1
|
Li Y, Gao X, Li Y, Yan S, Zhang Y, Zheng X, Gu Q. Endocytosis: the match point of nanoparticle-based cancer therapy. J Mater Chem B 2024; 12:9435-9458. [PMID: 39192831 DOI: 10.1039/d4tb01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanomedicine has inspired a ground-breaking strategy for cancer therapy. By intelligently assembling diverse moieties to form nanoparticles, numerous functionalities such as controlled release, synergistic efficiency, and in situ killing can be achieved. The emerging nanoparticles have been designed with elevated targeting efficiency as targeting cancer cells is the primary requirement for nanoparticles. However, effective targeting does not guarantee therapeutic effects as endocytosis is a prerequisite for nanoparticles to exert effects. The recent decade has witnessed the rapid development of endocytosis-oriented nanoparticles, and this review subtly analyzes, categorizes, and exemplifies these nanoparticles according to their biological internalization patterns, and the correlation between the endocytosis mechanism and the property of nanoparticles is bridged. Based on the interdisciplinary vision, the present challenges and future perspectives of nanoparticle design for successful endocytosis are discussed, highlighting the potential strategies for the future development of endocytosis-oriented nanoparticles, thus facilitating the endocytosis-oriented strategy from bench to bedside. The undeniable fact is that endocytosis-oriented nanoparticles will definitely bring new blood to the next generation of advanced cancer therapies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yiru Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Fields KA, Bodero MD, Scanlon KR, Jewett TJ, Wolf K. A Minimal Replicon Enables Efficacious, Species-Specific Gene Deletion in Chlamydia and Extension of Gene Knockout Studies to the Animal Model of Infection Using Chlamydia muridarum. Infect Immun 2022; 90:e0045322. [PMID: 36350146 PMCID: PMC9753632 DOI: 10.1128/iai.00453-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022] Open
Abstract
The genus Chlamydia consists of diverse, obligate intracellular bacteria that infect various animals, including humans. Although chlamydial species share many aspects of the typical intracellular lifestyle, such as the biphasic developmental cycle and the preference for invasion of epithelial cells, each chlamydial strain also employs sophisticated species-specific strategies that contribute to an extraordinary diversity in organ and/or tissue tropism and disease manifestation. In order to discover and understand the mechanisms underlying how these pathogens infect particular hosts and cause specific diseases, it is imperative to develop a mutagenesis approach that would be applicable to every chlamydial species. We present functional evidence that the region between Chlamydia trachomatis and Chlamydia muridarum pgp6 and pgp7, containing four 22-bp tandem repeats that are present in all chlamydial endogenous plasmids, represents the plasmid origin of replication. Furthermore, by introducing species-specific ori regions into an engineered 5.45-kb pUC19-based plasmid, we generated vectors that can be successfully transformed into and propagated under selective pressure by C. trachomatis serovars L2 and D, as well as C. muridarum. Conversely, these vectors were rapidly lost upon removal of the selective antibiotic. This conditionally replicating system was used to generate a tarP deletion mutant by fluorescence-reported allelic exchange mutagenesis in both C. trachomatis serovar D and C. muridarum. The strains were analyzed using in vitro invasion and fitness assays. The virulence of the C. muridarum strains was then assessed in a murine infection model. Our approach represents a novel and efficient strategy for targeted genetic manipulation in Chlamydia beyond C. trachomatis L2. This advance will support comparative studies of species-specific infection biology and enable studies in a well-established murine model of chlamydial pathogenesis.
Collapse
Affiliation(s)
- Kenneth A. Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Maria D. Bodero
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Kaylyn R. Scanlon
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Travis J. Jewett
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Katerina Wolf
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Chatterjee R, Chowdhury AR, Mukherjee D, Chakravortty D. Lipid larceny: channelizing host lipids for establishing successful pathogenesis by bacteria. Virulence 2021; 12:195-216. [PMID: 33356849 PMCID: PMC7808437 DOI: 10.1080/21505594.2020.1869441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
Lipids are complex organic compounds made up of carbon, oxygen, and hydrogen. These play a diverse and intricate role in cellular processes like membrane trafficking, protein sorting, signal transduction, and bacterial infections. Both Gram-positive bacteria (Staphylococcus sp., Listeria monocytogenes, etc.) and Gram-negative bacteria (Chlamydia sp., Salmonella sp., E. coli, etc.) can hijack the various host-lipids and utilize them structurally as well as functionally to mount a successful infection. The pathogens can deploy with various arsenals to exploit host membrane lipids and lipid-associated receptors as an attachment for toxins' landing or facilitate their entry into the host cellular niche. Bacterial species like Mycobacterium sp. can also modulate the host lipid metabolism to fetch its carbon source from the host. The sequential conversion of host membrane lipids into arachidonic acid and prostaglandin E2 due to increased activity of cPLA-2 and COX-2 upon bacterial infection creates immunosuppressive conditions and facilitates the intracellular growth and proliferation of bacteria. However, lipids' more debatable role is that they can also be a blessing in disguise. Certain host-lipids, especially sphingolipids, have been shown to play a crucial antibacterial role and help the host in combating the infections. This review shed light on the detailed role of host lipids in bacterial infections and the current understanding of the lipid in therapeutics. We have also discussed potential prospects and the need of the hour to help us cope in this race against deadly pathogens and their rapidly evolving stealthy virulence strategies.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
4
|
Hijacking and Use of Host Kinases by Chlamydiae. Pathogens 2020; 9:pathogens9121034. [PMID: 33321710 PMCID: PMC7763869 DOI: 10.3390/pathogens9121034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Chlamydia species are causative agents of sexually transmitted infections, blinding trachoma, and animal infections with zoonotic potential. Being an obligate intracellular pathogen, Chlamydia relies on the host cell for its survival and development, subverting various host cell processes throughout the infection cycle. A key subset of host proteins utilized by Chlamydia include an assortment of host kinase signaling networks which are vital for many chlamydial processes including entry, nutrient acquisition, and suppression of host cell apoptosis. In this review, we summarize the recent advancements in our understanding of host kinase subversion by Chlamydia.
Collapse
|
5
|
Gitsels A, Sanders N, Vanrompay D. Chlamydial Infection From Outside to Inside. Front Microbiol 2019; 10:2329. [PMID: 31649655 PMCID: PMC6795091 DOI: 10.3389/fmicb.2019.02329] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
Chlamydia are obligate intracellular bacteria, characterized by a unique biphasic developmental cycle. Specific interactions with the host cell are crucial for the bacteria’s survival and amplification because of the reduced chlamydial genome. At the start of infection, pathogen-host interactions are set in place in order for Chlamydia to enter the host cell and reach the nutrient-rich peri-Golgi region. Once intracellular localization is established, interactions with organelles and pathways of the host cell enable the necessary hijacking of host-derived nutrients. Detailed information on the aforementioned processes will increase our understanding on the intracellular pathogenesis of chlamydiae and hence might lead to new strategies to battle chlamydial infection. This review summarizes how chlamydiae generate their intracellular niche in the host cell, acquire host-derived nutrients in order to enable their growth and finally exit the host cell in order to infect new cells. Moreover, the evolution in the development of molecular genetic tools, necessary for studying the chlamydial infection biology in more depth, is discussed in great detail.
Collapse
Affiliation(s)
- Arlieke Gitsels
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
George Z, Omosun Y, Azenabor AA, Goldstein J, Partin J, Joseph K, Ellerson D, He Q, Eko F, McDonald MA, Reed M, Svoboda P, Stuchlik O, Pohl J, Lutter E, Bandea C, Black CM, Igietseme JU. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem Biophys Res Commun 2019; 508:421-429. [PMID: 30503337 PMCID: PMC6343654 DOI: 10.1016/j.bbrc.2018.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 11/21/2022]
Abstract
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.
Collapse
Affiliation(s)
- Zenas George
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Yusuf Omosun
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Jason Goldstein
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - James Partin
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Kahaliah Joseph
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Debra Ellerson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Qing He
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA
| | - Francis Eko
- Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Matthew Reed
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pavel Svoboda
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Olga Stuchlik
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Jan Pohl
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | - Claudiu Bandea
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Carolyn M Black
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Joseph U Igietseme
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA; Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathog 2018; 14:e1007051. [PMID: 29727463 PMCID: PMC5955597 DOI: 10.1371/journal.ppat.1007051] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/16/2018] [Accepted: 04/21/2018] [Indexed: 01/08/2023] Open
Abstract
Pathogens hijack host endocytic pathways to force their own entry into eukaryotic target cells. Many bacteria either exploit receptor-mediated zippering or inject virulence proteins directly to trigger membrane reorganisation and cytoskeletal rearrangements. By contrast, extracellular C. trachomatis elementary bodies (EBs) apparently employ facets of both the zipper and trigger mechanisms and are only ~400 nm in diameter. Our cryo-electron tomography of C. trachomatis entry revealed an unexpectedly diverse array of host structures in association with invading EBs, suggesting internalisation may progress by multiple, potentially redundant routes or several sequential events within a single pathway. Here we performed quantitative analysis of actin organisation at chlamydial entry foci, highlighting filopodial capture and phagocytic cups as dominant and conserved morphological structures early during internalisation. We applied inhibitor-based screening and employed reporters to systematically assay and visualise the spatio-temporal contribution of diverse endocytic signalling mediators to C. trachomatis entry. In addition to the recognised roles of the Rac1 GTPase and its associated nucleation-promoting factor (NPF) WAVE, our data revealed an additional unrecognised pathway sharing key hallmarks of macropinocytosis: i) amiloride sensitivity, ii) fluid-phase uptake, iii) recruitment and activity of the NPF N-WASP, and iv) the localised generation of phosphoinositide-3-phosphate (PI3P) species. Given their central role in macropinocytosis and affinity for PI3P, we assessed the role of SNX-PX-BAR family proteins. Strikingly, SNX9 was specifically and transiently enriched at C. trachomatis entry foci. SNX9-/- cells exhibited a 20% defect in EB entry, which was enhanced to 60% when the cells were infected without sedimentation-induced EB adhesion, consistent with a defect in initial EB-host interaction. Correspondingly, filopodial capture of C. trachomatis EBs was specifically attenuated in SNX9-/- cells, implicating SNX9 as a central host mediator of filopodial capture early during chlamydial entry. Our findings identify an unanticipated complexity of signalling underpinning cell entry by this major human pathogen, and suggest intriguing parallels with viral entry mechanisms. Chlamydia trachomatis remains the leading bacterial agent of sexually transmitted disease worldwide and causes a form of blindness called trachoma in Developing nations, which is recognised by the World Health Organisation as a neglected tropical disease. Despite this burden, we know comparatively little about how it causes disease at a molecular level. Chlamydia must live inside human cells to survive, and here we study the mechanism of how it enters cells, which is critical to the lifecycle. We study how the bacterium exploits signalling pathways inside the cell to its own advantage to deform the cell membrane by reorganising the underlying cell skeleton, and identify new factors involved in this process. Our findings suggest intriguing similarities with how some viruses enter cells. A better understanding of these processes may help to develop future vaccines and new treatments.
Collapse
|
8
|
McKuen MJ, Mueller KE, Bae YS, Fields KA. Fluorescence-Reported Allelic Exchange Mutagenesis Reveals a Role for Chlamydia trachomatis TmeA in Invasion That Is Independent of Host AHNAK. Infect Immun 2017; 85:e00640-17. [PMID: 28970272 PMCID: PMC5695130 DOI: 10.1128/iai.00640-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/21/2017] [Indexed: 01/05/2023] Open
Abstract
Development of approaches to genetically manipulate Chlamydia is fostering important advances in understanding pathogenesis. Fluorescence-reported allelic exchange mutagenesis (FRAEM) now enables the complete deletion of specific genes in C. trachomatis L2. We have leveraged this technology to delete the coding sequences for a known type III effector. The evidence provided here indicates that CT694/CTL0063 is a virulence protein involved in chlamydial invasion. Based on our findings, we designate the gene product corresponding to ct694-ctl0063translocated membrane-associated effector A (TmeA). Deletion of tmeA did not impact development of intracellular chlamydiae. However, the absence of TmeA manifested as a decrease in infectivity in both tissue culture and murine infection models. The in vitro defect was reflected by impaired invasion of host cells. TmeA binds human AHNAK, and we demonstrate here that AHNAK is transiently recruited by invading chlamydiae. TmeA, however, is not required for endogenous AHNAK recruitment. TmeA also impairs AHNAK-dependent actin bundling activity. This TmeA-mediated effect likely does not explain impaired invasion displayed by the tmeA strain of Chlamydia, since AHNAK-deficient cells revealed no invasion phenotype. Overall, our data indicate the efficacy of FRAEM and reveal a role of TmeA during chlamydial invasion that manifests independently of effects on AHNAK.
Collapse
Affiliation(s)
- M J McKuen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - K E Mueller
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Y S Bae
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - K A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
9
|
Abstract
Both actin and microtubules are major cytoskeletal elements in eukaryotic cells that participate in many cellular processes, including cell division and motility, vesicle and organelle movement, and the maintenance of cell shape. Inside its host cell, the human pathogen Chlamydia trachomatis manipulates the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the drastic rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. As significant progress in Chlamydia genetics has greatly enhanced our understanding of how this pathogen co-opts the host cytoskeleton, we will discuss the machinery used by Chlamydia to coordinate the reorganization of actin and microtubules.
Collapse
Affiliation(s)
- Jordan Wesolowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Fabienne Paumet
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
10
|
Nogueira AT, Pedrosa AT, Carabeo RA. Manipulation of the Host Cell Cytoskeleton by Chlamydia. Curr Top Microbiol Immunol 2016; 412:59-80. [PMID: 27197645 DOI: 10.1007/82_2016_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chlamydiae are obligate intracellular pathogens. They undergo a biphasic developmental cycle differentiating between the infectious but metabolically quiescent elementary body and the vegetative, but non-infectious reticulate body. Chlamydia spends a significant portion of its development in the non-infectious stage, demanding an effective strategy of manipulating the host cells to ensure its intracellular survival and replication. A common target of all Chlamydia species studied so far is the host cell cytoskeleton, with past and recent findings revealing crucial roles in invasion, inclusion maintenance, nutrient acquisition, and egress. The molecular details of how Chlamydia co-opts the cytoskeleton is becoming clearer, with bacterial factors and their corresponding host cell targets identified.
Collapse
Affiliation(s)
- Ana T Nogueira
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Antonio T Pedrosa
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| |
Collapse
|
11
|
Salinas RP, Ortiz Flores RM, Distel JS, Aguilera MO, Colombo MI, Berón W. Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK. PLoS One 2015; 10:e0145211. [PMID: 26674774 PMCID: PMC4682630 DOI: 10.1371/journal.pone.0145211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/01/2015] [Indexed: 01/09/2023] Open
Abstract
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that process.
Collapse
Affiliation(s)
- Romina P. Salinas
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Rodolfo M. Ortiz Flores
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Jesús S. Distel
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Milton O. Aguilera
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - María I. Colombo
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Walter Berón
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
- * E-mail:
| |
Collapse
|
12
|
Toledo A, Benach JL. Hijacking and Use of Host Lipids by Intracellular Pathogens. Microbiol Spectr 2015; 3:10.1128/microbiolspec.VMBF-0001-2014. [PMID: 27337282 PMCID: PMC5790186 DOI: 10.1128/microbiolspec.vmbf-0001-2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 12/14/2022] Open
Abstract
Intracellular bacteria use a number of strategies to survive, grow, multiply, and disseminate within the host. One of the most striking adaptations that intracellular pathogens have developed is the ability to utilize host lipids and their metabolism. Bacteria such as Anaplasma, Chlamydia, or Mycobacterium can use host lipids for different purposes, such as a means of entry through lipid rafts, building blocks for bacteria membrane formation, energy sources, camouflage to avoid the fusion of phagosomes and lysosomes, and dissemination. One of the most extreme examples of lipid exploitation is Mycobacterium, which not only utilizes the host lipid as a carbon and energy source but is also able to reprogram the host lipid metabolism. Likewise, Chlamydia spp. have also developed numerous mechanisms to reprogram lipids onto their intracellular inclusions. Finally, while the ability to exploit host lipids is important in intracellular bacteria, it is not an exclusive trait. Extracellular pathogens, including Helicobacter, Mycoplasma, and Borrelia, can recruit and metabolize host lipids that are important for their growth and survival.Throughout this chapter we will review how intracellular and extracellular bacterial pathogens utilize host lipids to enter, survive, multiply, and disseminate in the host.
Collapse
Affiliation(s)
- Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Center for Infectious Diseases at the Center for Molecular Medicine, Stony Brook, NY 11794
| |
Collapse
|
13
|
Thwaites TR, Pedrosa AT, Peacock TP, Carabeo RA. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane. Front Cell Infect Microbiol 2015; 5:88. [PMID: 26649283 PMCID: PMC4663276 DOI: 10.3389/fcimb.2015.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway.
Collapse
Affiliation(s)
- Tristan R Thwaites
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Antonio T Pedrosa
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| | - Thomas P Peacock
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Rey A Carabeo
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| |
Collapse
|
14
|
Quintero CA, Tudela JG, Damiani MT. Rho GTPases as pathogen targets: Focus on curable sexually transmitted infections. Small GTPases 2015; 6:108-18. [PMID: 26023809 DOI: 10.4161/21541248.2014.991233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogens have evolved highly specialized mechanisms to infect hosts. Several microorganisms modulate the eukaryotic cell surface to facilitate their engulfment. Once internalized, they hijack the molecular machinery of the infected cell for their own benefit. At different stages of phagocytosis, particularly during invasion, certain pathogens manipulate pathways governed by small GTPases. In this review, we focus on the role of Rho proteins on curable, sexually transmitted infections caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis and Treponema pallidum. Despite the high, worldwide frequencies of these sexually-transmitted diseases, very little is known about the strategies developed by these microorganisms to usurp key eukaryotic proteins that control intracellular signaling and actin dynamics. Improved knowledge of these molecular mechanisms will contribute to the elucidation of how these clinically important pathogens manipulate intracellular processes and parasitize their hosts.
Collapse
Affiliation(s)
- Cristián A Quintero
- a Laboratory of Phagocytosis and Intracellular Trafficking; IHEM-CONICET; School of Medicine; University of Cuyo ; Mendoza , Argentina
| | | | | |
Collapse
|
15
|
Thwaites T, Nogueira AT, Campeotto I, Silva AP, Grieshaber SS, Carabeo RA. The Chlamydia effector TarP mimics the mammalian leucine-aspartic acid motif of paxillin to subvert the focal adhesion kinase during invasion. J Biol Chem 2014; 289:30426-30442. [PMID: 25193659 PMCID: PMC4215226 DOI: 10.1074/jbc.m114.604876] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Host cell signal transduction pathways are often targets of bacterial pathogens, especially during the process of invasion when robust actin remodeling is required. We demonstrate that the host cell focal adhesion kinase (FAK) was necessary for the invasion by the obligate intracellular pathogen Chlamydia caviae. Bacterial adhesion triggered the transient recruitment of FAK to the plasma membrane to mediate a Cdc42- and Arp2/3-dependent actin assembly. FAK recruitment was via binding to a domain within the virulence factor TarP that mimicked the LD2 motif of the FAK binding partner paxillin. Importantly, bacterial two-hybrid and quantitative imaging assays revealed a similar level of interaction between paxillin-LD2 and TarP-LD. The conserved leucine residues within the L(D/E)XLLXXL motif were essential to the recruitment of FAK, Cdc42, p34Arc, and actin to the plasma membrane. In the absence of FAK, TarP-LD-mediated F-actin assembly was reduced, highlighting the functional relevance of this interaction. Together, the data indicate that a prokaryotic version of the paxillin LD2 domain targets the FAK signaling pathway, with TarP representing the first example of an LD-containing Type III virulence effector.
Collapse
Affiliation(s)
- Tristan Thwaites
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom,; Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and
| | - Ana T Nogueira
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom,; Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and
| | - Ivan Campeotto
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom
| | - Ana P Silva
- Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and
| | - Scott S Grieshaber
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, Florida 32610
| | - Rey A Carabeo
- Centre for Molecular Microbiology and Infection, Imperial College, London SW7 2AZ, United Kingdom,; Bacteriology Section, Programme in Microbiology, Institute of Medical Sciences, School of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom, and.
| |
Collapse
|
16
|
Vromman F, Laverrière M, Perrinet S, Dufour A, Subtil A. Quantitative monitoring of the Chlamydia trachomatis developmental cycle using GFP-expressing bacteria, microscopy and flow cytometry. PLoS One 2014; 9:e99197. [PMID: 24911516 PMCID: PMC4049595 DOI: 10.1371/journal.pone.0099197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/12/2014] [Indexed: 02/06/2023] Open
Abstract
Chlamydiae are obligate intracellular bacteria. These pathogens develop inside host cells through a biphasic cycle alternating between two morphologically distinct forms, the infectious elementary body and the replicative reticulate body. Recently, C. trachomatis strains stably expressing fluorescent proteins were obtained. The fluorochromes are expressed during the intracellular growth of the microbe, allowing bacterial visualization by fluorescence microscopy. Whether they are also present in the infectious form, the elementary body, to a detectable level has not been studied. Here, we show that a C. trachomatis strain transformed with a plasmid expressing the green fluorescent protein (GFP) accumulates sufficient quantities of the probe in elementary bodies for detection by microscopy and flow cytometry. Adhesion of single bacteria was detected. The precise kinetics of bacterial entry were determined by microscopy using automated procedures. We show that during the intracellular replication phase, GFP is a convenient read-out for bacterial growth with several advantages over current methods. In particular, infection rates within a non-homogenous cell population are easily quantified. Finally, in spite of their small size, individual elementary bodies are detected by flow cytometers, allowing for direct enumeration of a bacterial preparation. In conclusion, GFP-expressing chlamydiae are suitable to monitor, in a quantitative manner, progression throughout the developmental cycle. This will facilitate the identification of the developmental steps targeted by anti-chlamydial drugs or host factors.
Collapse
Affiliation(s)
- François Vromman
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- Centre National de la Recherche Scientifique, URA 2582, Paris, France
- Université Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | - Marc Laverrière
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- Centre National de la Recherche Scientifique, URA 2582, Paris, France
| | - Stéphanie Perrinet
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- Centre National de la Recherche Scientifique, URA 2582, Paris, France
| | - Alexandre Dufour
- Centre National de la Recherche Scientifique, URA 2582, Paris, France
- Institut Pasteur, Unité d’Analyse d’images biologiques, Paris, France
| | - Agathe Subtil
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France
- Centre National de la Recherche Scientifique, URA 2582, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Nans A, Saibil HR, Hayward RD. Pathogen-host reorganization during Chlamydia invasion revealed by cryo-electron tomography. Cell Microbiol 2014; 16:1457-72. [PMID: 24809274 PMCID: PMC4336559 DOI: 10.1111/cmi.12310] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/01/2014] [Accepted: 05/02/2014] [Indexed: 02/06/2023]
Abstract
Invasion of host cells is a key early event during bacterial infection, but the underlying pathogen–host interactions are yet to be fully visualized in three-dimensional detail. We have captured snapshots of the early stages of bacterial-mediated endocytosis in situ by exploiting the small size of chlamydial elementary bodies (EBs) for whole-cell cryo-electron tomography. Chlamydiae are obligate intracellular bacteria that infect eukaryotic cells and cause sexually transmitted infections and trachoma, the leading cause of preventable blindness. We demonstrate that Chlamydia trachomatis LGV2 EBs are intrinsically polarized. One pole is characterized by a tubular inner membrane invagination, while the other exhibits asymmetric periplasmic expansion to accommodate an array of type III secretion systems (T3SSs). Strikingly, EBs orient with their T3SS-containing pole facing target cells, enabling the T3SSs to directly contact the cellular plasma membrane. This contact induces enveloping macropinosomes, actin-rich filopodia and phagocytic cups to zipper tightly around the internalizing bacteria. Once encapsulated into tight early vacuoles, EB polarity and the T3SSs are lost. Our findings reveal previously undescribed structural transitions in both pathogen and host during the initial steps of chlamydial invasion.
Collapse
Affiliation(s)
- Andrea Nans
- Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | | | | |
Collapse
|
18
|
Popoff MR. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host. Small GTPases 2014; 5:28209. [PMID: 25203748 DOI: 10.4161/sgtp.28209] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response.
Collapse
Affiliation(s)
- Michel R Popoff
- Unité des Bactéries anaérobies et Toxines; Institut Pasteur; Paris, France
| |
Collapse
|
19
|
Subtil A, Collingro A, Horn M. Tracing the primordial Chlamydiae: extinct parasites of plants? TRENDS IN PLANT SCIENCE 2014; 19:36-43. [PMID: 24210739 DOI: 10.1016/j.tplants.2013.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
Chlamydiae are obligate intracellular bacteria found as symbionts and pathogens in a wide range of eukaryotes, including protists, invertebrates, and vertebrates. It was recently proposed that an ancient chlamydial symbiont facilitated the establishment of primary plastids in a tripartite symbiosis with cyanobacteria and early eukaryotes. In this review, we summarize recent advances in understanding of the lifestyle and the evolutionary history of extant Chlamydiae. We reconstruct and describe key features of the ancient chlamydial symbiont. We propose that it was already adapted to an intracellular lifestyle before the emergence of Archaeplastida, and that several observations are compatible with an essential contribution of Chlamydiae to the evolution of algae and plants.
Collapse
Affiliation(s)
- Agathe Subtil
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France; CNRS URA2582, Paris, France.
| | - Astrid Collingro
- University of Vienna, Division of Microbial Ecology, Vienna, Austria
| | - Matthias Horn
- University of Vienna, Division of Microbial Ecology, Vienna, Austria
| |
Collapse
|
20
|
Mehlitz A, Rudel T. Modulation of host signaling and cellular responses by Chlamydia. Cell Commun Signal 2013; 11:90. [PMID: 24267514 PMCID: PMC4222901 DOI: 10.1186/1478-811x-11-90] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/19/2013] [Indexed: 01/24/2023] Open
Abstract
Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation.
Collapse
Affiliation(s)
- Adrian Mehlitz
- University of Wuerzburg, Biocenter, Department of Microbiology, Am Hubland, D-97074, Wuerzburg, Germany.
| | | |
Collapse
|
21
|
Zhang J, Wang H, Zhang L, Zhang T, Wang B, Li X, Wei J, Zhang L. Chlamydia pneumoniae infection induces vascular smooth muscle cell migration via Rac1 activation. J Med Microbiol 2013; 63:155-161. [PMID: 24248991 DOI: 10.1099/jmm.0.065359-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Chlamydia pneumoniae infection has been shown to be associated with the development of atherosclerosis by promoting the migration of vascular smooth muscle cells (VSMCs). However, how C. pneumoniae infection induces VSMC migration is not fully understood. A primary role of Ras-related C3 botulinum toxin substrate 1 (Rac1) is to generate a protrusive force at the leading edge that contributes to cell migration. Whether Rac1 activation plays a role in C. pneumoniae infection-induced VSMC migration is not well defined. In the present study, we therefore examined Rac1 activation in C. pneumoniae-infected rat primary VSMCs and the role of Rac1 activation in C. pneumoniae infection-induced VSMC migration. Glutathione S-transferase pull-down assay results showed that Rac1 was activated in C. pneumoniae-infected rat primary VSMCs. A Rac1 inhibitor, NSC23766 (50 µM,) suppressed Rac1 activation stimulated by C. pneumoniae infection, and thereby inhibited C. pneumoniae infection-induced VSMC migration. In addition, C. pneumoniae infection-induced Rac1 activation in the VSMCs was blocked by LY294002 (25 µM), an inhibitor of phosphatidylinositol 3-kinase (PI3K). Taken together, these data suggest that C. pneumoniae infection promotes VSMC migration, possibly through activating Rac1 via PI3K.
Collapse
Affiliation(s)
- Junxia Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Haiwei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Lijun Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Tengteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Beibei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xiankui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, PR China
| | - Junyan Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| | - Lijun Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, PR China
| |
Collapse
|
22
|
Furtado AR, Essid M, Perrinet S, Balañá ME, Yoder N, Dehoux P, Subtil A. The chlamydial OTU domain-containing protein ChlaOTU is an early type III secretion effector targeting ubiquitin and NDP52. Cell Microbiol 2013; 15:2064-79. [PMID: 23869922 DOI: 10.1111/cmi.12171] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/24/2013] [Accepted: 07/14/2013] [Indexed: 12/23/2022]
Abstract
Chlamydia are obligate intracellular pathogens. Upon contact with the host, they use type III secretion to deliver proteins into the cell, thereby triggering actin-dependent entry and establishing the infection. We observed that Chlamydia caviae elicited a local and transient accumulation of ubiquitinated proteins at the entry sites, which disappeared within 20 min. We investigated the mechanism for the rapid clearance of ubiquitin. We showed that the OTU-like domain containing protein CCA00261, predicted to have deubiquitinase activity, was detected in infectious particles and was a type III secretion effector. This protein is present in several Chlamydia strains, including the human pathogen Chlamydia pneumoniae, and we further designate it as ChlaOTU. We demonstrated that ChlaOTU bound ubiquitin and NDP52, and we mapped these interactions to distinct domains. NDP52 was recruited to Chlamydia entry sites and was dispensable for infection and for bacterial growth. ChlaOTU functioned as a deubiquitinase in vitro. Heterologousexpression of ChlaOTU reduced ubiquitin accumulation at the entry sites, while a catalytic mutant of the deubiquitinase activity had the opposite effect. Altogether, we have identified a novel secreted protein of chlamydiae. ChlaOTU targets both ubiquitin and NDP52 and likely participates in the clearance of ubiquitin at the invasion sites.
Collapse
Affiliation(s)
- Ana Rita Furtado
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, Paris, France; CNRS URA 2582, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 2013; 11:561-73. [PMID: 23797173 DOI: 10.1038/nrmicro3049] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The agent of Q fever, Coxiella burnetii, is an obligate intracellular bacterium that causes acute and chronic infections. The study of C. burnetii pathogenesis has benefited from two recent fundamental advances: improved genetic tools and the ability to grow the bacterium in extracellular media. In this Review, we describe how these recent advances have improved our understanding of C. burnetii invasion and host cell modulation, including the formation of replication-permissive Coxiella-containing vacuoles. Furthermore, we describe the Dot/Icm (defect in organelle trafficking/intracellular multiplication) system, which is used by C. burnetii to secrete a range of effector proteins into the host cell, and we discuss the role of these effectors in remodelling the host cell.
Collapse
Affiliation(s)
- Erin J van Schaik
- Department of Microbial and Molecular Pathogenesis, Texas A&M Health Science Center College of Medicine, Bryan, Texas 77807-3260, USA
| | | | | | | | | |
Collapse
|
24
|
Bastidas RJ, Elwell CA, Engel JN, Valdivia RH. Chlamydial intracellular survival strategies. Cold Spring Harb Perspect Med 2013; 3:a010256. [PMID: 23637308 DOI: 10.1101/cshperspect.a010256] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen and the causative agent of blinding trachoma. Although Chlamydia is protected from humoral immune responses by residing within remodeled intracellular vacuoles, it still must contend with multilayered intracellular innate immune defenses deployed by its host while scavenging for nutrients. Here we provide an overview of Chlamydia biology and highlight recent findings detailing how this vacuole-bound pathogen manipulates host-cellular functions to invade host cells and maintain a replicative niche.
Collapse
Affiliation(s)
- Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
25
|
Beeckman DS, De Puysseleyr L, De Puysseleyr K, Vanrompay D. Chlamydial biology and its associated virulence blockers. Crit Rev Microbiol 2012; 40:313-28. [PMID: 23134414 DOI: 10.3109/1040841x.2012.726210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chlamydiales are obligate intracellular parasites of eukaryotic cells. They can be distinguished from other Gram-negative bacteria through their characteristic developmental cycle, in addition to special biochemical and physical adaptations to subvert the eukaryotic host cell. The host spectrum includes humans and other mammals, fish, birds, reptiles, insects and even amoeba, causing a plethora of diseases. The first part of this review focuses on the specific chlamydial infection biology and metabolism. As resistance to classical antibiotics is emerging among Chlamydiae as well, the second part elaborates on specific compounds and tools to block chlamydial virulence traits, such as adhesion and internalization, Type III secretion and modulation of gene expression.
Collapse
Affiliation(s)
- Delphine S Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University , Coupure Links 653, B-9000 Ghent , Belgium
| | | | | | | |
Collapse
|
26
|
Chlamydia pneumoniae entry into epithelial cells by clathrin-independent endocytosis. Microb Pathog 2011; 52:157-64. [PMID: 22203235 DOI: 10.1016/j.micpath.2011.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 11/24/2022]
Abstract
A gram-negative obligate intracellular bacterium, Chlamydia pneumoniae, is a common respiratory pathogen. Here, we examined the invasion and attachment of C. pneumoniae K6 into nonphagocytic HL epithelial cell line by manipulating host plasma membranes by using cholesterol-depleting methyl-beta-cyclodextrin (MβCD) and cholesterol-loading MβCD complexed cholesterol (chol-MβCD). The invasion was attenuated by MβCD-treatment while chol-MβCD augmented the attachment and invasion. In addition, the invasion was inhibited by cholesterol sequestering reagents, nystatin and filipin. Furthermore, exposure of host cells to sphingomyelinase inhibited the invasion. RNA interference was used to assay the role of clathrin and human scavenger receptor B, type I (SR-BI) in the entry of C. pneumoniae into A549 lung epithelial adenocarcinoma cells. In contrast to Chlamydia trachomatis L2, the entry of C. pneumoniae was found to be independent of clathrin. In addition, the entry was found to be SR-BI-independent, but interestingly, the chlamydial growth was attenuated in the SR-BI-silenced cells. These findings suggest that the attachment and invasion of C. pneumoniae into nonphagocytic epithelial cells is dependent on the formation of cholesterol- and sphingomyelin-rich plasma membrane microdomains, and the entry is a clathrin-independent process. In addition, our data indicate that SR-BI supports the growth of C. pneumoniae in epithelial cells.
Collapse
|
27
|
Abstract
Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion.
Collapse
Affiliation(s)
- Rey Carabeo
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College London, London, UK.
| |
Collapse
|
28
|
Scidmore MA. Recent advances in Chlamydia subversion of host cytoskeletal and membrane trafficking pathways. Microbes Infect 2011; 13:527-35. [PMID: 21334451 PMCID: PMC3092832 DOI: 10.1016/j.micinf.2011.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 01/31/2011] [Accepted: 02/02/2011] [Indexed: 11/24/2022]
Abstract
Chlamydia species are obligate intracellular bacteria that cause sexually transmitted disease, ocular infections and atypical pneumonia. This review highlights recent advances describing the mechanisms by which Chlamydia subvert host cytoskeleton and membrane trafficking pathways to create a replication competent niche.
Collapse
Affiliation(s)
- Marci A Scidmore
- Department of Microbiology and Immunology, Cornell College of Veterinary Medicine, Ithaca, NY 14850, USA.
| |
Collapse
|
29
|
Stone CB, Bulir DC, Emdin CA, Pirie RM, Porfilio EA, Slootstra JW, Mahony JB. Chlamydia Pneumoniae CdsL Regulates CdsN ATPase Activity, and Disruption with a Peptide Mimetic Prevents Bacterial Invasion. Front Microbiol 2011; 2:21. [PMID: 21687413 PMCID: PMC3109343 DOI: 10.3389/fmicb.2011.00021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 01/30/2011] [Indexed: 12/29/2022] Open
Abstract
Chlamydiae are obligate intracellular pathogens that likely require type III secretion (T3S) to invade cells and replicate intracellularly within a cytoplasmic vacuole called an inclusion body. Chlamydia pneumoniae possess a YscL ortholog, CdsL, that has been shown to interact with the T3S ATPase (CdsN). In this report we demonstrate that CdsL down-regulates CdsN enzymatic activity in a dose-dependent manner. Using Pepscan epitope mapping we identified two separate binding domains to which CdsL binds viz. CdsN221–229 and CdsN265–270. We confirmed the binding domains using a pull-down assay and showed that GST–CdsN221–270, which encompasses these peptides, co-purified with His–CdsL. Next, we used orthology modeling based on the crystal structure of a T3S ATPase ortholog from Escherichia coli, EscN, to map the binding domains on the predicted 3D structure of CdsN. The CdsL binding domains mapped to the catalytic domain of the ATPase, one in the central channel of the ATPase hexamer and one on the outer face. Since peptide mimetics have been used to disrupt essential protein interactions of the chlamydial T3S system and inhibit T3S-mediated invasion of HeLa cells, we hypothesized that if CdsL–CdsN binding is essential for regulating T3S then a CdsN peptide mimetic could be used to potentially block T3S and chlamydial invasion. Treatment of elementary body with a CdsN peptide mimetic inhibited C. pneumoniae invasion into HeLa cells in a dose-dependent fashion. This report represents the first use of Pepscan technology to identify binding domains for specific T3S proteins viz. CdsL on the ATPase, CdsN, and demonstrates that peptide mimetics can be used as anti-virulence factors to block bacterial invasion.
Collapse
Affiliation(s)
- Chris B Stone
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University, Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare Hamilton, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Dunn JD, Valdivia RH. Uncivil engineers: Chlamydia, Salmonella and Shigella alter cytoskeleton architecture to invade epithelial cells. Future Microbiol 2010; 5:1219-32. [DOI: 10.2217/fmb.10.77] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The obligate intracellular bacterial pathogen Chlamydia trachomatis is a major cause of blindness and sexually transmitted diseases. Like the enteric pathogens Salmonella and Shigella, Chlamydia injects effector proteins into epithelial cells to initiate extensive remodeling of the actin cytoskeleton at the bacterial attachment site, which culminates in the engulfment of the bacterium by plasma membrane extensions. Numerous Salmonella and Shigella effectors promote this remodeling by activating Rho GTPases and tyrosine kinase signaling cascades and by directly manipulating actin dynamics. Recent studies indicate that similar host-cell alterations occur during Chlamydia invasion, but few effectors are known. The identification of additional Chlamydia effectors and the elucidation of their modes of function are critical steps towards an understanding of how this clinically important pathogen breaches epithelial surfaces and causes infection.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Department of Molecular Genetics & Microbiology & Center for Microbial Pathogenesis Duke University Medical Center, 272 Jones Building, Box 3580, Durham, NC 27710, USA
| | | |
Collapse
|
31
|
Jewett TJ, Miller NJ, Dooley CA, Hackstadt T. The conserved Tarp actin binding domain is important for chlamydial invasion. PLoS Pathog 2010; 6:e1000997. [PMID: 20657821 PMCID: PMC2904776 DOI: 10.1371/journal.ppat.1000997] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/11/2010] [Indexed: 11/19/2022] Open
Abstract
The translocated actin recruiting phosphoprotein (Tarp) is conserved among all pathogenic chlamydial species. Previous reports identified single C. trachomatis Tarp actin binding and proline rich domains required for Tarp mediated actin nucleation. A peptide antiserum specific for the Tarp actin binding domain was generated and inhibited actin polymerization in vitro and C. trachomatis entry in vivo, indicating an essential role for Tarp in chlamydial pathogenesis. Sequence analysis of Tarp orthologs from additional chlamydial species and C. trachomatis serovars indicated multiple putative actin binding sites. In order to determine whether the identified actin binding domains are functionally conserved, GST-Tarp fusions from multiple chlamydial species were examined for their ability to bind and nucleate actin. Chlamydial Tarps harbored variable numbers of actin binding sites and promoted actin nucleation as determined by in vitro polymerization assays. Our findings indicate that Tarp mediated actin binding and nucleation is a conserved feature among diverse chlamydial species and this function plays a critical role in bacterial invasion of host cells. Chlamydiae are bacterial obligate intracellular pathogens responsible for multiple human and veterinary diseases. The induction of cytoskeletal rearrangements to promote chlamydial internalization is partially mediated by a type III secreted effector protein called Tarp that is translocated upon contact with host cells and independently nucleates actin filament formation. Tarp from a C. trachomatis lymphogranuloma venereum (LGV) strain consists of a tyrosine-rich repeat domain, a proline-rich domain required for oligomerization, and a single actin binding domain. Oligomerization is required to bring multiple actin monomers together to initiate actin filament formation by a mechanism distinct from host actin nucleators. Here we have examined Tarp from several other strains of chlamydiae and find that certain of these contain up to four actin binding domains. Tarp fragments bearing multiple actin binding domains nucleate actin in in vitro assays even in the absence of the oligomerization domain. This suggests that Tarp from different chlamydial species may utilize hybrid mechanisms to induce actin nucleation. Determination of virulence determinants in chlamydiae is challenging due to the lack of tractable genetic systems. The direct introduction of anti-Tarp actin binding domain antibodies into the cytosol of host cells inhibited entry and thus demonstrates an essential role for Tarp in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Travis J. Jewett
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Natalie J. Miller
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Cheryl A. Dooley
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
32
|
Thalmann J, Janik K, May M, Sommer K, Ebeling J, Hofmann F, Genth H, Klos A. Actin re-organization induced by Chlamydia trachomatis serovar D--evidence for a critical role of the effector protein CT166 targeting Rac. PLoS One 2010; 5:e9887. [PMID: 20360858 PMCID: PMC2845625 DOI: 10.1371/journal.pone.0009887] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 02/26/2010] [Indexed: 11/18/2022] Open
Abstract
The intracellular bacterium Chlamydia trachomatis causes infections of urogenital tract, eyes or lungs. Alignment reveals homology of CT166, a putative effector protein of urogenital C. trachomatis serovars, with the N-terminal glucosyltransferase domain of clostridial glucosylating toxins (CGTs). CGTs contain an essential DXD-motif and mono-glucosylate GTP-binding proteins of the Rho/Ras families, the master regulators of the actin cytoskeleton. CT166 is preformed in elementary bodies of C. trachomatis D and is detected in the host-cell shortly after infection. Infection with high MOI of C. trachomatis serovar D containing the CT166 ORF induces actin re-organization resulting in cell rounding and a decreased cell diameter. A comparable phenotype was observed in HeLa cells treated with the Rho-GTPase-glucosylating Toxin B from Clostridium difficile (TcdB) or HeLa cells ectopically expressing CT166. CT166 with a mutated DXD-motif (CT166-mut) exhibited almost unchanged actin dynamics, suggesting that CT166-induced actin re-organization depends on the glucosyltransferase motif of CT166. The cytotoxic necrotizing factor 1 (CNF1) from E. coli deamidates and thereby activates Rho-GTPases and transiently protects them against TcdB-induced glucosylation. CNF1-treated cells were found to be protected from TcdB- and CT166-induced actin re-organization. CNF1 treatment as well as ectopic expression of non-glucosylable Rac1-G12V, but not RhoA-G14A, reverted CT166-induced actin re-organization, suggesting that CT166-induced actin re-organization depends on the glucosylation of Rac1. In accordance, over-expression of CT166-mut diminished TcdB induced cell rounding, suggesting shared substrates. Cell rounding induced by high MOI infection with C. trachomatis D was reduced in cells expressing CT166-mut or Rac1-G12V, and in CNF1 treated cells. These observations indicate that the cytopathic effect of C. trachomatis D is mediated by CT166 induced Rac1 glucosylation. Finally, chlamydial uptake was impaired in CT166 over-expressing cells. Our data strongly suggest CT166's participation as an effector protein during host-cell entry, ensuring a balanced uptake into host-cells by interfering with Rac-dependent cytoskeletal changes.
Collapse
Affiliation(s)
- Jessica Thalmann
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Bacterial entry is a multistep process triggering a complex network, yet the molecular complexity of this network remains largely unsolved. By employing a systems biology approach, we reveal a systemic bacterial-entry network initiated by Chlamydia pneumoniae, a widespread opportunistic pathogen. The network consists of nine functional modules (i.e., groups of proteins) associated with various cellular functions, including receptor systems, cell adhesion, transcription, and endocytosis. The peak levels of gene expression for these modules change rapidly during C. pneumoniae entry, with cell adhesion occurring at 5 min postinfection, receptor and actin activity at 25 min, and endocytosis at 2 h. A total of six membrane proteins (chemokine C-X-C motif receptor 7 [CXCR7], integrin beta 2 [ITGB2], platelet-derived growth factor beta polypeptide [PDGFB], vascular endothelial growth factor [VEGF], vascular cell adhesion molecule 1 [VCAM1], and GTP binding protein overexpressed in skeletal muscle [GEM]) play a key role during C. pneumoniae entry, but none alone is essential to prevent entry. The combination knockdown of three genes (coding for CXCR7, ITGB2, and PDGFB) significantly inhibits C. pneumoniae entry, but the entire network is resistant to the six-gene depletion, indicating a resilient network. Our results reveal a complex network for C. pneumoniae entry involving at least six key proteins.
Collapse
|
34
|
Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect Immun 2010; 78:1990-2007. [PMID: 20231409 DOI: 10.1128/iai.01340-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydiae replicate within a nonacidified vacuole, termed an inclusion. As obligate intracellular bacteria, chlamydiae actively modify their vacuole to exploit host signaling and trafficking pathways. Recently, we demonstrated that several Rab GTPases are actively targeted to the inclusion. To define the biological roles of inclusion localized Rab GTPases, we have begun to identify inclusion-localized Rab effectors. Here we demonstrate that oculocerebrorenal syndrome of Lowe protein 1 (OCRL1), a Golgi complex-localized phosphatidylinositol (PI)-5-phosphatase that binds to multiple Rab GTPases, localizes to chlamydial inclusions. By examining the intracellular localization of green fluorescent protein (GFP) fusion proteins that bind to unique phosphoinositide species, we also demonstrate that phosphatidylinositol-4-phosphate (PI4P), the product of OCRL1, is present at the inclusion membrane. Furthermore, two additional host proteins, Arf1, which together with PI4P mediates the recruitment of PI4P-binding proteins to the Golgi complex, and PI4KII alpha, a major producer of Golgi complex-localized PI4P, also localize to chlamydial inclusions. Depletion of OCRL1, Arf1, or PI4KII alpha by small interfering RNA (siRNA) decreases inclusion formation and the production of infectious progeny. Infectivity is further decreased in cells simultaneously depleted for all three host proteins, suggesting partially overlapping functions in infected cells. Collectively, these data demonstrate that Chlamydia species create a unique replication-competent vacuolar environment by modulating both the Rab GTPase and the PI composition of the chlamydial inclusion.
Collapse
|
35
|
Fujiwara M, Hamada S, Hiratsuka M, Fukao Y, Kawasaki T, Shimamoto K. Proteome analysis of detergent-resistant membranes (DRMs) associated with OsRac1-mediated innate immunity in rice. PLANT & CELL PHYSIOLOGY 2009; 50:1191-200. [PMID: 19502382 PMCID: PMC2709549 DOI: 10.1093/pcp/pcp077] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 05/29/2009] [Indexed: 05/18/2023]
Abstract
OsRac1, a member of the Rac/Rop GTPase family, plays important roles as a molecular switch in rice innate immunity, and the active form of OsRac1 functions in the plasma membrane (PM). To study the precise localization of OsRac1 in the PM and its possible association with other signaling components, we performed proteomic analysis of DRMs (detergent-resistant membranes) isolated from rice suspension-cultured cells transformed with myc-tagged constitutively active (CA) OsRac1. DRMs are regions of the PM that are insoluble after Triton X-100 treatment under cold conditions and are thought to be involved in various signaling processes in animal, yeast and plant cells. We identified 192 proteins in DRMs that included receptor-like kinases (RLKs) such as Xa21, nucleotide-binding leucine-rich repeat (NB-LRR)-type disease resistance proteins, a glycosylphosphatidylinositol (GPI)-anchored protein, syntaxin, NADPH oxidase, a WD-40 repeat family protein and various GTP-binding proteins. Many of these proteins have been previously identified in the DRMs isolated from other plant species, and animal and yeast cells, validating the methods used in our study. To examine the possible association of DRMs and OsRac1-mediated innate immunity, we used rice suspension-cultured cells transformed with myc-tagged wild-type (WT) OsRac1 and found that OsRac1 and RACK1A, an effector of OsRac1, shifted to the DRMs after chitin elicitor treatment. These results suggest that OsRac1-mediated innate immunity is associated with DRMs in the PM.
Collapse
Affiliation(s)
- Masayuki Fujiwara
- Laboratory of Plant Protein Analysis, Plant Education Unit, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Satoshi Hamada
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Minori Hiratsuka
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Yoichiro Fukao
- Laboratory of Plant Protein Analysis, Plant Education Unit, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Tsutomu Kawasaki
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
| | - Ko Shimamoto
- Laboratory of Plant Molecular Genetics, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192 Japan
- *Corresponding author: E-mail, ; Fax: +81-743-72-5502
| |
Collapse
|
36
|
Pereira SFF, Henriques AO, Pinho MG, de Lencastre H, Tomasz A. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol Microbiol 2009; 72:1423-37. [PMID: 19460098 PMCID: PMC2997736 DOI: 10.1111/j.1365-2958.2009.06732.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular parasite, occupies a membrane-bound vacuole throughout development and is capable of manipulating the eukaryotic host by translocating effector molecules via a type III secretion system (T3SS). The infectious chlamydial elementary body (EB) is metabolically inactive yet possesses a functional T3S apparatus capable of translocating effector proteins into the host cell to facilitate invasion and other early cycle events. We present evidence here that the C. trachomatis protein CT694 represents an early cycle-associated effector protein. CT694 is secreted by the Yersinia T3SS and immunodetection studies of infected HeLa cultures indicate that CT694-specific signal accumulates directly adjacent to, but not completely overlapping with EBs during invasion. Yeast two-hybrid analyses revealed an interaction of CT694 with the repeat region and C-terminus of human AHNAK. Immunolocalization studies of CT694 ectopically expressed in HeLa cells were consistent with an interaction with endogenous AHNAK. Additionally, expression of CT694 in HeLa cells resulted in alterations in the detection of stress fibres that correlated with the ability of CT694 to interact with AHNAK. These data indicate that CT694 is a novel T3S-dependent substrate unique to C. trachomatis, and that its interaction with host proteins such as AHNAK may be important for aspects of invasion or development particular to this species.
Collapse
Affiliation(s)
- S. F. F. Pereira
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica (ITQB) da Universidade Nova de Lisboa (UNL), 2780 Oeiras, Portugal
| | - A. O. Henriques
- Laboratory of Microbial Development, ITQB-UNL, 2780 Oeiras, Portugal
| | - M. G. Pinho
- Laboratory of Bacterial Cell Biology, ITQB-UNL, 2780 Oeiras, Portugal
| | - H. de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica (ITQB) da Universidade Nova de Lisboa (UNL), 2780 Oeiras, Portugal
- Laboratory of Microbiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - A. Tomasz
- Laboratory of Microbiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| |
Collapse
|
37
|
Beeckman DSA, Meesen G, Van Oostveldt P, Vanrompay D. Digital titration: automated image acquisition and analysis of load and growth of Chlamydophila psittaci. Microsc Res Tech 2009; 72:398-402. [PMID: 19165738 DOI: 10.1002/jemt.20694] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Traditionally, the amount of infective chlamydiae in a given sample is determined by inoculating dilution series into cell cultures and physically counting chlamydial inclusions. This approach is time consuming, tedious, and error prone, mainly when dealing with high titers. Therefore, this paper describes a largely automated technique that was developed to standardize the determination of chlamydial load in vitro. Cells are fixed at 36 h post-inoculation and bacteria visualized using standard immunological detection methods. Consequently, for 81 microscopic fields, an image is recorded at the interpolated focal plane. These images are then automatically processed using an ImageJ plugin and the obtained results are imported into Excel to determine the number of inclusion forming units per mL in the sample. The main advantage of this technique is that no or minimal sample dilution is required, thus minimizing dilution errors. In addition, this technique was employed during the early, middle and late growth stages of the chlamydial developmental cycle and results correlated well (P < 0.01) with 16S rRNA values from previous experiments, thereby proving its suitability to follow chlamydial growth in vitro. The method described is highly suitable for high throughput titration of cell culture inoculated samples and assessment of possible antichlamydial effects of novel compounds throughout the chlamydial growth cycle.
Collapse
Affiliation(s)
- Delphine S A Beeckman
- Faculty of Bioscience Engineering, Department of Molecular Biotechnology (BW14), Ghent University, Coupure Links 653, Gent, Belgium.
| | | | | | | |
Collapse
|
38
|
Muschiol S, Normark S, Henriques-Normark B, Subtil A. Small molecule inhibitors of the Yersinia type III secretion system impair the development of Chlamydia after entry into host cells. BMC Microbiol 2009; 9:75. [PMID: 19383140 PMCID: PMC2679026 DOI: 10.1186/1471-2180-9-75] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 04/21/2009] [Indexed: 01/07/2023] Open
Abstract
Background Chlamydiae are obligate intracellular pathogens that possess a type III secretion system to deliver proteins into the host cell during infection. Small molecule inhibitors of type III secretion in Yersinia, termed INPs (Innate Pharmaceuticals AB) were reported to strongly inhibit Chlamydia growth in epithelial cells. In this study we have analyzed the effect of these drugs on bacterial invasiveness. Results We demonstrate that INPs affect Chlamydia growth in a dose dependent manner after bacterial invasion. The efficiency of C. trachomatis L2 and C. caviae GPIC entry into host cells was not altered in the presence of INPs. In C. caviae, entry appears to proceed normally with recruitment of actin and the small GTPases Rac, Cdc42 and Arf6 to the site of bacterial entry. Conclusion INPs have a strong inhibitory effect on Chlamydia growth. However, bacterial invasion is not altered in the presence of these drugs. In the light of these results, we discuss several hypotheses regarding the mode of action of INPs on type III secretion during the Chlamydia infectious cycle.
Collapse
Affiliation(s)
- Sandra Muschiol
- Institut Pasteur, Unité de Biologie des Interactions Cellulaires, CNRS URA 2582, Paris, France.
| | | | | | | |
Collapse
|
39
|
Betts HJ, Wolf K, Fields KA. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Curr Opin Microbiol 2009; 12:81-7. [PMID: 19138553 DOI: 10.1016/j.mib.2008.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 12/21/2022]
Abstract
As obligate intracellular parasites, Chlamydia spp. must create and maintain a specialized intracellular niche while simultaneously contending with potent host defenses. Discoveries that chlamydiae deploy an array of anti-host proteins have placed new emphasis on deciphering the impact of host cell biology on chlamydial development and virulence. Recent advances in the understanding of chlamydial pathogenesis are exemplified by work describing potential roles of (i) chlamydial Tarp in invasion, (ii) Inc proteins in modulation of vesicular interactions, and (iii) chlamydial proteins in disregulation of NF-kappaB signal transduction. Characterization of these chlamydial effector proteins promises to answer old questions and reveals previously unappreciated biology. The challenge will be to determine how these molecular mechanisms mesh together and collectively contribute to Chlamydia-mediated disease.
Collapse
Affiliation(s)
- Helen J Betts
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
40
|
Savijoki K, Alvesalo J, Vuorela P, Leinonen M, Kalkkinen N. Proteomic analysis ofChlamydia pneumoniae-infected HL cells reveals extensive degradation of cytoskeletal proteins. ACTA ACUST UNITED AC 2008; 54:375-84. [DOI: 10.1111/j.1574-695x.2008.00488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Characterization of the putative type III secretion ATPase CdsN (Cpn0707) of Chlamydophila pneumoniae. J Bacteriol 2008; 190:6580-8. [PMID: 18708502 DOI: 10.1128/jb.00761-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type III secretion (T3S) is utilized by a wide range of gram-negative bacterial pathogens to allow the efficient delivery of effector proteins into the host cell cytoplasm through the use of a syringe-like injectisome. Chlamydophila pneumoniae is a gram-negative, obligate intracellular pathogen that has the structural genes coding for a T3S system, but the functionality of the system has not yet been demonstrated. T3S is dependent on ATPase activity, which catalyzes the unfolding of proteins and the secretion of effector proteins through the injectisome. CdsN (Cpn0707) is predicted to be the T3S ATPase of C. pneumoniae based on sequence similarity to other T3S ATPases. Full-length CdsN and a C-terminal truncation of CdsN were cloned as glutathione S-transferase (GST)-tagged constructs and expressed in Escherichia coli. The GST-tagged C-terminal truncation of CdsN possessed ATPase activity, catalyzing the release of ADP and P(i) from ATP at a rate of 0.55 +/- 0.07 micromol min(-1) mg(-1) in a time- and dose-dependent manner. CdsN formed oligomers and high-molecular-weight multimers, as assessed by formaldehyde fixation and nondenaturing polyacrylamide gel electrophoresis. Using bacterial two-hybrid and GST pull-down assays, CdsN was shown to interact with CdsD, CdsL, CdsQ, and CopN, four putative structural components of the C. pneumoniae T3S system. CdsN also interacted with an unannotated protein, Cpn0706, a putative CdsN chaperone. Interactions between CdsN, CdsD, and CopN represent novel interactions not previously reported for other bacterial T3S systems and may be important in the localization and/or function of the ATPase at the inner membrane of C. pneumoniae.
Collapse
|
42
|
Elwell CA, Ceesay A, Kim JH, Kalman D, Engel JN. RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry. PLoS Pathog 2008; 4:e1000021. [PMID: 18369471 PMCID: PMC2267011 DOI: 10.1371/journal.ppat.1000021] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 02/01/2008] [Indexed: 11/19/2022] Open
Abstract
To elucidate the mechanisms involved in early events in Chlamydia trachomatis infection, we conducted a large scale unbiased RNA interference screen in Drosophila melanogaster S2 cells. This allowed identification of candidate host factors in a simple non-redundant, genetically tractable system. From a library of 7,216 double stranded RNAs (dsRNA), we identified ∼226 host genes, including two tyrosine kinases, Abelson (Abl) kinase and PDGF- and VEGF-receptor related (Pvr), a homolog of the Platelet-derived growth factor receptor (PDGFR). We further examined the role of these two kinases in C. trachomatis binding and internalization into mammalian cells. Both kinases are phosphorylated upon infection and recruited to the site of bacterial attachment, but their roles in the infectious process are distinct. We provide evidence that PDGFRβ may function as a receptor, as inhibition of PDGFRβ by RNA interference or by PDGFRβ neutralizing antibodies significantly reduces bacterial binding, whereas depletion of Abl kinase has no effect on binding. Bacterial internalization can occur through activation of PDGFRβ or through independent activation of Abl kinase, culminating in phosphorylation of the Rac guanine nucleotide exchange factor (GEF), Vav2, and two actin nucleators, WAVE2 and Cortactin. Finally, we show that TARP, a bacterial type III secreted actin nucleator implicated in entry, is a target of Abl kinase. Together, our results demonstrate that PDGFRβ and Abl kinases function redundantly to promote efficient uptake of this obligate intracellular parasite. Chlamydia trachomatis infections are a worldwide problem; they are the leading cause of preventable blindness in developing nations and the most common cause of sexually transmitted disease in the Western world. Binding and entry into host cells are critical steps to the pathogenesis of this obligate intracellular parasite; however little is known regarding the mechanism of these processes. In this work, we describe a large scale RNA interference screen to identify host factors essential for early steps in C. trachomatis infection. We discover that the Platelet Derived Growth Factor Receptor β (PDGFRβ) can function as a receptor for C. trachomatis, and that activation of both PDGFRβ and Abl kinase signaling pathways by C. trachomatis leads to phosphorylation of a Rac guanine nucleotide exchange factor, Vav2, and several actin nucleators, including WAVE2, Cortactin, and TARP, a Chlamydia type III secreted effector. Our work suggests a model of redundant activation of PDGFRβ and Abl kinase upon C. trachomatis binding that culminates in cytoskeletal rearrangements that modulate efficient uptake of this obligate intracellular parasite.
Collapse
Affiliation(s)
- Cherilyn A. Elwell
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Alhaji Ceesay
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jung Hwa Kim
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Daniel Kalman
- Department of Pathology and Laboratory of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Joanne N. Engel
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lane BJ, Mutchler C, Al Khodor S, Grieshaber SS, Carabeo RA. Chlamydial entry involves TARP binding of guanine nucleotide exchange factors. PLoS Pathog 2008; 4:e1000014. [PMID: 18383626 PMCID: PMC2279300 DOI: 10.1371/journal.ppat.1000014] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/30/2008] [Indexed: 11/23/2022] Open
Abstract
Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.
Collapse
Affiliation(s)
- B. Josh Lane
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| | - Charla Mutchler
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| | - Souhaila Al Khodor
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| | - Scott S. Grieshaber
- Department of Oral Biology, University of Florida School of Dentistry, Gainesville, Florida, United States of America
| | - Rey A. Carabeo
- Department of Microbiology and Immunology, University of Louisville Medical School, Louisville, Kentucky, United States of America
| |
Collapse
|
44
|
Interactions between CdsD, CdsQ, and CdsL, three putative Chlamydophila pneumoniae type III secretion proteins. J Bacteriol 2008; 190:2972-80. [PMID: 18281400 DOI: 10.1128/jb.01997-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydophila pneumoniae is a gram-negative obligate intracellular bacterial pathogen that causes pneumonia and bronchitis and may contribute to atherosclerosis. The developmental cycle of C. pneumoniae includes a morphological transition from an infectious extracellular elementary body (EB) to a noninfectious intracellular reticulate body (RB) that divides by binary fission. The C. pneumoniae genome encodes a type III secretion (T3S) apparatus that may be used to infect eukaryotic cells and to evade the host immune response. In the present study, Cpn0712 (CdsD), Cpn0704 (CdsQ), and Cpn0826 (CdsL), three C. pneumoniae genes encoding yersiniae T3S YscD, YscQ, and YscL homologs, respectively, were cloned and expressed as histidine- and glutathione S-transferase (GST)-tagged proteins in Escherichia coli. Purified recombinant proteins were used to raise hyper-immune polyclonal antiserum and were used in GST pull-down and copurification assays to identify protein-protein interactions. CdsD was detected in both EB and RB lysates by Western blot analyses, and immunofluorescent staining demonstrated the presence of CdsD within inclusions. Triton X-114 solubilization and phase separation of chlamydial EB proteins indicated that CdsD partitions with cytoplasmic proteins, suggesting it is not an integral membrane protein. GST pull-down assays indicated that recombinant CdsD interacts with CdsQ and CdsL, and copurification assays with chlamydial lysates confirmed that native CdsD interacts with CdsQ and CdsL. To the best of our knowledge, this is the first report demonstrating interactions between YscD, YscQ, and YscL homologs of bacterial T3S systems. These novel protein interactions may play important roles in the assembly or function of the chlamydial T3S apparatus.
Collapse
|
45
|
Derré I, Pypaert M, Dautry-Varsat A, Agaisse H. RNAi screen in Drosophila cells reveals the involvement of the Tom complex in Chlamydia infection. PLoS Pathog 2007; 3:1446-58. [PMID: 17967059 PMCID: PMC2042019 DOI: 10.1371/journal.ppat.0030155] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 09/13/2007] [Indexed: 12/20/2022] Open
Abstract
Chlamydia spp. are intracellular obligate bacterial pathogens that infect a wide range of host cells. Here, we show that C. caviae enters, replicates, and performs a complete developmental cycle in Drosophila SL2 cells. Using this model system, we have performed a genome-wide RNA interference screen and identified 54 factors that, when depleted, inhibit C. caviae infection. By testing the effect of each candidate's knock down on L. monocytogenes infection, we have identified 31 candidates presumably specific of C. caviae infection. We found factors expected to have an effect on Chlamydia infection, such as heparansulfate glycosaminoglycans and actin and microtubule remodeling factors. We also identified factors that were not previously described as involved in Chlamydia infection. For instance, we identified members of the Tim-Tom complex, a multiprotein complex involved in the recognition and import of nuclear-encoded proteins to the mitochondria, as required for C. caviae infection of Drosophila cells. Finally, we confirmed that depletion of either Tom40 or Tom22 also reduced C. caviae infection in mammalian cells. However, C. trachomatis infection was not affected, suggesting that the mechanism involved is C. caviae specific.
Collapse
Affiliation(s)
- Isabelle Derré
- Section of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
46
|
Swanson KA, Crane DD, Caldwell HD. Chlamydia trachomatis species-specific induction of ezrin tyrosine phosphorylation functions in pathogen entry. Infect Immun 2007; 75:5669-77. [PMID: 17908813 PMCID: PMC2168331 DOI: 10.1128/iai.01096-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans that exhibits species-specific biological characteristics in its early interactions with host cells that are likely important to pathogenesis. One such characteristic is the tyrosine phosphorylation (Tyr-P) of an approximately 70-kDa polypeptide that occurs only after infection of mammalian cells by human strains. We sought to identify this protein because of its potential significance to the pathogenesis of human chlamydial infections. Using an immunoproteomic approach we identified the host protein ezrin, a member of the ezrin-radixin-moesin (ERM) protein family that serves as a physical link between host cell receptors and the actin cytoskeleton. Confocal microscopy studies showed colocalization of ezrin and actin at the tips and crypts of microvilli, the site of chlamydial attachment and entry, respectively. To demonstrate a functional role for ezrin we infected cells with a dominant-negative (DN) ezrin phenotype or treated cells with ezrin-specific small interfering RNA (siRNA). We found that both DN and siRNA-treated cells were significantly less susceptible to infection by human chlamydial strains. Moreover, we demonstrated that inhibition of infection in ezrin DN cells occurred at the stage of chlamydial entry. We hypothesize that the C. trachomatis-specific Tyr-P of ezrin might relate to an undefined species-specific mechanism of pathogen entry that involves chlamydial specific ligand(s) and host cell coreceptor usage.
Collapse
Affiliation(s)
- Kena A Swanson
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th St., Hamilton, MT 59840, USA
| | | | | |
Collapse
|
47
|
Carabeo RA, Dooley CA, Grieshaber SS, Hackstadt T. Rac interacts with Abi-1 and WAVE2 to promote an Arp2/3-dependent actin recruitment during chlamydial invasion. Cell Microbiol 2007; 9:2278-88. [PMID: 17501982 DOI: 10.1111/j.1462-5822.2007.00958.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chlamydiae are Gram-negative obligate intracellular pathogens to which access to an intracellular environment is fundamental to their development. Chlamydial attachment to host cells induces the activation of the Rac GTPase, which is required for the localization of WAVE2 at the sites of chlamydial entry. Co-immunoprecipitation experiments demonstrated that Chlamydia trachomatis infection promoted the interaction of Rac with WAVE2 and Abi-1, but not with IRSp53. siRNA depletion of WAVE2 and Abi-1 abrogated chlamydia-induced actin recruitment and significantly reduced the uptake of the pathogen by the depleted cells. Chlamydia invasion also requires the Arp2/3 complex as demonstrated by its localization to the sites of chlamydial attachment and the reduced efficiency of chlamydial invasion in cells overexpressing the VCA domain of the neural Wiskott-Aldrich syndrome protein. Thus, C. trachomatis activates Rac and promotes its interaction with WAVE2 and Abi-1 to activate the Arp2/3 complex resulting in the induction of actin cytoskeletal rearrangements that are required for invasion.
Collapse
Affiliation(s)
- Rey A Carabeo
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | | | | | | |
Collapse
|
48
|
Beeckman DSA, Van Droogenbroeck CMAD, De Cock BJA, Van Oostveldt P, Vanrompay DCG. Effect of ovotransferrin and lactoferrins onChlamydophila psittaciadhesion and invasion in HD11 chicken macrophages. Vet Res 2007; 38:729-39. [PMID: 17621441 DOI: 10.1051/vetres:2007028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 04/12/2007] [Indexed: 11/14/2022] Open
Abstract
The effect of ovotransferrin (ovoTF), human lactoferrin (hLF) and bovine lactoferrin (bLF) on the obligate intracellular pathogen Chlamydophila (Cp.) psittaci was evaluated using a model of Buffalo Green Monkey kidney (BGM) cells and HD11 chicken macrophages as artificial hosts. Firstly, the effect of transferrins on the infectivity of the bacteria was evaluated. Pre-incubation of Cp. psittaci with 0.5 to 5 mg/mL ovoTF prior to infecting BGM cells significantly lowered the infection rate (P < 0.05). For both lactoferrins, the infection rate could only be reduced with 5 mg/mL, albeit not significantly as compared to the infection rate created by the untreated bacteria. Secondly, transferrins were tested for their ability to influence bacterial adhesion and entry in HD11 cells. Maximal non-cytotoxic and non-bactericidal concentrations of 0.05 mg/mL ovoTF and 0.5 mg/mL hLF and bLF were used. Overall, ovoTF was more effective than human and bovine LF in inhibiting bacterial irreversible attachment and cell entry and the latter was accompanied by a dose-dependent reduction of actin recruitment at the bacterial entry site. However, once bacteria had entered HD11 cells, transferrins had apparently no effect on intracellular replication. The present findings suggest a possible role for transferrins and especially ovoTF, in preventing avian Cp. psittaci infections.
Collapse
Affiliation(s)
- Delphine Sylvie Anne Beeckman
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
49
|
Shinomiya H. [Dual role of the actin cytoskeleton in host defenses and in the establishment of bacterial infections]. Nihon Saikingaku Zasshi 2007; 62:279-93. [PMID: 17575795 DOI: 10.3412/jsb.62.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiroto Shinomiya
- Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine
| |
Collapse
|
50
|
Abstract
The mechanisms of entry for the obligate intracellular bacterium C. trachomatis were examined by functional disruption of proteins essential for various modes of entry. RNA interference was used to disrupt proteins with established roles in clathrin-mediated endocytosis (clathrin heavy chain, dynamin-2, heat shock 70-kDa protein 8, Arp2, cortactin, and calmodulin), caveola-mediated endocytosis (caveolin-1, dynamin-2, Arp2, NSF, and annexin II), phagocytosis (RhoA, dynamin-2, Rac1, and Arp2), and macropinocytosis (Pak1, Rac1, and Arp2). Comparative quantitative PCR analysis was performed on small interfering RNA-transfected HeLa cells to accurately determine the extent of C. trachomatis entry after these treatments. Key structural and regulatory factors associated with clathrin-mediated endocytosis were found to be involved in Chlamydia entry, whereas those for caveola-mediated endocytosis, phagocytosis, and macropinocytosis were not. Thus, clathrin and its coordinate accessory factors were required for entry of C. trachomatis, although additional, uncharacterized mechanisms are also utilized.
Collapse
Affiliation(s)
- Kevin Hybiske
- Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California-Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|