1
|
Morrey JD, Siddharthan V, Wang H, Oliveira ALR, Susuki K, Kaundal R, Freeman SM, Thomas AJ, Duhan N, Corry NG. Identification of candidate genes involved in Zika virus-induced reversible paralysis of mice. Sci Rep 2025; 15:2926. [PMID: 39848964 PMCID: PMC11757732 DOI: 10.1038/s41598-025-86475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
Zika virus (ZIKV) causes a variety of peripheral and central nervous system complications leading to neurological symptoms such as limb weakness. We used a mouse model to identify candidate genes potentially involved in causation or recovery from ZIKV-induced acute flaccid paralysis. Using Zikv and Chat chromogenic and fluorescence in situ RNA hybridization, electron microscopy, immunohistochemistry, and ZIKV RT-qPCR, we determined that some paralyzed mice had infected motor neurons, but motor neurons are not reduced in number and the infection was not present in all paralyzed mice; hence infection of motor neurons were not strongly correlated with paralysis. Consequently, paralysis was probably caused by by-stander effects. To address this, we performed bioinformatics analysis on spinal cord RNA to identify 2058 differentially expressed genes (DEGs) that were altered during paralysis and then normalized after paralysis. Of these "biphasic" DEGs, 951 were up-regulated and 1107 were down-regulated during paralysis, followed by recovery. To refine the search for candidate DEGs we used gene ontology analysis and RT-qPCR to select 3 DEGs that could be involved with the node of Ranvier function and 5 DEGs that could be involved with synaptic function. Among these, SparcL1:Sparc DEG ratios were identified to be inversely correlated with ZIKV-induced paralysis, which is consistent with the known function of SPARC protein to antagonize the synaptogenesis of SPARCL1. Ank3, Sptbn1, and Epb41l3 affecting the structures at and near the nodes of Ranvier were significantly downregulated during ZIKV-induced paralysis. The primary contribution is the identification of 8 candidate genes that may be involved in the causation or recovery of ZIKV-induced paralysis.
Collapse
Affiliation(s)
- John D Morrey
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA.
| | - Venkatraman Siddharthan
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA
| | - Hong Wang
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA
| | | | - Keiichiro Susuki
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435-0001, USA
| | - Rakesh Kaundal
- Bioinformatics Facility, Center for Integrated BioSystems, Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, 84322, USA
- Department of Computer Science, College of Science, Logan, UT, 84322, USA
| | - Sara M Freeman
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Aaron J Thomas
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Naveen Duhan
- Department of Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Logan, UT, 84322, USA
| | - Nathan G Corry
- Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA
| |
Collapse
|
2
|
Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother 2022; 155:113853. [DOI: 10.1016/j.biopha.2022.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
|
3
|
McLendon JM, Zhang X, Matasic DS, Kumar M, Koval OM, Grumbach IM, Sadayappan S, London B, Boudreau RL. Knockout of Sorbin And SH3 Domain Containing 2 (Sorbs2) in Cardiomyocytes Leads to Dilated Cardiomyopathy in Mice. J Am Heart Assoc 2022; 11:e025687. [PMID: 35730644 PMCID: PMC9333371 DOI: 10.1161/jaha.122.025687] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Sorbin and SH3 domain containing 2 (Sorbs2) protein is a cytoskeletal adaptor with an emerging role in cardiac biology and disease; yet, its potential relevance to adult‐onset cardiomyopathies remains underexplored. Sorbs2 global knockout mice display lethal arrhythmogenic cardiomyopathy; however, the causative mechanisms remain unclear. Herein, we examine Sorbs2 dysregulation in heart failure, characterize novel Sorbs2 cardiomyocyte‐specific knockout mice (Sorbs2‐cKO), and explore associations between Sorbs2 genetic variations and human cardiovascular disease. Methods and Results Bioinformatic analyses show myocardial Sorbs2 mRNA is consistently upregulated in humans with adult‐onset cardiomyopathies and in heart failure models. We generated Sorbs2‐cKO mice and report that they develop progressive systolic dysfunction and enlarged cardiac chambers, and they die with congestive heart failure at about 1 year old. After 3 months, Sorbs2‐cKO mice begin to show atrial enlargement and P‐wave anomalies, without dysregulation of action potential–associated ion channel and gap junction protein expressions. After 6 months, Sorbs2‐cKO mice exhibit impaired contractility in dobutamine‐treated hearts and skinned myofibers, without dysregulation of contractile protein expressions. From our comprehensive survey of potential mechanisms, we found that within 4 months, Sorbs2‐cKO hearts have defective microtubule polymerization and compensatory upregulation of structural cytoskeletal and adapter proteins, suggesting that this early intracellular structural remodeling is responsible for contractile dysfunction. Finally, we identified genetic variants that associate with decreased Sorbs2 expression and human cardiac phenotypes, including conduction abnormalities, atrial enlargement, and dilated cardiomyopathy, consistent with Sorbs2‐cKO mice phenotypes. Conclusions Our studies show that Sorbs2 is essential for maintaining structural integrity in cardiomyocytes, likely through strengthening the interactions between microtubules and other cytoskeletal proteins at cross‐link sites.
Collapse
Affiliation(s)
- Jared M McLendon
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Xiaoming Zhang
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Daniel S Matasic
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Department of Molecular Physiology and Biophysics University of Iowa Carver College of Medicine Iowa City IA
| | - Mohit Kumar
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Olha M Koval
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Isabella M Grumbach
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Sakthivel Sadayappan
- Department of Pharmacology and Systems Physiology University of Cincinnati OH.,Division of Cardiovascular Health and Disease Department of Internal Medicine Heart, Lung, and Vascular Institute University of Cincinnati OH
| | - Barry London
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| | - Ryan L Boudreau
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA.,Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA
| |
Collapse
|
4
|
de Pins B, Mendes T, Giralt A, Girault JA. The Non-receptor Tyrosine Kinase Pyk2 in Brain Function and Neurological and Psychiatric Diseases. Front Synaptic Neurosci 2021; 13:749001. [PMID: 34690733 PMCID: PMC8527176 DOI: 10.3389/fnsyn.2021.749001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pyk2 is a non-receptor tyrosine kinase highly enriched in forebrain neurons. Pyk2 is closely related to focal adhesion kinase (FAK), which plays an important role in sensing cell contacts with extracellular matrix and other extracellular signals controlling adhesion and survival. Pyk2 shares some of FAK’s characteristics including recruitment of Src-family kinases after autophosphorylation, scaffolding by interacting with multiple partners, and activation of downstream signaling pathways. Pyk2, however, has the unique property to respond to increases in intracellular free Ca2+, which triggers its autophosphorylation following stimulation of various receptors including glutamate NMDA receptors. Pyk2 is dephosphorylated by the striatal-enriched phosphatase (STEP) that is highly expressed in the same neuronal populations. Pyk2 localization in neurons is dynamic, and altered following stimulation, with post-synaptic and nuclear enrichment. As a signaling protein Pyk2 is involved in multiple pathways resulting in sometimes opposing functions depending on experimental models. Thus Pyk2 has a dual role on neurites and dendritic spines. With Src family kinases Pyk2 participates in postsynaptic regulations including of NMDA receptors and is necessary for specific types of synaptic plasticity and spatial memory tasks. The diverse functions of Pyk2 are also illustrated by its role in pathology. Pyk2 is activated following epileptic seizures or ischemia-reperfusion and may contribute to the consequences of these insults whereas Pyk2 deficit may contribute to the hippocampal phenotype of Huntington’s disease. Pyk2 gene, PTK2B, is associated with the risk for late-onset Alzheimer’s disease. Studies of underlying mechanisms indicate a complex contribution with involvement in amyloid toxicity and tauopathy, combined with possible functional deficits in neurons and contribution in microglia. A role of Pyk2 has also been proposed in stress-induced depression and cocaine addiction. Pyk2 is also important for the mobility of astrocytes and glioblastoma cells. The implication of Pyk2 in various pathological conditions supports its potential interest for therapeutic interventions. This is possible through molecules inhibiting its activity or increasing it through inhibition of STEP or other means, depending on a precise evaluation of the balance between positive and negative consequences of Pyk2 actions.
Collapse
Affiliation(s)
- Benoit de Pins
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Tiago Mendes
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Jean-Antoine Girault
- Institut du Fer à Moulin, Paris, France.,Inserm UMR-S 1270, Paris, France.,Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
| |
Collapse
|
5
|
Adipose tissue-derived neurotrophic factor 3 regulates sympathetic innervation and thermogenesis in adipose tissue. Nat Commun 2021; 12:5362. [PMID: 34508100 PMCID: PMC8433218 DOI: 10.1038/s41467-021-25766-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
Activation of brown fat thermogenesis increases energy expenditure and alleviates obesity. Sympathetic nervous system (SNS) is important in brown/beige adipocyte thermogenesis. Here we discover a fat-derived "adipokine" neurotrophic factor neurotrophin 3 (NT-3) and its receptor Tropomyosin receptor kinase C (TRKC) as key regulators of SNS growth and innervation in adipose tissue. NT-3 is highly expressed in brown/beige adipocytes, and potently stimulates sympathetic neuron neurite growth. NT-3/TRKC regulates a plethora of pathways in neuronal axonal growth and elongation. Adipose tissue sympathetic innervation is significantly increased in mice with adipocyte-specific NT-3 overexpression, but profoundly reduced in mice with TRKC haploinsufficiency (TRKC +/-). Increasing NT-3 via pharmacological or genetic approach promotes beige adipocyte development, enhances cold-induced thermogenesis and protects against diet-induced obesity (DIO); whereas TRKC + /- or SNS TRKC deficient mice are cold intolerant and prone to DIO. Thus, NT-3 is a fat-derived neurotrophic factor that regulates SNS innervation, energy metabolism and obesity.
Collapse
|
6
|
Matsubara T, Addison WN, Kokabu S, Neff L, Horne W, Gori F, Baron R. Characterization of unique functionalities in c-Src domains required for osteoclast podosome belt formation. J Biol Chem 2021; 296:100790. [PMID: 34019873 PMCID: PMC8196221 DOI: 10.1016/j.jbc.2021.100790] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 10/26/2022] Open
Abstract
Deletion of c-Src, a ubiquitously expressed tyrosine kinase, results in osteoclast dysfunction and osteopetrosis, in which bones harden into "stone." In contrast, deletion of the genes encoding other members of the Src family kinase (SFK) fails to produce an osteopetrotic phenotype. This suggests that c-Src performs a unique function in the osteoclast that cannot be compensated for by other SFKs. We aimed to identify the molecular basis of this unique role in osteoclasts and bone resorption. We found that c-Src, Lyn, and Fyn were the most highly expressed SFKs in WT osteoclasts, whereas Hck, Lck, Blk, and Fgr displayed low levels of expression. Formation of the podosome belt, clusters of unique actin assemblies, was disrupted in src-/- osteoclasts; introduction of constitutively activated SFKs revealed that only c-Src and Fyn could restore this process. To identify the key structural domains responsible, we constructed chimeric Src-Hck and Src-Lyn constructs in which the unique, SH3, SH2, or catalytic domains had been swapped. We found that the Src unique, SH3, and kinase domains were each crucial to establish Src functionality. The SH2 domain could however be substituted with Lyn or Hck SH2 domains. Furthermore, we demonstrate that c-Src's functionality is, in part, derived from an SH3-proximal proline-rich domain interaction with c-Cbl, leading to phosphorylation of c-Cbl Tyr700. These data help clarify Src's unique functionality in the organization of the cytoskeleton in osteoclasts, required for efficient bone resorption and explain why c-Src cannot be replaced, in osteoclasts, by other SFKs.
Collapse
Affiliation(s)
- Takuma Matsubara
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan.
| | - William N Addison
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Department of Health Improvement, Kyushu Dental University, Fukuoka, Japan
| | - Lynn Neff
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - William Horne
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Department of Medicine, Harvard Medical School and Endocrine Unit, MGH, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Flotillins: At the Intersection of Protein S-Palmitoylation and Lipid-Mediated Signaling. Int J Mol Sci 2020; 21:ijms21072283. [PMID: 32225034 PMCID: PMC7177705 DOI: 10.3390/ijms21072283] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Flotillin-1 and flotillin-2 are ubiquitously expressed, membrane-associated proteins involved in multifarious cellular events from cell signaling, endocytosis, and protein trafficking to gene expression. They also contribute to oncogenic signaling. Flotillins bind the cytosolic leaflet of the plasma membrane and endomembranes and, upon hetero-oligomerization, serve as scaffolds facilitating the assembly of multiprotein complexes at the membrane-cytosol interface. Additional functions unique to flotillin-1 have been discovered recently. The membrane-binding of flotillins is regulated by S-palmitoylation and N-myristoylation, hydrophobic interactions involving specific regions of the polypeptide chain and, to some extent, also by their oligomerization. All these factors endow flotillins with an ability to associate with the sphingolipid/cholesterol-rich plasma membrane domains called rafts. In this review, we focus on the critical input of lipids to the regulation of the flotillin association with rafts and thereby to their functioning. In particular, we discuss how the recent developments in the field of protein S-palmitoylation have contributed to the understanding of flotillin1/2-mediated processes, including endocytosis, and of those dependent exclusively on flotillin-1. We also emphasize that flotillins affect directly or indirectly the cellular levels of lipids involved in diverse signaling cascades, including sphingosine-1-phosphate and PI(4,5)P2. The mutual relations between flotillins and distinct lipids are key to the regulation of their involvement in numerous cellular processes.
Collapse
|
8
|
Hanafusa K, Hayashi N. The Flot2 component of the lipid raft changes localization during neural differentiation of P19C6 cells. BMC Mol Cell Biol 2019; 20:38. [PMID: 31455216 PMCID: PMC6712619 DOI: 10.1186/s12860-019-0225-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Background Flotillin-2 (Flot2) is a lipid raft scaffold protein that is thought to be related to neural differentiation. Flot2 is phosphorylated by Fyn, a Src kinase, and causes raft-dependent endocytosis; however, the exact role of Flot2 in neural differentiation remains unclear. To reveal the roles of lipid raft-associated proteins during neural differentiation, we tried to analyze the expression and localization. Results In this study, we found that the expression levels of the Flot2 and Fyn proteins increased in whole-cell lysates of P19C6 cells after neural differentiation. In addition, sucrose density fractionation and immunofluorescence experiments revealed an increase in the localization of Flot2 and Fyn to lipid rafts after neural differentiation. We also found that Fyn partially colocalized with Flot2 lipid rafts in neural cells. Conclusion The observed distribution of Fyn and level of inactivated Fyn and/or c-Src in detergent–resistant membrane (DRM) fractions suggests that the amount of activated Fyn might increase in DRM fractions after neural differentiation. Overall these findings suggest that Flot2 lipid rafts are associated with Fyn, and that Fyn phosphorylates Flot2 during neural differentiation of P19C6 cells. Electronic supplementary material The online version of this article (10.1186/s12860-019-0225-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kei Hanafusa
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Nobuhiro Hayashi
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
9
|
Chung IC, Yuan SN, OuYang CN, Lin HC, Huang KY, Chen YJ, Chung AK, Chu CL, Ojcius DM, Chang YS, Chen LC. Src-family kinase-Cbl axis negatively regulates NLRP3 inflammasome activation. Cell Death Dis 2018; 9:1109. [PMID: 30382081 PMCID: PMC6208430 DOI: 10.1038/s41419-018-1163-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Activation of the NLRP3 inflammasome is crucial for immune defense, but improper and excessive activation causes inflammatory diseases. We previously reported that Pyk2 is essential for NLRP3 inflammasome activation. Here we show that the Src-family kinases (SFKs)-Cbl axis plays a pivotal role in suppressing NLRP3 inflammasome activation in response to stimulation by nigericin or ATP, as assessed using gene knockout and gene knockdown cells, dominant active/negative mutants, and pharmacological inhibition. We reveal that the phosphorylation of Cbl is regulated by SFKs, and that phosphorylation of Cbl at Tyr371 suppresses NLRP3 inflammasome activation. Mechanistically, Cbl decreases the level of phosphorylated Pyk2 (p-Pyk2) through ubiquitination-mediated proteasomal degradation and reduces mitochondrial ROS (mtROS) production by contributing to the maintenance of mitochondrial size. The lower levels of p-Pyk2 and mtROS dampen NLRP3 inflammasome activation. In vivo, inhibition of Cbl with an analgesic drug, hydrocotarnine, increases inflammasome-mediated IL-18 secretion in the colon, and protects mice from dextran sulphate sodium-induced colitis. Together, our novel findings provide new insights into the role of the SFK-Cbl axis in suppressing NLRP3 inflammasome activation and identify a novel clinical utility of hydrocortanine for disease treatment.
Collapse
Affiliation(s)
- I-Che Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Sheng-Ning Yuan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hsin-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 114, Taiwan.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, Taipei, 114, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei, 114, Taiwan
| | - Yu-Jen Chen
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, 251, Taiwan.,Department of Radiation Oncology, Mackay Memorial Hospital, New Taipei City, 251, Taiwan
| | - An-Ko Chung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, CA, 94103, USA.,Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, 333, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, 333, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan.
| |
Collapse
|
10
|
Li W, Xu L, Che X, Li H, Zhang Y, Song N, Wen T, Hou K, Yang Y, Zhou L, Xin X, Xu L, Zeng X, Shi S, Liu Y, Qu X, Teng Y. C-Cbl reverses HER2-mediated tamoxifen resistance in human breast cancer cells. BMC Cancer 2018; 18:507. [PMID: 29720121 PMCID: PMC5930956 DOI: 10.1186/s12885-018-4387-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
Background Tamoxifen is a frontline therapy for estrogen receptor (ER)-positive breast cancer in premenopausal women. However, many patients develop resistance to tamoxifen, and the mechanism underlying tamoxifen resistance is not well understood. Here we examined whether ER-c-Src-HER2 complex formation is involved in tamoxifen resistance. Methods MTT and colony formation assays were used to measure cell viability and proliferation. Western blot was used to detect protein expression and protein complex formations were detected by immunoprecipitation and immunofluorescence. SiRNA was used to examine the function of HER2 in of BT474 cells. An in vivo xenograft animal model was established to examine the role of c-Cbl in tumor growth. Results MTT and colony formation assay showed that BT474 cells are resistant to tamoxifen and T47D cells are sensitive to tamoxifen. Immunoprecipitation experiments revealed ER-c-Src-HER2 complex formation in BT474 cells but not in T47D cells. However, ER-c-Src-HER2 complex formation was detected after overexpressing HER2 in T47D cells and these cells were more resistant to tamoxifen. HER2 knockdown by siRNA in BT474 cells reduced ER-c-Src-HER2 complex formation and reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was also disrupted and tamoxifen resistance was reversed in BT474 cells by the c-Src inhibitor PP2 and HER2 antibody trastuzumab. Nystatin, a lipid raft inhibitor, reduced ER-c-Src-HER2 complex formation and partially reversed tamoxifen resistance. ER-c-Src-HER2 complex formation was disrupted by overexpression of c-Cbl but not by the c-Cbl ubiquitin ligase mutant. In addition, c-Cbl could reverse tamoxifen resistance in BT474 cells, but the ubiquitin ligase mutant had no effect. The effect of c-Cbl was validated in BT474 tumor-bearing nude mice in vivo. Immunofluorescence also revealed ER-c-Src-HER2 complex formation was reduced in tumor tissues of nude mice with c-Cbl overexpression. Conclusions Our results suggested that c-Cbl can reverse tamoxifen resistance in HER2-overexpressing breast cancer cells by inhibiting the formation of the ER-c-Src-HER2 complex. Electronic supplementary material The online version of this article (10.1186/s12885-018-4387-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ling Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Haizhou Li
- Jinzhou Center Hospital, Jinzhou, 121000, Liaoning, China
| | - Ye Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Na Song
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Ti Wen
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Kezuo Hou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yi Yang
- Laboratory Animal Center, China Medical University, Shenyang, 110001, Liaoning, China
| | - Lu Zhou
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xing Xin
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xue Zeng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Yuee Teng
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China. .,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, NO. 155, North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
11
|
Fredriksson-Lidman K, Van Itallie CM, Tietgens AJ, Anderson JM. Sorbin and SH3 domain-containing protein 2 (SORBS2) is a component of the acto-myosin ring at the apical junctional complex in epithelial cells. PLoS One 2017; 12:e0185448. [PMID: 28961272 PMCID: PMC5621683 DOI: 10.1371/journal.pone.0185448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
SORBS2 is a scaffolding protein associated with Abl/Arg non-receptor tyrosine kinase pathways and is known to interact with actin and several other cytoskeletal proteins in various cell types. Previous BioID proximity labeling of tight and adherens junction proteins suggested that SORBS2 is a component of the apical junction complex of epithelial cells. We asked whether SORBS2 plays a previously unappreciated role in controlling perijunctional actin and tight junction barrier function. Using super resolution imaging we confirmed that SORBS2 is localized at the apical junction complex but farther from the membrane than ZO-1 and located partially overlapping both the tight- and adherens junctions with a periodic concentration that alternates with myosin IIB in polarized epithelial cells. Overexpression of GFP-SORBS2 recruited alpha-actinin, vinculin and N-WASP, and possibly CIP4 to cellular junctions. However, CRISPR-Cas9 knock-out of SORBS2 did not alter the localization- or immunofluorescent staining intensity of these or several other junctional- and cytoskeletal proteins. SORBS2 knock-out also did not affect the barrier function as measured by TER and dextran flux; nor did it change actin-dependent junction re-assembly as measured by Ca2+-switch and Latrunculin-B wash-out assays. The kinetics of HGF-induced cell scattering and wound healing, and dextran flux increase induced by PDGF also were unaffected by SORBS2 knock-out. SORBS2 concentrates with apical junctional actin that accumulates in response to knock-down of ZO-1 and ZO-2. In spite of our finding that SORBS2 is clearly a component of the apical junction complex, it does not appear to be required for either normal tight- or adherens junction assembly, structure or function or for growth factor-mediated changes in tight junction dynamics.
Collapse
Affiliation(s)
- Karin Fredriksson-Lidman
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Christina M. Van Itallie
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amber J. Tietgens
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James M. Anderson
- Laboratory of Tight Junction Structure and Function, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
12
|
Ichikawa T, Kita M, Matsui TS, Nagasato AI, Araki T, Chiang SH, Sezaki T, Kimura Y, Ueda K, Deguchi S, Saltiel AR, Kioka N. Vinexin family (SORBS) proteins play different roles in stiffness-sensing and contractile force generation. J Cell Sci 2017; 130:3517-3531. [PMID: 28864765 DOI: 10.1242/jcs.200691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Vinexin, c-Cbl associated protein (CAP) and Arg-binding protein 2 (ArgBP2) constitute an adaptor protein family called the vinexin (SORBS) family that is targeted to focal adhesions (FAs). Although numerous studies have focused on each of the SORBS proteins and partially elucidated their involvement in mechanotransduction, a comparative analysis of their function has not been well addressed. Here, we established mouse embryonic fibroblasts that individually expressed SORBS proteins and analysed their functions in an identical cell context. Both vinexin-α and CAP co-localized with vinculin at FAs and promoted the appearance of vinculin-rich FAs, whereas ArgBP2 co-localized with α-actinin at the proximal end of FAs and punctate structures on actin stress fibers (SFs), and induced paxillin-rich FAs. Furthermore, both vinexin-α and CAP contributed to extracellular matrix stiffness-dependent vinculin behaviors, while ArgBP2 stabilized α-actinin on SFs and enhanced intracellular contractile forces. These results demonstrate the differential roles of SORBS proteins in mechanotransduction.
Collapse
Affiliation(s)
- Takafumi Ichikawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Masahiro Kita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tsubasa S Matsui
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ayaka Ichikawa Nagasato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Tomohiko Araki
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan
| | - Shian-Huey Chiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Takuhito Sezaki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yasuhisa Kimura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | - Shinji Deguchi
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Showa, Nagoya 466-8555, Japan.,Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Noriyuki Kioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan .,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Meng X, Cui B, Cheng D, Lyu H, Jiang L, Zheng K, Liu S, Pan J, Zhang C, Bai J, Zhou J. Activated proline‐rich tyrosine kinase 2 regulates meiotic spindle assembly in the mouse oocyte. J Cell Biochem 2017. [DOI: 10.1002/jcb.26237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiao‐Qian Meng
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Bing Cui
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Dong Cheng
- Shandong Center for Disease Control and PreventionJinanShandongChina
| | - Hui Lyu
- Shandong Center for Disease Control and PreventionJinanShandongChina
| | - Li‐Gang Jiang
- Infertility CenterQilu Hospital of Shandong UniversityJinanShandongChina
| | - Ke‐Gang Zheng
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Shu‐Zhen Liu
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Jie Pan
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Cong Zhang
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanShandongChina
| | - Jing Bai
- Department of Gynecology and ObstetricsJinan Maternity and Child Care HospitalJinanShandongChina
| | - Jun Zhou
- Key Laboratory of Animal Resistance Biology of Shandong ProvinceInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanShandongChina
| |
Collapse
|
14
|
nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology. Proc Natl Acad Sci U S A 2016; 113:6749-54. [PMID: 27226294 DOI: 10.1073/pnas.1600944113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neural Abelson-related gene-binding protein 2 (nArgBP2) was originally identified as a protein that directly interacts with synapse-associated protein 90/postsynaptic density protein 95-associated protein 3 (SAPAP3), a postsynaptic scaffolding protein critical for the assembly of glutamatergic synapses. Although genetic deletion of nArgBP2 in mice leads to manic/bipolar-like behaviors resembling many aspects of symptoms in patients with bipolar disorder, the actual function of nArgBP2 at the synapse is completely unknown. Here, we found that the knockdown (KD) of nArgBP2 by specific small hairpin RNAs (shRNAs) resulted in a dramatic change in dendritic spine morphology. Reintroducing shRNA-resistant nArgBP2 reversed these defects. In particular, nArgBP2 KD impaired spine-synapse formation such that excitatory synapses terminated mostly at dendritic shafts instead of spine heads in spiny neurons, although inhibitory synapse formation was not affected. nArgBP2 KD further caused a marked increase of actin cytoskeleton dynamics in spines, which was associated with increased Wiskott-Aldrich syndrome protein-family verprolin homologous protein 1 (WAVE1)/p21-activated kinase (PAK) phosphorylation and reduced activity of cofilin. These effects of nArgBP2 KD in spines were rescued by inhibiting PAK or activating cofilin combined with sequestration of WAVE. Together, our results suggest that nArgBP2 functions to regulate spine morphogenesis and subsequent spine-synapse formation at glutamatergic synapses. They also raise the possibility that the aberrant regulation of synaptic actin filaments caused by reduced nArgBP2 expression may contribute to the manifestation of the synaptic dysfunction observed in manic/bipolar disorder.
Collapse
|
15
|
Driver AM, Kratz LE, Kelley RI, Stottmann RW. Altered cholesterol biosynthesis causes precocious neurogenesis in the developing mouse forebrain. Neurobiol Dis 2016; 91:69-82. [PMID: 26921468 DOI: 10.1016/j.nbd.2016.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/08/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
We previously reported a mutation in the cholesterol biosynthesis gene, hydroxysteroid (17-beta) dehydrogenase 7 (Hsd17b7(rudolph)), that results in striking embryonic forebrain dysgenesis. Here we describe abnormal patterns of neuroprogenitor proliferation in the mutant forebrain, namely, a decrease in mitotic cells within the ventricular zone (VZ) and an increase through the remainder of the cortex by E11.5. Further evidence suggests mutant cells undergo abnormal interkinetic nuclear migration (IKNM). Furthermore, intermediate progenitors are increased at the expense of apical progenitors by E12.5, and post-mitotic neurons are expanded by E14.5. In vitro primary neuron culture further supports our model of accelerated cortical differentiation in the mutant. Combined administration of a statin and dietary cholesterol in utero achieved partial reversal of multiple developmental abnormalities in the Hsd17b7(rudolph) embryo, including the forebrain. These results suggest that abnormally increased levels of specific cholesterol precursors in the Hsd17b7(rudolph) embryo cause cortical dysgenesis by altering patterns of neurogenesis.
Collapse
Affiliation(s)
- Ashley M Driver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lisa E Kratz
- Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Richard I Kelley
- Department of Genetics & Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
16
|
Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, Mei Y, Monteiro P, Anand M, Itohara S, Dong X, Fu Z, Feng G. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci 2016; 36:2247-60. [PMID: 26888934 PMCID: PMC4756157 DOI: 10.1523/jneurosci.2528-15.2016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability. SIGNIFICANCE STATEMENT Copy number variations of the SORBS2 gene are linked to intellectual disability, but the neurobiological mechanisms are unknown. We found that nArgBP2, the only neuronal isoform encoded by SORBS2, colocalizes with F-actin at neuronal dendritic growth cones and spines. nArgBP2 is highly expressed in the cortex, amygdala, and dentate gyrus in the mouse brain. Genetic deletion of Sorbs2 in mice leads to impaired dendritic complexity and reduced excitatory synaptic transmission in dentate gyrus granule cells, accompanied by behavioral deficits in acoustic startle response and long-term memory. This is the first study of Sorbs2 function in the brain, and our findings may facilitate the study of neurobiological mechanisms underlying SORBS2 deficiency in the development of intellectual disability.
Collapse
Affiliation(s)
- Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Xian Gao
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Chenchen Li
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Catia Feliciano
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon 1400-038, Portugal
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Dingxi Zhou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, School of Life Sciences, Peking University, Beijing 100871, China, and
| | - Yuan Mei
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Patricia Monteiro
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Michelle Anand
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Shigeyoshi Itohara
- Laboratory of Behavioral Genetics, RIKEN Brain Science Institute, Wako 351-0198, Japan
| | - Xiaowei Dong
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zhanyan Fu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Key Laboratory of Brain Functional Genomics (Ministry of Education and Science and Technology Commission of Shanghai Municipality), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China, Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts 02142,
| |
Collapse
|
17
|
Robin JD, Ludlow AT, Batten K, Gaillard MC, Stadler G, Magdinier F, Wright WE, Shay JW. SORBS2 transcription is activated by telomere position effect-over long distance upon telomere shortening in muscle cells from patients with facioscapulohumeral dystrophy. Genome Res 2015; 25:1781-90. [PMID: 26359233 PMCID: PMC4665000 DOI: 10.1101/gr.190660.115] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023]
Abstract
DNA is organized into complex three-dimensional chromatin structures, but how this spatial organization regulates gene expression remains a central question. These DNA/chromatin looping structures can range in size from 10-20 kb (enhancers/repressors) to many megabases during intra- and inter-chromosomal interactions. Recently, the influence of telomere length on chromatin organization prior to senescence has revealed the existence of long-distance chromatin loops that dictate the expression of genes located up to 10 Mb from the telomeres (Telomere Position Effect-Over Long Distances [TPE-OLD]). Here, we demonstrate the existence of a telomere loop at the 4q35 locus involving the sorbin and SH3 domain-containing protein 2 gene, SORBS2, a skeletal muscle protein using a modification of the chromosome conformation capture method. The loop reveals a cis-acting mechanism modifying SORBS2 transcription. The expression of this gene is altered by TPE-OLD in myoblasts from patients affected with the age-associated genetic disease, facioscapulohumeral muscular dystrophy (FSHD1A, MIM 158900). SORBS2 is expressed in FSHD myoblasts with short telomeres, while not detectable in FSHD myoblasts with long telomeres or in healthy myoblasts regardless of telomere length. This indicates that TPE-OLD may modify the regulation of the 4q35 locus in a pathogenic context. Upon differentiation, both FSHD and healthy myotubes express SORBS2, suggesting that SORBS2 is normally up-regulated by maturation/differentiation of skeletal muscle and is misregulated by TPE-OLD-dependent variegation in FSHD myoblasts. These findings provide additional insights for the complexity and age-related symptoms of FSHD.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Biopsy
- Chromosome Deletion
- Chromosomes, Human, Pair 4
- DNA Methylation
- Epistasis, Genetic
- Gene Expression Regulation
- Genetic Loci
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Muscle Cells/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts
- RNA-Binding Proteins
- Telomere/genetics
- Telomere Shortening
- Transcriptional Activation
Collapse
Affiliation(s)
- Jérôme D Robin
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andrew T Ludlow
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Guido Stadler
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Tong Y, Li Y, Gu H, Wang C, Liu F, Shao Y, Li J, Cao L, Li F. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells. Biochem Biophys Res Commun 2015; 467:821-7. [PMID: 26476214 DOI: 10.1016/j.bbrc.2015.10.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022]
Abstract
ArgBP2 is an adapter protein that plays an important role in actin-dependent processes such as cell adhesion and migration. However, its function and regulation mechanisms in gastric cancer have not yet been investigated. Here, we showed the low expression of ArgBP2 mRNA level in gastric tumor samples and its repressive function in the proliferation, migration, and invasion of gastric cancer cells. Then, we cloned and identified ArgBP2 promoter and verified that MORC2 bound to the promoter. Moreover, we demonstrated that MORC2 enhanced the recruitment of EZH2, which promoted the tri-methylation of H3K27, leading to the transcriptional repression of ArgBP2. Our results might thus contribute to understanding the molecular mechanisms of ArgBP2 regulation and suggesting ArgBP2 as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yuxin Tong
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yan Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Hui Gu
- Department of Key Laboratory of Health Ministry for Congenital Malformation Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Funan Liu
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Liu Cao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
19
|
Anekal PV, Yong J, Manser E. Arg kinase-binding protein 2 (ArgBP2) interaction with α-actinin and actin stress fibers inhibits cell migration. J Biol Chem 2014; 290:2112-25. [PMID: 25429109 DOI: 10.1074/jbc.m114.610725] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell migration requires dynamic remodeling of the actomyosin network. We report here that an adapter protein, ArgBP2, is a component of α-actinin containing stress fibers and inhibits migration. ArgBP2 is undetectable in many commonly studied cancer-derived cell lines. COS-7 and HeLa cells express ArgBP2 (by Western analysis), but expression was detectable only in approximately half the cells by immunofluorescence. Short term clonal analysis demonstrated 0.2-0.3% of cells switch ArgBP2 expression (on or off) per cell division. ArgBP2 can have a fundamental impact on the actomyosin network: ArgBP2 positive COS-7 cells, for example, are clearly distinguishable by their denser actomyosin (stress fiber) network. ArgBP2γ binding to α-actinin appears to underlie its ability to localize to stress fibers and decrease cell migration. We map a small α-actinin binding region in ArgBP2 (residues 192-228) that is essential for these effects. Protein kinase A phosphorylation of ArgBP2γ at neighboring Ser-259 and consequent 14-3-3 binding blocks its interaction with α-actinin. ArgBP2 is known to be down-regulated in some aggressively metastatic cancers. Our work provides a biochemical explanation for the anti-migratory effect of ArgBP2.
Collapse
Affiliation(s)
- Praju Vikas Anekal
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | - Jeffery Yong
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore
| | - Ed Manser
- From the sGSK Group Institute of Molecular and Cell Biology (IMCB), Proteos Building, 61 Biopolis Drive, 138673 Singapore, the Institute of Medical Biology (IMB), 8A Biomedical Grove, 06-06 Immunos Building, 138648 Singapore, and the Department of Pharmacology, National University of Singapore, 119077 Singapore
| |
Collapse
|
20
|
Fan Y, Qu X, Ma Y, Qu J, Liu Y, Hu X. Cbl-b accelerates trypsin-induced cell detachment through ubiquitination and degradation of proline-rich tyrosine kinase 2. Tumour Biol 2014; 35:11129-35. [DOI: 10.1007/s13277-014-2296-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022] Open
|
21
|
Integration of proteomic and transcriptomic profiles identifies a novel PDGF-MYC network in human smooth muscle cells. Cell Commun Signal 2014; 12:44. [PMID: 25080971 PMCID: PMC4422302 DOI: 10.1186/s12964-014-0044-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/23/2014] [Indexed: 12/12/2022] Open
Abstract
Background Platelet-derived growth factor-BB (PDGF-BB) has been implicated in the proliferation, migration and synthetic activities of smooth muscle cells that characterize physiologic and pathologic tissue remodeling in hollow organs. However, neither the molecular basis of PDGFR-regulated signaling webs, nor the extent to which specific components within these networks could be exploited for therapeutic benefit has been fully elucidated. Results Expression profiling and quantitative proteomics analysis of PDGF-treated primary human bladder smooth muscle cells identified 1,695 genes and 241 proteins as differentially expressed versus non-treated cells. Analysis of gene expression data revealed MYC, JUN, EGR1, MYB, RUNX1, as the transcription factors most significantly networked with up-regulated genes. Forty targets were significantly altered at both the mRNA and protein levels. Proliferation, migration and angiogenesis were the biological processes most significantly associated with this signature, and MYC was the most highly networked master regulator. Alterations in master regulators and gene targets were validated in PDGF-stimulated smooth muscle cells in vitro and in a model of bladder injury in vivo. Pharmacologic inhibition of MYC and JUN confirmed their role in SMC proliferation and migration. Network analysis identified the diaphanous-related formin 3 as a novel PDGF target regulated by MYC and JUN, which was necessary for PDGF-stimulated lamellipodium formation. Conclusions These findings provide the first systems-level analysis of the PDGF-regulated transcriptome and proteome in normal smooth muscle cells. The analyses revealed an extensive cohort of PDGF-dependent biological processes and connected key transcriptional effectors to their regulation, significantly expanding current knowledge of PDGF-stimulated signaling cascades. These observations also implicate MYC as a novel target for pharmacological intervention in fibroproliferative expansion of smooth muscle, and potentially in cancers in which PDGFR-dependent signaling or MYC activation promote tumor progression.
Collapse
|
22
|
Karabasheva D, Cole NB, Donaldson JG. Roles for trafficking and O-linked glycosylation in the turnover of model cell surface proteins. J Biol Chem 2014; 289:19477-90. [PMID: 24891503 DOI: 10.1074/jbc.m114.564666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins targeted to the plasma membrane (PM) of cells are degraded at different rates. Sorting motifs contained within the cytoplasmic domains of transmembrane proteins, post-translational modifications (e.g. ubiquitination), and assembly into multiprotein or protein-lipid complexes all may affect the efficiency of endocytosis and recycling and influence the delivery to degradative compartments. Using the SNAP-tag labeling system, we examined the turnover of a model PM protein, the α chain of the interleukin-2 receptor (Tac). The surface lifetimes of SNAP-Tac fusions were influenced by their mode of entry into cells (clathrin-dependent versus clathrin-independent), their orientation in the PM (transmembrane versus glycosylphosphatidylinositol-anchored), and ubiquitination in their cytosolic domains. In addition, shedding of SNAP-Tac into the medium was greatly influenced by its O-linked glycosylation status. For a number of PM proteins, delivery to lysosomes and ectodomain shedding represent distinct parallel mechanisms to determine protein half-life.
Collapse
Affiliation(s)
- Darya Karabasheva
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Nelson B Cole
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Julie G Donaldson
- From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
23
|
Tong S, Sun C, Cao X, Zheng Q, Zhang H, Firempong CK, Feng Y, Yang Y, Yu J, Xu X. Development and thermodynamic evaluation of novel lipid raft stationary phase chromatography for screening potential antitumor agents. Biomed Chromatogr 2014; 28:1615-23. [PMID: 24706535 DOI: 10.1002/bmc.3189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 11/06/2022]
Abstract
Novel lipid raft stationary phase chromatography (LRSC), with lipid rafts that contain abundant tropomyosin-related tyrosine kinase A receptors immobilized on the stationary phase, was developed for a high-throughput screening of potentially active antitumor agents. Lestaurtinib was used as a model compound to determine the operational parameters of the LRSC. Of all the factors considered, the particle size of column packing, the column temperature and the flow rate were of immense importance in determining the performance of the established LRSC system. In order to profoundly comprehend the binding interaction between the model drug and the receptors on the column, thermodynamic studies were employed. The results revealed that the interaction was spontaneous and exothermic, a typical enthalpy-driven process. Additionally, the primary forces were hydrogen bonding and van der Waals forces. In evaluating the applicability of the method, active extracts from Albizziae Cortex were screened out using the LRSC system under the optimized conditions. The bioactive components were successfully confirmed by the MTT assay. In conclusion, it could be said that the LRSC is a good model for screening potential antitumor agents because of its viability, rapid response and scalable features.
Collapse
Affiliation(s)
- Shanshan Tong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Roignot J, Bonacci T, Ghigo E, Iovanna JL, Soubeyran P. Oligomerization and phosphorylation dependent regulation of ArgBP2 adaptive capabilities and associated functions. PLoS One 2014; 9:e87130. [PMID: 24475245 PMCID: PMC3903627 DOI: 10.1371/journal.pone.0087130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/11/2013] [Indexed: 11/22/2022] Open
Abstract
ArgBP2 (Arg-Binding Protein 2/SORBS2) is an adaptor protein involved in cytoskeleton associated signal transduction, thereby regulating cell migration and adhesion. These features are associated with its antitumoral role in pancreatic cancer cells. Tyrosine phosphorylation of ArgBP2, mediated by c-Abl kinase and counterbalanced by PTP-PEST phosphatase, regulates many of its interactions. However, the exact mechanisms of action and of regulation of ArgBP2 remain largely unknown. We found that ArgBP2 has the capacity to form oligomers which are destabilized by tyrosine phosphorylation. We could show that ArgBP2 oligomerization involves the binding of one of its SH3 domains to a specific proline rich cluster. ArgBP2 self-association increases its binding to some of its molecular partners and decreased its affinity for others. Hence, the phosphorylation/oligomerization state of ArgBP2 directly regulates its functions by modulating its adaptive capabilities. Importantly, using a human pancreatic cancer cell model (MiaPaCa-2 cells), we could validate that this property of ArgBP2 is critical for its cytoskeleton associated functions. In conclusions, we describe a new mechanism of regulation of ArgBP2 where tyrosine phosphorylation of the protein interfere with a SH3 mediated self-interaction, thereby controlling its panel of interacting partners and related functions.
Collapse
Affiliation(s)
- Julie Roignot
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Thomas Bonacci
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Eric Ghigo
- URMITE-IRD198, CNRS UMR7278, INSERM U1095, Aix-Marseille Univ, Marseille, France
| | - Juan L. Iovanna
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Marseille, France
- * E-mail:
| |
Collapse
|
25
|
Wang R, Bi J, Ampah KK, Ba X, Liu W, Zeng X. Lipid rafts control human melanoma cell migration by regulating focal adhesion disassembly. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3195-3205. [PMID: 24055995 DOI: 10.1016/j.bbamcr.2013.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/25/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Tumor cell migration is a crucial step in the metastatic cascade, and interruption of this step is considered to be logically effective in preventing tumor metastasis. Lipid rafts, distinct liquid ordered plasma membrane microdomains, have been shown to influence cancer cell migration, but the underlying mechanisms are still not well understood. Here, we report that lipid rafts regulate the dynamics of actin cytoskeleton and focal adhesion in human melanoma cell migration. Disrupting the integrity of lipid rafts with methyl-β cyclodextrin enhances actin stress fiber formation and inhibits focal adhesion disassembly, accompanied with alterations in cell morphology. Furthermore, actin cytoskeleton, rather than microtubules, mediates the lipid raft-dependent focal adhesion disassembly by regulating the dephosphorylation of focal adhesion proteins and the internalization of β3 integrin. We also show that Src-RhoA-Rho kinase signaling pathway is responsible for lipid raft disruption-induced stress fiber formation. Taken together, these observations provide a new mechanism to further explain how lipid rafts regulate the migration of melanoma cell and suggest that lipid rafts may be novel and attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Ruifei Wang
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin 130024, China
| | - Jiajia Bi
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin 130024, China
| | - Khamal Kwesi Ampah
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin 130024, China
| | - Xueqing Ba
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin 130024, China.
| | - Wenguang Liu
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin 130024, China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin 130024, China.
| |
Collapse
|
26
|
Sévère N, Dieudonné FX, Marie PJ. E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell Death Dis 2013; 4:e463. [PMID: 23328670 PMCID: PMC3564004 DOI: 10.1038/cddis.2012.217] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ubiquitination–proteasome and degradation system is an essential process that regulates protein homeostasis. This system is involved in the regulation of cell proliferation, differentiation and survival, and dysregulations in this system lead to pathologies including cancers. The ubiquitination system is an enzymatic cascade that mediates the marking of target proteins by an ubiquitin label and thereby directs their degradation through the proteasome pathway. The ubiquitination of proteins occurs through a three-step process involving ubiquitin activation by the E1 enzyme, allowing for the transfer to a ubiquitin-conjugated enzyme E2 and to the targeted protein via ubiquitin-protein ligases (E3), the most abundant group of enzymes involved in ubiquitination. Significant advances have been made in our understanding of the role of E3 ubiquitin ligases in the control of bone turnover and tumorigenesis. These ligases are implicated in the regulation of bone cells through the degradation of receptor tyrosine kinases, signaling molecules and transcription factors. Initial studies showed that the E3 ubiquitin ligase c-Cbl, a multi-domain scaffold protein, regulates bone resorption by interacting with several molecules in osteoclasts. Further studies showed that c-Cbl controls the ubiquitination of signaling molecules in osteoblasts and in turn regulates osteoblast proliferation, differentiation and survival. Recent data indicate that c-Cbl expression is decreased in primary bone tumors, resulting in excessive receptor tyrosine kinase signaling. Consistently, c-Cbl ectopic expression reduces bone tumorigenesis by promoting tyrosine kinase receptor degradation. Here, we review the mechanisms of action of E3 ubiquitin ligases in the regulation of normal and pathologic bone formation, and we discuss how targeting the interactions of c-Cbl with some substrates may be a potential therapeutic strategy to promote osteogenesis and to reduce tumorigenesis.
Collapse
Affiliation(s)
- N Sévère
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, Paris, France
| | | | | |
Collapse
|
27
|
Xu J, Kurup P, Bartos JA, Patriarchi T, Hell JW, Lombroso PJ. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J Biol Chem 2012; 287:20942-56. [PMID: 22544749 DOI: 10.1074/jbc.m112.368654] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.
Collapse
Affiliation(s)
- Jian Xu
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kacena MA, Eleniste PP, Cheng YH, Huang S, Shivanna M, Meijome TE, Mayo LD, Bruzzaniti A. Megakaryocytes regulate expression of Pyk2 isoforms and caspase-mediated cleavage of actin in osteoblasts. J Biol Chem 2012; 287:17257-17268. [PMID: 22447931 DOI: 10.1074/jbc.m111.309880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proliferation and differentiation of osteoblast (OB) precursors are essential for elaborating the bone-forming activity of mature OBs. However, the mechanisms regulating OB proliferation and function are largely unknown. We reported that OB proliferation is enhanced by megakaryocytes (MKs) via a process that is regulated in part by integrin signaling. The tyrosine kinase Pyk2 has been shown to regulate cell proliferation and survival in a variety of cells. Pyk2 is also activated by integrin signaling and regulates actin remodeling in bone-resorbing osteoclasts. In this study, we examined the role of Pyk2 and actin in the MK-mediated increase in OB proliferation. Calvarial OBs were cultured in the presence of MKs for various times, and Pyk2 signaling cascades in OBs were examined by Western blotting, subcellular fractionation, and microscopy. We found that MKs regulate the temporal expression of Pyk2 and its subcellular localization. We also found that MKs regulate the expression of two alternatively spliced isoforms of Pyk2 in OBs, which may regulate OB differentiation and proliferation. MKs also induced cytoskeletal reorganization in OBs, which was associated with the caspase-mediated cleavage of actin, an increase in focal adhesions, and the formation of apical membrane ruffles. Moreover, BrdU incorporation in MK-stimulated OBs was blocked by the actin-polymerizing agent, jasplakinolide. Collectively, our studies reveal that Pyk2 and actin play an important role in MK-regulated signaling cascades that control OB proliferation and may be important for therapeutic interventions aimed at increasing bone formation in metabolic diseases of the skeleton.
Collapse
Affiliation(s)
- Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Dentistry, Indianapolis, Indiana 46202.
| | - Pierre P Eleniste
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Ying-Hua Cheng
- Department of Orthopaedic Surgery, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Su Huang
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Mahesh Shivanna
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Tomas E Meijome
- Department of Orthopaedic Surgery, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Lindsey D Mayo
- Herman B. Wells Center for Pediatric Research, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University School of Dentistry, Indianapolis, Indiana 46202
| | - Angela Bruzzaniti
- Department of Oral Biology, Indiana University School of Dentistry, Indianapolis, Indiana 46202.
| |
Collapse
|
29
|
Cell biological characterization of a multidomain adaptor protein, ArgBP2, in epithelial NMuMG cells, and identification of a novel short isoform. Med Mol Morphol 2012; 45:22-8. [PMID: 22431180 DOI: 10.1007/s00795-010-0537-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 12/27/2010] [Indexed: 10/28/2022]
Abstract
ArgBP2 is a member of the SoHo (sorbin-homology) family of adaptor proteins believed to play roles in cell adhesion, cytoskeletal organization, and signaling. We show here a novel splicing isoform of ArgBP2, i.e., ArgBP2™, composed of only three SH3 (src-homology 3) domains and structurally similar to vinexinß. We then characterized the biochemical and cell biological properties of ArgBP2 to compare these with vinexin. Similar to vinexin, ArgBP2 was enriched at focal adhesions in REF52 fibroblast cells and induced anchorage-dependent extracellular signal-regulated kinase activation in NIH3T3 fibroblast cells. In epithelial NMuMG cells, immunofluorescence analyses revealed localization of ArgBP2 at tight junctions (TJs), whereas vinexin was distributed in cytoplasm as well as cell-cell boundaries. During TJ formation, recruitment of ZO-1 to TJs was followed by ArgBP2. Based on mutation analyses, a second SH3 domain was found to be important for ArgBP2 localization to the cell-cell contact sites. These data suggest some role of ArgBP2 in NMuMG cells at TJs that may be distinct from the function of vinexin.
Collapse
|
30
|
Racioppi L, Noeldner PK, Lin F, Arvai S, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2 regulates macrophage-mediated inflammatory responses. J Biol Chem 2012; 287:11579-91. [PMID: 22334678 DOI: 10.1074/jbc.m111.336032] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) plays a key role in regulating food intake and energy expenditure at least in part by its actions in hypothalamic neurons. Previously, we showed that loss of CaMKK2 protected mice from high-fat diet (HFD)-induced obesity and glucose intolerance. However, although pair feeding HFD to WT mice to match food consumption of CAMKK2-null mice slowed weight gain, it failed to protect from glucose intolerance. Here we show that relative to WT mice, HFD-fed CaMKK2-null mice are protected from inflammation in adipose and remain glucose-tolerant. Moreover, loss of CaMKK2 also protected mice from endotoxin shock and fulminant hepatitis. We explored the expression of CaMKK2 in immune cells and found it to be restricted to those of the monocyte/macrophage lineage. CaMKK2-null macrophages exhibited a remarkable deficiency to spread, phagocytose bacteria, and synthesize cytokines in response to the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS). Mechanistically, loss of CaMKK2 uncoupled the TLR4 cascade from activation of protein tyrosine kinase 2 (PYK2; also known as PTK2B). Our findings uncover an important function for CaMKK2 in mediating mechanisms that control the amplitude of macrophage inflammatory responses to excess nutrients or pathogen derivatives.
Collapse
Affiliation(s)
- Luigi Racioppi
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
31
|
Schwarz LA, Patrick GN. Ubiquitin-dependent endocytosis, trafficking and turnover of neuronal membrane proteins. Mol Cell Neurosci 2011; 49:387-93. [PMID: 21884797 DOI: 10.1016/j.mcn.2011.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 02/07/2023] Open
Abstract
Extracellular signaling between cells is often transduced via receptors that reside at the cell membrane. In neurons this receptor-mediated signaling can promote a variety of cellular events such as differentiation, axon outgrowth and guidance, and synaptic development and function. Endocytic membrane trafficking of receptors ensures that the strength and duration of an extracellular signal is properly regulated. The covalent modification of membrane proteins by ubiquitin is a key biological mechanism controlling receptor internalization and endocytic sorting to recycling and degradative pathways in many cell types. In this review we highlight recent findings regarding the ubiquitin-dependent trafficking and turnover of receptors in neurons and the implications for neuronal development and function.
Collapse
Affiliation(s)
- Lindsay A Schwarz
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
32
|
Zhao H, Cao X, Wu G, Loh HH, Law PY. Neurite outgrowth is dependent on the association of c-Src and lipid rafts. Neurochem Res 2011; 34:2197-205. [PMID: 19529986 DOI: 10.1007/s11064-009-0016-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2009] [Indexed: 11/24/2022]
Abstract
Regulation of neurite outgrowth is an important aspect not only for proper development of the nervous system but also for tissue regeneration after nerve injury and the treatment of neuropathological conditions. Here, we report that neurite outgrowth in cortical neuron and neuro 2A (N2A) cell was dependent on intact lipid rafts, as well as the enhanced localization of c-Src in the lipid rafts. Src inhibition or lipid rafts disruption could specifically block c-Src phosphorylation profile, pY416 Src increase and pY529 Src decrease, they also resulted in pY529 Src and c-terminal Src kinase (Csk) partition out of lipid rafts. Thus, we concluded that c-Src signal cascades within the lipid rafts is crucial for efficient neurite outgrowth.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Integrative Medicine and Neurobiology, National Key Lab of Medical Neurobiology, Institutes of Brain Research Sciences, Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Box 291, 200032 Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
33
|
Sanger JM, Wang J, Gleason LM, Chowrashi P, Dube DK, Mittal B, Zhukareva V, Sanger JW. Arg/Abl-binding protein, a Z-body and Z-band protein, binds sarcomeric, costameric, and signaling molecules. Cytoskeleton (Hoboken) 2010; 67:808-23. [PMID: 20886612 PMCID: PMC3019100 DOI: 10.1002/cm.20490] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/14/2022]
Abstract
ArgBP2 (Arg/Abl-Binding Protein) is expressed at high levels in the heart and is localized in the Z-bands of mature myofibrils. ArgBP2 is a member of a small family of proteins that also includes vinexin and CAP (c-Cbl-associated protein), all characterized by having one sorbin homology (SOHO) domain and three C-terminal SH3 domains. Antibodies directed against ArgBP2 also react with the Z-bodies of myofibril precursors: premyofibrils and nascent myofibrils. Expression in cardiomyocytes of plasmids encoding Yellow Fluorescent Protein (YFP) fused to either full length ArgBP2, the SOHO, mid-ArgBP or the SH3 domains of ArgBP2 led to Z-band targeting of the fusion proteins, whereas an N-terminal fragment lacking these domains did not target to Z-bands. Although ArgBP2 is not found in skeletal muscle cells, YFP-ArgBP2 did target to Z-bodies and Z-bands in cultured myotubes. GST-ArgBP2-SH3 bound actin, α-actinin and vinculin proteins in blot overlays, cosedimentation assays, and EM negative staining techniques. Over-expression of ArgBP2 and ArgBP2-SH3 domains, but not YFP alone, led to loss of myofibrils in cardiomyocytes. Fluorescence recovery after photobleaching was used to measure the rapid dynamics of both the full length and some truncated versions of ArgBP2. Our results indicate that ArgBP2 may play an important role in the assembly and maintenance of myofibrils in cardiomyocytes.
Collapse
Affiliation(s)
- Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate. BMC Genomics 2010; 11:360. [PMID: 20529287 PMCID: PMC2896956 DOI: 10.1186/1471-2164-11-360] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/07/2010] [Indexed: 12/11/2022] Open
Abstract
Background Increases during aging in extracellular levels of glutamate (Glu), the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg) mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1) mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites) and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated) form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.
Collapse
|
35
|
Bartos JA, Ulrich JD, Li H, Beazely MA, Chen Y, MacDonald JF, Hell JW. Postsynaptic clustering and activation of Pyk2 by PSD-95. J Neurosci 2010; 30:449-63. [PMID: 20071509 PMCID: PMC2822408 DOI: 10.1523/jneurosci.4992-08.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/24/2022] Open
Abstract
The tyrosine kinase Pyk2 plays a unique role in intracellular signal transduction by linking Ca(2+) influx to tyrosine phosphorylation, but the molecular mechanism of Pyk2 activation is unknown. We report that Pyk2 oligomerization by antibodies in vitro or overexpression of PSD-95 in PC6-3 cells induces trans-autophosphorylation of Tyr402, the first step in Pyk2 activation. In neurons, Ca(2+) influx through NMDA-type glutamate receptors causes postsynaptic clustering and autophosphorylation of endogenous Pyk2 via Ca(2+)- and calmodulin-stimulated binding to PSD-95. Accordingly, Ca(2+) influx promotes oligomerization and thereby autoactivation of Pyk2 by stimulating its interaction with PSD-95. We show that this mechanism of Pyk2 activation is critical for long-term potentiation in the hippocampus CA1 region, which is thought to underlie learning and memory.
Collapse
Affiliation(s)
- Jason A. Bartos
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - Jason D. Ulrich
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - Hongbin Li
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Michael A. Beazely
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
| | - Yucui Chen
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
| | - John F. MacDonald
- Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada, and
- Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Johannes W. Hell
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242-1109
- Department of Pharmacology, University of California, Davis, Davis, California 95616-8636
| |
Collapse
|
36
|
Georgomanolis T, Iatrou K, Swevers L. BmCAP, a silkmoth gene encoding multiple protein isoforms characterized by SoHo and SH3 domains: expression analysis during ovarian follicular development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:892-902. [PMID: 19861164 DOI: 10.1016/j.ibmb.2009.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 05/28/2023]
Abstract
CAP/ArgBP2/vinexin family proteins, adaptor proteins characterized by three SH3 domains at their C-termini and a SoHo domain towards their N-termini, are known to regulate cell adhesion, cytoskeletal organization, and growth factor signaling. Here we present the isolation and ovarian expression of the BmCAP gene which encodes CAP/ArgBP2/vinexin family proteins in the silkmoth, Bombyx mori. Screening for full-length cDNA clones identified three mRNA isoforms, BmCAP-A1, BmCAP-A2 and BmCAP-B, which show expression throughout ovarian follicular development. Using an antibody raised against a unique region between the SoHo and SH3 domains, BmCAP-A protein isoforms were identified that show specific expression in different compartments of the ovarian follicles. Immunofluorescence staining of the cells of the follicular epithelium establishes a dynamic pattern of BmCAP-A protein localization during choriogenesis. During early choriogenesis, BmCAP-A has a diffuse localization in the cytoplasm but could also be found concentrated at the apical and basal sides at the cell-cell junctions. During late choriogenesis, the diffuse cytoplasmic staining of BmCAP-A disappears while the staining pattern at the apical side resembles a blueprint for the eggshell surface structure. We suggest that BmCAP-A isoforms have important functions during ovarian development, which involve not only the traditional roles in actin organization or cell-cell adhesion but also the regulation of secretion of chorion proteins and the sculpting of the chorion surface.
Collapse
Affiliation(s)
- Theodoros Georgomanolis
- Insect Molecular Genetics and Biotechnology, Institute of Biology, National Centre for Scientific Research Demokritos, Aghia Paraskevi Attikis, Athens, Greece
| | | | | |
Collapse
|
37
|
Fernow I, Tomasovic A, Siehoff-Icking A, Tikkanen R. Cbl-associated protein is tyrosine phosphorylated by c-Abl and c-Src kinases. BMC Cell Biol 2009; 10:80. [PMID: 19891780 PMCID: PMC2777869 DOI: 10.1186/1471-2121-10-80] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 11/05/2009] [Indexed: 01/07/2023] Open
Abstract
Background The c-Cbl-associated protein (CAP), also known as ponsin, localizes to focal adhesions and stress fibers and is involved in signaling events. Phosphorylation has been described for the other two members of the sorbin homology family, vinexin and ArgBP2, but no data exist about the putative phosphorylation of CAP. According to previous findings, CAP binds to tyrosine kinase c-Abl. However, it is not known if CAP is a substrate of c-Abl or other tyrosine kinases or if phosphorylation regulates its localization. Results We here show that CAP is Tyr phosphorylated by and interacts with both c-Abl and c-Src. One major phosphorylation site, Tyr360, and two minor contributors Tyr326 and Tyr632 were identified as Abl phosphorylation sites, whereas Src preferentially phosphorylates Tyr326 and Tyr360. Phosphorylation of CAP was not necessary for its localization to focal adhesions and stress fibers, but Tyr326Phe substitution alters the function of CAP during cell spreading. Conclusion This is the first demonstration of phosphorylation of CAP by any kinase. Our findings suggest that coordinated action of Src and Abl might regulate the function of CAP and reveal a functional role especially for the Src-mediated Tyr phosphorylation of CAP in cell spreading.
Collapse
Affiliation(s)
- Inga Fernow
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany.
| | | | | | | |
Collapse
|
38
|
Roignot J, Taïeb D, Suliman M, Dusetti NJ, Iovanna JL, Soubeyran P. CIP4 is a new ArgBP2 interacting protein that modulates the ArgBP2 mediated control of WAVE1 phosphorylation and cancer cell migration. Cancer Lett 2009; 288:116-23. [PMID: 19631450 DOI: 10.1016/j.canlet.2009.06.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 01/23/2023]
Abstract
ArgBP2 is a multi-adapter protein involved in signal transduction associated to the cytoskeleton and was shown to regulate the migration and adhesion of pancreatic cancer cells thereby modulating their tumorigenicity. Here we describe the interaction of ArgBP2 with CIP4, a new associated protein identified by yeast two-hybrid. We found that both proteins modulated their reciprocal tyrosine phosphorylation catalyzed by the non-receptor tyrosine kinase c-Abl. We observed that, like ArgBP2, CIP4 directly interacted with WAVE1 and could enhance its phosphorylation by c-Abl. ArgBP2 and CIP4 acted synergistically to increase WAVE1 tyrosine phosphorylation. Finally, we could show that CIP4 was dispensable for the ArgBP2 induced blockade of cell migration whereas its overexpression was deleterious for this important function of ArgBP2.
Collapse
Affiliation(s)
- J Roignot
- INSERM, U.624, Parc Scientifique de Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
39
|
Roignot J, Soubeyran P. ArgBP2 and the SoHo family of adapter proteins in oncogenic diseases. Cell Adh Migr 2009; 3:167-70. [PMID: 19262174 DOI: 10.4161/cam.3.2.7576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ArgBP2, a member of the SoHo family of adapter proteins, is a regulator of actin-dependent processes such as cell adhesion and migration. Recent data from our lab revealed that by regulating adhesion and migration of pancreatic cancer cells, ArgBP2 is endowed with an anti-tumoral function. We could show that part of the molecular mechanism involved the interaction of ArgBP2 with the Arp2/3 activator WAVE1, the tyrosine phosphatase PTP-PEST, and the tyrosine kinase c-Abl. As ArgBP2 shares common structural organization and overlapping functions with the two other members of this protein family, CAP and Vinexin, it raises the question whether these two other proteins could also be involved in cancer diseases. The control of cell migration being an important issue in tumor treatment, these recent findings suggest that ArgBP2 family-dependent signaling pathways represents potential targets for the development of therapeutic strategies, and highlight the importance of elucidating their molecular mechanisms of cytoskeletal regulation.
Collapse
Affiliation(s)
- Julie Roignot
- INSERM U, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | |
Collapse
|
40
|
MacGlashan D, Vilariño N. Polymerization of actin does not regulate desensitization in human basophils. J Leukoc Biol 2009; 85:627-37. [PMID: 19150851 DOI: 10.1189/jlb.1008668] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies have suggested that maintenance of IgE-mediated signaling results from regulation of the activity of signaling complexes by actin polymerization. This process is also hypothesized to be related to desensitization of basophils and mast cells. Recent studies demonstrated that any signaling process dependent on syk or PI-3K activity cannot be a mechanism of desensitization, and in this context, syk and PI-3K inhibitors were found to inhibit actin polymerization. Inhibitors of actin polymerization were tested for their effect on desensitization of human peripheral blood basophils. Latrunculin A, in particular, removed all resting and stimulated f-actin but did not inhibit desensitization. Cytochalasin D and latrunculin A also did not reverse the loss of syk phosphorylation that accompanies desensitization. These results demonstrate that desensitization mechanisms are not dependent on actin polymerization. In this context, it was also shown that progressive immobilization of Fc epsilon RI during aggregation was sensitive to syk or actin polymerization inhibition. Therefore, desensitization is also not dependent on receptor immobilization. These studies demonstrate that desensitization is not the result of two signaling pathways once considered relevant to down-regulation of IgE-mediated signaling.
Collapse
Affiliation(s)
- Donald MacGlashan
- Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
41
|
Taieb D, Roignot J, André F, Garcia S, Masson B, Pierres A, Iovanna JL, Soubeyran P. ArgBP2-dependent signaling regulates pancreatic cell migration, adhesion, and tumorigenicity. Cancer Res 2008; 68:4588-96. [PMID: 18559503 DOI: 10.1158/0008-5472.can-08-0958] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The poor prognosis of pancreatic cancer is due to rapid locoregional invasion, the early development of metastases, and the limited efficacy of current therapies. To date, none of the identified oncogenes and suppressors involved in this disease have led to efficient treatments. Here, we describe that the scaffold protein ArgBP2 is repressed during oncogenic transformation of the pancreas. We could show, using a pancreatic cancer cell line model, that this repression of ArgBP2 participates in the progression of this disease. Interestingly, in vitro analyses revealed that the antitumoral potential of ArgBP2 is linked to the control of cell adhesion and migration rather than to the regulation of cell proliferation or sensitivity to apoptosis. Moreover, we could detail part of the molecular mechanism responsible by identifying new ArgBP2-interacting proteins, and show that this function is partly achieved by the control of a WAVE/PTP-PEST/c-Abl signaling complex. These findings point to a new mechanism of pancreatic cancer progression leading to invasion and metastasis and suggest that the ArgBP2 signaling pathway could represent a new target for cancer therapy.
Collapse
|
42
|
Dufour C, Guenou H, Kaabeche K, Bouvard D, Sanjay A, Marie PJ. FGFR2-Cbl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival. Bone 2008; 42:1032-9. [PMID: 18374639 DOI: 10.1016/j.bone.2008.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 01/28/2008] [Accepted: 02/05/2008] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor receptor (FGFR) signaling plays an important role in skeletogenesis. The molecular mechanisms triggered by activated FGFR in bone forming cells are however not fully understood. In this study, we identify a role for phosphatidylinositol 3-kinase (PI3K) signaling in cell apoptosis induced by FGFR2 activation in osteoblasts. We show that FGFR2 activation leads to decrease PI3K protein levels, resulting in attenuation of PI3K signaling in human osteoblasts. Biochemical and molecular analyses revealed that the attenuated PI3K signaling induced by FGFR2 activation is due to increased Cbl-PI3K molecular interaction mediated by the Cbl Y731 residue, which results in increased PI3K ubiquitination and proteasome degradation. Biochemical and immunocytochemical analyses showed that FGFR2 and Cbl interact in raft micro-domains at the plasma membrane. FGFR2 activation increases FGFR2 and Cbl recruitment in micro-domains, resulting in increased molecular interactions. Consistently, functional analyses showed that the attenuation of PI3K/Akt signaling triggered by FGFR2 activation results in increased osteoblast apoptosis. These results identify a functional molecular mechanism by which activated FGFR2 recruits Cbl in raft micro-domains to trigger PI3K ubiquitination and proteasome degradation, and reveal a novel role for PI3K/Akt attenuation in the control of osteoblast survival by FGFR2 signaling.
Collapse
|
43
|
Mahammad S, Parmryd I. Cholesterol homeostasis in T cells. Methyl-beta-cyclodextrin treatment results in equal loss of cholesterol from Triton X-100 soluble and insoluble fractions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1251-8. [PMID: 18373974 DOI: 10.1016/j.bbamem.2008.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 02/05/2008] [Accepted: 02/25/2008] [Indexed: 01/17/2023]
Abstract
Methyl-beta-cyclodextrin (MBCD) is frequently used to acutely deplete cells of cholesterol. A widespread assumption is that MBCD preferentially targets cholesterol in lipid rafts and that sensitivity to MBCD is proof of lipid raft involvement in a cellular process. To analyse any MBCD preference systematically, progressive cholesterol depletion of Jurkat T cells was performed using MBCD and [3H]-cholesterol. It was found that at 37 degrees C, MBCD extracts similar proportions of cholesterol from the Triton X-100 resistant (lipid raft enriched) as it does from other cellular fractions and that the cells rapidly reestablish the relative differences in cholesterol concentration between different compartments. Moreover, cells restore the cholesterol level in the plasma membrane by mobilising cholesterol from intracellular cholesterol stores. Interestingly, mere incubation at 0 degrees C caused a loss of plasma membrane cholesterol with a concomitant increase in cholesteryl esters and adiposomes. Moreover, only 35% of total cholesterol could be extracted by MBCD at 0 degrees C and was accompanied by a complete loss of plasma membrane and endocytotic recycling centre filipin staining. This study clearly shows that MBCD does not specifically extract cholesterol from any cellular fraction, that cholesterol redistributes upon temperature changes and that intracellular cholesterol stores can be used to replenish plasma membrane cholesterol.
Collapse
Affiliation(s)
- Saleemulla Mahammad
- Department of Cell Biology, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | | |
Collapse
|
44
|
Jacob M, Todd L, Sampson MF, Puré E. Dual role of Cbl links critical events in BCR endocytosis. Int Immunol 2008; 20:485-97. [PMID: 18283045 DOI: 10.1093/intimm/dxn010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Receptor endocytosis down-regulates ligand-induced signaling in a timely manner and depends on cytoskeletal remodeling. In B lymphocytes, internalization of B cell receptors (BCRs) is also critical to antigen presentation. However, the mechanisms underlying BCR endocytosis are not fully understood. Similarly, the molecular mechanisms linking endocytosis to cytoskeletal remodeling remain poorly defined. We used flow cytometry, pull-down assays, immunochemistry and fluorescence microscopy to investigate BCR internalization in the DT40 B cell line. We demonstrate that ablation of Cbl impacts BCR endocytosis and the underlying cytoskeletal dynamics. Specifically, we demonstrate that ligand-induced endocytosis is impaired in Cbl-/- cells and that the ubiquitin ligase activity is required for Cbl to promote endocytosis. We also show that phosphorylation of CrkII, activation of Rac downstream of CrkII and BCR capping require Cbl. Furthermore, we show that the association of Cbl and CrkII requires phosphorylation of Cbl, but not its ubiquitin ligase activity. Our data indicate that Cbl promotes BCR endocytosis and attenuates ligand-induced signaling by virtue of its ability to orchestrate receptor ubiquitylation and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Michele Jacob
- Wistar Institute and Ludwig Institute for Cancer Research, 3601 Spruce Street, Philadelphia, PA 19104-4268, USA.
| | | | | | | |
Collapse
|
45
|
Wilkinson DK, Turner EJ, Parkin ET, Garner AE, Harrison PJ, Crawford M, Stewart GW, Hooper NM. Membrane raft actin deficiency and altered Ca2+-induced vesiculation in stomatin-deficient overhydrated hereditary stomatocytosis. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:125-32. [PMID: 17961506 DOI: 10.1016/j.bbamem.2007.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 09/03/2007] [Accepted: 09/13/2007] [Indexed: 11/26/2022]
Abstract
In overhydrated hereditary stomatocytosis (OHSt), the membrane raft-associated stomatin is deficient from the erythrocyte membrane. We have investigated two aspects of raft structure and function in OHSt erythrocytes. First, we have studied the distribution of other membrane and cytoskeletal proteins in rafts by analysis of detergent-resistant membranes (DRMs). In normal erythrocytes, 29% of the actin was DRM-associated, whereas in two unrelated OHSt patients the DRM-associated actin was reduced to <10%. In addition, there was a reduction in the amount of the actin-associated protein tropomodulin in DRMs from these OHSt cells. When stomatin was expressed in Madin-Darby canine kidney cells, actin association with the membrane was increased. Second, we have studied Ca2+-dependent exovesiculation from the erythrocyte membrane. Using atomic force microscopy and proteomics analysis, exovesicles derived from OHSt cells were found to be increased in number and abnormal in size, and contained greatly increased amounts of the raft proteins flotillin-1 and -2 and the calcium binding proteins annexin VII, sorcin and copine 1, while the concentrations of stomatin and annexin V were diminished. Together these observations imply that the stomatin-actin association is important in maintaining the structure and in modulating the function of stomatin-containing membrane rafts in red cells.
Collapse
Affiliation(s)
- D Katie Wilkinson
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Up-regulation of the Cbl family of ubiquitin ligases is involved in ATRA and bufalin-induced cell adhesion but not cell differentiation. Biochem Biophys Res Commun 2007; 367:183-9. [PMID: 18164258 DOI: 10.1016/j.bbrc.2007.12.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 12/19/2007] [Indexed: 11/22/2022]
Abstract
The Casitas B-lineage Lymphoma (Cbl) family of ubiquitin ligases is multifunctional proteins that play important roles in different cell signaling pathways. It has been reported that c-Cbl and Cbl-b mRNAs are up-regulated during TPA-induced U937 and HL-60 cell differentiation. But the mechanism of the up-regulation and the roles of the Cbl family of ubiquitin ligases still remain unclear. In the present study, we demonstrated that bufalin enhanced all-trans retinoic acid (ATRA) induced differentiation of HL-60 cells, accompanied by up-regulation of the Cbl family of ubiquitin ligases. CsA, an inhibitor of calcium mobilization, reversed this up-regulation. Pretreatment with CsA and PS-341 did not affect the expression of CD11b, but suppressed the percentage of adherent cells. Lipid raft localization of Cbl-b enhanced cell adhesion, while C-terminal deletion partially suppressed the effect. Moreover, the expression of the adhesion-related kinases Pyk2 and Paxillin was up-regulated in parallel with the increase of Cbl proteins. These results suggested that up-regulation of c-Cbl and Cbl-b was involved in the regulation of ATRA and bufalin-induced HL-60 cell adhesion rather than cell differentiation, which might be mediated by lipid raft localization, ubiquitin ligase activity and C-terminal structure of Cbl proteins. Meanwhile, up-regulation of proline-rich tyrosine kinase (Pyk2) and Paxillin might also be implicated in this regulation.
Collapse
|
47
|
Petratos S, Li QX, George AJ, Hou X, Kerr ML, Unabia SE, Hatzinisiriou I, Maksel D, Aguilar MI, Small DH. The β-amyloid protein of Alzheimer's disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain 2007; 131:90-108. [DOI: 10.1093/brain/awm260] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Abstract
Cbl proteins are ubiquitin ligases and multifunctional adaptor proteins that are implicated in the regulation of signal transduction in various cell types and in response to different stimuli. Cbl-associated proteins can assemble together at a given time or space inside the cell, and such an interactome can form signal competent networks that control many physiological processes. Dysregulation of spatial or temporal constraints in the Cbl interactome results in the development of human pathologies such as immune diseases, diabetes and cancer.
Collapse
Affiliation(s)
- Mirko H H Schmidt
- Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
49
|
Yamada S, Uchimura E, Ueda T, Nomura T, Fujita S, Matsumoto K, Funeriu DP, Miyake M, Miyake J. Identification of twinfilin-2 as a factor involved in neurite outgrowth by RNAi-based screen. Biochem Biophys Res Commun 2007; 363:926-30. [PMID: 17910947 DOI: 10.1016/j.bbrc.2007.09.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/13/2007] [Indexed: 11/19/2022]
Abstract
Using RNA interference (RNAi) to suppress gene expression, we attempted to identify tyrosine kinases involved in the extension of neurites from SH-SY5Y cells. A comprehensive analysis of gene "knock-down" profiles with small interfering RNAs (siRNAs) revealed candidate proteins that might control neurite extension. Phenotype-based screening of differentiating SH-SY5Y cells following retinoic acid (RA) stimulation indicated that twinfilin-2 is a protein that is involved in neurite outgrowth, as confirmed by morphological analysis of twinfilin-2-overexpressing cells.
Collapse
Affiliation(s)
- Shigeru Yamada
- Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Aomi 2-41-6, Kohtoh-ku, Tokyo 135-0064, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Babuke T, Tikkanen R. Dissecting the molecular function of reggie/flotillin proteins. Eur J Cell Biol 2007; 86:525-32. [PMID: 17482313 DOI: 10.1016/j.ejcb.2007.03.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/19/2007] [Accepted: 03/20/2007] [Indexed: 12/11/2022] Open
Abstract
Reggie-1/flotillin-2 and reggie-2/flotillin-1 are ubiquitously expressed, well-conserved proteins that are associated with membrane microdomains known as rafts. Studies from us and others have suggested a role in various cellular processes such as insulin signaling, T cell activation, membrane trafficking, phagocytosis, and epidermal growth factor receptor signaling. Recent findings also demonstrate that reggie-1 is associated with cell motility and transformation. However, the exact function of reggie proteins remains to be clarified. In this review, we will focus on some recent findings that have shed new light on the elusive molecular function of these highly interesting proteins. We will especially discuss the emerging role of reggie proteins in membrane receptor signaling and membrane trafficking, with emphasis on the regulation of the molecular function of reggies by post-translational modifications such as phosphorylation and lipid modifications.
Collapse
Affiliation(s)
- Tanja Babuke
- Institute of Biochemistry II and Cluster of Excellence Frankfurt Macromolecular Complexes, University Clinic of Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|