1
|
Taylor SR, Santpere G, Weinreb A, Barrett A, Reilly MB, Xu C, Varol E, Oikonomou P, Glenwinkel L, McWhirter R, Poff A, Basavaraju M, Rafi I, Yemini E, Cook SJ, Abrams A, Vidal B, Cros C, Tavazoie S, Sestan N, Hammarlund M, Hobert O, Miller DM. Molecular topography of an entire nervous system. Cell 2021; 184:4329-4347.e23. [PMID: 34237253 DOI: 10.1016/j.cell.2021.06.023] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.
Collapse
Affiliation(s)
- Seth R Taylor
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Alexis Weinreb
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Alec Barrett
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Molly B Reilly
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Chuan Xu
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Erdem Varol
- Department of Statistics, Columbia University, New York, NY, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Lori Glenwinkel
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Rebecca McWhirter
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Abigail Poff
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Manasa Basavaraju
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ibnul Rafi
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Steven J Cook
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Alexander Abrams
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Berta Vidal
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Cyril Cros
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York, NY, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
2
|
Mohd-Shaharuddin N, Lim YAL, Ngui R, Nathan S. Expression of Ascaris lumbricoides putative virulence-associated genes when infecting a human host. Parasit Vectors 2021; 14:176. [PMID: 33757548 PMCID: PMC7985925 DOI: 10.1186/s13071-021-04680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ascaris lumbricoides is the most common causative agent of soil-transmitted helminth infections worldwide, with an estimated 450 million people infected with this nematode globally. It is suggested that helminths are capable of evading and manipulating the host immune system through the release of a spectrum of worm proteins which underpins their long-term survival in the host. We hypothesise that the worm overexpresses these proteins when infecting adults compared to children to cirvumvent the more robust defence mechanisms of adults. However, little is known about the parasite's genes and encoded proteins involved during A. lumbricoides infection. Hence, this study was conducted to assess the expression profile of putative virulence-associated genes during an active infection of adults and children. METHODS In this study, quantitative PCR was performed to evaluate the expression profile of putative virulence-associated genes in A. lumbricoides isolated from infected children and adults. The study was initiated by collecting adult worms expelled from adults and children following anthelminthic treatment. High-quality RNA was successfully extracted from each of six adult worms expelled by three adults and three children, respectively. Eleven putative homologues of helminth virulence-associated genes reported in previous studies were selected, primers were designed and specific amplicons of A. lumbricoides genes were noted. The expression profiles of these putative virulence-associated genes in A. lumbricoides from infected adults were compared to those in A. lumbricoides from infected children. RESULTS The putative virulence-associated genes VENOM, CADHERIN and PEBP were significantly upregulated at 166-fold, 13-fold and fivefold, respectively, in adults compared to children. Conversely, the transcription of ABA-1 (fourfold), CATH-L (threefold) and INTEGRIN (twofold) was significantly suppressed in A. lumbricoides from infected adults. CONCLUSIONS On the basis of the expression profile of the putative virulence-associated genes, we propose that the encoded proteins have potential roles in evasion mechanisms, which could guide the development of therapeutic interventions.
Collapse
Affiliation(s)
| | - Yvonne Ai Lian Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia.
| |
Collapse
|
3
|
Tikiyani V, Babu K. Claudins in the brain: Unconventional functions in neurons. Traffic 2020; 20:807-814. [PMID: 31418988 DOI: 10.1111/tra.12685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022]
Abstract
Bonafide claudin proteins are functional and structural components of tight junctions and are largely responsible for barrier formation across epithelial and endothelial membranes. However, current advances in the understanding of claudin biology have revealed their unexpected functions in the brain. Apart from maintaining blood-brain barriers in the brain, other functions of claudins in neurons and at synapses have been largely elusive and are just coming to light. In this review, we summarize the functions of claudins in the brain and their association in neuronal diseases. Further, we go on to cover some recent studies that show that claudins play signaling functions in neurons by regulating trafficking of postsynaptic receptors and controlling dendritic morphogenesis in the model organism Caenorhabditis elegans.
Collapse
Affiliation(s)
- Vina Tikiyani
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Kavita Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India.,Centre for Neuroscience (CNS), Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
4
|
|
5
|
Cadherins and their partners in the nematode worm Caenorhabditis elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:239-62. [PMID: 23481198 DOI: 10.1016/b978-0-12-394311-8.00011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The extreme simplicity of Caenorhabditis elegans makes it an ideal system to study the basic principles of cadherin function at the level of single cells within the physiologically relevant context of a developing animal. The genetic tractability of C. elegans also means that components of cadherin complexes can be identified through genetic modifier screens, allowing a comprehensive in vivo characterization of the macromolecular assemblies involved in cadherin function during tissue formation and maintenance in C. elegans. This work shows that a single cadherin system, the classical cadherin-catenin complex, is essential for diverse morphogenetic events during embryogenesis through its interactions with a range of mostly conserved proteins that act to modulate its function. The role of other members of the cadherin family in C. elegans, including members of the Fat-like, Flamingo/CELSR and calsyntenin families is less well characterized, but they have clear roles in neuronal development and function.
Collapse
|
6
|
Lynch AM, Grana T, Cox-Paulson E, Couthier A, Cameron M, Chin-Sang I, Pettitt J, Hardin J. A genome-wide functional screen shows MAGI-1 is an L1CAM-dependent stabilizer of apical junctions in C. elegans. Curr Biol 2012; 22:1891-9. [PMID: 22981773 DOI: 10.1016/j.cub.2012.08.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/20/2012] [Accepted: 08/14/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND In multicellular organisms, cell-cell junctions are involved in many aspects of tissue morphogenesis. α-catenin links the cadherin-catenin complex (CCC) to the actin cytoskeleton, stabilizing cadherin-dependent adhesions. RESULTS To identify modulators of cadherin-based cell adhesion, we conducted a genome-wide RNAi screen in C. elegans and uncovered MAGI-1, a highly conserved protein scaffold. Loss of magi-1 function in wild-type embryos results in disorganized epithelial migration and occasional morphogenetic failure. MAGI-1 physically interacts with the putative actin regulator AFD-1/afadin; knocking down magi-1 or afd-1 function in a hypomorphic α-catenin background leads to complete morphogenetic failure and actin disorganization in the embryonic epidermis. MAGI-1 and AFD-1 localize to a unique domain in the apical junction and normal accumulation of MAGI-1 at junctions requires SAX-7/L1CAM, which can bind MAGI-1 via its C terminus. Depletion of MAGI-1 leads to loss of spatial segregation and expansion of apical junctional domains and greater mobility of junctional proteins. CONCLUSIONS Our screen is the first genome-wide approach to identify proteins that function synergistically with the CCC during epidermal morphogenesis in a living embryo. We demonstrate novel physical interactions between MAGI-1, AFD-1/afadin, and SAX-7/L1CAM, which are part of a functional interactome that includes components of the core CCC. Our results further suggest that MAGI-1 helps to partition and maintain a stable, spatially ordered apical junction during morphogenesis.
Collapse
Affiliation(s)
- Allison M Lynch
- Graduate Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Suh J, Hutter H. A survey of putative secreted and transmembrane proteins encoded in the C. elegans genome. BMC Genomics 2012; 13:333. [PMID: 22823938 PMCID: PMC3534327 DOI: 10.1186/1471-2164-13-333] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Almost half of the Caenorhabditis elegans genome encodes proteins with either a signal peptide or a transmembrane domain. Therefore a substantial fraction of the proteins are localized to membranes, reside in the secretory pathway or are secreted. While these proteins are of interest to a variety of different researchers ranging from developmental biologists to immunologists, most of secreted proteins have not been functionally characterized so far. RESULTS We grouped proteins containing a signal peptide or a transmembrane domain using various criteria including evolutionary origin, common domain organization and functional categories. We found that putative secreted proteins are enriched for small proteins and nematode-specific proteins. Many secreted proteins are predominantly expressed in specific life stages or in one of the two sexes suggesting stage- or sex-specific functions. More than a third of the putative secreted proteins are upregulated upon exposure to pathogens, indicating that a substantial fraction may have a role in immune response. Slightly more than half of the transmembrane proteins can be grouped into broad functional categories based on sequence similarity to proteins with known function. By far the largest groups are channels and transporters, various classes of enzymes and putative receptors with signaling function. CONCLUSION Our analysis provides an overview of all putative secreted and transmembrane proteins in C. elegans. This can serve as a basis for selecting groups of proteins for large-scale functional analysis using reverse genetic approaches.
Collapse
Affiliation(s)
- Jinkyo Suh
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
8
|
Babu K, Hu Z, Chien SC, Garriga G, Kaplan JM. The immunoglobulin super family protein RIG-3 prevents synaptic potentiation and regulates Wnt signaling. Neuron 2011; 71:103-16. [PMID: 21745641 PMCID: PMC3134796 DOI: 10.1016/j.neuron.2011.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2011] [Indexed: 11/15/2022]
Abstract
Cell surface Ig superfamily proteins (IgSF) have been implicated in several aspects of neuron development and function. Here, we describe the function of a Caenorhabditis elegans IgSF protein, RIG-3. Mutants lacking RIG-3 have an exaggerated paralytic response to a cholinesterase inhibitor, aldicarb. Although RIG-3 is expressed in motor neurons, heightened drug responsiveness was caused by an aldicarb-induced increase in muscle ACR-16 acetylcholine receptor (AChR) abundance, and a corresponding potentiation of postsynaptic responses at neuromuscular junctions. Mutants lacking RIG-3 also had defects in the anteroposterior polarity of the ALM mechanosensory neurons. The effects of RIG-3 on synaptic transmission and ALM polarity were both mediated by changes in Wnt signaling, and in particular by inhibiting CAM-1, a Ror-type receptor tyrosine kinase that binds Wnt ligands. These results identify RIG-3 as a regulator of Wnt signaling, and suggest that RIG-3 has an anti-plasticity function that prevents activity-induced changes in postsynaptic receptor fields.
Collapse
Affiliation(s)
- Kavita Babu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Zhitao Hu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Shih-Chieh Chien
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
| | - Gian Garriga
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
9
|
Ihara S, Hagedorn EJ, Morrissey MA, Chi Q, Motegi F, Kramer JM, Sherwood DR. Basement membrane sliding and targeted adhesion remodels tissue boundaries during uterine-vulval attachment in Caenorhabditis elegans. Nat Cell Biol 2011; 13:641-51. [PMID: 21572423 PMCID: PMC3107347 DOI: 10.1038/ncb2233] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/08/2011] [Indexed: 12/14/2022]
Abstract
Large gaps in basement membrane occur at sites of cell invasion and tissue remodelling in development and cancer. Though never followed directly in vivo, basement membrane dissolution or reduced synthesis have been postulated to create these gaps. Using landmark photobleaching and optical highlighting of laminin and type IV collagen, we find that a new mechanism, basement membrane sliding, underlies basement membrane gap enlargement during uterine-vulval attachment in Caenorhabditis elegans. Laser ablation and mutant analysis reveal that the invaginating vulval cells promote basement membrane movement. Further, an RNA interference and expression screen identifies the integrin INA-1/PAT-3 and VAB-19, homologue of the tumour suppressor Kank, as regulators of basement membrane opening. Both concentrate within vulval cells at the basement membrane gap boundary and halt expansion of the shifting basement membrane. Basement membrane sliding followed by targeted adhesion represents a new mechanism for creating precise basement membrane breaches that can be used by cells to break down compartment boundaries.
Collapse
Affiliation(s)
- Shinji Ihara
- Department of Biology, Duke University, Science Drive, Box 90388, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Petzold B, Park SJ, Ponce P, Roozeboom C, Powell C, Goodman M, Pruitt B. Caenorhabditis elegans body mechanics are regulated by body wall muscle tone. Biophys J 2011; 100:1977-85. [PMID: 21504734 PMCID: PMC3077690 DOI: 10.1016/j.bpj.2011.02.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 02/07/2011] [Accepted: 02/22/2011] [Indexed: 11/27/2022] Open
Abstract
Body mechanics in the nematode Caenorhabditis elegans are central to both mechanosensation and locomotion. Previous work revealed that the mechanics of the outer shell, rather than internal hydrostatic pressure, dominates stiffness. This shell is comprised of the cuticle and the body wall muscles, either of which could contribute to the body mechanics. Here, we tested the hypothesis that the muscles are an important contributor by modulating muscle tone using optogenetic and pharmacological tools, and measuring animal stiffness using piezoresistive microcantilevers. As a proxy for muscle tone, we measured changes in animal length under the same treatments. We found that treatments that induce muscle contraction generally resulted in body shortening and stiffening. Conversely, methods to relax the muscles more modestly increased length and decreased stiffness. The results support the idea that body wall muscle activation contributes significantly to and can modulate C. elegans body mechanics. Modulation of body stiffness would enable nematodes to tune locomotion or swimming gaits and may have implications in touch sensation.
Collapse
Affiliation(s)
- Bryan C. Petzold
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Sung-Jin Park
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Pierre Ponce
- Department of Electrical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Clifton Roozeboom
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Chloé Powell
- Department of Molecular and Cellular Physiology, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University Schools of Engineering and Medicine, Stanford, California
| | - Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University Schools of Engineering and Medicine, Stanford, California
| |
Collapse
|
11
|
A single immunoglobulin-domain protein required for clustering acetylcholine receptors in C. elegans. EMBO J 2011; 30:706-18. [PMID: 21252855 DOI: 10.1038/emboj.2010.355] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 12/16/2010] [Indexed: 11/08/2022] Open
Abstract
At Caenorhabditis elegans neuromuscular junctions (NMJs), synaptic clustering of the levamisole-sensitive acetylcholine receptors (L-AChRs) relies on an extracellular scaffold assembled in the synaptic cleft. It involves the secreted protein LEV-9 and the ectodomain of the transmembrane protein LEV-10, which are both expressed by muscle cells. L-AChRs, LEV-9 and LEV-10 are part of a physical complex, which localizes at NMJs, yet none of its components localizes independently at synapses. In a screen for mutants partially resistant to the cholinergic agonist levamisole, we identified oig-4, which encodes a small protein containing a single immunoglobulin domain. The OIG-4 protein is secreted by muscle cells and physically interacts with the L-AChR/LEV-9/LEV-10 complex. Removal of OIG-4 destabilizes the complex and causes a loss of L-AChR clusters at the synapse. Interestingly, OIG-4 partially localizes at NMJs independently of LEV-9 and LEV-10, thus providing a potential link between the L-AChR-associated scaffold and local synaptic cues. These results add a novel paradigm for the immunoglobulin super-family as OIG-4 is a secreted protein required for clustering ionotropic receptors independently of synapse formation.
Collapse
|
12
|
The C. elegans MAGI-1 protein is a novel component of cell junctions that is required for junctional compartmentalization. Dev Biol 2010; 350:24-31. [PMID: 21034729 DOI: 10.1016/j.ydbio.2010.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 09/30/2010] [Accepted: 10/18/2010] [Indexed: 11/20/2022]
Abstract
Cell junctions are essential to maintain polarity and tissue integrity. Epithelial cell junctions are composed of distinct sub-compartments that together ensure the strong adhesion between neighboring cells. In Caenorhabditis elegans epithelia, the apical junction (CeAJ) forms a single electron-dense structure, but at the molecular level it is composed of two sub-compartments that function redundantly and localize independently as two distinct but adjacent circumferential rings on the lateral plasma membrane. While investigating the role of the multi PDZ-domain containing protein MAGI-1 during C. elegans epidermal morphogenesis, we found that MAGI-1 localizes apical to both the Cadherin/Catenin (CCC) and AJM-1/DLG-1 (DAC) containing sub-domains. Removal of MAGI-1 function causes a loss of junctional compartmentalization along the lateral membrane and reduces the overall robustness of cell-cell adhesion mediated by either type of cell junctions. Our results suggest that MAGI-1 functions as an "organizer" that ensures the correct segregation of different cell adhesion complexes into distinct domains along the lateral plasma membrane. Thus, the formation of stable junctions requires the proper distribution of the CCC and DAC adhesion protein complexes along the lateral plasma membrane.
Collapse
|
13
|
Grana TM, Cox EA, Lynch AM, Hardin J. SAX-7/L1CAM and HMR-1/cadherin function redundantly in blastomere compaction and non-muscle myosin accumulation during Caenorhabditis elegans gastrulation. Dev Biol 2010; 344:731-44. [PMID: 20515680 PMCID: PMC2914123 DOI: 10.1016/j.ydbio.2010.05.507] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Accepted: 05/24/2010] [Indexed: 01/13/2023]
Abstract
Gastrulation is the first major morphogenetic movement in development and requires dynamic regulation of cell adhesion and the cytoskeleton. Caenorhabditis elegans gastrulation begins with the migration of the two endodermal precursors, Ea and Ep, from the surface of the embryo into the interior. Ea/Ep migration provides a relatively simple system to examine the intersection of cell adhesion, cell signaling, and cell movement. Ea/Ep ingression depends on correct cell fate specification and polarization, apical myosin accumulation, and Wnt activated actomyosin contraction that drives apical constriction and ingression (Lee et al., 2006; Nance et al., 2005). Here, we show that Ea/Ep ingression also requires the function of either HMR-1/cadherin or SAX-7/L1CAM. Both cadherin complex components and L1CAM are localized at all sites of cell-cell contact during gastrulation. Either system is sufficient for Ea/Ep ingression, but loss of both together leads to a failure of apical constriction and ingression. Similar results are seen with isolated blastomeres. Ea/Ep are properly specified and appear to display correct apical-basal polarity in sax-7(eq1);hmr-1(RNAi) embryos. Significantly, in sax-7(eq1);hmr-1(RNAi) embryos, Ea and Ep fail to accumulate myosin (NMY-2Colon, two colonsGFP) at their apical surfaces, but in either sax-7(eq1) or hmr-1(RNAi) embryos, apical myosin accumulation is comparable to wild type. Thus, the cadherin and L1CAM adhesion systems are redundantly required for localized myosin accumulation and hence for actomyosin contractility during gastrulation. We also show that sax-7 and hmr-1 function are redundantly required for Wnt-dependent spindle polarization during division of the ABar blastomere, indicating that these cell surface proteins redundantly regulate multiple developmental events in early embryos.
Collapse
Affiliation(s)
- Theresa M. Grana
- Department of Biological Sciences, University of Mary Washington, 1301 College Ave., Fredericksburg, VA 22401
| | - Elisabeth A. Cox
- Department of Biology, SUNY College at Geneseo, 1 College Cir., Geneseo, NY 14454
| | - Allison M. Lynch
- Program in Genetics, University of Wisconsin, 1117 W. Johnson St., Madison, WI 53706
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin, 1117 W. Johnson St., Madison, WI 53706
- Department of Zoology, University of Wisconsin, 1117 W. Johnson St., Madison, WI 53706
| |
Collapse
|
14
|
Darom A, Bening-Abu-Shach U, Broday L. RNF-121 is an endoplasmic reticulum-membrane E3 ubiquitin ligase involved in the regulation of beta-integrin. Mol Biol Cell 2010; 21:1788-98. [PMID: 20357004 PMCID: PMC2877638 DOI: 10.1091/mbc.e09-09-0774] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
RNF-121 is an E3 ligase RING finger protein that is localized to the ER in Caenorhabditis elegans and functions in the UPR and ERAD pathways. The β subunit of the heterodimeric integrin receptor was identified as a substrate for RNF-121, suggesting a link between ERAD and cell adhesion through the regulation of β-integrin. We report on the characterization of RNF-121, an evolutionarily conserved E3 ligase RING finger protein that is expressed in the endoplasmic reticulum (ER) of various cells and tissues in Caenorhabditis elegans. Inactivation of RNF-121 induced an elevation in BiP expression and increased the sensitivity of worms to ER stress. Genetic analysis placed RNF-121 downstream of the unfolded protein response (UPR) regulator protein kinase-like endoplasmic reticulum kinase (PERK). We identify PAT-3::GFP, the β subunit of the heterodimeric integrin receptors, as an RNF-121 substrate; whereas induction of RNF-121 expression reduced the level of PAT-3::GFP in the gonad distal tip cells, inhibition of RNF-121 led to the accumulation of stably bound PAT-3::GFP inclusions. Correspondingly, overexpression of RNF-121 during early stages of gonad development led to aberrations in germline development and gonad migration that overlap with those observed after PAT-3 inactivation. The formation of these gonad abnormalities required functional ER-associated degradation (ERAD) machinery. Our findings identify RNF-121 as an ER-anchored ubiquitin ligase that plays a specific role in the ERAD pathway by linking it to the regulation of the cell adhesion integrin receptors.
Collapse
Affiliation(s)
- Amir Darom
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
15
|
Abstract
Cell invasion through the basement membrane, a process important for both development and disease pathogenesis, depends on an interplay of adhesive, force transducing, proteolytic, and chemotactic machineries. The mechanisms whereby these different processes are integrated on the cellular level have remained elusive. In this issue of Developmental Cell, Sherwood and coworkers now identify integrins as integration platforms for a specialized invasive membrane domain in C. elegans.
Collapse
Affiliation(s)
- Sara A Wickström
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | | |
Collapse
|
16
|
Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 2009; 1:a002899. [PMID: 20457565 DOI: 10.1101/cshperspect.a002899] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The adherens junction (AJ) is an element of the cell-cell junction in which cadherin receptors bridge the neighboring plasma membranes via their homophilic interactions. Cadherins associate with cytoplasmic proteins, called catenins, which in turn bind to cytoskeletal components, such as actin filaments and microtubules. These molecular complexes further interact with other proteins, including signaling molecules, rendering the AJs into highly dynamic and regulatable structures. The AJs of such nature contribute to the physical linking of cells, as well as to the regulation of cell-cell contacts, which is essential for morphogenesis and remodeling of tissues and organs. Thus, elucidating the molecular architecture of the AJs and their regulatory mechanisms are crucial for understanding how the multicellular system is organized.
Collapse
Affiliation(s)
- Wenxiang Meng
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | | |
Collapse
|
17
|
Abstract
Integrins are cell surface transmembrane receptors that recognize and bind to extracellular matrix proteins and counter receptors. Binding of activated integrins to their ligands induces a vast number of structural and signaling changes within the cell. Large, multimolecular complexes assemble onto the cytoplasmic tails of activated integrins to engage and organize the cytoskeleton, and activate signaling pathways that ultimately lead to changes in gene expression. Additionally, integrin-mediated signaling intersects with growth factor-mediated signaling through various levels of cross-talk. This review discusses recent work that has tremendously broadened our understanding of the complexity of integrin-mediated signaling.
Collapse
|
18
|
Abstract
The epithelial tissues of the C. elegans embryo provide a "minimalist" system for examining phylogenetically conserved proteins that function in epithelial polarity and cell-cell adhesion in a multicellular organism. In this review, we provide an overview of three major molecular complexes at the apical surface of epithelial cells in the C. elegans embryo: the cadherin-catenin complex, the more basal DLG-1/AJM-1 complex, and the apical membrane domain, which shares similarities with the subapical complex in Drosophila and the PAR/aPKC complex in vertebrates. We discuss how the assembly of these complexes contributes to epithelial polarity and adhesion, proteins that act as effectors and/or regulators of each subdomain, and how these complexes functionally interact during embryonic morphogenesis. Although much remains to be clarified, significant progress has been made in recent years to clarify the role of these protein complexes in epithelial morphogenesis, and suggests that C. elegans will continue to be a fruitful system in which to elucidate functional roles for these proteins in a living embryo.
Collapse
Affiliation(s)
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison
- Department of Zoology, University of Wisconsin-Madison
| |
Collapse
|
19
|
Zhuang S, Kelo L, Nardi JB, Kanost MR. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:365-79. [PMID: 17868866 DOI: 10.1016/j.dci.2007.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 07/27/2007] [Accepted: 07/28/2007] [Indexed: 05/17/2023]
Abstract
The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.
Collapse
Affiliation(s)
- Shufei Zhuang
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
20
|
Kashyap L, Tabish M. Alternatively spliced isoforms encoded by cadherin genes from C. elegansgenome. Bioinformation 2007; 2:50-6. [PMID: 18188420 PMCID: PMC2174417 DOI: 10.6026/97320630002050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/05/2007] [Accepted: 09/11/2007] [Indexed: 11/30/2022] Open
Abstract
Cadherins are calcium-dependent, homophilic, cell-cell adhesion receptors that regulate morphogenesis, pattern formation and cell migration. The C. elegans Genome Sequencing Consortium has reported 12 genes from C. elegansgenome encoding members of the cadherin superfamily. Alternative splicing of eukaryotic pre-mRNAs is a mechanism for generating potentially many transcript isoforms from a single gene. Here, using a combination of various gene or exon finding programmes and several other bioinformatics tools followed by experimental validation using RT-PCR, we have studied alternative splicing pattern in the cadherin encoding genes from C. elegansgenome. We have predicted that 7 of the 12 genes encoding the cadherin superfamily undergo extensive alternative splicing and encode for 12 new unreported alternatively spliced transcripts. Most of the alternatively spliced exons were found to be present at the 5' end of genes. These new previously un-detected spliced variants in C. eleganscadherin superfamily of genes could play vital roles in explaining the way cadherins act to control the processes like cell adhesion and morphogenesis.
Collapse
Affiliation(s)
- Luv Kashyap
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
21
|
Meighan CM, Schwarzbauer JE. Control of C. elegans hermaphrodite gonad size and shape by vab-3/Pax6-mediated regulation of integrin receptors. Genes Dev 2007; 21:1615-20. [PMID: 17606640 PMCID: PMC1899471 DOI: 10.1101/gad.1534807] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Integrin receptors for extracellular matrix are critical for cell motility, but the signals that determine when to stop are not known. Analysis of distal tip cell (DTC) migration during gonadogenesis in Caenorhabditis elegans has revealed the importance of transcription factor vab-3/Pax6 in regulating the alpha integrin genes, ina-1 and pat-2. Utilizing vab-3 mutants, we show that the down-regulation of ina-1 is necessary for DTC migration cessation and the up-regulation of pat-2 is required for directionality. These results demonstrate concomitant, but distinct roles in migration for each integrin. Notably, transcriptional control of migration termination provides a new mechanism for regulation of morphogenesis and organ size.
Collapse
Affiliation(s)
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Corresponding author.E-MAIL ; FAX (609) 258-1035
| |
Collapse
|
22
|
Suzuki N, Toyoda H, Sano M, Nishiwaki K. Chondroitin acts in the guidance of gonadal distal tip cells in C. elegans. Dev Biol 2006; 300:635-46. [PMID: 16982046 DOI: 10.1016/j.ydbio.2006.08.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 08/08/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
In Caenorhabditis elegans hermaphrodites, the U-shaped gonad arms are formed by directed migration of the gonadal distal tip cells (DTCs). The stereotyped pattern of DTC migration is carefully controlled by extracellular and cell surface molecules during larval development. Here we report that two proteins, SQV-5 (chondroitin synthase) and its cofactor MIG-22 (chondroitin polymerizing factor), are required for chondroitin biosynthesis and are essential for the dorsally guided migration of DTCs. We found that MIG-22 is expressed in migrating DTCs, hypodermal seam cells, developing vulva and oocytes. The expression of SQV-5 or MIG-22 in both DTCs and hypodermis rescued the DTC migration defects of the relevant mutants more efficiently than when they were expressed in either single tissue. Furthermore, the expression of SQV-5 by the mig-22 promoter significantly rescued sqv-5 mutants, implying that these two proteins act in the same tissues and that chondroitin proteoglycans produced in both of these tissues are required for DTC migration. The DTC migration defects caused by sqv-5 or mig-22 mutations were partially suppressed in the anterior and enhanced in the posterior DTCs in unc-6, unc-5 or unc-40 mutant backgrounds, suggesting that chondroitin proteoglycans play roles in the UNC-6/netrin-dependent guidance of DTCs.
Collapse
Affiliation(s)
- Norio Suzuki
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
23
|
Abstract
Neural development and the organization of complex neuronal circuits involve a number of processes that require cell-cell interaction. During these processes, axons choose specific partners for synapse formation and dendrites elaborate arborizations by interacting with other dendrites. The cadherin superfamily is a group of cell surface receptors that is comprised of more than 100 members. The molecular structures and diversity within this family suggest that these molecules regulate the contacts or signalling between neurons in a variety of ways. In this review I discuss the roles of three subfamilies - classic cadherins, Flamingo/CELSRs and protocadherins - in the regulation of neuronal recognition and connectivity.
Collapse
Affiliation(s)
- Masatoshi Takeichi
- RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
24
|
Fan X, She YM, Bagshaw RD, Callahan JW, Schachter H, Mahuran DJ. Identification of the hydrophobic glycoproteins of Caenorhabditis elegans. Glycobiology 2005; 15:952-64. [PMID: 15888633 DOI: 10.1093/glycob/cwi075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Hydrophobic proteins such as integral membrane proteins are difficult to separate, and therefore to study, at a proteomics level. However, the Asn-linked (N-linked) carbohydrates (N-glycans) contained in membrane glycoproteins are important in differentiation, embryogenesis, inflammation, cancer and metastasis, and other vital cellular processes. Thus, the identification of these proteins and their sites of glycosylation in a well-characterized model organism is the first step toward understanding the mechanisms by which N-glycans and their associated proteins function in vivo. In this report, a proteomics method recently developed by our group was applied to identify 117 hydrophobic N-glycosylated proteins of Caenorhabditis elegans extracts by analysis of 195 glycopeptides containing 199 Asn-linked oligosaccharides. Most of the proteins identified are involved in cell adhesion, metabolism, or the transport of small molecules. In addition, there are 18 proteins for which no function is known or predictable by sequence homologies and two proteins which were previously predicted to exist only on the basis of genomic sequences in the C. elegans database. Because N-glycosylation is initiated in the lumen of the endoplasmic reticulum (ER), our data can be used to reassess the previously predicted subcellular localizations of these proteins. As well, the identification of N-glycosylation sites helps establish the membrane topology of the associated glycoproteins. Caenorhabditis elegans strains are presently available with mutations in 17 of the genes we have identified. The powerful genetic tools available for C. elegans can be used to make other strains with mutations in genes encoding N-glycosylated proteins and thereby determine N-glycan function.
Collapse
Affiliation(s)
- Xiaolian Fan
- Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The powerful genetics, genomics and microscopy tools available for C. elegans make it well suited to studying how epithelial cells adhere to one another and the extracellular matrix, and how the integrated, simultaneous activities of multiple cell adhesion complexes function to shape an organism. Recent studies using forward and reverse genetics have shed light on how phylogenetically conserved cell adhesion complexes, such as the cadherin/catenin complex, claudins, the Discs large complex and hemidesmosome-like attachment structures, regulate epithelial cell adhesion, providing new insights into conserved cell adhesion mechanisms in higher eukaryotes.
Collapse
Affiliation(s)
- Jeff Hardin
- Department of Zoology, University of Wisconsin, 1117 W. Johnson St, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|