMC7365848 DOI: 10.3389/fcell.2020.00625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) is the highly conserved complex, which gains increased attention in physiology and pathology process recently. However, limited studies reported the details of STRIPAK complex in cancers while some results strongly suggested it plays a vital role in tumorigenesis. Hence, we systematically analyzed the molecular and survival profiles of 18 STRIPAK genes to assess the value of STRIPAK complex across cancers. Our findings revealed the low frequencies of DNA aberrances and incomparable expression difference of STRIPAK genes between normal and tumor tissues, but they showed strong prognostic value in cancers, especially the liver hepatocellular carcinoma (LIHC) and kidney renal clear cell carcinoma (KIRC). Interestingly, STRIPAK genes were observed the opposite pattern of survival and expression in the above two cancer types. PPP2R1A and TRAF3IP3 were proposed as the oncogenic genes in LIHC and KIRC, respectively. The STRIPAK genes serve as oncogenes may due to the methylation heterogeneity. Taken together, our comprehensive molecular analysis of STRIPAK complex provides resource to facilitate the understanding of mechanism and utilize the potential therapies to tumors.
Collapse
Affiliation(s)
- Ruiling Xie
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Feng Wen
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| | - Yong Qin
- Department of Otolaryngology, Head and Neck Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
13
|
Prognostic Potential of Alternative Splicing Markers in Endometrial Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:1039-1048. [PMID: 31785579 PMCID: PMC6889075 DOI: 10.1016/j.omtn.2019.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Alternative splicing (AS), an important post-transcriptional regulatory mechanism that regulates the translation of mRNA isoforms and generates protein diversity, has been widely demonstrated to be associated with oncogenic processes. In this study, we systematically analyzed genome-wide AS patterns to explore the prognostic implications of AS in endometrial cancer (EC). A total of 2,324 AS events were identified as being associated with the overall survival of EC patients, and eleven of these events were further selected using a random forest algorithm. With the implementation of a generalized, boosted regression model, a prognostic AS model that aggregated these eleven markers was ultimately established with high performance for risk stratification in EC patients. Functional analysis of these eleven AS markers revealed various potential signaling pathways implicated in the progression of EC. Splicing network analysis demonstrated the notable correlation between the expression of splicing factors and AS markers in EC and further determined eight candidate splicing factors that could be therapeutic targets for EC. Taken together, the results of this study present the utility of AS profiling in identifying biomarkers for the prognosis of EC and provide comprehensive insight into the molecular mechanisms involved in EC processes.
Collapse
|
14
|
Nader M. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur J Pharmacol 2019; 858:172491. [PMID: 31233748 DOI: 10.1016/j.ejphar.2019.172491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
The excitation-contraction (E-C) module involves a harmonized correspondence between the sarcolemma and the sarcoplasmic reticulum. This is provided by membrane proteins, which primarily shape the caveolae, the T-tubule/Sarcoplasmic reticulum (TT/SR) junction, and the intercalated discs (ICDs). Distortion of either one of these structures impairs myocardial contraction, and subsequently translates into cardiac failure. Thus, detailed studies on the molecular cues of the E-C module are becoming increasingly necessary to pharmacologically eradicate cardiac failure Herein we reviewed the organization of caveolae, TT/SR junctions, and the ICDs in the heart, with special attention to the Sarcolemma Membrane Associated Protein (SLMAP) and striatin (STRN) in cardiac membranes biology and cardiomyocyte contraction. We emphasized on their in vivo and in vitro signaling in cardiac function/dysfunction. SLMAP is a cardiac membrane protein that plays an important role in E-C coupling and the adrenergic response of the heart. Similarly, STRN is a dynamic protein that is also involved in cardiac E-C coupling and ICD-related cardiomyopathies. Both SLMAP and STRN are linked to cardiac conditions, including heart failure, and their role in cardiomyocyte function was elucidated in our laboratory. They interact together in a protein complex that holds therapeutic potentials for cardiac dysfunction. This review is the first of its kind to conceptualize the role of the SLMAP/STRN complex in cardiac function and failure. It provides in depth information on the signaling of these two proteins and projects their interaction as a novel therapeutic target for cardiac failure.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, 11533, P.O. Box 50927, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
15
|
Mlynarova J, Trentin-Sonoda M, Gaisler da Silva F, Major JL, Salih M, Carneiro-Ramos MS, Tuana BS. SLMAP3 isoform modulates cardiac gene expression and function. PLoS One 2019; 14:e0214669. [PMID: 30934005 PMCID: PMC6443179 DOI: 10.1371/journal.pone.0214669] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
The sarcolemmal membrane associated proteins (SLMAPs) belong to the super family of tail anchored membrane proteins which serve diverse roles in biology including cell growth, protein trafficking and ion channel regulation. Mutations in human SLMAP have been linked to Brugada syndrome with putative deficits in trafficking of the sodium channel (Nav1.5) to the cell membrane resulting in aberrant electrical activity and heart function. Three main SLMAP isoforms (SLMAP1 (35 kDa), SLMAP2 (45 kDa), and SLMAP3 (91 kDa)) are expressed in myocardium but their precise role remains to be defined. Here we generated transgenic (Tg) mice with cardiac-specific expression of the SLMAP3 isoform during postnatal development which present with a significant decrease (20%) in fractional shortening and (11%) in cardiac output at 5 weeks of age. There was a lack of any notable cardiac remodeling (hypertrophy, fibrosis or fetal gene activation) in Tg hearts but the electrocardiogram indicated a significant increase (14%) in the PR interval and a decrease (43%) in the R amplitude. Western blot analysis indicated a selective and significant decrease (55%) in protein levels of Nav1.5 while 45% drop in its transcript levels were detectable by qRT-PCR. Significant decreases in the protein and transcript levels of the calcium transport system of the sarcoplasmic reticulum (SERCA2a/PLN) were also evident in Tg hearts. These data reveal a novel role for SLMAP3 in the selective regulation of important ion transport proteins at the level of gene expression and suggest that it may be a unique target in cardiovascular function and disease.
Collapse
Affiliation(s)
- Jana Mlynarova
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mayra Trentin-Sonoda
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fernanda Gaisler da Silva
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jennifer L. Major
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | - Balwant S. Tuana
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- * E-mail:
| |
Collapse
|
16
|
Nader M, Alsolme E, Alotaibi S, Alsomali R, Bakheet D, Dzimiri N. SLMAP-3 is downregulated in human dilated ventricles and its overexpression promotes cardiomyocyte response to adrenergic stimuli by increasing intracellular calcium. Can J Physiol Pharmacol 2019; 97:623-630. [PMID: 30856349 DOI: 10.1139/cjpp-2018-0660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Structural dilation of cardiomyocytes (CMs) imposes a decline in cardiac performance that precipitates cardiac failure and sudden death. Since membrane proteins are implicated in dilated cardiomyopathy and heart failure, we evaluated the expression of the sarcolemmal membrane-associated protein (SLMAP) in dilated cardiomyopathy and its effect on CM contraction. We found that all 3 SLMAP isoforms (SLMAP-1, -2, and -3) are expressed in CMs and are downregulated in human dilated ventricles. Knockdown of SLMAPs in cultured CMs transduced with recombinant adeno-associated viral particles releasing SLMAP-shRNA precipitated reduced spontaneous contractile rate that was not fully recovered in SLMAP-depleted CMs challenged with isoproterenol (ISO), thus phenotypically mimicking heart failure performance. Interestingly, the overexpression of the SLMAP-3 full-length isoform induced a positive chronotropic effect in CMs that was more pronounced in response to ISO insult (vs. ISO-treated naïve CMs). Confocal live imaging showed that H9c2 cardiac myoblasts overexpressing SLMAP-3 exhibit a higher intracellular calcium transient peak when treated with ISO (vs. ISO-treated cells carrying a control adeno-associated viral particle). Proteomics revealed that SLMAP-3 interacts with the regulator of CM contraction, striatin. Collectively, our data demonstrate that SLMAP-3 is a novel regulator of CM contraction rate and their response to adrenergic stimuli. Loss of SLMAPs phenotypically mimics cardiac failure and crystallizes SLMAPs as predictive of dilated cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Moni Nader
- a Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia.,b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Ebtehal Alsolme
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Shahd Alotaibi
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Rahmah Alsomali
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Dana Bakheet
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Nduna Dzimiri
- b Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
J Reschka E, Nordzieke S, Valerius O, Braus GH, Pöggeler S. A novel STRIPAK complex component mediates hyphal fusion and fruiting-body development in filamentous fungi. Mol Microbiol 2018; 110:513-532. [PMID: 30107058 DOI: 10.1111/mmi.14106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2018] [Indexed: 01/17/2023]
Abstract
The STRIPAK complex is involved in growth, cell fusion, development and signaling pathways, and thus malfunctions in the human STRIPAK complex often result in severe neuronal diseases and cancer. Despite the high degree of general conservation throughout the complex, several STRIPAK complex-associated small coiled-coil proteins of animals and yeasts are not conserved across species. As there are no data for filamentous ascomycetes, we addressed this through affinity purification with HA-tagged striatin ortholog PRO11 in Sordaria macrospora. Combining the method with liquid chromatography-mass spectrometry, we were able to co-purify STRIPAK complex interactor 1 (SCI1), the first STRIPAK-associated small coiled-coil protein in filamentous ascomycetes. Using yeast two-hybrid experiments, we identified SCI1 protein regions required for SCI1-PRO11 interaction, dimerization of SCI1 and interaction with other STRIPAK components. Further, both proteins PRO11 and SCI1 co-localize with the nuclear basket protein SmPOM152 at the nuclear envelope. Expression of the gene sci1 occurs during early developmental stages of S. macrospora, and the protein SCI1 in combination with PRO11 is required for cell fusion, vegetative growth and sexual development. The results of the present study will help to understand the underlying molecular mechanisms of STRIPAK signaling and function in cellular development and diseases in higher eukaryotes.
Collapse
Affiliation(s)
- Eva J Reschka
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Steffen Nordzieke
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany
| | - Oliver Valerius
- Institute of Microbiology and Genetics, Department of Molecular Microbiology & Genetics, Georg-August University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Gerhard H Braus
- Institute of Microbiology and Genetics, Department of Molecular Microbiology & Genetics, Georg-August University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| | - Stefanie Pöggeler
- Institute of Microbiology and Genetics, Department of Genetics of Eukaryotic Microorganisms, Georg-August University, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Georg-August University, Göttingen, Germany
| |
Collapse
|
18
|
Activation mechanisms of the Hippo kinase signaling cascade. Biosci Rep 2018; 38:BSR20171469. [PMID: 30038061 PMCID: PMC6131212 DOI: 10.1042/bsr20171469] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/21/2022] Open
Abstract
First discovered two decades ago through genetic screens in Drosophila, the Hippo pathway has been shown to be conserved in metazoans and controls organ size and tissue homeostasis through regulating the balance between cell proliferation and apoptosis. Dysregulation of the Hippo pathway leads to aberrant tissue growth and tumorigenesis. Extensive studies in Drosophila and mammals have identified the core components of Hippo signaling, which form a central kinase cascade to ultimately control gene expression. Here, we review recent structural, biochemical, and cellular studies that have revealed intricate phosphorylation-dependent mechanisms in regulating the formation and activation of the core kinase complex in the Hippo pathway. These studies have established the dimerization-mediated activation of the Hippo kinase (mammalian Ste20-like 1 and 2 (MST1/2) in mammals), the dynamic scaffolding and allosteric roles of adaptor proteins in downstream kinase activation, and the importance of multisite linker autophosphorylation by Hippo and MST1/2 in fine-tuning the signaling strength and robustness of the Hippo pathway. We highlight the gaps in our knowledge in this field that will require further mechanistic studies.
Collapse
|
19
|
Bae SJ, Ni L, Osinski A, Tomchick DR, Brautigam CA, Luo X. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK. eLife 2017; 6:30278. [PMID: 29063833 PMCID: PMC5663475 DOI: 10.7554/elife.30278] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/22/2017] [Indexed: 11/15/2022] Open
Abstract
The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.
Collapse
Affiliation(s)
- Sung Jun Bae
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lisheng Ni
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Adam Osinski
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Chad A Brautigam
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xuelian Luo
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
20
|
An Y, Wang S, Li S, Zhang L, Wang D, Wang H, Zhu S, Zhu W, Li Y, Chen W, Ji S, Guo X. Distinct molecular subtypes of uterine leiomyosarcoma respond differently to chemotherapy treatment. BMC Cancer 2017; 17:639. [PMID: 28893210 PMCID: PMC5594508 DOI: 10.1186/s12885-017-3568-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Uterine leiomyosarcoma (ULMS) is an aggressive form of soft tissue tumors. The molecular heterogeneity and pathogenesis of ULMS are not well understood. Methods Expression profiling data were used to determine the possibility and optimal number of ULMS molecular subtypes. Next, clinicopathological characters and molecular pathways were analyzed in each subtype to prospect the clinical applications and progression mechanisms of ULMS. Results Two distinct molecular subtypes of ULMS were defined based on different gene expression signatures. Subtype I ULMS recapitulated low-grade ULMS, the gene expression pattern of which resembled normal smooth muscle cells, characterized by overexpression of smooth muscle function genes such as LMOD1, SLMAP, MYLK, MYH11. In contrast, subtype II ULMS recapitulated high-grade ULMS with higher tumor weight and invasion rate, and was characterized by overexpression of genes involved in the pathway of epithelial to mesenchymal transition and tumorigenesis, such as CDK6, MAPK13 and HOXA1. Conclusions We identified two distinct molecular subtypes of ULMS responding differently to chemotherapy treatment. Our findings provide a better understanding of ULMS intrinsic molecular subtypes, and will potentially facilitate the development of subtype-specific diagnosis biomarkers and therapy strategies for these tumors. Electronic supplementary material The online version of this article (10.1186/s12885-017-3568-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang An
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Shuzhen Wang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Songlin Li
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Lulu Zhang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Dayong Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Haojie Wang
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Shibai Zhu
- Department of Orthopedic Surgery, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Wan Zhu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Yongqiang Li
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China.,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng, 475001, China
| | - Shaoping Ji
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China. .,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China.
| | - Xiangqian Guo
- Department of Biochemistry and Molecular Biology, Joint National Laboratory for Antibody Drug Engineering, Institute of Biomedical Informatics, Medical School, Henan University, Kaifeng, 475004, China. .,Cell signal transduction Laboratory, Henan University, Kaifeng, 475004, China. .,Department of Preventive Medicine, Medical School, Henan University, Kaifeng, 475004, China. .,Institute of Environmental Medicine, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
21
|
Papizan JB, Garry GA, Brezprozvannaya S, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice. J Clin Invest 2017; 127:3730-3740. [PMID: 28872460 DOI: 10.1172/jci93445] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/19/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of muscle structure and function depends on the precise organization of contractile proteins into sarcomeres and coupling of the contractile apparatus to the sarcoplasmic reticulum (SR), which serves as the reservoir for calcium required for contraction. Several members of the Kelch superfamily of proteins, which modulate protein stability as substrate-specific adaptors for ubiquitination, have been implicated in sarcomere formation. The Kelch protein Klhl31 is expressed in a muscle-specific manner under control of the transcription factor MEF2. To explore its functions in vivo, we created a mouse model of Klhl31 loss of function using the CRISPR-Cas9 system. Mice lacking Klhl31 exhibited stunted postnatal skeletal muscle growth, centronuclear myopathy, central cores, Z-disc streaming, and SR dilation. We used proteomics to identify several candidate Klhl31 substrates, including Filamin-C (FlnC). In the Klhl31-knockout mice, FlnC protein levels were highly upregulated with no change in transcription, and we further demonstrated that Klhl31 targets FlnC for ubiquitination and degradation. These findings highlight a role for Klhl31 in the maintenance of skeletal muscle structure and provide insight into the mechanisms underlying congenital myopathies.
Collapse
|
22
|
Shi Z, Jiao S, Zhou Z. STRIPAK complexes in cell signaling and cancer. Oncogene 2016; 35:4549-57. [PMID: 26876214 DOI: 10.1038/onc.2016.9] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/24/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de)phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer.
Collapse
Affiliation(s)
- Z Shi
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - S Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Z Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
23
|
Upadhyay R, Robay A, Fakhro K, Abi Khalil C, Zirie M, Jayyousi A, El-Shafei M, Kiss S, D'Amico DJ, Salit J, Staudt MR, O'Beirne SL, Chen X, Tuana B, Crystal RG, Ding H. Role of SLMAP genetic variants in susceptibility of diabetes and diabetic retinopathy in Qatari population. J Transl Med 2015; 13:61. [PMID: 25880194 PMCID: PMC4335364 DOI: 10.1186/s12967-015-0411-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022] Open
Abstract
Background Overexpression of SLMAP gene has been associated with diabetes and endothelial dysfunction of macro- and micro-blood vessels. In this study our primary objective is to explore the role of SLMAP gene polymorphisms in the susceptibility of type 2 diabetes (T2DM) with or without diabetic retinopathy (DR) in the Qatari population. Methods A total of 342 Qatari subjects (non-diabetic controls and T2DM patients with or without DR) were genotyped for SLMAP gene polymorphisms (rs17058639 C > T; rs1043045 C > T and rs1057719 A > G) using Taqman SNP genotyping assay. Results SLMAP rs17058639 C > T polymorphism was associated with the presence of DR among Qataris with T2DM. One-way ANOVA and multiple logistic regression analysis showed SLMAP SNP rs17058639 C > T as an independent risk factor for DR development. SLMAP rs17058639 C > T polymorphism also had a predictive role for the severity of DR. Haplotype Crs17058639Trs1043045Ars1057719 was associated with the increased risk for DR among Qataris with T2DM. Conclusions The data suggests the potential role of SLMAP SNPs as a risk factor for the susceptibility of DR among T2DM patients in the Qatari population. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0411-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rohit Upadhyay
- Departments of Pharmacology, Weill Cornell Medical College-Qatar, Doha, Qatar.
| | - Amal Robay
- Departments of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar.
| | - Khalid Fakhro
- Departments of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar.
| | - Charbel Abi Khalil
- Departments of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar.
| | - Mahmoud Zirie
- Departments of Medicine, Hamad Medical Corporation, Doha, Qatar.
| | - Amin Jayyousi
- Departments of Medicine, Hamad Medical Corporation, Doha, Qatar.
| | - Maha El-Shafei
- Departments of Ophthalmology, Hamad Medical Corporation, Doha, Qatar.
| | - Szilard Kiss
- Departments of Ophthalmology, Weill Cornell Medical College, New York, NY, USA.
| | - Donald J D'Amico
- Departments of Ophthalmology, Weill Cornell Medical College, New York, NY, USA.
| | - Jacqueline Salit
- Departments of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Michelle R Staudt
- Departments of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Sarah L O'Beirne
- Departments of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Xiaoliang Chen
- Department of Cadre & Cardiology, The affiliated hospital of Hangzhou Normal University, Hangzhou, China.
| | - Balwant Tuana
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Ronald G Crystal
- Departments of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Hong Ding
- Departments of Pharmacology, Weill Cornell Medical College-Qatar, Doha, Qatar.
| |
Collapse
|
24
|
A fungal sarcolemmal membrane-associated protein (SLMAP) homolog plays a fundamental role in development and localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. EUKARYOTIC CELL 2014; 14:345-58. [PMID: 25527523 DOI: 10.1128/ec.00241-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/13/2014] [Indexed: 11/20/2022]
Abstract
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.
Collapse
|
25
|
Protein phosphatase 2A (PP2A) regulatory subunits ParA and PabA orchestrate septation and conidiation and are essential for PP2A activity in Aspergillus nidulans. EUKARYOTIC CELL 2014; 13:1494-506. [PMID: 25280816 DOI: 10.1128/ec.00201-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein phosphatase 2A (PP2A) is a major intracellular protein phosphatase that regulates multiple aspects of cell growth and metabolism. Different activities of PP2A and subcellular localization are determined by its regulatory subunits. Here we identified and characterized the functions of two protein phosphatase regulatory subunit homologs, ParA and PabA, in Aspergillus nidulans. Our results demonstrate that ParA localizes to the septum site and that deletion of parA causes hyperseptation, while overexpression of parA abolishes septum formation; this suggests that ParA may function as a negative regulator of septation. In comparison, PabA displays a clear colocalization pattern with 4',6-diamidino-2-phenylindole (DAPI)-stained nuclei, and deletion of pabA induces a remarkable delayed-septation phenotype. Both parA and pabA are required for hyphal growth, conidiation, and self-fertilization, likely to maintain normal levels of PP2A activity. Most interestingly, parA deletion is capable of suppressing septation defects in pabA mutants, suggesting that ParA counteracts PabA during the septation process. In contrast, double mutants of parA and pabA led to synthetic defects in colony growth, indicating that ParA functions synthetically with PabA during hyphal growth. Moreover, unlike the case for PP2A-Par1 and PP2A-Pab1 in yeast (which are negative regulators that inactivate the septation initiation network [SIN]), loss of ParA or PabA fails to suppress defects of temperature-sensitive mutants of the SEPH kinase of the SIN. Thus, our findings support the previously unrealized evidence that the B-family subunits of PP2A have comprehensive functions as partners of heterotrimeric enzyme complexes of PP2A, both spatially and temporally, in A. nidulans.
Collapse
|
26
|
Hwang J, Pallas DC. STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47:118-48. [PMID: 24333164 PMCID: PMC3927685 DOI: 10.1016/j.biocel.2013.11.021] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 11/18/2013] [Accepted: 11/28/2013] [Indexed: 12/31/2022]
Abstract
The mammalian striatin family consists of three proteins, striatin, S/G2 nuclear autoantigen, and zinedin. Striatin family members have no intrinsic catalytic activity, but rather function as scaffolding proteins. Remarkably, they organize multiple diverse, large signaling complexes that participate in a variety of cellular processes. Moreover, they appear to be regulatory/targeting subunits for the major eukaryotic serine/threonine protein phosphatase 2A. In addition, striatin family members associate with germinal center kinase III kinases as well as other novel components, earning these assemblies the name striatin-interacting phosphatase and kinase (STRIPAK) complexes. Recently, there has been a great increase in functional and mechanistic studies aimed at identifying and understanding the roles of STRIPAK and STRIPAK-like complexes in cellular processes of multiple organisms. These studies have identified novel STRIPAK and STRIPAK-like complexes and have explored their roles in specific signaling pathways. Together, the results of these studies have sparked increased interest in striatin family complexes because they have revealed roles in signaling, cell cycle control, apoptosis, vesicular trafficking, Golgi assembly, cell polarity, cell migration, neural and vascular development, and cardiac function. Moreover, STRIPAK complexes have been connected to clinical conditions, including cardiac disease, diabetes, autism, and cerebral cavernous malformation. In this review, we discuss the expression, localization, and protein domain structure of striatin family members. Then we consider the diverse complexes these proteins and their homologs form in various organisms, emphasizing what is known regarding function and regulation. Finally, we explore possible roles of striatin family complexes in disease, especially cerebral cavernous malformation.
Collapse
Affiliation(s)
- Juyeon Hwang
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - David C Pallas
- Department of Biochemistry and Winship Cancer Institute, and Biochemistry, Cell, Developmental Biology Graduate Program, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, USA.
| |
Collapse
|
27
|
Couzens AL, Knight JDR, Kean MJ, Teo G, Weiss A, Dunham WH, Lin ZY, Bagshaw RD, Sicheri F, Pawson T, Wrana JL, Choi H, Gingras AC. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 2013; 6:rs15. [PMID: 24255178 DOI: 10.1126/scisignal.2004712] [Citation(s) in RCA: 369] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Hippo pathway regulates organ size and tissue homeostasis in response to multiple stimuli, including cell density and mechanotransduction. Pharmacological inhibition of phosphatases can also stimulate Hippo signaling in cell culture. We defined the Hippo protein-protein interaction network with and without inhibition of serine and threonine phosphatases by okadaic acid. We identified 749 protein interactions, including 599 previously unrecognized interactions, and demonstrated that several interactions with serine and threonine phosphatases were phosphorylation-dependent. Mutation of the T-loop of MST2 (mammalian STE20-like protein kinase 2), which prevented autophosphorylation, disrupted its association with STRIPAK (striatin-interacting phosphatase and kinase complex). Deletion of the amino-terminal forkhead-associated domain of SLMAP (sarcolemmal membrane-associated protein), a component of the STRIPAK complex, prevented its association with MST1 and MST2. Phosphatase inhibition produced temporally distinct changes in proteins that interacted with MOB1A and MOB1B (Mps one binder kinase activator-like 1A and 1B) and promoted interactions with upstream Hippo pathway proteins, such as MST1 and MST2, and with the trimeric protein phosphatase 6 complex (PP6). Mutation of three basic amino acids that are part of a phospho-serine- and phospho-threonine-binding domain in human MOB1B prevented its interaction with MST1 and PP6 in cells treated with okadaic acid. Collectively, our results indicated that changes in phosphorylation orchestrate interactions between kinases and phosphatases in Hippo signaling, providing a putative mechanism for pathway regulation.
Collapse
Affiliation(s)
- Amber L Couzens
- 1Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen K, Yang X, Wu L, Yu M, Li X, Li N, Wang S, Li G. Pinellia pedatisecta agglutinin targets drug resistant K562/ADR leukemia cells through binding with sarcolemmal membrane associated protein and enhancing macrophage phagocytosis. PLoS One 2013; 8:e74363. [PMID: 24019967 PMCID: PMC3760846 DOI: 10.1371/journal.pone.0074363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 08/02/2013] [Indexed: 12/13/2022] Open
Abstract
Pinelliapedatisecta agglutinin (PPA) has previously been used in labeling fractions of myeloid leukemia cells in our laboratory. We report here that a bacterial expressed recombinant PPA domain b tagged with soluble coxsackie and adenovirus receptor (sCAR-PPAb) preferentially recognized drug resistant cancer cells K562/ADR and H460/5Fu, as compared to their parental cell lines. Pretreatment of K562/ADR cells with sCAR-PPAb significantly enhanced phagocytosis of K562/ADR by macrophages in vivo. Meanwhile, in a K562/ADR xenograft model, intratumoral injection of sCAR-PPAb induced macrophage infiltration and phagocytosis. Furthermore, immunoprecipitation, mass spectrometry and Western blot identified the membrane target of PPA on K562/ADR as sarcolemmal membrane associated protein (SLMAP). An antibody against SLMAP significantly promoted the phagocytosis of K562/ADR by macrophages in vitro. These findings suggest that PPA not only could be developed into a novel agent that can detect drug resistant cancer cells and predict chemotherapy outcome, but also it has potential value in immunotherapy against drug resistant cancer cells through inducing the tumoricidal activity of macrophages.
Collapse
Affiliation(s)
- Kan Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xinyan Yang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Liqin Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Meilan Yu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Xiaoyan Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Na Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Shuanghui Wang
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | - Gongchu Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
29
|
Pracheil T, Liu Z. Tiered assembly of the yeast Far3-7-8-9-10-11 complex at the endoplasmic reticulum. J Biol Chem 2013; 288:16986-16997. [PMID: 23625923 DOI: 10.1074/jbc.m113.451674] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Target of rapamycin signaling is a conserved, essential pathway integrating nutritional cues with cell growth and proliferation. The target of rapamycin kinase exists in two distinct complexes, TORC1 and TORC2. It has been reported that protein phosphatase 2A (PP2A) and the Far3-7-8-9-10-11 complex (Far complex) negatively regulate TORC2 signaling in yeast. The Far complex, originally identified as factors required for pheromone-induced cell cycle arrest, and PP2A form the yeast counterpart of the STRIPAK complex, which was first isolated in mammals. The cellular localization of the Far complex has yet to be fully characterized. Here, we show that the Far complex localizes to the endoplasmic reticulum (ER) by analyzing functional GFP-tagged Far proteins in vivo. We found that Far9 and Far10, two homologous proteins each with a tail-anchor domain, localize to the ER in mutant cells lacking the other Far complex components. Far3, Far7, and Far8 form a subcomplex, which is recruited to the ER by Far9/10. The Far3-7-8- complex in turn recruits Far11 to the ER. Finally, we show that the tail-anchor domain of Far9 is required for its optimal function in TORC2 signaling. Our study reveals tiered assembly of the yeast Far complex at the ER and a function for Far complex's ER localization in TORC2 signaling.
Collapse
Affiliation(s)
- Tammy Pracheil
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70148.
| |
Collapse
|
30
|
Tran H, Bustos D, Yeh R, Rubinfeld B, Lam C, Shriver S, Zilberleyb I, Lee MW, Phu L, Sarkar AA, Zohn IE, Wertz IE, Kirkpatrick DS, Polakis P. HectD1 E3 ligase modifies adenomatous polyposis coli (APC) with polyubiquitin to promote the APC-axin interaction. J Biol Chem 2012; 288:3753-67. [PMID: 23277359 DOI: 10.1074/jbc.m112.415240] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenomatous polyposis coli (APC) protein functions as a negative regulator of the Wnt signaling pathway. In this capacity, APC forms a "destruction complex" with Axin, CK1α, and GSK3β to foster phosphorylation of the Wnt effector β-catenin earmarking it for Lys-48-linked polyubiquitylation and proteasomal degradation. APC is conjugated with Lys-63-linked ubiquitin chains when it is bound to Axin, but it is unclear whether this modification promotes the APC-Axin interaction or confers upon APC an alternative function in the destruction complex. Here we identify HectD1 as a candidate E3 ubiquitin ligase that modifies APC with Lys-63 polyubiquitin. Knockdown of HectD1 diminished APC ubiquitylation, disrupted the APC-Axin interaction, and augmented Wnt3a-induced β-catenin stabilization and signaling. These results indicate that HectD1 promotes the APC-Axin interaction to negatively regulate Wnt signaling.
Collapse
Affiliation(s)
- Hoanh Tran
- Department of Cancer Targets, Genentech Inc., South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ishikawa T, Sato A, Marcou CA, Tester DJ, Ackerman MJ, Crotti L, Schwartz PJ, On YK, Park JE, Nakamura K, Hiraoka M, Nakazawa K, Sakurada H, Arimura T, Makita N, Kimura A. A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circ Arrhythm Electrophysiol 2012; 5:1098-107. [PMID: 23064965 DOI: 10.1161/circep.111.969972] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mutations in genes including SCN5A encoding the α-subunit of the cardiac sodium channel (hNav1.5) cause Brugada syndrome via altered function of cardiac ion channels, but more than two-thirds of Brugada syndrome remains pathogenetically elusive. T-tubules and sarcoplasmic reticulum are essential in excitation of cardiomyocytes, and sarcolemmal membrane-associated protein (SLMAP) is a protein of unknown function localizing at T-tubules and sarcoplasmic reticulum. METHODS AND RESULTS We analyzed 190 unrelated Brugada syndrome patients for mutations in SLMAP. Two missense mutations, Val269Ile and Glu710Ala, were found in heterozygous state in 2 patients but were not found in healthy individuals. Membrane surface expression of hNav1.5 in the transfected cells was affected by the mutations, and silencing of mutant SLMAP by small interfering RNA rescued the surface expression of hNav1.5. Whole-cell patch-clamp recordings of hNav1.5-expressing cells transfected with mutant SLMAP confirmed the reduced hNav1.5 current. CONCLUSIONS The mutations in SLMAP may cause Brugada syndrome via modulating the intracellular trafficking of hNav1.5 channel.
Collapse
Affiliation(s)
- Taisuke Ishikawa
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 2012; 149:1339-52. [PMID: 22682253 PMCID: PMC3613983 DOI: 10.1016/j.cell.2012.04.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/08/2012] [Accepted: 04/02/2012] [Indexed: 12/12/2022]
Abstract
We present a genetic interaction map of pairwise measures including ∼40% of nonessential S. pombe genes. By comparing interaction maps for fission and budding yeast, we confirmed widespread conservation of genetic relationships within and between complexes and pathways. However, we identified an important subset of orthologous complexes that have undergone functional "repurposing": the evolution of divergent functions and partnerships. We validated three functional repurposing events in S. pombe and mammalian cells and discovered that (1) two lumenal sensors of misfolded ER proteins, the kinase/nuclease Ire1 and the glucosyltransferase Gpt1, act together to mount an ER stress response; (2) ESCRT factors regulate spindle-pole-body duplication; and (3) a membrane-protein phosphatase and kinase complex, the STRIPAK complex, bridges the cis-Golgi, the centrosome, and the outer nuclear membrane to direct mitotic progression. Each discovery opens new areas of inquiry and-together-have implications for model organism-based research and the evolution of genetic systems.
Collapse
|
33
|
Fellenberg J, Saehr H, Lehner B, Depeweg D. A microRNA signature differentiates between giant cell tumor derived neoplastic stromal cells and mesenchymal stem cells. Cancer Lett 2012; 321:162-8. [PMID: 22326282 DOI: 10.1016/j.canlet.2012.01.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 12/21/2022]
Abstract
Giant cell tumor (GCT) derived stromal cells (GCTSCs) have been identified as the neoplastic cell population of GCTs. Within these stromal cells a subpopulation has been identified that shares several features with mesenchymal stem cells (MSCs) indicating that these neoplastic cells develop from MSCs. Although spontaneous transformations of MSC have already been observed in vitro and in vivo the underlying molecular mechanisms are poorly understood. As microRNAs are crucially involved in tumorigenesis and the modulation of stem cell fate and behavior, they represent promising candidates for the regulation of this process. Therefore, the aim of this study was the comparative analysis of the microRNA expression profiles of GCTSCs and MSCs in order to identify differentially expressed microRNAs and their target genes. We could identify a microRNA signature consisting of 26 differentially expressed microRNAs that perfectly separates these two cell types. One of the microRNAs with the most pronounced differences in expression levels was miR-224. We could confirm the already known regulation of the apoptosis inhibitor API5 by miR-224 and could further identify three novel miR-224 target genes (SMAD5, SLMAP, H3.3B). The involvement of these genes in the regulation of apoptosis resistance, proliferation, differentiation and the regulation of gene transcription suggests pivotal roles of these genes in the neoplastic transformation of MSCs during GCT development.
Collapse
Affiliation(s)
- Joerg Fellenberg
- Research Centre for Experimental Orthopedics, Department of Orthopedics, Trauma Surgery and Paraplegia, Orthopedic University Hospital Heidelberg, Germany.
| | | | | | | |
Collapse
|
34
|
Nader M, Westendorp B, Hawari O, Salih M, Stewart AFR, Leenen FHH, Tuana BS. Tail-anchored membrane protein SLMAP is a novel regulator of cardiac function at the sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 2011; 302:H1138-45. [PMID: 22180652 DOI: 10.1152/ajpheart.00872.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sarcolemmal membrane-associated proteins (SLMAPs) are components of cardiac membranes involved in excitation-contraction (E-C) coupling. Here, we assessed the role of SLMAP in cardiac structure and function. We generated transgenic (Tg) mice with cardiac-restricted overexpression of SLMAP1 bearing the transmembrane domain 2 (TM2) to potentially interfere with endogenous SLMAP through homodimerization and subcellular targeting. Histological examination revealed vacuolated myocardium; the severity of which correlated with the expression level of SLMAP1-TM2. High resolution microscopy showed dilation of the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) and confocal imaging combined with biochemical analysis indicated targeting of SLMAP1-TM2 to the SR/ER membranes and inappropriate homodimerization. Older (28 wk of age) Tg mice exhibited reduced contractility with impaired relaxation as assessed by left ventricle pressure monitoring. The ventricular dysfunction was associated with electrophysiological abnormalities (elongated QT interval). Younger (5 wk of age) Tg mice also exhibited an elongated QT interval with minimal functional disturbances associated with the activation of the fetal gene program. They were less responsive to isoproterenol challenge (ΔdP/dt(max)) and developed electrical and left ventricular pressure alternans. The altered electrophysiological and functional disturbances in Tg mice were associated with diminished expression level of calcium cycling proteins of the sarcoplasmic reticulum such as the ryanodine receptor, Ca(2+)-ATPase, calsequestrin, and triadin (but not phospholamban), as well as significantly reduced calcium uptake in microsomal fractions. These data demonstrate that SLMAP is a regulator of E-C coupling at the level of the SR and its perturbation results in progressive deterioration of cardiac electrophysiology and function.
Collapse
Affiliation(s)
- Moni Nader
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Byers JT, Guzzo RM, Salih M, Tuana BS. Hydrophobic profiles of the tail anchors in SLMAP dictate subcellular targeting. BMC Cell Biol 2009; 10:48. [PMID: 19538755 PMCID: PMC2712456 DOI: 10.1186/1471-2121-10-48] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 06/19/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tail anchored (TA) membrane proteins target subcellular structures via a C-terminal transmembrane domain and serve prominent roles in membrane fusion and vesicle transport. Sarcolemmal Membrane Associated Protein (SLMAP) possesses two alternatively spliced tail anchors (TA1 or TA2) but their specificity of subcellular targeting remains unknown. RESULTS TA1 or TA2 can direct SLMAP to reticular structures including the endoplasmic reticulum (ER), whilst TA2 directs SLMAP additionally to the mitochondria. Despite the general structural similarity of SLMAP to other vesicle trafficking proteins, we found no evidence for its localization with the vesicle transport machinery or a role in vesicle transport. The predicted transmembrane region of TA2 is flanked on either side by a positively charged amino acid and is itself less hydrophobic than the transmembrane helix present in TA1. Substitution of the positively charged amino acids, in the regions flanking the transmembrane helix of TA2, with leucine did not alter its subcellular targeting. The targeting of SLMAP to the mitochondria was dependent on the hydrophobic nature of TA2 since targeting of SLMAP-TA2 was prevented by the substitution of leucine (L) for moderately hydrophobic amino acid residues within the transmembrane region. The SLMAP-TA2-4L mutant had a hydrophobic profile that was comparable to that of SLMAP-TA1 and had identical targeting properties to SLMAP-TA1. CONCLUSION Thus the overall hydrophobicity of the two alternatively spliced TAs in SLMAP determines its subcellular targeting and TA2 predominantly directs SLMAP to the mitochondira where it may serve roles in the function of this organelle.
Collapse
Affiliation(s)
- Joseph T Byers
- Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Rosa M Guzzo
- Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Balwant S Tuana
- Department of Cellular and Molecular Medicine, 451 Smyth Road, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
36
|
Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 2009; 8:157-71. [PMID: 18782753 PMCID: PMC2621004 DOI: 10.1074/mcp.m800266-mcp200] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 08/21/2008] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.
Collapse
Affiliation(s)
- Marilyn Goudreault
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wei Y, Shen E, Zhao N, Liu Q, Fan J, Marc J, Wang Y, Sun L, Liang Q. Identification of a novel centrosomal protein CrpF46 involved in cell cycle progression and mitosis. Exp Cell Res 2008; 314:1693-707. [PMID: 18394601 DOI: 10.1016/j.yexcr.2008.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 02/25/2008] [Accepted: 02/28/2008] [Indexed: 12/23/2022]
Abstract
A novel centrosome-related protein CrpF46 was detected using a serum F46 from a patient suffering from progressive systemic sclerosis. We identified the protein by immunoprecipitation and Western blotting followed by tandem mass spectrometry sequencing. The protein CrpF46 has an apparent molecular mass of ~60 kDa, is highly homologous to a 527 amino acid sequence of the C-terminal portion of the protein Golgin-245, and appears to be a splice variant of Golgin-245. Immunofluorescence microscopy of synchronized HeLa cells labeled with an anti-CrpF46 monoclonal antibody revealed that CrpF46 localized exclusively to the centrosome during interphase, although it dispersed throughout the cytoplasm at the onset of mitosis. Domain analysis using CrpF46 fragments in GFP-expression vectors transformed into HeLa cells revealed that centrosomal targeting is conferred by a C-terminal coiled-coil domain. Antisense CrpF46 knockdown inhibited cell growth and proliferation and the cell cycle typically stalled at S phase. The knockdown also resulted in the formation of poly-centrosomal and multinucleate cells, which finally became apoptotic. These results suggest that CrpF46 is a novel centrosome-related protein that associates with the centrosome in a cell cycle-dependent manner and is involved in the progression of the cell cycle and M phase mechanism.
Collapse
Affiliation(s)
- Yi Wei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ding H, Howarth AG, Pannirselvam M, Anderson TJ, Severson DL, Wiehler WB, Triggle CR, Tuana BS. Endothelial dysfunction in Type 2 diabetes correlates with deregulated expression of the tail-anchored membrane protein SLMAP. Am J Physiol Heart Circ Physiol 2005; 289:H206-11. [PMID: 15764684 DOI: 10.1152/ajpheart.00037.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Type 2 diabetic db/ db mouse experiences vascular dysfunction typified by changes in the contraction and relaxation profiles of small mesenteric arteries (SMAs). Contractions of SMAs from the db/ db mouse to the α1-adrenoceptor agonist phenylephrine (PE) were significantly enhanced, and acetylcholine (ACh)-induced relaxations were significantly depressed. Drug treatment of db/ db mice with a nonthiazolidinedione peroxisome prolifetor-activated receptor-γ agonist and insulin sensitizing agent 2-[2-(4-phenoxy-2-propylphenoxy)ethyl]indole-5-acetic acid (COOH) completely prevented the changes in endothelium-dependent relaxation, but, with the discontinuation of therapy, endothelial dysfunction returned. Dysfunctional SMAs were found to specifically upregulate the expression of a 35-kDa isoform of sarcolemmal membrane-associated protein (SLMAP), which is a component of the excitation-contraction coupling apparatus and implicated in the regulation of membrane function in muscle cells. Real-time PCR revealed high SLMAP mRNA levels in the db/ db microvasculature, which were markedly downregulated during COOH treatment but elevated again when drug therapy was discontinued. These data reveal that the microvasculature in db/ db mice undergoes significant changes in vascular function with the endothelial component of vascular dysfunction specifically correlating with the overexpression of SLMAP. Thus changes in SLMAP expression may be an important indicator for microvascular disease associated with Type 2 diabetes.
Collapse
Affiliation(s)
- Hong Ding
- School of Medical Sciences, RMIT Univ., Bundoora West Campus, Bundoora, Victoria 3083, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Guzzo RM, Salih M, Moore ED, Tuana BS. Molecular properties of cardiac tail-anchored membrane protein SLMAP are consistent with structural role in arrangement of excitation-contraction coupling apparatus. Am J Physiol Heart Circ Physiol 2004; 288:H1810-9. [PMID: 15591093 DOI: 10.1152/ajpheart.01015.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spatial arrangement of the cell-surface membranes (sarcolemma and transverse tubules) and internal membranes of the sarcoplasmic reticulum relative to the myofibril is critical for effective excitation-contraction (E-C) coupling in cardiac myocytes; however, the molecular determinants of this order remain to be defined. Here, we ascribe molecular and cellular properties to the coiled-coil, tail-anchored sarcolemmal membrane-associated protein (SLMAP) that are consistent with a potential role in organizing the E-C coupling apparatus of the cardiomyocyte. The expression of SLMAP was developmentally regulated and its localization was distinctly apparent at the level of the membranes involved in regulating the E-C coupling mechanism. Several SLMAP isoforms were expressed in the cardiac myocyte with unique COOH-terminal membrane anchors that could target this molecule to distinct subcellular membranes. Protein interaction analysis indicated that SLMAPs could self assemble and bind myosin in cardiac muscle. The cardiac-specific expression of SLMAP isoforms that can be targeted to distinct subcellular membranes, self assemble, and interact with the myofibril suggests a potential role for this molecule in the structural arrangement of the E-C coupling apparatus.
Collapse
Affiliation(s)
- Rosa M Guzzo
- Dept. of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|