1
|
Wang Y, Ma Y, Zhong Q, Song B, Liu Q. Transcriptomic analysis of rat brain response to alternating current electrical stimulation: unveiling insights via single-nucleus RNA sequencing. MedComm (Beijing) 2024; 5:e514. [PMID: 38495123 PMCID: PMC10943177 DOI: 10.1002/mco2.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/19/2024] Open
Abstract
Electrical brain stimulation (EBS) has gained popularity for laboratory and clinical applications. However, comprehensive characterization of cellular diversity and gene expression changes induced by EBS remains limited, particularly with respect to specific brain regions and stimulation sites. Here, we presented the initial single-nucleus RNA sequencing profiles of rat cortex, hippocampus, and thalamus subjected to intracranial alternating current stimulation (iACS) at 40 Hz. The results demonstrated an increased number of neurons in all three regions in response to iACS. Interestingly, less than 0.1% of host gene expression in neurons was significantly altered by iACS. In addition, we identified Rgs9, a known negative regulator of dopaminergic signaling, as a unique downregulated gene in neurons. Unilateral iACS produced a more focused local effect in attenuating the proportion of Rgs9+ neurons in the ipsilateral compared to bilateral iACS treatment. The results suggested that unilateral iACS at 40 Hz was an efficient approach to increase the number of neurons and downregulate Rgs9 gene expression without affecting other cell types or genes in the brain. Our study presented the direct evidence that EBS could boost cerebral neurogenesis and enhance neuronal sensitization to dopaminergic drugs and agonists, through its downregulatory effect on Rgs9 in neurons.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yongchao Ma
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qiuling Zhong
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Bing Song
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Qian Liu
- Institute of Biomedical and Health EngineeringShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| |
Collapse
|
2
|
Yang C, Zhang X, Yang X, Lian F, Sun Z, Huang Y, Shen W. Function and regulation of RGS family members in solid tumours: a comprehensive review. Cell Commun Signal 2023; 21:316. [PMID: 37924113 PMCID: PMC10623796 DOI: 10.1186/s12964-023-01334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 11/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.
Collapse
Affiliation(s)
- Chenglong Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaoyuan Zhang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Xiaowen Yang
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Fuming Lian
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Zongrun Sun
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yongming Huang
- Department of General Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China.
| | - Wenzhi Shen
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
3
|
Berry KJ, Chandran U, Mu F, Deochand DK, Lei T, Pagin M, Nicolis SK, Monaghan-Nichols AP, Rogatsky I, DeFranco DB. Genomic glucocorticoid action in embryonic mouse neural stem cells. Mol Cell Endocrinol 2023; 563:111864. [PMID: 36690169 PMCID: PMC10057471 DOI: 10.1016/j.mce.2023.111864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Prenatal exposure to synthetic glucocorticoids (sGCs) reprograms brain development and predisposes the developing fetus towards potential adverse neurodevelopmental outcomes. Using a mouse model of sGC administration, previous studies show that these changes are accompanied by sexually dimorphic alterations in the transcriptome of neural stem and progenitor cells (NSPCs) derived from the embryonic telencephalon. Because cell type-specific gene expression profiles tightly regulate cell fate decisions and are controlled by a flexible landscape of chromatin domains upon which transcription factors and enhancer elements act, we multiplexed data from four genome-wide assays: RNA-seq, ATAC-seq (assay for transposase accessible chromatin followed by genome wide sequencing), dual cross-linking ChIP-seq (chromatin immunoprecipitation followed by genome wide sequencing), and microarray gene expression to identify novel relationships between gene regulation, chromatin structure, and genomic glucocorticoid receptor (GR) action in NSPCs. These data reveal that GR binds preferentially to predetermined regions of accessible chromatin to influence gene programming and cell fate decisions. In addition, we identify SOX2 as a transcription factor that impacts the genomic response of select GR target genes to sGCs (i.e., dexamethasone) in NSPCs.
Collapse
Affiliation(s)
- Kimberly J Berry
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Uma Chandran
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fangping Mu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA; Center for Research Computing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dinesh K Deochand
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, USA
| | - T Lei
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Miriam Pagin
- Department of Biotechnology and Biosciences, University Milano-Bicocca, 20126, Milano, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University Milano-Bicocca, 20126, Milano, Italy
| | - A Paula Monaghan-Nichols
- Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Inez Rogatsky
- Hospital for Special Surgery Research Institute, The David Rosensweig Genomics Center, New York, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, USA
| | - Donald B DeFranco
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Sakloth F, Polizu C, Bertherat F, Zachariou V. Regulators of G Protein Signaling in Analgesia and Addiction. Mol Pharmacol 2020; 98:739-750. [PMID: 32474445 PMCID: PMC7662521 DOI: 10.1124/mol.119.119206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Regulator of G protein signaling (RGS) proteins are multifunctional proteins expressed in peripheral and neuronal cells, playing critical roles in development, physiologic processes, and pharmacological responses. RGS proteins primarily act as GTPase accelerators for activated Gα subunits of G-protein coupled receptors, but they may also modulate signal transduction by several other mechanisms. Over the last two decades, preclinical work identified members of the RGS family with unique and critical roles in intracellular responses to drugs of abuse. New information has emerged on the mechanisms by which RGS proteins modulate the efficacy of opioid analgesics in a brain region- and agonist-selective fashion. There has also been progress in the understanding of the protein complexes and signal transduction pathways regulated by RGS proteins in addiction and analgesia circuits. In this review, we summarize findings on the mechanisms by which RGS proteins modulate functional responses to opioids in models of analgesia and addiction. We also discuss reports on the regulation and function of RGS proteins in models of psychostimulant addiction. Using information from preclinical studies performed over the last 20 years, we highlight the diverse mechanisms by which RGS protein complexes control plasticity in response to opioid and psychostimulant drug exposure; we further discuss how the understanding of these pathways may lead to new opportunities for therapeutic interventions in G protein pathways. SIGNIFICANCE STATEMENT: Regulator of G protein signaling (RGS) proteins are signal transduction modulators, expressed widely in various tissues, including brain regions mediating addiction and analgesia. Evidence from preclinical work suggests that members of the RGS family act by unique mechanisms in specific brain regions to control drug-induced plasticity. This review highlights interesting findings on the regulation and function of RGS proteins in models of analgesia and addiction.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claire Polizu
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute (F.S., C.P., F.B., V.Z.) and Department of Pharmacological Sciences (V.Z.), Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Bowin CF, Inoue A, Schulte G. WNT-3A-induced β-catenin signaling does not require signaling through heterotrimeric G proteins. J Biol Chem 2019; 294:11677-11684. [PMID: 31235524 DOI: 10.1074/jbc.ac119.009412] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
The network of Wingless/Int-1 (WNT)-induced signaling pathways includes β-catenin-dependent and -independent pathways. β-Catenin regulates T cell factor/lymphoid enhancer-binding factor (TCF/LEF)-mediated gene transcription, and in response to WNTs, β-catenin signaling is initiated through engagement of a Frizzled (FZD)/LDL receptor-related protein 5/6 (LRP5/6) receptor complex. FZDs are G protein-coupled receptors, but the question of whether heterotrimeric G proteins are involved in WNT/β-catenin signaling remains unanswered. Here, we investigate whether acute activation of WNT/β-catenin signaling by purified WNT-3A requires functional signaling through heterotrimeric G proteins. Using genome editing, we ablated expression of Gs/Golf/Gq/G11/G12/G13/Gz in HEK293 (ΔG7) cells, leaving the expression of pertussis toxin (PTX)-sensitive Gi/o proteins unchanged, to assess whether WNT-3A activates WNT/β-catenin signaling in WT and ΔG7 cells devoid of functional G protein signaling. We monitored WNT-3A-induced activation by detection of phosphorylation of LDL receptor-related protein 6 (LRP6), electrophoretic mobility shift of the phosphoprotein Dishevelled (DVL), β-catenin stabilization and dephosphorylation, and TCF-dependent transcription. We found that purified, recombinant WNT-3A efficiently induces WNT/β-catenin signaling in ΔG7 cells in both the absence and presence of Gi/o-blocking PTX. Furthermore, cells completely devoid of G protein expression, so called Gα-depleted HEK293 cells, maintain responsiveness to WNT-3A with regard to the hallmarks of WNT/β-catenin signaling. These findings corroborate the concept that heterotrimeric G proteins are not required for this FZD- and DVL-mediated signaling branch. Our observations agree with previous results arguing for FZD conformation-dependent functional selectivity between DVL and heterotrimeric G proteins. In conclusion, WNT/β-catenin signaling through FZDs does not require the involvement of heterotrimeric G proteins.
Collapse
Affiliation(s)
- Carl-Fredrik Bowin
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum (6D), Solnavägen 9, SE-17165 Stockholm, Sweden
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Gunnar Schulte
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum (6D), Solnavägen 9, SE-17165 Stockholm, Sweden
| |
Collapse
|
6
|
Banu A, Liu KJ, Lax AJ, Grigoriadis AE. G-Alpha Subunit Abundance and Activity Differentially Regulate β-Catenin Signaling. Mol Cell Biol 2019; 39:MCB.00422-18. [PMID: 30559307 PMCID: PMC6379582 DOI: 10.1128/mcb.00422-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022] Open
Abstract
Heterotrimeric G proteins are signal transduction proteins involved in regulating numerous signaling events. In particular, previous studies have demonstrated a role for G-proteins in regulating β-catenin signaling. However, the link between G-proteins and β-catenin signaling is controversial and appears to depend on G-protein specificity. We describe a detailed analysis of a link between specific G-alpha subunits and β-catenin using G-alpha subunit genetic knockout and knockdown approaches. The Pasteurella multocida toxin was utilized as a unique tool to activate G-proteins, with LiCl treatment serving as a β-catenin signaling agonist. The results show that Pasteurella multocida toxin (PMT) significantly enhanced LiCl-induced active β-catenin levels in HEK293T cells and mouse embryo fibroblasts. Evaluation of the effect of specific G-alpha proteins on the regulation of β-catenin showed that Gq/11 and G12/13 knockout cells had significantly higher levels of active and total β-catenin than wild-type cells. The stimulation of active β-catenin by PMT and LiCl was lost upon both constitutive and transient knockdown of G12 and G13 but not Gq Based on our results, we conclude that endogenous G-alpha proteins are negative regulators of active β-catenin; however, PMT-activated G-alpha subunits positively regulate LiCl-induced β-catenin expression in a G12/13-dependent manner. Hence, G-alpha subunit regulation of β-catenin is context dependent.
Collapse
Affiliation(s)
- Arshiya Banu
- Department of Microbiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| | - Alistair J Lax
- Department of Microbiology, King's College London, Guy's Hospital, London, United Kingdom
| | - Agamemnon E Grigoriadis
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's Hospital, London, United Kingdom
| |
Collapse
|
7
|
Schulte G, Wright SC. Frizzleds as GPCRs - More Conventional Than We Thought! Trends Pharmacol Sci 2018; 39:828-842. [PMID: 30049420 DOI: 10.1016/j.tips.2018.07.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 01/14/2023]
Abstract
For more than 30 years, WNT/β-catenin and planar cell polarity signaling has formed the basis for what we understand to be the primary output of the interaction between WNTs and their cognate receptors known as Frizzleds (FZDs). In the shadow of these pathways, evidence for the involvement of heterotrimeric G proteins in WNT signaling has grown substantially over the years - redefining the complexity of the WNT signaling network. Moreover, the distinct characteristics of FZD paralogs are becoming better understood, and we can now apply concepts valid for classical GPCRs to grasp FZDs as molecular machines at the interface of ligand binding and intracellular effects. This review discusses recent developments in the field of WNT/FZD signaling in the context of GPCR pharmacology, and identifies remaining mysteries with an emphasis on structural and kinetic components that support this dogma shift.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Biomedicum 6D, Tomtebodavägen 16, Karolinska Institutet, S-171 65 Stockholm, Sweden.
| | - Shane C Wright
- Section of Receptor Biology and Signaling, Department of Physiology and Pharmacology, Biomedicum 6D, Tomtebodavägen 16, Karolinska Institutet, S-171 65 Stockholm, Sweden
| |
Collapse
|
8
|
Liu C, Hu Q, Jing J, Zhang Y, Jin J, Zhang L, Mu L, Liu Y, Sun B, Zhang T, Kong Q, Wang G, Wang D, Zhang Y, Liu X, Zhao W, Wang J, Feng T, Li H. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons. Mol Cell Neurosci 2017; 83:65-73. [PMID: 28684360 DOI: 10.1016/j.mcn.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/21/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP.
Collapse
Affiliation(s)
- Chuanliang Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China; Vocational College Daxing'an Mountains, Jiagedaqi District, Heilongjiang 165000, China
| | - Qiongqiong Hu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jia Jing
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yun Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jing Jin
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Liulei Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Lili Mu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yumei Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Bo Sun
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Tongshuai Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Guangyou Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Dandan Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Yao Zhang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Xijun Liu
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Wei Zhao
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China
| | - Jinghua Wang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China.
| | - Tao Feng
- Department of Neurology, The Nangang Branch of Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150001, China.
| | - Hulun Li
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, China; Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, Heilongjiang 150086, China
| |
Collapse
|
9
|
Ramírez VT, Ramos-Fernández E, Henríquez JP, Lorenzo A, Inestrosa NC. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation. J Biol Chem 2016; 291:19092-107. [PMID: 27402827 DOI: 10.1074/jbc.m116.722132] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 02/04/2023] Open
Abstract
Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Valerie T Ramírez
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Eva Ramos-Fernández
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile
| | - Juan Pablo Henríquez
- the Laboratorio de Neurobiología del Desarrollo, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Núcleo Milenio de Biología Regenerativa, Centro de Microscopía Avanzada, Universidad de Concepción, 4089100 Concepción, Chile
| | - Alfredo Lorenzo
- the Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | - Nibaldo C Inestrosa
- From the Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 Santiago, Chile, the Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, 2031 New South Wales, Australia, and the Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, 6200000 Punta Arenas, Chile
| |
Collapse
|
10
|
He S, Lu Y, Liu X, Huang X, Keller ET, Qian CN, Zhang J. Wnt3a: functions and implications in cancer. CHINESE JOURNAL OF CANCER 2015; 34:554-62. [PMID: 26369691 PMCID: PMC4593336 DOI: 10.1186/s40880-015-0052-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/18/2015] [Indexed: 12/30/2022]
Abstract
Wnt3a, one of Wnt family members, plays key roles in regulating pleiotropic cellular functions, including self-renewal, proliferation, differentiation, and motility. Accumulating evidence has suggested that Wnt3a promotes or suppresses tumor progression via the canonical Wnt signaling pathway depending on cancer type. In addition, the roles of Wnt3a signaling can be inhibited by multiple proteins or chemicals. Herein, we summarize the latest findings on Wnt3a as an important therapeutic target in cancer.
Collapse
Affiliation(s)
- Sha He
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Yi Lu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xia Liu
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Xin Huang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China.
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, 51006, P.R. China.
| | - Jian Zhang
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P.R. China. .,Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, P.R. China. .,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Woodard GE, Jardín I, Berna-Erro A, Salido GM, Rosado JA. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:97-183. [PMID: 26008785 DOI: 10.1016/bs.ircmb.2015.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulators of G-protein-signaling (RGS) proteins are a category of intracellular proteins that have an inhibitory effect on the intracellular signaling produced by G-protein-coupled receptors (GPCRs). RGS along with RGS-like proteins switch on through direct contact G-alpha subunits providing a variety of intracellular functions through intracellular signaling. RGS proteins have a common RGS domain that binds to G alpha. RGS proteins accelerate GTPase and thus enhance guanosine triphosphate hydrolysis through the alpha subunit of heterotrimeric G proteins. As a result, they inactivate the G protein and quickly turn off GPCR signaling thus terminating the resulting downstream signals. Activity and subcellular localization of RGS proteins can be changed through covalent molecular changes to the enzyme, differential gene splicing, and processing of the protein. Other roles of RGS proteins have shown them to not be solely committed to being inhibitors but behave more as modulators and integrators of signaling. RGS proteins modulate the duration and kinetics of slow calcium oscillations and rapid phototransduction and ion signaling events. In other cases, RGS proteins integrate G proteins with signaling pathways linked to such diverse cellular responses as cell growth and differentiation, cell motility, and intracellular trafficking. Human and animal studies have revealed that RGS proteins play a vital role in physiology and can be ideal targets for diseases such as those related to addiction where receptor signaling seems continuously switched on.
Collapse
Affiliation(s)
- Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Isaac Jardín
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - A Berna-Erro
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Department of Physiology, University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Caceres, Spain
| |
Collapse
|
12
|
Ji YR, Kim HJ, Park SJ, Bae KB, Park SJ, Jang WY, Kang MC, Jeong J, Sung YH, Choi M, Lee W, Lee DG, Park SJ, Lee S, Kim MO, Ryoo ZY. Critical role of Rgs19 in mouse embryonic stem cell proliferation and differentiation. Differentiation 2015; 89:42-50. [DOI: 10.1016/j.diff.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 10/23/2022]
|
13
|
Double suppression of the Gα protein activity by RGS proteins. Mol Cell 2014; 53:663-71. [PMID: 24560274 DOI: 10.1016/j.molcel.2014.01.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/20/2013] [Accepted: 01/16/2014] [Indexed: 11/23/2022]
Abstract
Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis on G protein α subunits, restricting their activity downstream from G protein-coupled receptors. Here we identify Drosophila Double hit (Dhit) as a dual RGS regulator of Gαo. In addition to the conventional GTPase-activating action, Dhit possesses the guanine nucleotide dissociation inhibitor (GDI) activity, slowing the rate of GTP uptake by Gαo; both activities are mediated by the same RGS domain. These findings are recapitulated using homologous mammalian Gαo/i proteins and RGS19. Crystal structure and mutagenesis studies provide clues into the molecular mechanism for this unprecedented GDI activity. Physiologically, we confirm this activity in Drosophila asymmetric cell divisions and HEK293T cells. We show that the oncogenic Gαo mutant found in breast cancer escapes this GDI regulation. Our studies identify Dhit and its homologs as double-action regulators, inhibiting Gαo/i proteins both through suppression of their activation and acceleration of their inactivation through the single RGS domain.
Collapse
|
14
|
Sangphech N, Osborne BA, Palaga T. Notch signaling regulates the phosphorylation of Akt and survival of lipopolysaccharide-activated macrophages via regulator of G protein signaling 19 (RGS19). Immunobiology 2014; 219:653-60. [PMID: 24775271 DOI: 10.1016/j.imbio.2014.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/29/2014] [Accepted: 03/29/2014] [Indexed: 11/19/2022]
Abstract
Macrophages play critical roles in innate immune defense by sensing microbes using pattern-recognition receptors. Lipopolysaccharide (LPS) stimulates macrophages via TLR, which leads to activation of downstream signaling cascades. In this study, we investigated the roles of a conserved signaling pathway, Notch signaling, in regulating the downstream signaling cascades of the LPS/TLR4 pathways in macrophages. Using a phospho-proteomic approach and a gamma-secretase inhibitor (GSI) to suppress the processing and activation of Notch signaling, we identified regulator of G protein signaling 19 (RGS19) as a target protein whose phosphorylation was affected by GSI treatment. RGS19 is a guanosine triphosphatase (GTPase)-activating protein that functions to negatively regulate G protein-coupled receptors via Gαi/Gαq-linked signaling. Stimulation of RAW264.7 cells with LPS increased the level of the phosphorylated form of RGS19, while LPS stimulation in the presence of GSI decreased its level. GSI treatment did not alter the mRNA level of rgs19. Treatment with GSI or silencing of rgs19 in macrophages impaired the phosphorylation of Akt Thr(308) upon LPS stimulation. Furthermore, targeted deletion of a DNA-binding protein and binding partner of the Notch receptor, RBP-Jκ/CSL, in macrophages resulted in delayed and decreased Akt phosphorylation. Because the PI3K/Akt pathway regulates cell survival in various cell types, the cell cycle and cell death were assayed upon GSI treatment, phosphatidylinositol 3 kinase (PI3K) inhibitor treatment or silencing of rgs19. GSI treatment resulted in decreased cell populations in the G1 and S phases, while it increased the cell population of cell death. Similarly, silencing of rgs19 resulted in a decreased cell population in the G1 phase and an increased cell population in the subG1 phase. Inhibition of Akt phosphorylation by PI3K inhibitor in LPS-stimulated macrophages increased cell population in G1 phase, suggesting a possible cell cycle arrest. Taken together, these results indicate that Notch signaling positively regulates phosphorylation of Akt, possibly via phosphorylation of RGS19, and inhibition of both molecules affects the cell survival and cell cycle of macrophages upon LPS stimulation.
Collapse
Affiliation(s)
- Naunpun Sangphech
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Barbara A Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | - Tanapat Palaga
- Graduate Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C. Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci 2014; 71:1123-48. [PMID: 23749084 PMCID: PMC11113114 DOI: 10.1007/s00018-013-1378-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.
Collapse
Affiliation(s)
- Delphine Meffre
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Julien Grenier
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Sophie Bernard
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Françoise Courtin
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan, R.O.C
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | - Charbel Massaad
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| |
Collapse
|
16
|
Avasarala S, Bikkavilli RK, Van Scoyk M, Zhang W, Lapite A, Hostetter L, Byers JT, Heasley LE, Sohn JW, Winn RA. Heterotrimeric G-protein, Gα16, is a critical downstream effector of non-canonical Wnt signaling and a potent inhibitor of transformed cell growth in non small cell lung cancer. PLoS One 2013; 8:e76895. [PMID: 24204697 PMCID: PMC3800035 DOI: 10.1371/journal.pone.0076895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
G-protein-coupled receptors (GPCR) are the largest family of cell surface molecules that play important role/s in a number of biological and pathological processes including cancers. Earlier studies have highlighted the importance of Wnt7a signaling via its cognate receptor Frizzled9, a GPCR, in inhibition of cell proliferation, anchorage-independent growth, and reversal of transformed phenotype in non small cell lung cancer primarily through activation of the tumor suppressor, PPARγ. However, the G-protein effectors that couple to this important tumor suppressor pathway have not been identified, and are of potential therapeutic interest. In this study, by using two independent Wnt7a/Frizzled9-specific read-outs, we identify Gα16 as a novel downstream effector of Wnt7a/Frizzled9 signaling. Interestingly, Gα16 expression is severely down-regulated, both at the messenger RNA levels and protein levels, in many non small cell lung cancer cell lines. Additionally, through gene-specific knock-downs and expression of GTPase-deficient forms (Q212L) of Gα16, we also establish Gα16 as a novel regulator of non small cell lung cancer cell proliferation and anchorage-independent cell growth. Taken together, our data not only establish the importance of Gα16 as a critical downstream effector of the non-canonical Wnt signaling pathway but also as a potential therapeutic target for the treatment of non small cell lung cancer.
Collapse
Affiliation(s)
- Sreedevi Avasarala
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rama Kamesh Bikkavilli
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Michelle Van Scoyk
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Wei Zhang
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ajibike Lapite
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Logan Hostetter
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joshua T. Byers
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lynn E. Heasley
- Department of Craniofacial Biology, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Jang Won Sohn
- Department of Internal Medicine, School of Medicine, Hanyang University, Seoul, South Korea
| | - Robert A. Winn
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Kermit interacts with Gαo, Vang, and motor proteins in Drosophila planar cell polarity. PLoS One 2013; 8:e76885. [PMID: 24204696 PMCID: PMC3805608 DOI: 10.1371/journal.pone.0076885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/28/2013] [Indexed: 11/20/2022] Open
Abstract
In addition to the ubiquitous apical-basal polarity, epithelial cells are often polarized within the plane of the tissue – the phenomenon known as planar cell polarity (PCP). In Drosophila, manifestations of PCP are visible in the eye, wing, and cuticle. Several components of the PCP signaling have been characterized in flies and vertebrates, including the heterotrimeric Go protein. However, Go signaling partners in PCP remain largely unknown. Using a genetic screen we uncover Kermit, previously implicated in G protein and PCP signaling, as a novel binding partner of Go. Through pull-down and genetic interaction studies, we find that Kermit interacts with Go and another PCP component Vang, known to undergo intracellular relocalization during PCP establishment. We further demonstrate that the activity of Kermit in PCP differentially relies on the motor proteins: the microtubule-based dynein and kinesin motors and the actin-based myosin VI. Our results place Kermit as a potential transducer of Go, linking Vang with motor proteins for its delivery to dedicated cellular compartments during PCP establishment.
Collapse
|
18
|
Dawson K, Aflaki M, Nattel S. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol 2012. [PMID: 23207593 DOI: 10.1113/jphysiol.2012.235382] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract The Wnt-Frizzled (Fzd) G-protein-coupled receptor system, involving 19 distinct Wnt ligands and 10 Fzd receptors, plays key roles in the development and functioning of many organ systems. There is increasing evidence that Wnt-Fzd signalling is important in regulating cardiac function. Wnt-Fzd signalling primarily involves a canonical pathway, with dishevelled-1-dependent nuclear translocation of β-catenin that derepresses Wnt-sensitive gene transcription, but can also include non-canonical pathways via phospholipase-C/Ca(2+) mobilization and dishevelled-protein activation of small GTPases. Wnt-Fzd effects vary with specific ligand/receptor interactions and associated downstream pathways. This paper reviews the biochemistry and physiology of the Wnt-Fzd complex, and presents current knowledge of Wnt signalling in cardiac remodelling processes such as hypertrophy and fibrosis, as well as disease states such as myocardial infarction (MI), heart failure and arrhythmias. Wnt signalling is activated during hypertrophy; inhibiting Wnt signalling by activating glycogen synthase kinase attenuates the hypertrophic response. Wnt signalling has complex and time-dependent actions post-MI, so that either beneficial or harmful effects might result from Wnt-directed interventions. Stem cell biology, a promising area for therapeutic intervention, is highly regulated by Wnt signalling. The Wnt system regulates fibroblast function, and is prominently altered in arrhythmogenic ventricular cardiomyopathy, a familial disease involving excess deposition of fibroadipose tissue. Wnt signalling controls connexin43 expression, thereby contributing to the regulation of cardiac electrical stability and arrhythmia generation. Although much has been learned about Wnt-Fzd signalling in hypertrophy and infarction, its role is poorly understood for a broad range of other heart disorders. Much more needs to be learned for its contributions to be fully appreciated, and to permit more effective exploitation of its enormous potential in therapeutic development.
Collapse
Affiliation(s)
- Kristin Dawson
- S. Nattel: 5000 Belanger St. E, Montreal, Quebec, Canada H1T 1C8.
| | | | | |
Collapse
|
19
|
Rgs19 regulates mouse palatal fusion by modulating cell proliferation and apoptosis in the MEE. Mech Dev 2012; 129:244-54. [DOI: 10.1016/j.mod.2012.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/12/2023]
|
20
|
RGS19 stimulates cell proliferation by deregulating cell cycle control and enhancing Akt signaling. Cancer Lett 2011; 309:199-208. [DOI: 10.1016/j.canlet.2011.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/09/2011] [Accepted: 06/01/2011] [Indexed: 11/13/2022]
|
21
|
Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol 2011; 82:1311-9. [PMID: 21689640 DOI: 10.1016/j.bcp.2011.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
The Wnt/Frizzled signaling pathway plays multiple functions in animal development and, when deregulated, in human disease. The G-protein coupled receptor (GPCR) Frizzled and its cognate heterotrimeric Gi/o proteins initiate the intracellular signaling cascades resulting in cell fate determination and polarization. In this review, we summarize the knowledge on the ligand recognition, biochemistry, modifications and interacting partners of the Frizzled proteins viewed as GPCRs. We also discuss the effectors of the heterotrimeric Go protein in Frizzled signaling. One group of these effectors is represented by small GTPases of the Rab family, which amplify the initial Wnt/Frizzled signal. Another effector is the negative regulator of Wnt signaling Axin, which becomes deactivated in response to Go action. The discovery of the GPCR properties of Frizzled receptors not only provides mechanistic understanding to their signaling pathways, but also paves new avenues for the drug discovery efforts.
Collapse
|
22
|
Wnt3a stimulation elicits G-protein-coupled receptor properties of mammalian Frizzled proteins. Biochem J 2011; 433:435-40. [PMID: 21128903 DOI: 10.1042/bj20101878] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Receptors of the Fz (Frizzled) family initiate Wnt ligand-dependent signalling controlling multiple steps in organism development and carcinogenesis. Fz proteins possess seven transmembrane domains, and their signalling depends on heterotrimeric G-proteins in various organisms; however, Fz proteins constitute a distinct group within the GPCR (G-protein-coupled receptor) superfamily, and Fz signalling can be G-protein-independent in some experimental setups, leading to concerns about the GPCR nature of these proteins. In the present study, we demonstrate that mammalian Fz proteins act as GPCRs on heterotrimeric G(o/i) proteins. Addition of the Wnt3a ligand to rat brain membranes or cultured cells elicits Fz-dependent guanine-nucleotide exchange on G(o/i) proteins. These responses were sensitive to a Wnt antagonist and to pertussis toxin, which decouples the G(o/i) proteins from their receptors through covalent modification. The results of the present study provide the long-awaited biochemical proof of the GPCR nature of Fz receptors.
Collapse
|
23
|
Freisinger CM, Fisher RA, Slusarski DC. Regulator of g protein signaling 3 modulates wnt5b calcium dynamics and somite patterning. PLoS Genet 2010; 6:e1001020. [PMID: 20628572 PMCID: PMC2900303 DOI: 10.1371/journal.pgen.1001020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 06/07/2010] [Indexed: 01/01/2023] Open
Abstract
Vertebrate development requires communication among cells of the embryo in order to define the body axis, and the Wnt-signaling network plays a key role in axis formation as well as in a vast array of other cellular processes. One arm of the Wnt-signaling network, the non-canonical Wnt pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GTPase-activating proteins (GAPs), however, the possible role of RGS proteins in non-canonical Wnt signaling and development is not known. Here, we identify rgs3 as having an overlapping expression pattern with wnt5b in zebrafish and reveal that individual knockdown of either rgs3 or wnt5b gene function produces similar somite patterning defects. Additionally, we describe endogenous calcium release dynamics in developing zebrafish somites and determine that both rgs3 and wnt5b function are required for appropriate frequency and amplitude of calcium release activity. Using rescue of gene knockdown and in vivo calcium imaging assays, we demonstrate that the activity of Rgs3 requires its ability to interact with Gα subunits and function as a G protein GAP. Thus, Rgs3 function is necessary for appropriate frequency and amplitude of calcium release during somitogenesis and is downstream of Wnt5 activity. These results provide the first evidence for an essential developmental role of RGS proteins in modulating the duration of non-canonical Wnt signaling. Vertebrate development requires communication among cells in order to define the body axis (front/back, head/tail, or left/right). Secreted factors such as Wnts play key roles in a vast array of cellular processes, including patterning of the body axis. One arm of the Wnt-signaling network, the non-canonical pathway, mediates intracellular calcium release via activation of heterotrimeric G proteins. Regulator of G protein Signaling (RGS) proteins can accelerate inactivation of G proteins by acting as G protein GAPs and are uniquely situated to control the amplitude of a Wnt signal. Here, we combine cellular, molecular, and genetic analyses with high resolution calcium imaging to identify a role for RGS modulation of Wnt-mediated calcium release dynamics and developmental patterning events. We find that loss of rgs3 gene function produced body patterning defects like those observed with loss of wnt5b gene function. Analysis of endogenous calcium release dynamics in developing zebrafish revealed that both rgs3 and wnt5b are required for appropriate frequency and amplitude of calcium release. Our results provide new evidence that a member of the RGS protein family is essential for modulating the non-canonical Wnt network to assure normal tissue patterning during development.
Collapse
Affiliation(s)
| | - Rory A. Fisher
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ji YR, Kim MO, Kim SH, Yu DH, Shin MJ, Kim HJ, Yuh HS, Bae KB, Kim JY, Park HD, Lee SG, Hyun BH, Ryoo ZY. Effects of regulator of G protein signaling 19 (RGS19) on heart development and function. J Biol Chem 2010; 285:28627-34. [PMID: 20562099 DOI: 10.1074/jbc.m109.073718] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Wnt/Wg genes play a critical role in the development of various organisms. For example, the Wnt/beta-catenin signal promotes heart formation and cardiomyocyte differentiation in mice. Previous studies have shown that RGS19 (regulator of G protein signaling 19), which has Galpha subunits with GTPase activity, inhibits the Wnt/beta-catenin signal through inactivation of Galpha(o). In the present study, the effects of RGS19 on mouse cardiac development were observed. In P19 teratocarcinoma cells with RGS19 overexpression, RGS19 inhibited cardiomyocyte differentiation by blocking the Wnt signal. Additionally, several genes targeted by Wnt were down-regulated. For the in vivo study, we generated RGS19-overexpressing transgenic (RGS19 TG) mice. In these transgenic mice, septal defects and thin-walled ventricles were observed during the embryonic phase of development, and the expression of cardiogenesis-related genes, BMP4 and Mef2C, was reduced significantly. RGS19 TG mice showed increased expression levels of brain natriuretic peptide and beta-MHC, which are markers of heart failure, increase of cell proliferation, and electrocardiogram analysis shows abnormal ventricle repolarization. These data provide in vitro and in vivo evidence that RGS19 influenced cardiac development and had negative effects on heart function.
Collapse
Affiliation(s)
- Young Rae Ji
- School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Egger-Adam D, Katanaev VL. The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 2010; 239:168-83. [PMID: 19705439 DOI: 10.1002/dvdy.22060] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/Frizzled signaling pathway plays crucial roles in animal development and is deregulated in many cases of carcinogenesis. We and others have previously demonstrated that Frizzled proteins initiating the intracellular signaling are typical G protein-coupled receptors and rely on the trimeric G protein Go for Wnt transduction in Drosophila. However, the mode of action of Go and its interplay with other transducers of the pathway such as Dishevelled and Axin remained unclear. Here we show that the alpha-subunit of Go directly acts on Axin, the multidomain protein playing a negative role in the Wnt signaling. G alpha o physically binds Axin and re-localizes it to the plasma membrane. Furthermore, G alpha o suppresses Axin's inhibitory action on the Wnt pathway in Drosophila wing development. The interaction of G alpha o with Axin critically depends on the RGS domain of the latter. Additionally, we show that the betagamma-component of Go can directly bind and recruit Dishevelled from cytoplasm to the plasma membrane, where activated Dishevelled can act on the DIX domain of Axin. Thus, the two components of the trimeric Go protein mediate a double-direct and indirect-impact on different regions of Axin, which likely serves to ensure a robust inhibition of this protein and transduction of the Wnt signal.
Collapse
Affiliation(s)
- Diane Egger-Adam
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
26
|
Turm H, Maoz M, Katz V, Yin YJ, Offermanns S, Bar-Shavit R. Protease-activated receptor-1 (PAR1) acts via a novel Galpha13-dishevelled axis to stabilize beta-catenin levels. J Biol Chem 2010; 285:15137-15148. [PMID: 20223821 DOI: 10.1074/jbc.m109.072843] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown a novel link between hPar-1 (human protease-activated receptor-1) and beta-catenin stabilization. Although it is well recognized that Wnt signaling leads to beta-catenin accumulation, the role of PAR1 in the process is unknown. We provide here evidence that PAR1 induces beta-catenin stabilization independent of Wnt, Fz (Frizzled), and the co-receptor LRP5/6 (low density lipoprotein-related protein 5/6) and identify selective mediators of the PAR1-beta-catenin axis. Immunohistological analyses of hPar1-transgenic (TG) mouse mammary tissues show the expression of both Galpha(12) and Galpha(13) compared with age-matched control counterparts. However, only Galpha(13) was found to be actively involved in PAR1-induced beta-catenin stabilization. Indeed, a dominant negative form of Galpha(13) inhibited both PAR1-induced Matrigel invasion and Lef/Tcf (lymphoid enhancer factor/T cell factor) transcription activity. PAR1-Galpha(13) association is followed by the recruitment of DVL (Dishevelled), an upstream Wnt signaling protein via the DIX domain. Small interfering RNA-Dvl silencing leads to a reduction in PAR1-induced Matrigel invasion, inhibition of Lef/Tcf transcription activity, and decreased beta-catenin accumulation. It is of note that PAR1 also promotes the binding of beta-arrestin-2 to DVL, suggesting a role for beta-arrestin-2 in PAR1-induced DVL phosphorylation dynamics. Although infection of small interfering RNA-LRP5/6 or the use of the Wnt antagonists, SFRP2 (soluble Frizzled-related protein 2) or SFRP5 potently reduced Wnt3A-mediated beta-catenin accumulation, no effect was observed on PAR1-induced beta-catenin stabilization. Collectively, our data show that PAR1 mediates beta-catenin stabilization independent of Wnt. We propose here a novel cascade of PAR1-induced Galpha(13)-DVL axis in cancer and beta-catenin stabilization.
Collapse
Affiliation(s)
- Hagit Turm
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Myriam Maoz
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Vered Katz
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Yong-Jun Yin
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Steffan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Rachel Bar-Shavit
- Department of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel.
| |
Collapse
|
27
|
Dishevelled: The hub of Wnt signaling. Cell Signal 2009; 22:717-27. [PMID: 20006983 DOI: 10.1016/j.cellsig.2009.11.021] [Citation(s) in RCA: 576] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 11/28/2009] [Indexed: 12/24/2022]
Abstract
Wnt signaling controls a variety of developmental and homeostatic events. As a key component of Wnt signaling, Dishevelled (Dvl/Dsh) protein relays Wnt signals from receptors to downstream effectors. In the canonical Wnt pathway that depends on the nuclear translocation of beta-catenin, Dvl is recruited by the receptor Frizzled and prevents the constitutive destruction of cytosolic beta-catenin. In the non-canonical Wnt pathways such as Wnt-Frizzled/PCP (planar cell polarity) signaling, Dvl signals via the Daam1-RhoA axis and the Rac1 axis. In addition, Dvl plays important roles in Wnt-GSK3beta-microtubule signaling, Wnt-calcium signaling, Wnt-RYK signaling, Wnt-atypical PKC signaling, etc. Dvl also functions to mediate receptor endocytosis. To fulfill its multifaceted functions, it is not surprising that Dvl associates with various kinds of proteins. Its activity is also modulated dynamically by phosphorylation, ubiquitination and degradation. In this review, we summarize the current understanding of Dvl functions in Wnt signal transduction and its biological functions in mouse development, and also discuss the molecular mechanisms of its actions.
Collapse
|
28
|
Krawetz R, Kelly GM. Coordinate Gα13 and Wnt6-β-catenin signaling in F9 embryonal carcinoma cells is required for primitive endoderm differentiation. Biochem Cell Biol 2009; 87:567-80. [DOI: 10.1139/o09-014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mouse F9 embryonal carcinoma cell line is ideally suited to study the epithelial-to-mesenchymal transition accompanying the differentiation of primitive to parietal extraembryonic endoderm. In F9 cells, the application of exogenous agents including retinoic acid or activation of signal transduction cascades downstream of G-proteins triggers widespread changes in gene expression and leads to the formation of primitive endoderm. The epithelial-to-mesenchymal transition is completed and parietal endoderm develops as of result of increasing PKA activity in primitive endoderm cells. Expression of a constitutively active form of Gα13(Q226L) is sufficient to induce F9 cells into parietal endoderm and a model is emerging that a signaling axis linking G-protein signaling to RhoA and the ERM protein moesin is required for differentiation. In this study, we found that expression of either p115RhoGEF or a constitutively active, GTPase-deficient form of RhoA(L63) promoted primitive, but not parietal, endoderm formation. The overexpression of Gα13(Q226L) or p115RhoGEF, but not Rho(L63), caused β-catenin to translocate to the nucleus. Surprisingly, the stimulation of the Wnt-β-catenin pathway was accompanied by nuclear β-catenin and primitive endoderm formation, even when a dominant negative was used to block the signaling axis at the level of p115RhoGEF or when ROCK activity was inhibited using the pharmacological agent Y-27632. Together, results indicate that the coordinate signaling by two independent pathways, one involving canonical Wnt-β-catenin activation of target genes and the other with Gα13 signaling to ERM proteins to modulate cytoarchitectural changes, is required during the retinoic acid induced differentiation of F9 cells to primitive endoderm.
Collapse
Affiliation(s)
- Roman Krawetz
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, ON N6A 5B7, Canada
- Child Health Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Gregory M. Kelly
- Department of Biology, Molecular Genetics Unit, University of Western Ontario, London, ON N6A 5B7, Canada
- Child Health Research Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
29
|
Hurst JH, Hooks SB. Regulator of G-protein signaling (RGS) proteins in cancer biology. Biochem Pharmacol 2009; 78:1289-97. [PMID: 19559677 DOI: 10.1016/j.bcp.2009.06.028] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 01/09/2023]
Abstract
The regulator of G-protein signaling (RGS) family is a diverse group of multifunctional proteins that regulate cellular signaling events downstream of G-protein coupled receptors (GPCRs). In recent years, GPCRs have been linked to the initiation and progression of multiple cancers; thus, regulators of GPCR signaling are also likely to be important to the pathophysiology of cancer. This review highlights recent studies detailing changes in RGS transcript expression during oncogenesis, single nucleotide polymorphisms in RGS proteins linked to lung and bladder cancers, and specific roles for RGS proteins in multiple cancer types.
Collapse
Affiliation(s)
- Jillian H Hurst
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
30
|
Feigin ME, Malbon CC. OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling. Cell Signal 2008; 20:949-57. [PMID: 18296023 DOI: 10.1016/j.cellsig.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 11/26/2022]
Abstract
The Wnt/beta-catenin signaling pathway controls key aspects of embryonic development and adult tissue homeostasis, including the formation and maintenance of bone. Recently, mutations in the OSTM1 gene were found to be the cause of severe autosomal recessive osteopetrosis in both the mouse and humans. This disorder is characterized by increased bone mass resulting from a defect in osteoclast maturation. The possible role of OSTM1 in signaling of the Wnt/beta-catenin "canonical" pathway was investigated in totipotent mouse F9 embryonal teratocarcinoma cells. Overexpression of OSTM1 in F9 cells increased Wnt3a-responsive beta-catenin accumulation and Lef/Tcf-sensitive transcription. Similarly, knockdown of endogenous OSTM1 attenuated the ability of Wnt3a to stimulate the canonical signaling pathway. An OSTM1 mutant (detected in humans with osteopetrosis) was expressed in F9 cells and found to inhibit Wnt-stimulated beta-catenin stabilization, gene transcription, and primitive endoderm formation. Expression of this OSTM1 C-terminal deletion mutant attenuated Lef/Tcf-sensitive gene transcription, even when transcription was activated by expression of a constitutively-active form of beta-catenin. However, expression of this OSTM1 C-terminal deletion mutant was unable to alter Lef/Tcf-sensitive gene transcription when transcription was activated by expression of a beta-catenin/Lef chimeric protein. From the standpoint of protein-protein interactions, expression of wild-type OSTM1 stimulated whereas mutant OSTM1 inhibited, the Wnt-dependent association of beta-catenin and Lef1. On the foundation of these experiments, we propose that the human mutations in OSTM1 such as the C-terminal deletion mutant studied herein provoke dysregulation of the canonical Wnt/beta-catenin signaling pathway, providing a molecular basis for severe autosomal recessive osteopetrosis.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, United States.
| | | |
Collapse
|