1
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zhuang R, Liu H. Mechanism of regulation of KIF23 on endometrial cancer cell growth and apoptosis. Discov Oncol 2024; 15:83. [PMID: 38514510 PMCID: PMC10957832 DOI: 10.1007/s12672-024-00937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVE The global incidence of endometrial cancer, a malignant tumor in females, is on the rise. It is one of the most common gynecological cancers. Early-stage endometrial cancers can often be treated successfully with uterine extirpation. However, those diagnosed at a later stage have a poor prognosis and encounter treatment challenges. Therefore, additional research is necessary to develop primary prevention strategies for high-risk women and improve survival rates among patients with endometrial cancer. Hence, gene therapy targeting KIF23 shows promise as an advanced strategy for the treatment of endometrial cancer. METHODS Immunohistochemistry, Western blotting, and PCR were used to examine the expression of KIF23 and its associated pathway factors in endometrial cancer tissue (specifically Ishikawa and SNGM cells, respectively). We investigated the functional roles of KIF23 using CCK-8, colony-forming proliferation assays, Transwell migration assays, and xenotransplantation in mice. RESULTS Immunohistochemistry analysis showed variations in the expression levels of KIF23 between endometrial cancer tissue and normal endometrium tissue. KIF23 downregulated BAX and caspase-3 protein expression while upregulating BCL-2 protein expression. Additionally, knocking out KIF23 inhibits endometrial cancer cell proliferation and migration while promoting cell death. Mechanistically, our study provides evidence that KIF23 promotes endometrial cancer cell proliferation by activating the ERK and AKT/PI3K pathways, while simultaneously inhibiting programmed cell death in endometrial cancer. CONCLUSION Our study provides evidence to support the inhibition of endometrial cancer by KIF23 knockdown. This offers valuable insights for future research on potential therapeutic strategies for this type of cancer.
Collapse
Affiliation(s)
- Ruiying Zhuang
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Haiyan Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| |
Collapse
|
3
|
Wu Y, Chen W, Miao H, Xu T. SIRT7 promotes the proliferation and migration of anaplastic thyroid cancer cells by regulating the desuccinylation of KIF23. BMC Cancer 2024; 24:210. [PMID: 38360598 PMCID: PMC10870498 DOI: 10.1186/s12885-024-11965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE This study was designed to investigate the regulatory effects of kinesin family member (KIF) 23 on anaplastic thyroid cancer (ATC) cell viability and migration and the underlying mechanism. METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to analyze the levels of KIF23 in ATC cells. Besides, the effects of KIF23 and sirtuin (SIRT) 7 on the viability and migration of ATC cells were detected using cell counting kit-8, transwell and wound healing assays. The interaction between SIRT7 and KIF23 was evaluated by co-immunoprecipitation (Co-IP) assay. The succinylation (succ) of KIF23 was analyzed by western blot. RESULTS The KIF23 expression was upregulated in ATC cells. Silencing of KIF23 suppressed the viability and migration of 8505C and BCPAP cells. The KIF23-succ level was decreased in ATC cells. SIRT7 interacted with KIF23 to inhibit the succinylation of KIF23 at K537 site in human embryonic kidney (HEK)-293T cells. Overexpression of SIRT7 enhanced the protein stability of KIF23 in HEK-293T cells. Besides, overexpression of KIF23 promoted the viability and migration of 8505C and BCPAP cells, which was partly blocked by silenced SIRT7. CONCLUSIONS SIRT7 promoted the proliferation and migration of ATC cells by regulating the desuccinylation of KIF23.
Collapse
Affiliation(s)
- Yongkang Wu
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, South Renmindadao, Xiashan District, Zhanjiang, Guangdong, 524001, China
| | - Weijie Chen
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, South Renmindadao, Xiashan District, Zhanjiang, Guangdong, 524001, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tuo Xu
- Department of Vascular and Thyroid Surgery, The Affiliated Hospital of Guangdong Medical University, No. 57, South Renmindadao, Xiashan District, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
4
|
Li C, Allison DB, He D, Mao F, Wang X, Rychahou P, Imam IA, Kong Y, Zhang Q, Zhang Y, Liu J, Wang R, Rao X, Wu S, Evers BM, Shao Q, Wang C, Li Z, Liu X. Phosphorylation of AHR by PLK1 promotes metastasis of LUAD via DIO2-TH signaling. PLoS Genet 2023; 19:e1011017. [PMID: 37988371 PMCID: PMC10662729 DOI: 10.1371/journal.pgen.1011017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
Metastasis of lung adenocarcinoma (LUAD) is a major cause of death in patients. Aryl hydrocarbon receptor (AHR), an important transcription factor, is involved in the initiation and progression of lung cancer. Polo-like kinase 1 (PLK1), a serine/threonine kinase, acts as an oncogene promoting the malignancy of multiple cancer types. However, the interaction between these two factors and their significance in lung cancer remain to be determined. In this study, we demonstrate that PLK1 phosphorylates AHR at S489 in LUAD, leading to epithelial-mesenchymal transition (EMT) and metastatic events. RNA-seq analyses reveal that type 2 deiodinase (DIO2) is responsible for EMT and enhanced metastatic potential. DIO2 converts tetraiodothyronine (T4) to triiodothyronine (T3), activating thyroid hormone (TH) signaling. In vitro and in vivo experiments demonstrate that treatment with T3 or T4 promotes the metastasis of LUAD, whereas depletion of DIO2 or a deiodinase inhibitor disrupts this property. Taking together, our results identify the AHR phosphorylation by PLK1 and subsequent activation of DIO2-TH signaling as mechanisms leading to LUAD metastasis. These findings can inform possible therapeutic interventions for this event.
Collapse
Affiliation(s)
- Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Derek B. Allison
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daheng He
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xinyi Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Piotr Rychahou
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ibrahim A. Imam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ruixin Wang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xiongjian Rao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sai Wu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Surgery, University of Kentucky, Lexington, Kentucky, United States of America
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhiguo Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
5
|
Miranda J, Vázquez-Blomquist D, Bringas R, Fernandez-de-Cossio J, Palenzuela D, Novoa LI, Bello-Rivero I. A co-formulation of interferons alpha2b and gamma distinctively targets cell cycle in the glioblastoma-derived cell line U-87MG. BMC Cancer 2023; 23:806. [PMID: 37644431 PMCID: PMC10463508 DOI: 10.1186/s12885-023-11330-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND HeberFERON is a co-formulation of α2b and γ interferons, based on their synergism, which has shown its clinical superiority over individual interferons in basal cell carcinomas. In glioblastoma (GBM), HeberFERON has displayed promising preclinical and clinical results. This led us to design a microarray experiment aimed at identifying the molecular mechanisms involved in the distinctive effect of HeberFERON compared to the individual interferons in U-87MG model. METHODS Transcriptional expression profiling including a control (untreated) and three groups receiving α2b-interferon, γ-interferon and HeberFERON was performed using an Illumina HT-12 microarray platform. Unsupervised methods for gene and sample grouping, identification of differentially expressed genes, functional enrichment and network analysis computational biology methods were applied to identify distinctive transcription patterns of HeberFERON. Validation of most representative genes was performed by qPCR. For the cell cycle analysis of cells treated with HeberFERON for 24 h, 48 and 72 h we used flow cytometry. RESULTS The three treatments show different behavior based on the gene expression profiles. The enrichment analysis identified several mitotic cell cycle related events, in particular from prometaphase to anaphase, which are exclusively targeted by HeberFERON. The FOXM1 transcription factor network that is involved in several cell cycle phases and is highly expressed in GBMs, is significantly down regulated. Flow cytometry experiments corroborated the action of HeberFERON on the cell cycle in a dose and time dependent manner with a clear cellular arrest as of 24 h post-treatment. Despite the fact that p53 was not down-regulated, several genes involved in its regulatory activity were functionally enriched. Network analysis also revealed a strong relationship of p53 with genes targeted by HeberFERON. We propose a mechanistic model to explain this distinctive action, based on the simultaneous activation of PKR and ATF3, p53 phosphorylation changes, as well as its reduced MDM2 mediated ubiquitination and export from the nucleus to the cytoplasm. PLK1, AURKB, BIRC5 and CCNB1 genes, all regulated by FOXM1, also play central roles in this model. These and other interactions could explain a G2/M arrest and the effect of HeberFERON on the proliferation of U-87MG. CONCLUSIONS We proposed molecular mechanisms underlying the distinctive behavior of HeberFERON compared to the treatments with the individual interferons in U-87MG model, where cell cycle related events were highly relevant.
Collapse
Affiliation(s)
- Jamilet Miranda
- Bioinformatics Group, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba.
| | - Dania Vázquez-Blomquist
- Pharmacogenomics Group, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba.
| | - Ricardo Bringas
- Bioinformatics Group, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | | | - Daniel Palenzuela
- Pharmacogenomics Group, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Lidia I Novoa
- Pharmacogenomics Group, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Iraldo Bello-Rivero
- Clinical Assays Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| |
Collapse
|
6
|
Li C, Allison DB, He D, Mao F, Wang X, Rychahou P, Imam IA, Kong Y, Zhang Q, Zhang Y, Liu J, Wang R, Rao X, Wu S, Shao Q, Wang C, Li Z, Liu X. Phosphorylation of AHR by PLK1 promotes metastasis of LUAD via DIO2-TH signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551298. [PMID: 37577647 PMCID: PMC10418090 DOI: 10.1101/2023.07.31.551298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metastasis of Lung adenocarcinoma (LUAD) is a major cause of death in patients. Aryl hydrocarbon receptor (AHR) is an important transcription factor involved in the initiation and progression of lung cancer. Polo-like kinase 1 (PLK1), a serine/threonine kinase, is an oncogene that promotes the malignancy of multiple cancer types. Nonetheless, the interaction between these two factors and significance in lung cancer remains to be determined. Here, we demonstrate that PLK1 phosphorylates AHR at S489 in LUAD, which leads to epithelial-mesenchymal transition (EMT) and metastatic events. RNA-seq analyses show that type 2 deiodinase (DIO2) is responsible for EMT and enhanced metastatic potential. DIO2 converts tetraiodothyronine (T4) to triiodothyronine (T3), which then activates thyroid hormone signaling. In vitro and in vivo experiments demonstrate that treatment with T3 or T4 promotes the metastasis of LUAD, whereas depletion of DIO2 or deiodinase inhibitor disrupts this property. Taken together, our results identify the phosphorylation of AHR by PLK1 as a mechanism leading to the progression of LUAD and provide possible therapeutic interventions for this event.
Collapse
|
7
|
Feng Y, Li T, Lin Z, Li Y, Han X, Pei X, Fu Z, Wu Q, Shao D, Li C. Inhibition of Polo-like kinase 1 (PLK1) triggers cell apoptosis via ROS-caused mitochondrial dysfunction in colorectal carcinoma. J Cancer Res Clin Oncol 2023; 149:6883-6899. [PMID: 36810816 DOI: 10.1007/s00432-023-04624-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most frequently diagnosed cancers. Polo-like kinase 1 (PLK1), a member of the serine/threonine kinase PLK family, is the most investigated and essential in the regulation of cell cycle progression, including chromosome segregation, centrosome maturation and cytokinesis. However, the nonmitotic role of PLK1 in CRC is poorly understood. In this study, we explored the tumorigenic effects of PLK1 and its potential as a therapeutic target in CRC. METHODS GEPIA database and immunohistochemistry analysis were performed to evaluate the abnormal expression of PLK1 in CRC patients. MTT assay, colony formation and transwell assay were performed to assess cell viability, colony formation ability and migration ability after inhibiting PLK1 by RNAi or the small molecule inhibitor BI6727. Cell apoptosis, mitochondrial membrane potential (MMP) and ROS levels were evaluated by flow cytometry. Bioluminescence imaging was performed to evaluate the impact of PLK1 on CRC cell survival in a preclinical model. Finally, xenograft tumor model was established to study the effect of PLK1 inhibition on tumor growth. RESULTS First, immunohistochemistry analysis revealed the significant accumulation of PLK1 in patient-derived CRC tissues compared with adjacent healthy tissues. Furthermore, PLK1 inhibition genetically or pharmacologically significantly reduced cell viability, migration and colony formation, and triggered apoptosis of CRC cells. Additionally, we found that PLK1 inhibition elevated cellular reactive oxygen species (ROS) accumulation and decreased the Bcl2/Bax ratio, which led to mitochondrial dysfunction and the release of Cytochrome c, a key process in initiating cell apoptosis. CONCLUSION These data provide new insights into the pathogenesis of CRC and support the potential value of PLK1 as an appealing target for CRC treatment. Overall, the underlying mechanism of inhibiting PLK1-induced apoptosis indicates that the PLK1 inhibitor BI6727 may be a novel potential therapeutic strategy in the treatment of CRC.
Collapse
Affiliation(s)
- Ya Feng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhoujun Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Yin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiaolin Pei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Zhenkun Fu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China
- Department of Immunology & Wu Lien-Teh Institute & Heilongjiang Provincial Key Laboratory for Infection and Immunity, Harbin Medical University & Heilongjiang Academy of Medical Science, Harbin, 150081, People's Republic of China
| | - Qiao Wu
- Department of Hepatobiliary Surgery, Beijing Chao Yang Hospital, Capital Medical University, Beijing, 10020, People's Republic of China
| | - Di Shao
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, No. 1 Health Road, Yuzhong District, Chongqing, 400014, People's Republic of China.
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
8
|
Zhu K, Cai Y, Si X, Ye Z, Gao Y, Liu C, Wang R, Ma Z, Zhu H, Zhang L, Li S, Zhang H, Yue J. The phosphorylation and dephosphorylation switch of VCP/p97 regulates the architecture of centrosome and spindle. Cell Death Differ 2022; 29:2070-2088. [PMID: 35430615 PMCID: PMC9525716 DOI: 10.1038/s41418-022-01000-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
The proper orientation of centrosome and spindle is essential for genome stability; however, the mechanism that governs these processes remains elusive. Here, we demonstrated that polo-like kinase 1 (Plk1), a key mitotic kinase, phosphorylates residue Thr76 in VCP/p97 (an AAA-ATPase), at the centrosome from prophase to anaphase. This phosphorylation process recruits VCP to the centrosome and in this way, it regulates centrosome orientation. VCP exhibits strong co-localization with Eg5 (a mitotic kinesin motor), at the mitotic spindle, and the dephosphorylation of Thr76 in VCP is required for the enrichment of both VCP and Eg5 at the spindle, thus ensuring proper spindle architecture and chromosome segregation. We also showed that the phosphatase, PTEN, is responsible for the dephosphorylation of Thr76 in VCP; when PTEN was knocked down, the normal spread of VCP from the centrosome to the spindle was abolished. Cryo-EM structures of VCPT76A and VCPT76E, which represent dephosphorylated and phosphorylated states of VCP, respectively, revealed that the Thr76 phosphorylation modulates VCP by altering the inter-domain and inter-subunit interactions, and ultimately the nucleotide-binding pocket conformation. Interestingly, the tumor growth in nude mice implanted with VCPT76A-reconstituted cancer cells was significantly slower when compared with those implanted with VCPWT-reconstituted cancer cells. Collectively, our findings demonstrate that the phosphorylation and dephosphorylation switch of VCP regulates the architecture of centrosome and spindle for faithful chromosome segregation.
Collapse
Affiliation(s)
- Kaiyuan Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yang Cai
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaotong Si
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zuodong Ye
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yuanzhu Gao
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuang Liu
- Department of Biology, SUSTech Cryo-EM Centre, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Wang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhibin Ma
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Huazhang Zhu
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Liang Zhang
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shengjin Li
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongmin Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jianbo Yue
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
He X, Wang J, Zhou R, Yu S, Jiang J, Zhou Q. Kinesin family member 23 exerts a protumor function in breast cancer via stimulation of the Wnt/β-catenin pathway. Toxicol Appl Pharmacol 2021; 435:115834. [PMID: 34933054 DOI: 10.1016/j.taap.2021.115834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023]
Abstract
Kinesin family member 23 (KIF23) has been described as one of the main genes that are associated with malignant transformation in numerous cancers. However, the exact significance of KIF23 in breast cancer has not been well-addressed. The present study was dedicated to the comprehensive investigation of KIF23 in breast cancer. Initial expression analysis through The Cancer Genome Atlas (TCGA) demonstrated high KIF23 levels in breast cancer compared with normal controls. These in silico data showing high levels of KIF23 in breast cancer were verified by assessing clinical specimens using real-time quantitative PCR and immunoblot assays. Moreover, a high KIF23 level was correlated with adverse clinical outcomes in breast cancer patients. Cellular functional experiments showed that the down-regulation of KIF23 affected the malignant behaviors of breast cancer cells in vitro, whereas the forced expression of KIF23 stimulated them. Mechanistic studies revealed that KIF23 restraint down-regulated the levels of phosphorylated glycogen synthetase kinase-3β (GSK-3β), β-catenin, cyclin D1 and c-myc in breast cancer cells, showing an inhibitory effect on the Wnt/β-catenin pathway. The suppression of GSK-3β was able to reverse KIF23-silencing-induced inactivation of the Wnt/β-catenin pathway. Inhibition of the Wnt/β-catenin pathway abolished KIF23 overexpression-mediated protumor effects in breast cancer. A xenograft assay confirmed the in vivo antitumor function of KIF23 inhibition. In conclusion, these findings suggest that KIF23 may exert a protumor function in breast cancer by stimulating the Wnt/β-catenin pathway. This work suggests that KIF23 has potential values for targeted therapy and prognosis in breast cancer.
Collapse
Affiliation(s)
- Xin He
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Juan Wang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Ru Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Shanshan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China
| | - Jue Jiang
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| | - Qi Zhou
- Department of Ultrasound, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
10
|
Zhao Z, Wang Z, Bao ZS, Gao WZ, Zhang YD, Ruan CJ, Lv T, Wang Y, Sun LH. Mutation and Copy Number Alterations Analysis of KIF23 in Glioma. Front Genet 2021; 12:646929. [PMID: 34017355 PMCID: PMC8129563 DOI: 10.3389/fgene.2021.646929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
In glioma, kinesin family member 23 (KIF23) is up-regulated and plays a vital role in oncogenesis. However, the mechanism underlying KIF23 overexpression in malignant glioma remains to be elucidated. This study aims to find potential causes of KIF23 high expression at genome level. To clarify this issue, we obtained point mutation and copy number alterations (CNAs) of KIF23 in 319 gliomas using whole-exome sequencing. Only two glioma samples with missense mutations in KIF23 coding region were identified, while 7 patients were detected with amplification of KIF23. Additional analysis showed that KIF23 amplification was significantly associated with higher expression of KIF23. Gene ontology analysis indicated that higher copy number of KIF23 was associated TNF-α signaling pathway and mitotic cell circle checkpoint, which probably caused by subsequent upregulated expression of KIF23. Moreover, pan-cancer analysis showed that gaining of copy number was significantly associated with higher expression of KIF23, consolidating our findings in glioma. Thus, it was deduced that elevated KIF23 expression in glioma tended to be caused by DNA copy number amplification, instead of mutation.
Collapse
Affiliation(s)
- Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-Zhen Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan-Da Zhang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ci-Jie Ruan
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Lv
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Hua Sun
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Ji Z, Mi A, Li M, Li Q, Qin C. Aberrant KIF23 expression is associated with adverse clinical outcome and promotes cellular malignant behavior through the Wnt/β-catenin signaling pathway in Colorectal Cancer. J Cancer 2021; 12:2030-2040. [PMID: 33754001 PMCID: PMC7974518 DOI: 10.7150/jca.51565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/29/2020] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to reveal the clinicopathological significance and prognostic role of kinesin family member 23 (KIF23) in colorectal cancer (CRC) and characterize its biological function and the underlying mechanisms. Methods: Bioinformatics analysis, immunohistochemistry, Western blot and qRT-PCR were utilized to investigate the expression of KIF23 in CRC tissues. The CCK-8 assay, wound healing assay and Matrigel assay were used to detect cell proliferation, migration and invasion in vitro. Western blot, immunofluorescence staining and cell function experiment were performed to explore the underlying mechanism. Results: The overexpression of KIF23 was associated with T stage, N stage, M stage and TNM stage, and CRC patients with high KIF23 expression had a worse prognosis. KIF23 knockdown inhibits CRC cells proliferation, migration and invasion in vitro. The mechanism study determined that KIF23 activates the Wnt/β-catenin signaling pathway by promoting the nuclear translocation of β-catenin to regulate the malignant behavior of CRC cells. Conclusion: These results suggest that KIF23 may act as a putative oncogene and a potential therapeutic target in CRC.
Collapse
Affiliation(s)
- Zhiyu Ji
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Aoning Mi
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Mengmeng Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Quanying Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
12
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
13
|
Liu Y, Chen H, Dong P, Xie G, Zhou Y, Ma Y, Yuan X, Yang J, Han L, Chen L, Shen L. KIF23 activated Wnt/β-catenin signaling pathway through direct interaction with Amer1 in gastric cancer. Aging (Albany NY) 2020; 12:8372-8396. [PMID: 32365332 PMCID: PMC7244035 DOI: 10.18632/aging.103146] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Increased expression of the kinesin family member 23 (KIF23) has been verified in gastric cancer (GC) and its upregulation contributes to cell proliferation. Even though, the role of KIF23 has not been fully elucidated in GC, and the mechanisms of KIF23 as an oncogene remain unknown. To further identify its potential role in GC, we analyzed gene expression data from GC patients in GEO and TCGA datasets. KIF23 was upregulated in GC, and increased expression of KIF23 correlated with poor prognosis. Importantly, KIF23 inhibition not only suppressed GC cell proliferation, tumorigenesis, but also migration and invasion, and arrested the cell cycle in the G2/M phase. Mechanistic investigations confirmed that KIF23 activated the Wnt/β-catenin signaling pathway by directly interacting with APC membrane recruitment 1 (Amer1). Furthermore, KIF23 exhibited competitive binding with Amer1 to block the association of Amer1 with adenomatous polyposis coli (APC), thus relocating Amer1 from the membrane and cytoplasm to the nucleus and attenuating the ability of Amer1 to negatively regulate Wnt/β-catenin signaling, resulting in activation of this signaling pathway. Collectively, our findings demonstrated that KIF23 promoted GC cell proliferation by directly interacting with Amer1 and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiangliang Yuan
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Li Han
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
14
|
Sharma P, Mahen R, Rossmann M, Stokes JE, Hardwick B, Huggins DJ, Emery A, Kunciw DL, Hyvönen M, Spring DR, McKenzie GJ, Venkitaraman AR. A cryptic hydrophobic pocket in the polo-box domain of the polo-like kinase PLK1 regulates substrate recognition and mitotic chromosome segregation. Sci Rep 2019; 9:15930. [PMID: 31685831 PMCID: PMC6828814 DOI: 10.1038/s41598-019-50702-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/26/2019] [Indexed: 11/25/2022] Open
Abstract
The human polo-like kinase PLK1 coordinates mitotic chromosome segregation by phosphorylating multiple chromatin- and kinetochore-binding proteins. How PLK1 activity is directed to specific substrates via phosphopeptide recognition by its carboxyl-terminal polo-box domain (PBD) is poorly understood. Here, we combine molecular, structural and chemical biology to identify a determinant for PLK1 substrate recognition that is essential for proper chromosome segregation. We show that mutations ablating an evolutionarily conserved, Tyr-lined pocket in human PLK1 PBD trigger cellular anomalies in mitotic progression and timing. Tyr pocket mutations selectively impair PLK1 binding to the kinetochore phosphoprotein substrate PBIP1, but not to the centrosomal substrate NEDD1. Through a structure-guided approach, we develop a small-molecule inhibitor, Polotyrin, which occupies the Tyr pocket. Polotyrin recapitulates the mitotic defects caused by mutations in the Tyr pocket, further evidencing its essential function, and exemplifying a new approach for selective PLK1 inhibition. Thus, our findings support a model wherein substrate discrimination via the Tyr pocket in the human PLK1 PBD regulates mitotic chromosome segregation to preserve genome integrity.
Collapse
Affiliation(s)
- Pooja Sharma
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Maxim Rossmann
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - Jamie E Stokes
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Bryn Hardwick
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - David J Huggins
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Amy Emery
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Dominique L Kunciw
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, United Kingdom
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Grahame J McKenzie
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom
| | - Ashok R Venkitaraman
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, United Kingdom.
| |
Collapse
|
15
|
Ueda A, Oikawa K, Fujita K, Ishikawa A, Sato E, Ishikawa T, Kuroda M, Kanekura K. Therapeutic potential of PLK1 inhibition in triple-negative breast cancer. J Transl Med 2019; 99:1275-1286. [PMID: 30996295 DOI: 10.1038/s41374-019-0247-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/27/2023] Open
Abstract
Triple negative breast cancer (TNBC) is responsible for significant number of breast cancer-associated deaths because of lacking of successful molecular-targeted therapy. To explore a therapeutic target for TNBC, we performed a siRNA-mediated knockdown screening and identified Polo-like kinase 1 (PLK1) as a potential therapeutic target for TNBC. Knockdown of PLK1 as well as a small compound inhibitor for PLK1, BI-2536, induced G2/M arrest and created polyploid cell population, shown by increased DNA content and nuclear size. Inhibition of PLK1 eventually triggered apoptosis in multiple TNBC cell lines. In addition, we confirmed that PLK1 was significantly overexpressed in the tissues from TNBC patients compared with the tissues of normal mammary glands and benign breast tumors. Our data indicated that PLK1 plays a pivotal role in the regulation of mitosis of TNBC cells. Although future in vivo studies are warranted, targeting PLK1 by a selective inhibitor such as BI-2536 can be an attractive molecular-targeted therapy for TNBC.
Collapse
Affiliation(s)
- Ai Ueda
- Department of Breast Oncology and Surgery, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Keiki Oikawa
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Koji Fujita
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Eiichi Sato
- Department of Anatomic Pathology, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takashi Ishikawa
- Department of Breast Oncology and Surgery, Tokyo Medical University Hospital, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
16
|
González-Rosa JM, Sharpe M, Field D, Soonpaa MH, Field LJ, Burns CE, Burns CG. Myocardial Polyploidization Creates a Barrier to Heart Regeneration in Zebrafish. Dev Cell 2018; 44:433-446.e7. [PMID: 29486195 PMCID: PMC5830170 DOI: 10.1016/j.devcel.2018.01.021] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/11/2017] [Accepted: 01/26/2018] [Indexed: 01/07/2023]
Abstract
Correlative evidence suggests that polyploidization of heart muscle, which occurs naturally in post-natal mammals, creates a barrier to heart regeneration. Here, we move beyond a correlation by demonstrating that experimental polyploidization of zebrafish cardiomyocytes is sufficient to suppress their proliferative potential during regeneration. Initially, we determined that zebrafish myocardium becomes susceptible to polyploidization upon transient cytokinesis inhibition mediated by dominant-negative Ect2. Using a transgenic strategy, we generated adult animals containing mosaic hearts composed of differentially labeled diploid and polyploid-enriched cardiomyocyte populations. Diploid cardiomyocytes outcompeted their polyploid neighbors in producing regenerated heart muscle. Moreover, hearts composed of equivalent proportions of diploid and polyploid cardiomyocytes failed to regenerate altogether, demonstrating that a critical percentage of diploid cardiomyocytes is required to achieve heart regeneration. Our data identify cardiomyocyte polyploidization as a barrier to heart regeneration and suggest that mobilizing rare diploid cardiomyocytes in the human heart will improve its regenerative capacity.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Michka Sharpe
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Dorothy Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark H Soonpaa
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Loren J Field
- The Krannert Institute of Cardiology, the Wells Center for Pediatric Research, and Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Caroline E Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - C Geoffrey Burns
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Wen D, Wu J, Wang L, Fu Z. SUMOylation Promotes Nuclear Import and Stabilization of Polo-like Kinase 1 to Support Its Mitotic Function. Cell Rep 2017; 21:2147-2159. [PMID: 29166606 PMCID: PMC5728694 DOI: 10.1016/j.celrep.2017.10.085] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/22/2017] [Accepted: 10/23/2017] [Indexed: 02/08/2023] Open
Abstract
As a pivotal mitotic regulator, polo-like kinase 1 (PLK1) is under highly coordinated and multi-layered regulation. However, the pathways that control PLK1's activity and function have just begun to be elucidated. PLK1 has recently been shown to be functionally modulated by post-translational modifications (PTMs), including phosphorylation and ubiquitination. Herein, we report that SUMOylation plays an essential role in regulating PLK1's mitotic function. We found that Ubc9 was recruited to PLK1 upon initial phosphorylation and activation by CDK1/cyclin B. By in vivo and in vitro SUMOylation assays, PLK1 was identified as a physiologically relevant small ubiquitin-related modifier (SUMO)-targeted protein, preferentially modified by SUMO-1. We further showed that K492 on PLK1 is essential for SUMOylation. SUMOylation causes PLK1's nuclear import and significantly increases its protein stability, both of which are critical for normal mitotic progression and genomic integrity. Our findings suggest that SUMOylation is an important regulatory mechanism governing PLK1's mitotic function.
Collapse
Affiliation(s)
- Donghua Wen
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Jianguo Wu
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Lei Wang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Zheng Fu
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
18
|
Vikberg AL, Vooder T, Lokk K, Annilo T, Golovleva I. Mutation analysis and copy number alterations of KIF23 in non-small-cell lung cancer exhibiting KIF23 over-expression. Onco Targets Ther 2017; 10:4969-4979. [PMID: 29066916 PMCID: PMC5644594 DOI: 10.2147/ott.s138420] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
KIF23 was recently suggested to be a potential molecular target for the treatment of lung cancer. This proposal is based on elevated expression of KIF23 in several tumors affecting breast, lung, brain, and liver, and also on the presence of KIF23 mutations in melanoma and colorectal cancer. Recently, we identified a mutation in the KIF23 gene causing a rare hereditary form of dyserythropoietic anemia (CDA III) with predisposition to blood cancer. We suggested that KIF23 overexpression in tumors might be due to the presence of activating somatic mutations, and therefore, mutation screening of the KIF23 in 15 non-small-cell lung cancer (NSCLC) cases with elevated expression level of KIF23 was undertaken. Eight sequence variants were found in all samples. Furthermore, one variant was present in two cases, and one variant was case specific. Nine variants were previously reported while one variant lacks frequency information. Nine of ten cases available for single nucleotide polymorphism-array analysis demonstrated aberrant karyotypes with additional copy of entire chromosome 15. Thus, no activating somatic mutations in coding regions of the KIF23 were found. Furthermore, no mutations were detected in cell cycle genes homology region in KIF23 promoter responsible for p53-dependent repression of KIF23 expression. We showed that the elevated level of KIF23 could be due to additional copy of chromosome 15 demonstrated in 90% of NSCLC cases analyzed in this study. Considering the crucial role of KIF23 in the final step of mitosis, the gene is a potential molecular marker, and for better understanding of its role in cancer development, more tumors should be analyzed.
Collapse
Affiliation(s)
- Ann-Louise Vikberg
- Department of Medical Biosciences/Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| | - Tõnu Vooder
- Department of Thoraic Surgery, Helios Klinikum Krefeld, Krefeld, Germany
| | - Kaie Lokk
- Institute of Molecular and Cell Biology
| | - Tarmo Annilo
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Irina Golovleva
- Department of Medical Biosciences/Medical and Clinical Genetics, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Kumar S, Sharma G, Chakraborty C, Sharma AR, Kim J. Regulatory functional territory of PLK-1 and their substrates beyond mitosis. Oncotarget 2017; 8:37942-37962. [PMID: 28415805 PMCID: PMC5514964 DOI: 10.18632/oncotarget.16290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/03/2017] [Indexed: 12/04/2022] Open
Abstract
Polo-like kinase 1 (PLK-1) is a well-known (Ser/Thr) mitotic protein kinase and is considered as a proto-oncogene. As hyper-activation of PLK-1 is broadly associated with poor prognosis and cancer progression, it is one of the most extensively studied mitotic kinases. During mitosis, PLK-1 regulates various cell cycle events, such as spindle pole maturation, chromosome segregation and cytokinesis. However, studies have demonstrated that the role of PLK-1 is not only restricted to mitosis, but PLK-1 can also regulate other vital events beyond mitosis, including transcription, translation, ciliogenesis, checkpoint adaptation and recovery, apoptosis, chromosomes dynamics etc. Recent reviews have tried to define the regulatory role of PLK-1 during mitosis progression and tumorigenesis, but its' functional role beyond mitosis is still largely unexplored. PLK-1 can regulate the activity of many proteins that work outside of its conventional territory. The dysregulation of these proteins can cause diseases such as Alzheimer's disease, tumorigenesis etc. and may also lead to drug resistance. Thus, in this review, we discussed the versatile role of PLK-1 and tried to collect data to validate its' functional role in cell cycle regulation apart from mitosis.
Collapse
Affiliation(s)
- Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Garima Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Chiranjib Chakraborty
- Department of Bio-informatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Ashish Ranjan Sharma
- Institute For Skeletal Aging & Orthopedic Surgery, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, Hallym University, College of Medicine, Chucheonsi, Gangwondo, Republic of Korea
| |
Collapse
|
20
|
Liu J, Zhang C. The equilibrium of ubiquitination and deubiquitination at PLK1 regulates sister chromatid separation. Cell Mol Life Sci 2017; 74:2127-2134. [PMID: 28188342 PMCID: PMC11107562 DOI: 10.1007/s00018-017-2457-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
PLK1 regulates almost every aspect of mitotic events, including mitotic entry, spindle assembly, chromosome alignment, sister chromatid segregation, metaphase-anaphase transition, cytokinesis, etc. In regulating the chromosome alignment and sister chromatid segregation, PLK1 has to be localized to and removed from kinetochores at the right times, and the underlying mechanism that regulates PLK1 both spatially and temporally only became clearer recently. It has been found that deubiquitination and ubiquitination of PLK1 are responsible for its localization to and dissociation from the kinetochores, respectively. The equilibrium of this ubiquitination and deubiquitination plays an important role in regulating proper chromosome alignment and timely sister chromatid segregation. Here, we summarize and discuss the recent findings in investigating the spatial and temporal regulation of PLK1 during chromosome alignment and sister chromatid segregation.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Zhang J, Schmidt CJ, Lamont SJ. Transcriptome analysis reveals potential mechanisms underlying differential heart development in fast- and slow-growing broilers under heat stress. BMC Genomics 2017; 18:295. [PMID: 28407751 PMCID: PMC5390434 DOI: 10.1186/s12864-017-3675-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern fast-growing broilers are susceptible to heart failure under heat stress because their relatively small hearts cannot meet increased need of blood pumping. To improve the cardiac tolerance to heat stress in modern broilers through breeding, we need to find the important genes and pathways that contribute to imbalanced cardiac development and frequent occurrence of heat-related heart dysfunction. Two broiler lines - Ross 708 and Illinois - were included in this study as a fast-growing model and a slow-growing model respectively. Each broiler line was separated to two groups at 21 days posthatch. One group was subjected to heat stress treatment in the range of 35-37 °C for 8 h per day, and the other was kept in thermoneutral condition. Body and heart weights were measured at 42 days posthatch, and gene expression in left ventricles were compared between treatments and broiler lines through RNA-seq analysis. RESULTS Body weight and normalized heart weight were significantly reduced by heat stress only in Ross broilers. RNA-seq results of 44 genes were validated using Biomark assay. A total of 325 differentially expressed (DE) genes were detected between heat stress and thermoneutral in Ross 708 birds, but only 3 in Illinois broilers. Ingenuity pathway analysis (IPA) predicted dramatic changes in multiple cellular activities especially downregulation of cell cycle. Comparison between two lines showed that cell cycle activity is higher in Ross than Illinois in thermoneutral condition but is decreased under heat stress. Among the significant pathways (P < 0.01) listed for different comparisons, "Mitotic Roles of Polo-like Kinases" is always ranked first. CONCLUSIONS The increased susceptibility of modern broilers to cardiac dysfunction under heat stress compared to slow-growing broilers could be due to diminished heart capacity related to reduction in relative heart size. The smaller relative heart size in Ross heat stress group than in Ross thermoneutral group is suggested by the transcriptome analysis to be caused by decreased cell cycle activity and increased apoptosis. The DE genes in RNA-seq analysis and significant pathways in IPA provides potential targets for breeding of heat-tolerant broilers with optimized heart function.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|
22
|
Liu Z, Sun Q, Wang X. PLK1, A Potential Target for Cancer Therapy. Transl Oncol 2016; 10:22-32. [PMID: 27888710 PMCID: PMC5124362 DOI: 10.1016/j.tranon.2016.10.003] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/14/2022] Open
Abstract
Polo-like kinase 1 (PLK1) plays an important role in the initiation, maintenance, and completion of mitosis. Dysfunction of PLK1 may promote cancerous transformation and drive its progression. PLK1 overexpression has been found in a variety of human cancers and was associated with poor prognoses in cancers. Many studies have showed that inhibition of PLK1 could lead to death of cancer cells by interfering with multiple stages of mitosis. Thus, PLK1 is expected to be a potential target for cancer therapy. In this article, we examined PLK1’s structural characteristics, its regulatory roles in cell mitosis, PLK1 expression, and its association with survival prognoses of cancer patients in a wide variety of cancer types, PLK1 interaction networks, and PLK1 inhibitors under investigation. Finally, we discussed the key issues in the development of PLK1-targeted cancer therapy.
Collapse
Affiliation(s)
- Zhixian Liu
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingrong Sun
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaosheng Wang
- Department of Basic Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
23
|
Wagner E, Glotzer M. Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage. J Cell Biol 2016; 213:641-9. [PMID: 27298323 PMCID: PMC4915195 DOI: 10.1083/jcb.201603025] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/18/2016] [Indexed: 12/14/2022] Open
Abstract
The GTPase RhoA promotes contractile ring assembly and furrow ingression during cytokinesis. Although many factors that regulate RhoA during cytokinesis have been characterized, the spatiotemporal regulatory logic remains undefined. We have developed an optogenetic probe to gain tight spatial and temporal control of RhoA activity in mammalian cells and demonstrate that cytokinetic furrowing is primarily regulated at the level of RhoA activation. Light-mediated recruitment of a RhoGEF domain to the plasma membrane leads to rapid induction of RhoA activity, leading to assembly of cytokinetic furrows that partially ingress. Furthermore, furrow formation in response to RhoA activation is not temporally or spatially restricted. RhoA activation is sufficient to generate furrows at both the cell equator and cell poles, in both metaphase and anaphase. Remarkably, furrow formation can be initiated in rounded interphase cells, but not adherent cells. These results indicate that RhoA activation is sufficient to induce assembly of functional contractile rings and that cell rounding facilitates furrow formation.
Collapse
Affiliation(s)
- Elizabeth Wagner
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
24
|
Kato T, Lee D, Wu L, Patel P, Young AJ, Wada H, Hu HP, Ujiie H, Kaji M, Kano S, Matsuge S, Domen H, Kaga K, Matsui Y, Kanno H, Hatanaka Y, Hatanaka KC, Matsuno Y, de Perrot M, Yasufuku K. Kinesin family members KIF11 and KIF23 as potential therapeutic targets in malignant pleural mesothelioma. Int J Oncol 2016; 49:448-56. [PMID: 27279560 DOI: 10.3892/ijo.2016.3566] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 11/05/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive form of cancer commonly associated with asbestos exposure that stems from the thoracic mesothelium with high mortality rate. Currently, treatment options for MPM are limited, and new molecular targets for treatments are urgently needed. Using quantitative reverse transcription-polymerase chain reaction (RT-PCR) and an RNA interference-based screening, we screened two kinesin family members as potential therapeutic targets for MPM. Following in vitro investigation of the target silencing effects on MPM cells, a total of 53 MPMs were analyzed immunohistochemically with tissue microarray. KIF11 and KIF23 transcripts were found to be overexpressed in the majority of clinical MPM samples as well as human MPM cell lines as determined by quantitative RT-PCR. Gene knockdown in MPM cell lines identified growth inhibition following knockdown of KIF11 and KIF23. High expression of KIF11 (KIF11-H) and KIF23 (KIF23-H) were found in 43.4 and 50.9% of all the MPM cases, respectively. Patients who received curative resection with tumors displaying KIF23-H showed shorter overall survival (P=0.0194). These results provide that inhibition of KIF11 and KIF23 may hold promise for treatment of MPMs, raising the possibility that kinesin-based drug targets may be developed in the future.
Collapse
Affiliation(s)
- Tatsuya Kato
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Daiyoon Lee
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Licun Wu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Priya Patel
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Ahn Jin Young
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Hironobu Wada
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Hsin-Pei Hu
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Hideki Ujiie
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Mitsuhito Kaji
- Department of Thoracic Surgery, Sapporo Minami-sanjo Hospital, Sapporo, Japan
| | - Satoshi Kano
- Department of Pathology, Kinikyo-Chuo Hospital, Sapporo, Japan
| | | | - Hiromitsu Domen
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kichizo Kaga
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshiro Matsui
- Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiromi Kanno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yutaka Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
25
|
Sun X, Jin Z, Song X, Wang J, Li Y, Qian X, zhang Y, Yin Y. Evaluation of KIF23 variant 1 expression and relevance as a novel prognostic factor in patients with hepatocellular carcinoma. BMC Cancer 2015; 15:961. [PMID: 26674738 PMCID: PMC4682286 DOI: 10.1186/s12885-015-1987-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND KIF23 (kinesin family member 23) is a kinesin-like motor protein and plays an important role in cytokinesis. In search for genes associated with hepatocellular carcinoma (HCC) by cDNA microarray, we found that KIF23 was upregulated in HCC tissues. At present, much less is known about its expression and functions in tumor cells. In this work, we aimed to investigate the expression of KIF23 in HCC and the correlation between its expression and clinical features. METHODS Total RNA was extracted from 16 HCC and paired adjacent non-cancerous tissues. The expressions of the two KIF23 splice variants (KIF23 V1 and KIF23 V2) in normal and HCC tissues were determined by reverse transcriptase polymerase chain reaction (RT-PCR). Polyclonal antibody specific to KIF23 V1 was prepared, and the specificity of the antibody was confirmed by siRNA knockdown and Western blotting experiments. KIF23 protein expression in HCC was examined by immunohistochemistry staining with anti-KIF23 V1 or anti-KIF23 (commercially available for recognizing both KIF23 V1 and V2) antibodies, respectively. Univariate and Multivariate Cox regression analyses were used to determine the correlation between KIF23 protein expression and overall survival of HCC patients. RESULTS The two splicing variants of KIF23 mRNA were not detected in normal liver tissue by RT-PCR, but they were aberrantly expressed in HCC tissues. Immunohistochemistry staining with anti-KIF23 V1 antibody revealed that KIF23 V1 was mainly distributed in the nucleus, whereas the positive staining signals were predominantly in the cytoplasm when using anti-KIF23 antibody, suggesting that KIF23 V2 might localize in the cytoplasm of HCC cells. KIF23 V1 protein was detected in 57.6% (83/144) HCC patients and the mean H-score was 42, while KIF23 V2 was detected in 94.4% (135/143) HCC samples and the mean H-score was 68. Follow-up study showed that HCC patients with expression of KIF23 V1 had a longer 5-year survival (p=0.0052), however, expression of KIF23 V2 protein did not associate with 3- and 5-year survival. CONCLUSION In this study we show for the first time that KIF23 V1 and V2 have different localizations in HCC cells. Furthermore, KIF23 V1 protein expression might be a marker of longer overall survival in HCC patients.
Collapse
Affiliation(s)
- Xiaotong Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Zhongtian Jin
- Center of Hepatobiliary Surgery, People's Hospital, Peking University Health Science Center, Beijing, China.
| | - Xiao Song
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Jingjing Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Xiaoping Qian
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Yu zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Yanhui Yin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
26
|
Overexpression of KIF23 predicts clinical outcome in primary lung cancer patients. Lung Cancer 2015; 92:53-61. [PMID: 26775597 DOI: 10.1016/j.lungcan.2015.11.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/16/2015] [Accepted: 11/25/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE High-level expression of kinesin family member 23 (KIF23), a member of microtubule-dependent molecular motors that transport organelles within cells and move chromosomes during cell division, has been observed in a variety of human malignancies. The aims of the present study were to observe the expression of KIF23 in lung cancer, examine the role of KIF23 in lung cancer cell growth and/or survival by small interfering RNA experiments, and explore its clinicopathologic significance and evaluate KIF23 expression as a prognostic marker. MATERIALS AND METHODS Quantitative reverse transcription-polymerase chain reaction analysis was performed to detect the expression of KIF23 mRNA using metastatic lymph nodes from patients with advanced lung cancer obtained by endobronchial ultrasonography-guided transbronchial needle aspiration (EBUS-TBNA) and primary lung tumors through surgical sample. The role of KIF23 in cancer cell growth was examined by small interfering RNA experiments. A total of 339 lung cancers were analyzed immunohistochemically on tissue microarrays to examine the expression of KIF23 protein and its clinicopathologic significance. RESULTS KIF23 transcript was found to be overexpressed in the great majority of metastatic lymph nodes from advanced lung cancers and primary lung tumors. Inhibiting KIF23 expression effectively suppressed lung cancer cell growth. High-level KIF23 expression was observed in 67.8% of the 339 cases. Lung adenocarcinoma patients with tumors displaying a high-level of KIF23 expression was also identified as an independent prognostic factor by multivariate analysis (P=0.0064). CONCLUSION KIF23 not only provides additional prognostic information for surgical treatment of lung cancer, but may also be a novel therapeutic target for these patients.
Collapse
|
27
|
Plk1-targeted therapies in TP53- or RAS-mutated cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:31-39. [PMID: 24630986 DOI: 10.1016/j.mrrev.2014.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/27/2014] [Accepted: 02/27/2014] [Indexed: 11/23/2022]
Abstract
Despite advances in treatment, prognosis for many types of carcinoma remains poor. Polo-like kinase 1 (Plk1) has been explored as a target for the development of anticancer drugs. As a mitotic master Ser/Thr kinase, Plk1 is involved in centrosomal maturation, microtubule nucleation, chromosomal segregation, and cytokinesis. Additional functions in interphase and in response to DNA damage have been revealed. The multiple locations of Plk1 correspond to distinct functions, mediated by phosphorylation of multiple substrates. Since it is highly expressed in several carcinomas, and expression of Plk1 is inversely correlated with the survival rate of patients in non-small cell lung, head and neck, and esophageal cancer, Plk1 is recognized as a valid prognostic marker. Connections between Plk1 and p53 or KRAS in carcinoma provide a rationale and several possible routes to the development of therapies. Tumors with both p53-deficiency and high Plk1 expression may be particularly sensitive to Plk1 inhibitors, although some controversial data exist. In KRAS-mutant cancers, on the other hand, Plk1 may be essential for tumor cell survival, but detailed studies as to whether Plk1 inhibitors are more effective in KRAS-mutant cancers must be performed in order to determine whether this is the case. Here, we present evidence for Plk1 as a prognostic marker and potentially effective target for the treatment of patients with carcinoma, to demonstrate the value of Plk1 as a target for the development of cancer treatment, especially for patients with solid tumors. In addition, the effects of Plk1 inhibition in p53- or KRAS-mutated cancer are discussed with respect to clinical implications. Structural specifics of Plk1 are presented, as well as current strategies for discovering new Plk1 inhibitors by targeting the conserved ATP binding site or polo-box domain of Plk1, in order to develop Plk1-specific anticancer drugs.
Collapse
|
28
|
Kim JS, Kim EJ, Oh JS, Park IC, Hwang SG. CIP2A modulates cell-cycle progression in human cancer cells by regulating the stability and activity of Plk1. Cancer Res 2013; 73:6667-78. [PMID: 23983103 DOI: 10.1158/0008-5472.can-13-0888] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal cell-cycle control can lead to aberrant cell proliferation and cancer. The oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) is an inhibitor of protein phosphatase 2A (PP2A) that stabilizes c-Myc. However, the precise role of CIP2A in cell division is not understood. Herein, we show that CIP2A is required for mitotic progression by regulating the polo-like kinase (Plk1). With mitotic entry, CIP2A translocated from the cytoplasm to the nucleus, where it was enriched at spindle poles. CIP2A depletion delayed mitotic progression, resulting in mitotic abnormalities independent of PP2A activity. Unexpectedly, CIP2A interacted directly with the polo-box domain of Plk1 during mitosis. This interaction was required to maintain Plk1 stability by blocking APC/C-Cdh1-dependent proteolysis, thereby enhancing the kinase activity of Plk1 during mitosis. We observed strong correlation and in vivo interactions between these two proteins in multiple human cancer specimens. Overall, our results established a novel function for CIP2A in facilitating the stability and activity of the pivotal mitotic kinase Plk1 in cell-cycle progression and tumor development.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Authors' Affiliations: Divisions of Radiation Cancer Research and Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul; and Department of Genetic Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | | |
Collapse
|
29
|
Bibi N, Parveen Z, Rashid S. Identification of potential Plk1 targets in a cell-cycle specific proteome through structural dynamics of kinase and Polo box-mediated interactions. PLoS One 2013; 8:e70843. [PMID: 23967120 PMCID: PMC3744538 DOI: 10.1371/journal.pone.0070843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/23/2013] [Indexed: 01/15/2023] Open
Abstract
Polo like kinase 1 (Plk1) is a key player in orchestrating the wide variety of cell-cycle events ranging from centrosome maturation, mitotic entry, checkpoint recovery, transcriptional control, spindle assembly, mitotic progression, cytokinesis and DNA damage checkpoints recovery. Due to its versatile nature, Plk1 is considered an imperative regulator to tightly control the diverse aspects of the cell cycle network. Interactions among Plk1 polo box domain (PBD) and its putative binding proteins are crucial for the activation of Plk1 kinase domain (KD). To date, only a few substrate candidates have been characterized through the inclusion of both polo box and kinase domain-mediated interactions. Thus it became compelling to explore precise and specific Plk1 substrates through reassessment and extension of the structure-function paradigm. To narrow this apparently wide gap in knowledge, here we employed a thorough sequence search of Plk1 phosphorylation signature containing proteins and explored their structure-based features like conceptual PBD-binding capabilities and subsequent recruitment of KD directed phosphorylation to dissect novel targets of Plk1. Collectively, we identified 4,521 phosphodependent proteins sharing similarity to the consensus phosphorylation and PBD recognition motifs. Subsequent application of filters including similarity index, Gene Ontology enrichment and protein localization resulted in stringent pre-filtering of irrelevant candidates and isolated unique targets with well-defined roles in cell-cycle machinery and carcinogenesis. These candidates were further refined structurally using molecular docking and dynamic simulation assays. Overall, our screening approach enables the identification of several undefined cell-cycle associated functions of Plk1 by uncovering novel phosphorylation targets.
Collapse
Affiliation(s)
- Nousheen Bibi
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zahida Parveen
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
30
|
Hasegawa H, Hyodo T, Asano E, Ito S, Maeda M, Kuribayashi H, Natsume A, Wakabayashi T, Hamaguchi M, Senga T. The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing. J Cell Sci 2013; 126:3627-37. [PMID: 23750008 DOI: 10.1242/jcs.124818] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a widely conserved serine/threonine kinase that regulates progression of multiple stages of mitosis. Although extensive studies about PLK1 functions during cell division have been performed, it is still not known how PLK1 regulates myosin II activation at the equatorial cortex and ingression of the cleavage furrow. In this report, we show that an actin/myosin-II-binding protein, supervillin (SVIL), is a substrate of PLK1. PLK1 phosphorylates Ser238 of SVIL, which can promote the localization of SVIL to the central spindle and association with PRC1. Expression of a PLK1 phosphorylation site mutant, S238A-SVIL, inhibited myosin II activation at the equatorial cortex and induced aberrant furrowing. SVIL has both actin- and myosin-II-binding regions in the N-terminus. Expression of ΔMyo-SVIL (deleted of the myosin-II-binding region), but not of ΔAct-SVIL (deleted of actin-binding region), reduced myosin II activation and caused defects in furrowing. Our study indicates a possible role of phosphorylated SVIL as a molecular link between the central spindle and the contractile ring to coordinate the activation of myosin II for the ingression of the cleavage furrow.
Collapse
Affiliation(s)
- Hitoki Hasegawa
- Division of Cancer Biology, Nagoya University, Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
DeRycke MS, Gunawardena SR, Middha S, Asmann YW, Schaid DJ, McDonnell SK, Riska SM, Eckloff BW, Cunningham JM, Fridley BL, Serie DJ, Bamlet WR, Cicek MS, Jenkins MA, Duggan DJ, Buchanan D, Clendenning M, Haile RW, Woods MO, Gallinger SN, Casey G, Potter JD, Newcomb PA, Le Marchand L, Lindor NM, Thibodeau SN, Goode EL. Identification of novel variants in colorectal cancer families by high-throughput exome sequencing. Cancer Epidemiol Biomarkers Prev 2013; 22:1239-51. [PMID: 23637064 PMCID: PMC3704223 DOI: 10.1158/1055-9965.epi-12-1226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) in densely affected families without Lynch Syndrome may be due to mutations in undiscovered genetic loci. Familial linkage analyses have yielded disparate results; the use of exome sequencing in coding regions may identify novel segregating variants. METHODS We completed exome sequencing on 40 affected cases from 16 multicase pedigrees to identify novel loci. Variants shared among all sequenced cases within each family were identified and filtered to exclude common variants and single-nucleotide variants (SNV) predicted to be benign. RESULTS We identified 32 nonsense or splice-site SNVs, 375 missense SNVs, 1,394 synonymous or noncoding SNVs, and 50 indels in the 16 families. Of particular interest are two validated and replicated missense variants in CENPE and KIF23, which are both located within previously reported CRC linkage regions, on chromosomes 1 and 15, respectively. CONCLUSIONS Whole-exome sequencing identified DNA variants in multiple genes. Additional sequencing of these genes in additional samples will further elucidate the role of variants in these regions in CRC susceptibility. IMPACT Exome sequencing of familial CRC cases can identify novel rare variants that may influence disease risk.
Collapse
Affiliation(s)
- Melissa S. DeRycke
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shanaka R. Gunawardena
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Sumit Middha
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Yan W Asmann
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Daniel J. Schaid
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shannon K. McDonnell
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Shaun M. Riska
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Bruce W Eckloff
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Julie M. Cunningham
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Daniel J. Serie
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - William R. Bamlet
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mine S. Cicek
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Mark A. Jenkins
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Victoria 3010, Australia
| | - David J. Duggan
- Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Daniel Buchanan
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Mark Clendenning
- Cancer and Population Studies Group, Queensland Institute of Medical Research, Queensland, Australia
| | - Robert W. Haile
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Michael O. Woods
- Discipline of Genetics, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, NL, Canada
| | | | - Graham Casey
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John D. Potter
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Polly A. Newcomb
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Loic Le Marchand
- Department of Epidemiology, University of Hawaii, Honolulu, HI, USA
| | - Noralane M. Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Stephen N. Thibodeau
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Ellen L. Goode
- Departments of Health Sciences Research, Biomedical Statistics and Informatics, Laboratory Medicine and Pathology, Medical Genetics, Medical Genomics Technology and Advanced Genomics Technology Center, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| |
Collapse
|
32
|
A genomic toolkit to investigate kinesin and myosin motor function in cells. Nat Cell Biol 2013; 15:325-34. [PMID: 23417121 DOI: 10.1038/ncb2689] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/10/2013] [Indexed: 12/23/2022]
Abstract
Coordination of multiple kinesin and myosin motors is required for intracellular transport, cell motility and mitosis. However, comprehensive resources that allow systems analysis of the localization and interplay between motors in living cells do not exist. Here, we generated a library of 243 amino- and carboxy-terminally tagged mouse and human bacterial artificial chromosome transgenes to establish 227 stably transfected HeLa cell lines, 15 mouse embryonic stem cell lines and 1 transgenic mouse line. The cells were characterized by expression and localization analyses and further investigated by affinity-purification mass spectrometry, identifying 191 candidate protein-protein interactions. We illustrate the power of this resource in two ways. First, by characterizing a network of interactions that targets CEP170 to centrosomes, and second, by showing that kinesin light-chain heterodimers bind conventional kinesin in cells. Our work provides a set of validated resources and candidate molecular pathways to investigate motor protein function across cell lineages.
Collapse
|
33
|
Sheng H, Xu Y, Chen Y, Zhang Y, Ni X. Corticotropin-releasing hormone stimulates mitotic kinesin-like protein 1 expression via a PLC/PKC-dependent signaling pathway in hippocampal neurons. Mol Cell Endocrinol 2012; 362:157-64. [PMID: 22698524 DOI: 10.1016/j.mce.2012.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 12/22/2022]
Abstract
Corticotropin-releasing hormone (CRH) has been shown to modulate dendritic development in hippocampus. Mitotic kinesin-like protein 1 (MKLP1) plays key roles in dendritic differentiation. In the present study, we examined the effects of CRH on MKLP1 expression in cultured hippocampal neurons and determine subsequent signaling pathways involved. CRH dose-dependently increased MKLP1 mRNA and protein expression. This effect can be reversed by CRHR1 antagonist but not by CRHR2 antagonist. CRHR1 knockdown impaired this effect of CRH. CRH stimulated GTP-bound Gαs protein and phosphorylated phospholipase C (PLC)-β3 expression, which were blocked by CRHR1 antagonist. Transfection of GP antagonist-2A, an inhibitory peptide of Gαq protein, blocked CRH-induced phosphorylated PLC-β3 expression. PLC and PKC inhibitors completely blocked whereas adenylyl cyclase (AC) and PKA inhibitors did not affect CRH-induced MKLP1 expression. Our results indicate that CRH act on CRHR1 to induce MKLP1 expression via PLC/PKC signaling pathway. CRH may regulate MKLP1 expression, thereby modulating dendritic development.
Collapse
Affiliation(s)
- Hui Sheng
- Department of Physiology and The Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|
34
|
Abstract
Kinesins are a family of molecular motors that travel unidirectionally along microtubule tracks to fulfil their many roles in intracellular transport or cell division. Over the past few years kinesins that are involved in mitosis have emerged as potential targets for cancer drug development. Several compounds that inhibit two mitotic kinesins (EG5 (also known as KIF11) and centromere-associated protein E (CENPE)) have entered Phase I and II clinical trials either as monotherapies or in combination with other drugs. Additional mitotic kinesins are currently being validated as drug targets, raising the possibility that the range of kinesin-based drug targets may expand in the future.
Collapse
Affiliation(s)
- Oliver Rath
- The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | | |
Collapse
|
35
|
Luo J, Liu X. Polo-like kinase 1, on the rise from cell cycle regulation to prostate cancer development. Protein Cell 2012; 3:182-97. [PMID: 22447658 PMCID: PMC4875424 DOI: 10.1007/s13238-012-2020-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 02/04/2012] [Indexed: 01/19/2023] Open
Abstract
Polo-like kinase 1 (Plk1), a well-characterized member of serine/threonine kinases Plk family, has been shown to play pivotal roles in mitosis and cytokinesis in eukaryotic cells. Recent studies suggest that Plk1 not only controls the process of mitosis and cytokinesis, but also, going beyond those previously described functions, plays critical roles in DNA replication and Pten null prostate cancer initiation. In this review, we briefly summarize the functions of Plk1 in mitosis and cytokinesis, and then mainly focus on newly discovered functions of Plk1 in DNA replication and in Pten-null prostate cancer initiation. Furthermore, we briefly introduce the architectures of human and mouse prostate glands and the possible roles of Plk1 in human prostate cancer development. And finally, the newly chemotherapeutic development of small-molecule Plk1 inhibitors to target Plk1 in cancer treatment and their translational studies are also briefly reviewed.
Collapse
Affiliation(s)
- Jijing Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
36
|
Xiong F, Lin Y, Han Z, Shi G, Tian L, Wu X, Zeng Q, Zhou Y, Deng J, Chen H. Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Mol Biol Rep 2012; 39:1935-42. [PMID: 21637952 DOI: 10.1007/s11033-011-0940-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
Polo-like kinase 1 (Plk1) is a conserved serine/threonine protein kinase that plays pivotal roles during the cell cycle and cell proliferation. Although a number of important targets have been identified, the mechanism of Plk1-regulated pathways and the bulk of the Plk1 interactome are largely unknown. Here, we demonstrate that Plk1 interacts with the DExH/D RNA helicase, UAP56. The protein levels of UAP56 and Plk1 are inversely correlated during the cell cycle. We also show that Plk1 phosphorylates UAP56 in vitro and in vivo and that Plk1-dependent phosphorylation of UAP56 triggers ubiquitination and degradation of UAP56 through proteasomes. This result suggests that Plk1-mediated phosphorylation of UAP56 regulates the stability of UAP56. Our results will be helpful in further understanding mRNA metabolism, cell cycle progression, and the link between mRNA metabolism and cellular function.
Collapse
Affiliation(s)
- Fuyin Xiong
- Beijing Institute of Biotechnology, Beijing 100071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Takahashi S, Fusaki N, Ohta S, Iwahori Y, Iizuka Y, Inagawa K, Kawakami Y, Yoshida K, Toda M. Downregulation of KIF23 suppresses glioma proliferation. J Neurooncol 2011; 106:519-29. [PMID: 21904957 DOI: 10.1007/s11060-011-0706-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/18/2011] [Indexed: 12/18/2022]
Abstract
To identify therapeutic molecular targets for glioma, we performed modified serological identification of antigens by recombinant complementary DNA (cDNA) expression cloning using sera from a mouse glioma model. Two clones, kinesin family member 23 (Kif23) and structural maintenance of chromosomes 4 (Smc4), were identified as antigens through immunological reaction with sera from mice harboring synergic GL261 mouse glioma and intratumoral inoculation with a mutant herpes simplex virus. The human Kif23 homolog KIF23 is a nuclear protein that localizes to the interzone of mitotic spindles, acting as a plus-end-directed motor enzyme that moves antiparallel microtubules in vitro. Expression analysis revealed a higher level of KIF23 expression in glioma tissues than in normal brain tissue. The introduction of small interfering RNA (siRNA) targeting KIF23 into two different glioma cell lines, U87MG and SF126, downregulated KIF23 expression, which significantly suppressed glioma cell proliferation in vitro. KIF23 siRNA-treated glioma cells exhibited larger cell bodies with two or more nuclei compared with control cells. In vivo analysis using mouse xenograft showed that KIF23 siRNA/DNA chimera-treated tumors were significantly smaller than tumors treated with control siRNA/DNA chimera. Taken together, our results indicate that downregulation of KIF23 decreases proliferation of glioma cells and that KIF23 may be a novel therapeutic target in malignant glioma.
Collapse
Affiliation(s)
- Satoshi Takahashi
- Department of Neurosurgery, Keio University, School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bahassi EM. Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions. Exp Biol Med (Maywood) 2011; 236:648-57. [PMID: 21558091 DOI: 10.1258/ebm.2011.011011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Polo-like kinases (Plks) are a family of serine-threonine kinases that play a pivotal role in cell cycle progression and in cellular response to DNA damage. The Plks are highly conserved from yeast to mammals. There are five Plk family members (Plk1-5) in humans, of which Plk1, is the best characterized. The Plk1 isoform is being aggressively pursued as a target for cancer therapy, following observations that this protein is overexpressed in human tumors and is actively involved in malignant transformation. The roles of Plks in mitotic entry, spindle pole functions and cytokinesis are well established and have been the subject of several recent reviews. In this review, we discuss functions of Plks other than their classical roles in mitotic progression. When cells incur DNA damage, they activate checkpoint mechanisms that result in cell cycle arrest and allow time for repair. If the damage is extensive and cannot be repaired, cells will undergo cell death by apoptosis. If the damage is repaired, cells can resume cycling, as part of the process known as checkpoint recovery. If the damage is not repaired or incompletely repaired, cells can override the checkpoint and resume cycling with damaged DNA, a process called checkpoint adaptation. The Plks play a role in all three outcomes and their involvement in these processes will be the subject of this review.
Collapse
Affiliation(s)
- El Mustapha Bahassi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0562, USA.
| |
Collapse
|
39
|
Colnaghi R, Wheatley SP. Liaisons between survivin and Plk1 during cell division and cell death. J Biol Chem 2010; 285:22592-604. [PMID: 20427271 PMCID: PMC2903399 DOI: 10.1074/jbc.m109.065003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 04/28/2010] [Indexed: 12/18/2022] Open
Abstract
Survivin and Plk1 kinase are important mediators of cell survival that are required for chromosome alignment, cytokinesis, and protection from apoptosis. Interference with either survivin or Plk1 activity manifests many similar outcomes: prometaphase delay/arrest, multinucleation, and increased apoptosis. Moreover, the expression of both survivin and Plk1 is deregulated in cancer. Given these similarities, we speculated that these two proteins may cooperate during mitosis and/or in cell death pathways. Here we report that survivin and Plk1 interact during mitosis and that Plk1 phosphorylates survivin at serine 20. Importantly, we find that overexpression of a non-phosphorylatable version, S20A, is unable to correct chromosomes connected to the spindle in a syntelic manner during prometaphase and allows cells harboring these maloriented chromosomes to enter anaphase, evading the spindle tension checkpoint. By contrast, the constitutive phosphomimic, S20D, completes congression and division ahead of schedule and, unlike S20A, is able to support proliferation in the absence of the endogenous protein. Despite the importance of this residue in mitosis, its mutation does not appear to affect the anti-apoptotic activity of survivin in response to TRAIL. Together, these data suggest that phosphorylation of survivin at Ser(20) by Plk1 kinase is essential for accurate chromosome alignment and cell proliferation but is dispensable for its anti-apoptotic activity in cancer cells.
Collapse
Affiliation(s)
- Rita Colnaghi
- From the Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom and
| | - Sally P. Wheatley
- the School of Biomedical Sciences, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| |
Collapse
|
40
|
Cytokinesis and cancer: Polo loves ROCK'n' Rho(A). J Genet Genomics 2010; 37:159-72. [PMID: 20347825 DOI: 10.1016/s1673-8527(09)60034-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/11/2022]
Abstract
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1 in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer.
Collapse
|
41
|
Park JE, Soung NK, Johmura Y, Kang YH, Liao C, Lee KH, Park CH, Nicklaus MC, Lee KS. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol Life Sci 2010; 67:1957-70. [PMID: 20148280 PMCID: PMC2877763 DOI: 10.1007/s00018-010-0279-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases plays a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein-protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 into proximity with its substrates, mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Nak-Kyun Soung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Yoshikazu Johmura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Young H. Kang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chenzhong Liao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung H. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chi Hoon Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| |
Collapse
|
42
|
Kiessling AA, Bletsa R, Desmarais B, Mara C, Kallianidis K, Loutradis D. Genome-wide microarray evidence that 8-cell human blastomeres over-express cell cycle drivers and under-express checkpoints. J Assist Reprod Genet 2010; 27:265-76. [PMID: 20358275 PMCID: PMC2914593 DOI: 10.1007/s10815-010-9407-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To understand cell cycle controls in the 8-Cell human blastomere. METHODS Data from whole human genome (43,377 elements) microarray analyses of RNAs from normal 8-Cell human embryos were compiled with published microarrays of RNAs from human fibroblasts, before and after induced pluripotency, and embryonic stem cells. A sub database of 3,803 genes identified by high throughput RNA knock-down studies, plus genes that oscillate in human cells, was analyzed. RESULTS Thirty-five genes over-detected at least 7-fold specifically on the 8-Cell arrays were enriched for cell cycle drivers and for proteins that stabilize chromosome cohesion and spindle attachment and limit DNA and centrosome replication to once per cycle. CONCLUSIONS These results indicate that 8-cell human blastomere cleavage is guided by cyclic over-expression of key proteins, rather than canonical checkpoints, leading to rapidly increasing gene copy number and a susceptibility to chromosome and cytokinesis mishaps, well-noted characteristics of preimplantation human embryos.
Collapse
Affiliation(s)
- Ann A. Kiessling
- Bedford Stem Cell Research Foundation, 206 Elm St, Suite 106, Somerville, MA 02144 USA
| | - Ritsa Bletsa
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Bryan Desmarais
- Bedford Stem Cell Research Foundation, 206 Elm St, Suite 106, Somerville, MA 02144 USA
| | - Christina Mara
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Kostas Kallianidis
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| | - Dimitris Loutradis
- 1st Department of Obstetrics and Gynecology, Athens Medical School, “Alexandra” Maternity Hospital, Athens, Greece
| |
Collapse
|
43
|
Plk4 is required for cytokinesis and maintenance of chromosomal stability. Proc Natl Acad Sci U S A 2010; 107:6888-93. [PMID: 20348415 DOI: 10.1073/pnas.0910941107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aneuploidy is a characteristic feature of established cancers and can promote tumor development. Aneuploidy may arise directly, through unequal distribution of chromosomes into daughter cells, or indirectly, through a tetraploid intermediate. The polo family kinase Plk4/Sak is required for late mitotic progression and is haploinsufficient for tumor suppression in mice. Here we show that loss of heterozygosity (LOH) occurs at the Plk4 locus in 50% of human hepatocellular carcinomas (HCC) and is present even in preneoplastic cirrhotic liver nodules. LOH at Plk4 is associated with reduced Plk4 expression in HCC tumors but not with mutations in the remaining allele. Plk4(+/-) murine embryonic fibroblasts (MEFs) at early passage show a high incidence of multinucleation, supernumerary centrosomes, and a near-tetraploid karyotype. Underlying these phenotypes is a high rate of primary cytokinesis failure, associated with aberrant actomyosin ring formation, reduced RhoA activation, and failure to localize the RhoA guanine nucleotide exchange factor Ect2 to the spindle midbody. We further show that Plk4 normally localizes to the midbody and binds to and phosphorylates Ect2 in vitro. With serial passaging Plk4(+/-) MEFs rapidly immortalize, acquiring an increasing burden of nonclonal and clonal gross chromosomal irregularities, and form tumors in vivo. Our results indicate that haploid levels of Plk4 disrupt RhoGTPase function during cytokinesis, resulting in aneuploidy and tumorigenesis, thus implicating early LOH at Plk4 as one of the drivers of human hepatocellular carcinogenesis. These findings represent an advance in our understanding of genetic predisposition to HCC, which continues to increase in incidence globally and particularly in North America.
Collapse
|
44
|
Lomakin AY, Nadezhdina ES. Dynamics of nonmembranous cell components: Role of active transport along microtubules. BIOCHEMISTRY (MOSCOW) 2010; 75:7-18. [DOI: 10.1134/s0006297910010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Andrysik Z, Bernstein WZ, Deng L, Myer DL, Li YQ, Tischfield JA, Stambrook PJ, Bahassi EM. The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus. Nucleic Acids Res 2010; 38:2931-43. [PMID: 20100802 PMCID: PMC2875007 DOI: 10.1093/nar/gkq011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polo-like kinases (Plk1-4) are emerging as an important class of proteins involved in many aspects of cell cycle regulation and response to DNA damage. Here, we report the cloning of a fifth member of the polo-like kinase family named Plk5. DNA and protein sequence analyses show that Plk5 shares more similarities with Plk2 and Plk3 than with Plk1 and Plk4. Consistent with this observation, we show that mouse Plk5 is a DNA damage inducible gene. Mouse Plk5 protein localizes predominantly to the nucleolus, and deletion of a putative nucleolus localization signal (NoLS) within its N-terminal moiety disrupts its nucleolar localization. Ectopic expression of Plk5 leads to cell cycle arrest in G1, decreased DNA synthesis, and to apoptosis, a characteristic it shares with Plk3. Interestingly, in contrast to mouse Plk5 gene, the sequence of human Plk5 contains a stop codon that produces a truncated protein lacking part of the kinase domain.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Cytokinesis is the final step in cell division. The process begins during chromosome segregation, when the ingressing cleavage furrow begins to partition the cytoplasm between the nascent daughter cells. The process is not completed until much later, however, when the final cytoplasmic bridge connecting the two daughter cells is severed. Cytokinesis is a highly ordered process, requiring an intricate interplay between cytoskeletal, chromosomal and cell cycle regulatory pathways. A surprisingly broad range of additional cellular processes are also important for cytokinesis, including protein and membrane trafficking, lipid metabolism, protein synthesis and signaling pathways. As a highly regulated, complex process, it is not surprising that cytokinesis can sometimes fail. Cytokinesis failure leads to both centrosome amplification and production of tetraploid cells, which may set the stage for the development of tumor cells. However, tetraploid cells are abundant components of some normal tissues including liver and heart, indicating that cytokinesis is physiologically regulated. In this chapter, we summarize our current understanding of the mechanisms of cytokinesis, emphasizing steps in the pathway that may be regulated or prone to failure. Our discussion emphasizes findings in vertebrate cells although we have attempted to highlight important contributions from other model systems.
Collapse
|
47
|
Kishi K, van Vugt MATM, Okamoto KI, Hayashi Y, Yaffe MB. Functional dynamics of Polo-like kinase 1 at the centrosome. Mol Cell Biol 2009; 29:3134-50. [PMID: 19307309 PMCID: PMC2682011 DOI: 10.1128/mcb.01663-08] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/20/2008] [Accepted: 03/12/2009] [Indexed: 11/20/2022] Open
Abstract
Polo-like kinase 1 (Plk1) functions as a key regulator of mitotic events by phosphorylating substrate proteins on centrosomes, kinetochores, the mitotic spindle, and the midbody. Through mechanisms that are incompletely understood, Plk1 is released from and relocalizes to different mitotic structures as cells proceed through mitosis. We used fluorescence recovery after photobleaching to examine the kinetics of this process in more detail. We observed that Plk1 displayed a range of different recovery rates that differ at each mitotic substructure and depend on both the Polo-box domain and a functional kinase domain. Upon mitotic entry, centrosomal Plk1 becomes more dynamic, a process that is directly enhanced by Plk1 kinase activity. In contrast, Plk1 displays little dynamic exchange at the midbody, a process that again is modulated by the kinase activity of Plk1. Our findings suggest that the intrinsic kinase activity of Plk1 triggers its release from early mitotic structures and its relocalization to late mitotic structures. To assess the importance of Plk1 dynamic relocalization, Plk1 was persistently tethered to the centrosome. This resulted in a G(2) delay, followed by a prominent prometaphase arrest, as a consequence of defective spindle formation and activation of the spindle checkpoint. The dynamic release of Plk1 from early mitotic structures is thus crucial for mid- to late-stage mitotic events and demonstrates the importance of a fully dynamic Plk1 at the centrosome for proper cell cycle progression. This dependence on dynamic Plk1 was further observed during the mitotic reentry of cells after a DNA damage G(2) checkpoint, as this process was significantly delayed upon centrosomal tethering of Plk1. These results indicate that mitotic progression and control of mitotic reentry after DNA damage resides, at least in part, on the dynamic behavior of Plk1.
Collapse
Affiliation(s)
- Kazuhiro Kishi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Cytokinesis is the terminal step of the cell cycle during which a mother cell divides into daughter cells. Often, the machinery of cytokinesis is positioned in such a way that daughter cells are born roughly equal in size. However, in many specialized cell types or under certain environmental conditions, the cell division machinery is placed at nonmedial positions to produce daughter cells of different sizes and in many cases of different fates. Here we review the different mechanisms that position the division machinery in prokaryotic and eukaryotic cell types. We also describe cytokinesis-positioning mechanisms that are not adequately explained by studies in model organisms and model cell types.
Collapse
Affiliation(s)
- Snezhana Oliferenko
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| | | | | |
Collapse
|
49
|
Wolfe BA, Takaki T, Petronczki M, Glotzer M. Polo-like kinase 1 directs assembly of the HsCyk-4 RhoGAP/Ect2 RhoGEF complex to initiate cleavage furrow formation. PLoS Biol 2009; 7:e1000110. [PMID: 19468300 PMCID: PMC2680334 DOI: 10.1371/journal.pbio.1000110] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/31/2009] [Indexed: 11/19/2022] Open
Abstract
To complete cell division with high fidelity, cytokinesis must be coordinated with chromosome segregation. Mammalian Polo-like kinase 1, Plk1, may function as a critical link because it is required for chromosome segregation and establishment of the cleavage plane following anaphase onset. A central spindle-localized pool of the RhoGEF Ect2 promotes activation of the small GTPase RhoA, which drives contractile ring assembly at the equatorial cortex. Here, we have investigated how Plk1 promotes the central spindle recruitment of Ect2. Plk1 phosphorylates the noncatalytic N terminus of the RhoGAP HsCyk-4 at the central spindle, creating a phospho-epitope recognized by the BRCA1 C-terminal (BRCT) repeats of Ect2. Failure to phosphorylate HsCyk-4 blocks Ect2 recruitment to the central spindle and the subsequent induction of furrowing. Microtubules, as well as the microtubule-associated protein (MAP) Prc1, facilitate Plk1 phosphorylation of HsCyk-4. Characterization of a phosphomimetic version of HsCyk-4 indicates that Plk1 promotes Ect2 recruitment through multiple targets. Collectively, our data reveal that formation of the HsCyk-4-Ect2 complex is subject to multiple layers of regulation to ensure that RhoA activation occurs between the segregated sister chromatids during anaphase.
Collapse
Affiliation(s)
- Benjamin A. Wolfe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Tohru Takaki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | - Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, Hertfordshire, United Kingdom
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
50
|
Kleinschmidt MA, Wagner TU, Liedtke D, Spahr S, Samans B, Gaubatz S. lin9 is required for mitosis and cell survival during early zebrafish development. J Biol Chem 2009; 284:13119-27. [PMID: 19278998 DOI: 10.1074/jbc.m809635200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
LIN9 has been described as a regulator of G(1)/S and G(2)/M progression of the cell cycle in invertebrates and human cell lines. To elucidate the in vivo function of LIN9 during vertebrate development, we took advantage of the teleost zebrafish (Danio rerio). By means of antisense morpholinos we show here that Lin9-depleted embryonic cells accumulate in mitosis. Flow cytometry and confocal microscopy data demonstrate that the delay in mitotic progression is followed by apoptosis, which strongly manifests in the developing central nervous system. In accordance with these findings, we identified a cohort of Lin9-regulated genes required for different mitotic processes, including mitotic entry, metaphase/anaphase transition, and cytokinesis. Our data establish LIN9 as an essential regulator of mitosis in vertebrate development.
Collapse
Affiliation(s)
- Markus A Kleinschmidt
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | | | | | | | | | | |
Collapse
|