1
|
Jang J, Yu H, Oh EB, Park JW, Kim S, Kim T, Sohn J, Jin BR, Chang TS. Targeting NADPH Oxidase with APX-115: Suppression of Platelet Activation and Thrombotic Response. Antioxid Redox Signal 2025. [PMID: 40183134 DOI: 10.1089/ars.2024.0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Aims: NADPH oxidase (NOX)-derived reactive oxygen species (ROS) are critical for platelet activation and thrombus formation. We hypothesized that inhibiting NOX-mediated ROS production with a pan-NOX inhibitor, APX-115, could effectively suppress platelet activation and thrombus formation, potentially serving as a novel antiplatelet therapeutic. This study aimed to explore the effects of APX-115 on human platelet functional responses and ROS-mediated signaling pathways. Results: APX-115 inhibited intracellular and extracellular ROS production in collagen-stimulated platelets, suppressing aggregation, P-selectin exposure, and ATP release. By preserving protein tyrosine phosphatase activity, APX-115 reduced tyrosine phosphorylation-dependent pathways inhibition, including spleen tyrosine kinase, LAT, Vav1, Bruton's tyrosine kinase, and phospholipase Cγ2, leading to decreased PKC activation and calcium mobilization. APX-115 also suppressed collagen-induced integrin αIIbβ3 activation, accompanied by elevated cGMP and vasodilator-stimulated phosphoprotein phosphorylation levels. In addition, APX-115 reduced p38 MAPK and ERK5 activation, leading to diminished phospholipase A2 phosphorylation, thromboxane production, and the exposure of procoagulant phosphatidylserine. These inhibitory effects extended to thrombus development caused by platelet adherence under shear and arterial thrombosis without prolonging bleeding time in murine models. Innovation: This study is the first to demonstrate that APX-115 inhibits NOX-mediated ROS production, platelet activation, and thrombus formation. By uncovering its effects on collagen receptor glycoprotein VI-mediated pathways, the work highlights the promise of APX-115 as an antiplatelet and antithrombotic agent. Conclusion: Our findings highlight the therapeutic potential of APX-115 in treating thrombotic and cardiovascular disorders by targeting NOX-mediated ROS production to mitigate platelet hyperreactivity and thrombus formation. Antioxid. Redox Signal. 00, 000-000. [Figure: see text].
Collapse
Affiliation(s)
- Joara Jang
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyunseong Yu
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Bee Oh
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Won Park
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Solee Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taeryeong Kim
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jisue Sohn
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Bo-Ram Jin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tong-Shin Chang
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Cheah LT, Hindle MS, Khalil JS, Duval C, Unsworth AJ, Naseem KM. Platelet Reactive Oxygen Species, Oxidised Lipid Stress, Current Perspectives, and an Update on Future Directions. Cells 2025; 14:500. [PMID: 40214454 PMCID: PMC11987991 DOI: 10.3390/cells14070500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Blood platelets are anucleate cells that play a vital role in haemostasis, innate immunity, angiogenesis, and wound healing. However, the inappropriate activation of platelets also contributes to vascular inflammation, atherogenesis, and thrombosis. Platelet activation is a highly complex receptor-mediated process that involves a multitude of signalling intermediates in which Reactive Oxygen Species (ROS) are proposed to play an important role. However, like for many cells, changes in the balance of ROS generation and/or scavenging in disease states may lead to the adoption of maladaptive platelet phenotypes. Here, we review the diverse roles of ROS in platelet function and how ROS are linked to specific platelet activation pathways. We also examine how changes in disease, particularly the plasma oxidised low-density lipoprotein (oxLDL), affect platelet ROS generation and platelet function.
Collapse
Affiliation(s)
- Lih T. Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Matthew S. Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, Leeds LS1 3HE, UK
| | - Jawad S. Khalil
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Cedric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Amanda J. Unsworth
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (L.T.C.); (M.S.H.); (J.S.K.); (C.D.); (A.J.U.)
| |
Collapse
|
3
|
Kim TJ, Jung JW, Kim YJ, Yoon BW, Han D, Ko SB. Proteomic Analyses of Clots Identify Stroke Etiologies in Patients Undergoing Endovascular Therapy. CNS Neurosci Ther 2025; 31:e70340. [PMID: 40079446 PMCID: PMC11904956 DOI: 10.1111/cns.70340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025] Open
Abstract
AIMS This study aimed to investigate the correlation between clot composition and stroke mechanisms in patients undergoing endovascular therapy (EVT), using proteomic analysis. METHODS This study included 35 patients with ischemic stroke (cardioembolism [CE], n = 17; large artery atherosclerosis [LAA], n = 6; cancer-related [CR], n = 4; and undetermined (UD) cause, n = 8) who underwent EVT. Retrieved clots were proteomically analyzed to identify differentially expressed proteins associated with the three stroke mechanisms and to develop the machine learning model. RESULTS In the discover stage, 3838 proteins were identified using clot samples from 27 patients with CE, LAA, and CR mechanisms. Through functional enrichment and network analysis, 149 proteins were identified as potential candidates for verification studies. After verification experiments, 34 proteins were selected as the final candidates to predict stroke mechanisms. Furthermore, the machine learning-based model identified three proteins associated with each mechanism (Pleckstrin in CE; CD59 glycoprotein in LAA; and Immunoglobulin Heavy Constant Gamma 1 in CR) in the UD group. CONCLUSIONS This study identified specific protein markers of clots that could differentiate stroke mechanisms in patients undergoing EVT. Therefore, our results could offer valuable insights into elucidating the mechanisms of ischemic stroke, which could provide information on more effective secondary prevention strategies.
Collapse
Affiliation(s)
- Tae Jung Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jin Woo Jung
- Transdisplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Young-Ju Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| | - Byung-Woo Yoon
- Department of Neurology, Uijeongbu Eulji Medical Center, Uijeongbu, Korea
| | - Dohyun Han
- Transdisplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Sang-Bae Ko
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
4
|
Zeller-Hahn J, Bittl M, Kuhn S, Koessler A, Weber K, Koessler J, Kobsar A. Influence of short-term refrigeration on collagen-dependent signalling mechanisms in stored platelets. Cell Signal 2024; 122:111306. [PMID: 39048036 DOI: 10.1016/j.cellsig.2024.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Platelet concentrates (PC) are used to treat patients with thrombocytopenia and hemorrhage, but there is still the demand to find the optimal strategy for temperature-dependent storage of PC. Recently, we could show that cold storage for 1 h (short-term refrigeration) is sufficient to induce enhanced platelet responsiveness. The aim of this study was to investigate effects of cold storage on collagen-dependent activating signalling pathways in platelets from apheresis-derived PC (APC). APC on day 1 or day 2 of storage, were either continuously kept at room temperature (RT, 22 °C), or for comparison, additionally kept at cold temperature (CT, 4 °C) for 1 h. CD62P expression was determined by flow cytometry. Western Blot technique was used to analyze collagen-induced phosphorylation of p38, ERK1/2 or Akt/PKB and its inhibition by prostaglandin E1 (PGE1) or nitric monoxide donor. Adhesion of platelets on collagen-coated surfaces and intracellular phosphorylation of vasodilator-stimulated phosphoprotein (VASP) was visualized by immune fluorescence microscopy. CD62P expression was increased after short-term refrigeration. CT exposition for 1 h induced an elevation of basal ERK1/2 phosphorylation and an alleviation of PGE1- or DEA/NO-suppressed ERK1/2 phosphorylation in APC on day 1 and 2 of storage. Similar, but more moderate effects were observable for p38 phosphorylation. Akt/PKB phosphorylation was increased only in APC on day 2. Refrigeration for 1 h promoted platelet adhesion and reduced basal VASP phosphorylation in adherent platelets. The attenuation of inhibitory signalling in short-term refrigerated stored platelets is associated with enhanced reactivity of activating signalling pathways, especially ERK1/2. Functionally, these processes correlate with increased adhesion of refrigerated platelets on collagen-coated surfaces. The results help to further optimize temperature-dependent strategies for platelet storage.
Collapse
Affiliation(s)
- Julia Zeller-Hahn
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Marius Bittl
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Sabine Kuhn
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Angela Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Katja Weber
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Juergen Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| | - Anna Kobsar
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Oberduerrbacher Straße 6, D-97080 Wuerzburg, Germany.
| |
Collapse
|
5
|
Golla K, Yasgar A, Manjuprasanna VN, Naik MU, Baljinnyam B, Zakharov AV, Jain S, Rai G, Jadhav A, Simeonov A, Naik UP. Small-Molecule Disruptors of the Interaction between Calcium- and Integrin-Binding Protein 1 and Integrin α IIbβ 3 as Novel Antiplatelet Agents. ACS Pharmacol Transl Sci 2024; 7:1971-1982. [PMID: 39022362 PMCID: PMC11249646 DOI: 10.1021/acsptsci.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 07/20/2024]
Abstract
Thrombosis, a key factor in most cardiovascular diseases, is a major contributor to human mortality. Existing antithrombotic agents carry a risk of bleeding. Consequently, there is a keen interest in discovering innovative antithrombotic agents that can prevent thrombosis without negatively impacting hemostasis. Platelets play crucial roles in both hemostasis and thrombosis. We have previously characterized calcium- and integrin-binding protein 1 (CIB1) as a key regulatory molecule that regulates platelet function. CIB1 interacts with several platelet proteins including integrin αIIbβ3, the major glycoprotein receptor for fibrinogen on platelets. Given that CIB1 regulates platelet function through its interaction with αIIbβ3, we developed a fluorescence polarization (FP) assay to screen for potential inhibitors. The assay was miniaturized to 1536-well and screened in quantitative high-throughput screening (qHTS) format against a diverse compound library of 14,782 compounds. After validation and selectivity testing using the FP assay, we identified 19 candidate inhibitors and validated them using an in-gel binding assay that monitors the interaction of CIB1 with αIIb cytoplasmic tail peptide, followed by testing of top hits by intrinsic tryptophan fluorescence (ITF) and microscale thermophoresis (MST) to ascertain their interaction with CIB1. Two of the validated hits shared similar chemical structures, suggesting a common mechanism of action. Docking studies further revealed promising interactions within the hydrophobic binding pocket of the target protein, particularly forming key hydrogen bonds with Ser180. The compounds exhibited a potent antiplatelet activity based on their inhibition of thrombin-induced human platelet aggregation, thus indicating that disruptors of the CIB1- αIIbβ3 interaction could carry a translational potential as antithrombotic agents.
Collapse
Affiliation(s)
- Kalyan Golla
- Cardeza
Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation
for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Adam Yasgar
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Voddarahally N. Manjuprasanna
- Cardeza
Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation
for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Meghna U. Naik
- Cardeza
Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation
for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Bolormaa Baljinnyam
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Sankalp Jain
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ulhas P. Naik
- Cardeza
Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation
for Hematologic Research, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
6
|
Vadgama A, Boot J, Dark N, Allan HE, Mein CA, Armstrong PC, Warner TD. Multiparameter phenotyping of platelets and characterization of the effects of agonists using machine learning. Res Pract Thromb Haemost 2024; 8:102523. [PMID: 39252825 PMCID: PMC11381873 DOI: 10.1016/j.rpth.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 09/11/2024] Open
Abstract
Background Platelet function is driven by the expression of specialized surface markers. The concept of distinct circulating subpopulations of platelets has emerged in recent years, but their exact nature remains debatable. Objectives To design a spectral flow cytometry-based phenotyping workflow to provide a more comprehensive characterization, at a global and individual level, of surface markers in resting and activated healthy platelets, and to apply this workflow to investigate how responses differ according to platelet age. Methods A 14-marker flow cytometry panel was developed and applied to vehicle- or agonist-stimulated platelet-rich plasma and whole blood samples obtained from healthy volunteers, or to platelets sorted according to SYTO-13 (Thermo Fisher Scientific) staining intensity as an indicator of platelet age. Data were analyzed using both user-led and independent approaches incorporating novel machine learning-based algorithms. Results The assay detected differences in marker expression in healthy platelets, at rest and on agonist activation, in both platelet-rich plasma and whole blood samples, that are consistent with the literature. Machine learning identified stimulated populations of platelets with high accuracy (>80%). Similarly, machine learning differentiation between young and old platelet populations achieved 76% accuracy, primarily weighted by forward scatter, cluster of differentiation (CD) 41, side scatter, glycoprotein VI, CD61, and CD42b expression patterns. Conclusion Our approach provides a powerful phenotypic assay coupled with robust bioinformatic and machine learning workflows for deep analysis of platelet subpopulations. Cleavable receptors, glycoprotein VI and CD42b, contribute to defining shared and unique subpopulations. This adoptable, low-volume approach will be valuable in deep characterization of platelets in disease.
Collapse
Affiliation(s)
- Ami Vadgama
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - James Boot
- Genome Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicola Dark
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Harriet E Allan
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Charles A Mein
- Genome Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul C Armstrong
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Timothy D Warner
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Yan H, Hu Y, Lyu Y, Akk A, Hirbe AC, Wickline SA, Pan H, Roberson EDO, Pham CTN. Systemic delivery of murine SOD2 mRNA to experimental abdominal aortic aneurysm mitigates expansion and rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599454. [PMID: 38948794 PMCID: PMC11212962 DOI: 10.1101/2024.06.17.599454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Oxidative stress is implicated in the pathogenesis and progression of abdominal aortic aneurysm (AAA). Antioxidant delivery as a therapeutic for AAA is of substantial interest although clinical translation of antioxidant therapy has met with significant challenges due to limitations in achieving sufficient antioxidant levels at the site of AAA. We posit that nanoparticle-based approaches hold promise to overcome challenges associated with systemic administration of antioxidants. Methods We employed a peptide-based nanoplatform to overexpress a key modulator of oxidative stress, superoxide dismutase 2 (SOD2). The efficacy of systemic delivery of SOD2 mRNA as a nanotherapeutic agent was studied in two different murine AAA models. Unbiased mass spectrometry-enabled proteomics and high-dimensional bioinformatics were used to examine pathways modulated by SOD2 overexpression. Results The murine SOD2 mRNA sequence was mixed with p5RHH, an amphipathic peptide capable of delivering nucleic acids in vivo to form self-assembled nanoparticles of ∼55 nm in diameter. We further demonstrated that the nanoparticle was stable and functional up to four weeks following self-assembly when coated with hyaluronic acid. Delivery of SOD2 mRNA mitigated the expansion of small AAA and largely prevented rupture. Mitigation of AAA was accompanied by enhanced SOD2 protein expression in aortic wall tissue. Concomitant suppression of nitric oxide, inducible nitric oxide synthase expression, and cell death was observed. Proteomic profiling of AAA tissues suggests that SOD2 overexpression augments levels of microRNAs that regulate vascular inflammation and cell apoptosis, inhibits platelet activation/aggregation, and downregulates mitogen-activated protein kinase signaling. Gene set enrichment analysis shows that SOD2 mRNA delivery is associated with activation of oxidative phosphorylation, lipid metabolism, respiratory electron transportation, and tricarboxylic acid cycle pathways. Conclusions These results confirm that SOD2 is key modulator of oxidative stress in AAA. This nanotherapeutic mRNA delivery approach may find translational application in the medical management of small AAA and the prevention of AAA rupture.
Collapse
|
8
|
Kazemi N, Bordbar A, Bavarsad SS, Ghasemi P, Bakhshi M, Rezaeeyan H. Molecular Insights into the Relationship Between Platelet Activation and Endothelial Dysfunction: Molecular Approaches and Clinical Practice. Mol Biotechnol 2024; 66:932-947. [PMID: 38184492 DOI: 10.1007/s12033-023-01010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Platelets are one of the coagulation cells. When platelet activation occurs, many mediators are released and affect endothelial cells (ECs) and lead to endothelial dysfunction (ED). ED plays an important role in the pathogenesis of many diseases, including cardiovascular disease (CVD). Platelet are of important factors in ED. The release of mediators by platelets causes the stimulation of inflammatory pathways, oxidative stress, and apoptosis, which ultimately result in ED.On the other hand, platelet activation in CVD patients can be associated with a bad prognosis. Platelet activation can increase the level of markers such as p-selectin in the serum. Also, in this study, we have discussed the role of platelet as a diagnostic factor, as well as its use as a treatment option. In addition, we discussed some of the molecular pathways that are used to target platelet activation.
Collapse
Affiliation(s)
- Niloufar Kazemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Armin Bordbar
- Department of Cardiology, Musavi Hospital, School of Medicine, Zanjan University of Medical Science, Zanjan, Iran
| | | | - Parisa Ghasemi
- Research Committee, Medical School, Arak University of Medical Sciences, Arak, Iran
| | - Maryam Bakhshi
- Islamic Azad University of Najaf Abad, Affiliated Hospitals, Isfahan, Iran
| | - Hadi Rezaeeyan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran.
| |
Collapse
|
9
|
Mitchell JL, Little G, Bye AP, Gaspar RS, Unsworth AJ, Kriek N, Sage T, Stainer A, Sangowawa I, Morrow GB, Bastos RN, Shapiro S, Desborough MJ, Curry N, Gibbins JM, Whyte CS, Mutch NJ, Jones CI. Platelet factor XIII-A regulates platelet function and promotes clot retraction and stability. Res Pract Thromb Haemost 2023; 7:100200. [PMID: 37601014 PMCID: PMC10439398 DOI: 10.1016/j.rpth.2023.100200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 08/22/2023] Open
Abstract
Background Factor XIII (FXIII) is an important proenzyme in the hemostatic system. The plasma-derived enzyme activated FXIII cross-links fibrin fibers within thrombi to increase their mechanical strength and cross-links fibrin to fibrinolytic inhibitors, specifically α2-antiplasmin, to increase resistance to fibrinolysis. We have previously shown that cellular FXIII (factor XIII-A [FXIII-A]), which is abundant in the platelet cytoplasm, is externalized onto the activated membrane and cross-links extracellular substrates. The contribution of cellular FXIII-A to platelet activation and platelet function has not been extensively studied. Objectives This study aims to identify the role of platelet FXIII-A in platelet function. Methods We used normal healthy platelets with a cell permeable FXIII inhibitor and platelets from FXIII-deficient patients as a FXIII-free platelet model in a range of platelet function and clotting tests. Results Our data demonstrate that platelet FXIII-A enhances fibrinogen binding to the platelet surface upon agonist stimulation and improves the binding of platelets to fibrinogen and aggregation under flow in a whole-blood thrombus formation assay. In the absence of FXIII-A, platelets show reduced sensitivity to agonist stimulation, including decreased P-selectin exposure and fibrinogen binding. We show that FXIII-A is involved in platelet spreading where a lack of FXIII-A reduces the ability of platelets to fully spread on fibrinogen and collagen. Our data demonstrate that platelet FXIII-A is important for clot retraction where clots formed in its absence retracted to a lesser extent. Conclusion Overall, this study shows that platelet FXIII-A functions during thrombus formation by aiding platelet activation and thrombus retraction in addition to its antifibrinolytic roles.
Collapse
Affiliation(s)
- Joanne L. Mitchell
- Institute for Cardiovascular Research, University of Birmingham, Birmingham, UK
| | - Gemma Little
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | | | - Renato S. Gaspar
- Heart Institute, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Neline Kriek
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Tanya Sage
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Alexander Stainer
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Ibidayo Sangowawa
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Gael B. Morrow
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | | | - Susan Shapiro
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael J.R. Desborough
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
| | - Nicola Curry
- Oxford University Hospitals NHS Foundation Trust, Blood Theme Oxford Biomedical Research Centre, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan M. Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Claire S. Whyte
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Nicola J. Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Christopher I. Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
10
|
Li Y, Wang H, Zhao Z, Yang Y, Meng Z, Qin L. Effects of the interactions between platelets with other cells in tumor growth and progression. Front Immunol 2023; 14:1165989. [PMID: 37153586 PMCID: PMC10158495 DOI: 10.3389/fimmu.2023.1165989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
It has been confirmed that platelets play a key role in tumorigenesis. Tumor-activated platelets can recruit blood cells and immune cells to migrate, establish an inflammatory tumor microenvironment at the sites of primary and metastatic tumors. On the other hand, they can also promote the differentiation of mesenchymal cells, which can accelerate the proliferation, genesis and migration of blood vessels. The role of platelets in tumors has been well studied. However, a growing number of studies suggest that interactions between platelets and immune cells (e.g., dendritic cells, natural killer cells, monocytes, and red blood cells) also play an important role in tumorigenesis and tumor development. In this review, we summarize the major cells that are closely associated with platelets and discuss the essential role of the interaction between platelets with these cells in tumorigenesis and tumor development.
Collapse
|
11
|
Li YX, Wang HB, Li J, Jin JB, Hu JB, Yang CL. Targeting pulmonary vascular endothelial cells for the treatment of respiratory diseases. Front Pharmacol 2022; 13:983816. [PMID: 36110525 PMCID: PMC9468609 DOI: 10.3389/fphar.2022.983816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Pulmonary vascular endothelial cells (VECs) are the main damaged cells in the pathogenesis of various respiratory diseases and they mediate the development and regulation of the diseases. Effective intervention targeting pulmonary VECs is of great significance for the treatment of respiratory diseases. A variety of cell markers are expressed on the surface of VECs, some of which can be specifically combined with the drugs or carriers modified by corresponding ligands such as ICAM-1, PECAM-1, and P-selectin, to achieve effective delivery of drugs in lung tissues. In addition, the great endothelial surface area of the pulmonary vessels, the “first pass effect” of venous blood in lung tissues, and the high volume and relatively slow blood perfusion rate of pulmonary capillaries further promote the drug distribution in lung tissues. This review summarizes the representative markers at the onset of respiratory diseases, drug delivery systems designed to target these markers and their therapeutic effects.
Collapse
Affiliation(s)
- Yi-Xuan Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Hong-Bo Wang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing Li
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jian-Bo Jin
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
| | - Jing-Bo Hu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| | - Chun-Lin Yang
- Department of Pharmacy, Yuyao People’s Hospital, Yuyao, China
- *Correspondence: Jing-Bo Hu, ; Chun-Lin Yang,
| |
Collapse
|
12
|
Tamang HK, Yang R, Song Z, Hsu S, Peng C, Tung Y, Tzeng B, Chen C. Ca v 3.2 T-type calcium channel regulates mouse platelet activation and arterial thrombosis. J Thromb Haemost 2022; 20:1887-1899. [PMID: 35490411 PMCID: PMC9541131 DOI: 10.1111/jth.15745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cav 3.2 is a T-type calcium channel that causes low-threshold exocytosis. T-type calcium channel blockers reduce platelet granule exocytosis and aggregation. However, studies of the T-type calcium channel in platelets are lacking. OBJECTIVE To examine the expression and role of Cav 3.2 in platelet function. METHODS Global Cav 3.2-/- and platelet-specific Cav 3.2-/- mice and littermate controls were used for this study. Western blot analysis was used to detect the presence of Cav 3.2 and activation of the calcium-responsive protein extracellular signal-regulated kinase (ERK). Fura-2 dye was used to assess platelet calcium. Flow cytometry and light transmission aggregometry were used to evaluate platelet activation markers and aggregation, respectively. FeCl3 -induced thrombosis and a microfluidic flow device were used to assess in vivo and ex vivo thrombosis, respectively. RESULTS Cav 3.2 was expressed in mouse platelets. As compared with wild-type controls, Cav 3.2-/- mouse platelets showed reduced calcium influx. Similarly, treatment with the T-type calcium channel inhibitor Ni2+ decreased the calcium influx in wild-type platelets. As compared with controls, both Cav 3.2-/- and Ni2+ -treated wild-type platelets showed reduced activation of ERK. ATP release, P-selectin exposure, and αIIb β3 activation were reduced in Cav 3.2-/- and Ni2+ -treated wild-type platelets, as was platelet aggregation. On in vivo and ex vivo thrombosis assay, Cav3.2 deletion caused delayed thrombus formation. However, tail bleeding assay showed intact hemostasis. CONCLUSION These results suggest that Cav 3.2 is required for the optimal activation of platelets.
Collapse
Affiliation(s)
- Hem Kumar Tamang
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Ruey‐Bing Yang
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Zong‐Han Song
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Shao‐Chun Hsu
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | | | - Yi‐Chung Tung
- Research Center for Applied SciencesAcademia SinicaTaipeiTaiwan
| | - Bing‐Hsiean Tzeng
- Division of CardiologyFar Eastern Memorial Hospital and Tri‐Service General HospitalNational Defense Medical CenterTaipeiTaiwan
| | - Chien‐Chang Chen
- Taiwan International Graduate Program in Molecular MedicineNational Yang Ming Chiao Tung University and Academia SinicaTaipeiTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| |
Collapse
|
13
|
Fernández-Rojas M, Rodríguez L, Trostchansky A, Fuentes E. Regulation of platelet function by natural bioactive compounds. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Saito MS, Zatta KC, Sathler PC, Furtado PS, C O Miguel N, Frattani FF, Berger M, Lavayen V, Pohlmann AR, Guterres SS. Therapeutic implementation in arterial thrombosis with pulmonary administration of fucoidan microparticles containing acetylsalicylic acid. Int J Pharm 2022; 622:121841. [PMID: 35623486 DOI: 10.1016/j.ijpharm.2022.121841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022]
Abstract
Several antithrombotic drugs are available to treat cardiovascular diseases due to its high mortality and morbidity worldwide. Despite these, severe adverse effects that can lead to treatment withdrawal have been described, highlighting the importance of new therapies. Thus, this work describes the development of fucoidan microparticles containing acetylsalicylic acid (MP/F4M) for pulmonary delivery and in vitro, ex vivo, and in vivo evaluation. Microparticles were prepared via spray-drying and characterized in vitro (mucoadhesive properties, coagulation time, platelet aggregation, adhesion, and hemolysis) followed by ex vivo platelet aggregation, in vivo arterial thrombosis, and hemorrhagic profile. The formulation physicochemical characterization showed suitable characteristics along with delayed drug release, increased breathable particle fraction, and high washability resistance as well as antiplatelet activity and enhanced platelet adhesion in vitro. In in vivo assays, MP/F4M protected against arterial thrombosis, without changes in the hemorrhagic profile. Finally, no lung changes were observed after prolonged pulmonary administration, whereas isolated ASA led to an inflammatory response. In conclusion, pulmonary administration of fucoidan microparticles with an antiplatelet drug may be an alternative therapy to treat cardiovascular diseases, opening the field for different formulations.
Collapse
Affiliation(s)
- Max S Saito
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil.
| | - Kelly C Zatta
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil
| | - Plínio C Sathler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Priscila S Furtado
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Nádia C O Miguel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flávia F Frattani
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro
| | - Markus Berger
- Laboratory of Biochemical Pharmacology, Experimental Research Center, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul
| | - Vladimir Lavayen
- Postgraduate Program in Chemistry, Federal University of Rio Grande do Sul, RS, Brazil
| | - Adriana R Pohlmann
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil
| | - Sílvia S Guterres
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, RS, Brazil
| |
Collapse
|
15
|
Li L, Roest M, Meijers JCM, de Laat B, Urbanus RT, de Groot PG, Huskens D. Platelet Activation via Glycoprotein VI Initiates Thrombin Generation: A Potential Role for Platelet-Derived Factor IX? Thromb Haemost 2022; 122:1502-1512. [PMID: 35512832 DOI: 10.1055/s-0042-1744379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Collagen triggers coagulation via activation of factor (F) XII. In a platelet-rich environment, collagen can also trigger coagulation independently of FXII. We studied a novel mechanism of coagulation initiation via collagen-dependent platelet activation using thrombin generation (TG) in platelet-rich plasma. Collagen-induced coagulation is minimally affected by active-site inactivated FVIIa, anti-FVII antibodies, or FXIIa inhibition (corn trypsin inhibitor). Activation of platelets via specific glycoprotein (GP) VI agonists initiates TG, FX activation, and fibrin formation. To determine the platelet-derived trigger of coagulation, we systematically reconstituted factor-deficient plasmas with washed platelets. TG triggered by GPVI-activated platelets was significantly affected in FIX- and FVIII-deficient plasma but not in FVII- and FXII-deficient plasma. In a purified system composed of FX and FVIII, we observed that absence of FIX was compensated by GPVI-activated platelets, which could be inhibited by an anti-FIX antibody, suggesting FIXa activity from activated platelets. Furthermore, with the addition of FVIII in FIX-deficient plasma, TG induced by GPVI-activated platelets was restored, and was inhibited by the anti-FIX antibody. In conclusion, GPVI-activated platelets initiate TG, probably via platelet-derived FIXa activity.
Collapse
Affiliation(s)
- Li Li
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Joost C M Meijers
- Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas de Laat
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Rolf T Urbanus
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Philip G de Groot
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands
| | - Dana Huskens
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. Int J Mol Sci 2022; 23:ijms23073868. [PMID: 35409226 PMCID: PMC8998935 DOI: 10.3390/ijms23073868] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that platelets play roles beyond their traditional functions in thrombosis and hemostasis, e.g., in inflammatory processes, infection and cancer, and that they interact, stimulate and regulate cells of the innate immune system such as neutrophils, monocytes and macrophages. In this review, we will focus on platelet activation in hemostatic and inflammatory processes, as well as platelet interactions with neutrophils and monocytes/macrophages. We take a closer look at the contributions of major platelet receptors GPIb, αIIbβ3, TLT-1, CLEC-2 and Toll-like receptors (TLRs) as well as secretions from platelet granules on platelet-neutrophil aggregate and neutrophil extracellular trap (NET) formation in atherosclerosis, transfusion-related acute lung injury (TRALI) and COVID-19. Further, we will address platelet-monocyte and macrophage interactions during cancer metastasis, infection, sepsis and platelet clearance.
Collapse
Affiliation(s)
- Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
| | - Maria Stepanyan
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Physics Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Alexey Martyanov
- Center For Theoretical Problems of Physico-Chemical Pharmacology, 109029 Moscow, Russia;
- Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology Immunology Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics RAS (IBCP RAS), 119334 Moscow, Russia
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany; (J.M.); (M.C.); (M.S.)
- Correspondence:
| |
Collapse
|
17
|
Albadawi DAI, Ravishankar D, Vallance TM, Patel K, Osborn HMI, Vaiyapuri S. Impacts of Commonly Used Edible Plants on the Modulation of Platelet Function. Int J Mol Sci 2022; 23:605. [PMID: 35054793 PMCID: PMC8775512 DOI: 10.3390/ijms23020605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.
Collapse
Affiliation(s)
- Dina A. I. Albadawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Thomas M. Vallance
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| |
Collapse
|
18
|
Alatawi KA, Ravishankar D, Patra PH, Bye AP, Stainer AR, Patel K, Widera D, Vaiyapuri S. 1,8-Cineole Affects Agonists-Induced Platelet Activation, Thrombus Formation and Haemostasis. Cells 2021; 10:2616. [PMID: 34685597 PMCID: PMC8533741 DOI: 10.3390/cells10102616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
1,8-cineole, a monoterpenoid is a major component of eucalyptus oil and has been proven to possess numerous beneficial effects in humans. Notably, 1,8-cineole is the primary active ingredient of a clinically approved drug, Soledum® which is being mainly used for the maintenance of sinus and respiratory health. Due to its clinically valuable properties, 1,8-cineole has gained significant scientific interest over the recent years specifically to investigate its anti-inflammatory and antioxidant effects. However, the impact of 1,8-cineole on the modulation of platelet activation, thrombosis and haemostasis was not fully established. Therefore, in this study, we demonstrate the effects of 1,8-cineole on agonists-induced platelet activation, thrombus formation under arterial flow conditions and haemostasis in mice. 1,8-cineole largely inhibits platelet activation stimulated by glycoprotein VI (GPVI) agonists such as collagen and cross-linked collagen-related peptide (CRP-XL), while it displays minimal inhibitory effects on thrombin or ADP-induced platelet aggregation. It inhibited inside-out signalling to integrin αIIbβ3 and outside-in signalling triggered by the same integrin as well as granule secretion and intracellular calcium mobilisation in platelets. 1,8-cineole affected thrombus formation on collagen-coated surface under arterial flow conditions and displayed a minimal effect on haemostasis of mice at a lower concentration of 6.25 µM. Notably, 1,8-cineole was found to be non-toxic to platelets up to 50 µM concentration. The investigation on the molecular mechanisms through which 1,8-cineole inhibits platelet function suggests that this compound affects signalling mediated by various molecules such as AKT, Syk, LAT, and cAMP in platelets. Based on these results, we conclude that 1,8-cineole may act as a potential therapeutic agent to control unwarranted platelet reactivity under various pathophysiological settings.
Collapse
Affiliation(s)
- Kahdr A. Alatawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Pabitra H. Patra
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Alexander P. Bye
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Alexander R. Stainer
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (A.P.B.); (A.R.S.); (K.P.)
| | - Darius Widera
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (K.A.A.); (D.R.); (P.H.P.); (D.W.)
| |
Collapse
|
19
|
Duan Y, Glazier R, Bazrafshan A, Hu Y, Rashid SA, Petrich BG, Ke Y, Salaita K. Mechanically Triggered Hybridization Chain Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yuxin Duan
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| | | | - Yuesong Hu
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | - Sk Aysha Rashid
- Department of Chemistry Emory University Atlanta GA 30322 USA
| | | | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| | - Khalid Salaita
- Department of Chemistry Emory University Atlanta GA 30322 USA
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30322 USA
| |
Collapse
|
20
|
Duan Y, Glazier R, Bazrafshan A, Hu Y, Rashid SA, Petrich BG, Ke Y, Salaita K. Mechanically Triggered Hybridization Chain Reaction. Angew Chem Int Ed Engl 2021; 60:19974-19981. [PMID: 34242462 PMCID: PMC8390435 DOI: 10.1002/anie.202107660] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 01/16/2023]
Abstract
Cells transmit piconewton forces to receptors to mediate processes such as migration and immune recognition. A major challenge in quantifying such forces is the sparsity of cell mechanical events. Accordingly, molecular tension is typically quantified with high resolution fluorescence microscopy, which hinders widespread adoption and application. Here, we report a mechanically triggered hybridization chain reaction (mechano-HCR) that allows chemical amplification of mechanical events. The amplification is triggered when a cell receptor mechanically denatures a duplex revealing a cryptic initiator to activate the HCR reaction in situ. Importantly, mechano-HCR enables direct readout of pN forces using a plate reader. We leverage this capability and measured mechano-IC50 for aspirin, Y-27632, and eptifibatide. Given that cell mechanical phenotypes are of clinical importance, mechano-HCR may offer a convenient route for drug discovery, personalized medicine, and disease diagnosis.
Collapse
Affiliation(s)
- Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Roxanne Glazier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | | | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Sk Aysha Rashid
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Brian G Petrich
- Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
21
|
Mao S, Sarkar A, Wang Y, Song C, LeVine D, Wang X, Que L. Microfluidic chip grafted with integrin tension sensors for evaluating the effects of flowing shear stress and ROCK inhibitor on platelets. LAB ON A CHIP 2021; 21:3128-3136. [PMID: 34180491 PMCID: PMC8353964 DOI: 10.1039/d1lc00259g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Integrins are key players in platelet adhesion and aggregation. Integrin molecular tensions, the forces transmitted by integrin molecules, are regulated by both mechanical and biochemical cues, and the outside-in and inside-out signaling has been extensively studied. While the mechanical properties of platelets at static status have been studied by atomic force microscopy, traction force microscopy and tension sensors, the biomechanical properties of flowing platelets remain elusive. Herein, we report microfluidic chips grafted with integrin tension sensors for microfluidic-force mapping in platelets. Specifically, the process of integrin αIIbβ3 mediating tension transmission and platelet adhesion under low flow rates has been obtained, and the process of platelet clustering at post-stenotic regions has been demonstrated. We found that flowing shear force can postpone the integrin-mediated tension transmission and platelet adhesion. We further evaluated the effect of Y-27632, a ROCK inhibitor that has been proven to reduce integrin-mediated platelet adhesion, at a series of concentrations and demonstrated that microfluidic chips with integrin tension sensors are sensitive to the concentration-dependent effects of Y-27632. Given their low cost and scalable throughput, these chips are ideal technical platforms for biological studies of platelets at flowing status and for platelet inhibitor or potential antiplatelet drug screening.
Collapse
Affiliation(s)
- Subin Mao
- Electrical and Computer Engineering Department, Iowa State University, Ames, USA50011.
| | - Anwesha Sarkar
- Electrical and Computer Engineering Department, Iowa State University, Ames, USA50011. and Department of Physics and Astronomy, Iowa State University, Ames, USA50011.
| | - Yongliang Wang
- Department of Physics and Astronomy, Iowa State University, Ames, USA50011.
| | - Chao Song
- Electrical and Computer Engineering Department, Iowa State University, Ames, USA50011.
| | - Dana LeVine
- Veterinary Clinical Sciences, Iowa State University, Ames, USA50011
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, USA50011.
| | - Long Que
- Electrical and Computer Engineering Department, Iowa State University, Ames, USA50011.
| |
Collapse
|
22
|
Liu G, Yuan Z, Tian X, Xiong X, Guo F, Lin Z, Qin Z. Pimpinellin Inhibits Collagen-induced Platelet Aggregation and Activation Through Inhibiting Granule Secretion and PI3K/Akt Pathway. Front Pharmacol 2021; 12:706363. [PMID: 34366861 PMCID: PMC8339208 DOI: 10.3389/fphar.2021.706363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Pimpinellin is a coumarin-like compound extracted from the root of Toddalia asiatica. Its effects on platelet function has not been investigated. This study found that pimpinellin pretreatment effectively inhibited collagen-induced platelet aggregation, but did not alter ADP- and thrombin-induced aggregation. Platelets pretreated with pimpinellin showed reduced α granule (CD62) level and secretion of dense granule (ATP release). Pimpinellin-treated platelets also exhibited decreased clot reaction and TxB2 production. Pimpinellin pretreatment suppressed adhesion and spreading of human platelets on the fibrinogen coated surface. Analysis of tail bleeding time of mice administered with pimpinellin (40 mg/kg) revealed that pimpinellin did not change tail bleeding time significantly, number of blood cells, and APTT and PT levels. Pimpinellin inhibited collagen-induced ex vivo aggregation of mice platelets. Immunoblotting results showed that pimpinellin suppressed collagen-induced phosphorylation of PI3K-Akt-Gsk3β and PKC/MAPK in platelets.
Collapse
Affiliation(s)
- Gang Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Zhaowei Yuan
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiaoyun Tian
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiuqin Xiong
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Fang Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zihan Lin
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Zhen Qin
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| |
Collapse
|
23
|
Andreeva T, Komsa-Penkova R, Langari A, Krumova S, Golemanov G, Georgieva GB, Taneva SG, Giosheva I, Mihaylova N, Tchorbanov A, Todinova S. Morphometric and Nanomechanical Features of Platelets from Women with Early Pregnancy Loss Provide New Evidence of the Impact of Inherited Thrombophilia. Int J Mol Sci 2021; 22:ijms22157778. [PMID: 34360543 PMCID: PMC8346153 DOI: 10.3390/ijms22157778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022] Open
Abstract
Pregnancy is associated with hypercoagulation states and increased thrombotic risk, especially in women with thrombophilia. We combine atomic force microscopy (AFM) and flow cytometry to examine the morphology and nanomechanics of platelets derived from women with early pregnancy loss (EPL) and control pregnant (CP) and non-pregnant (CNP) women. Both control groups exhibit similar morphometric parameters (height and surface roughness) and membrane stiffness of platelets. EPL patients’ platelets, on the other hand, are more activated than the control groups, with prominent cytoskeletal rearrangement. In particular, reduced membrane roughness (22.9 ± 6 nm vs. 39.1 ± 8 nm) (p < 0.05) and height (692 ± 128 nm vs. 1090 ± 131 nm) (p < 0.05), strong alteration in the membrane Young modulus, increased production of platelets’ microparticles, and higher expression of procoagulant surface markers, as well as increased occurrence of thrombophilia (FVL, FII20210A, PLA1/A2, MTHFR C677T or 4G/5G PAI-1) polymorphisms were found. We suggest that the carriage of thrombophilic mutations triggers structural and nanomechanical abnormalities in platelets, resulting in their increased activation. The activation state of platelets can be well characterized by AFM, and the morphometric and nanomechanical characteristics might serve as a new criterion for evaluation of the cause of miscarriage and offer the prospect of an innovative approach serving for diagnostic purposes.
Collapse
Affiliation(s)
- Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Regina Komsa-Penkova
- Department of Biochemistry, Medical University, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (R.K.-P.); (G.G.); (G.B.G.)
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Georgi Golemanov
- Department of Biochemistry, Medical University, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (R.K.-P.); (G.G.); (G.B.G.)
| | - Galya B. Georgieva
- Department of Biochemistry, Medical University, 1 St. Kliment Ohridski Str., 5800 Pleven, Bulgaria; (R.K.-P.); (G.G.); (G.B.G.)
| | - Stefka G. Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
| | - Ina Giosheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
- University Obstetrics and Gynecology Hospital “Maichin Dom”, 2 Zdrave Str., 1463 Sofia, Bulgaria
| | - Nikolina Mihaylova
- Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 26, 1113 Sofia, Bulgaria; (N.M.); (A.T.)
| | - Andrey Tchorbanov
- Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 26, 1113 Sofia, Bulgaria; (N.M.); (A.T.)
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev, Str. Bl. 21, 1113 Sofia, Bulgaria; (T.A.); (A.L.); (S.K.); (S.G.T.); (I.G.)
- Correspondence:
| |
Collapse
|
24
|
Hindle MS, Spurgeon BEJ, Cheah LT, Webb BA, Naseem KM. Multidimensional flow cytometry reveals novel platelet subpopulations in response to prostacyclin. J Thromb Haemost 2021; 19:1800-1812. [PMID: 33834609 DOI: 10.1111/jth.15330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Robust platelet activation leads to the generation of subpopulations characterized by differential expression of phosphatidylserine (PS). Prostacyclin (PGI2 ) modulates many aspects of platelet function, but its influence on platelet subpopulations is unknown. OBJECTIVES AND METHODS We used fluorescent flow cytometry coupled to multidimensional fast Fourier transform-accelerated interpolation-based t-stochastic neighborhood embedding analysis to examine the influence of PGI2 on platelet subpopulations. RESULTS Platelet activation (SFLLRN/CRP-XL) in whole blood revealed three platelet subpopulations with unique combinations of fibrinogen (fb) binding and PS exposure. These subsets, PSlo /fbhi (68%), PShi /fblo (23%), and PShi /fbhi (8%), all expressed CD62P and partially shed CD42b. PGI2 significantly reduced fibrinogen binding and prevented the majority of PS exposure, but did not significantly reduce CD62P, CD154, or CD63 leading to the generation of four novel subpopulations, CD62Phi /PSlo /fblo (64%), CD62Phi /PSlo /fbhi (22%), CD62Phi /PShi /fblo (3%), and CD62Plo /PSlo /fblo (12%). Mechanistically this was linked to PGI2 -mediated inhibition of mitochondrial depolarization upstream of PS exposure. Combining phosphoflow with surface staining, we showed that PGI2 -treated platelets were characterized by both elevated vasodilator-stimulated phosphoprotein phosphorylation and CD62P. The resistance to cyclic AMP signaling was also observed for CD154 and CD63 expression. Consistent with the functional role of CD62P, exposure of blood to PGI2 failed to prevent SFLLRN/CRP-XL-induced platelet-monocyte aggregation despite reducing markers of hemostatic function. CONCLUSION The combination of multicolor flow cytometry assays with unbiased computational tools has identified novel platelet subpopulations that suggest differential regulation of platelet functions by PGI2 . Development of this approach with increased surface and intracellular markers will allow the identification of rare platelet subtypes and novel biomarkers.
Collapse
Affiliation(s)
- Matthew S Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Benjamin E J Spurgeon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lih T Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Beth A Webb
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Khalid M Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Shumaker S, Khatri B, Shouse S, Seo D, Kang S, Kuenzel W, Kong B. Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail. Genes (Basel) 2021; 12:genes12030405. [PMID: 33809122 PMCID: PMC8000459 DOI: 10.3390/genes12030405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Mitigation of stress is of great importance in poultry production, as chronic stress can affect the efficiency of production traits. Selective breeding with a focus on stress responses can be used to combat the effects of stress. To better understand the genetic mechanisms driving differences in stress responses of a selectively bred population of Japanese quail, we performed genomic resequencing on 24 birds from High Stress (HS) and Low Stress (LS) lines of Japanese quail using Illumina HiSeq 2 × 150 bp paired end read technology in order to analyze Single Nucleotide Polymorphisms (SNPs) within the genome of each line. SNPs are common mutations that can lead to genotypic and phenotypic variations in animals. Following alignment of the sequencing data to the quail genome, 6,364,907 SNPs were found across both lines of quail. 10,364 of these SNPs occurred in coding regions, from which 2886 unique, non-synonymous SNPs with a SNP% ≥ 0.90 and a read depth ≥ 10 were identified. Using Ingenuity Pathway Analysis, we identified genes affected by SNPs in pathways tied to immune responses, DNA repair, and neurological signaling. Our findings support the idea that the SNPs found within HS and LS lines of quail could direct the observed changes in phenotype.
Collapse
Affiliation(s)
- Steven Shumaker
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Bhuwan Khatri
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Stephanie Shouse
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Dongwon Seo
- Department of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea;
| | - Seong Kang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Wayne Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Byungwhi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
- Correspondence:
| |
Collapse
|
26
|
von Hundelshausen P, Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers (Basel) 2021; 13:1103. [PMID: 33806595 PMCID: PMC7961939 DOI: 10.3390/cancers13051103] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bruton tyrosine kinase (Btk) is expressed in B-lymphocytes, myeloid cells and platelets, and Btk-inhibitors (BTKi) are used to treat patients with B-cell malignancies, developed against autoimmune diseases, have been proposed as novel antithrombotic drugs, and been tested in patients with severe COVID-19. However, mild bleeding is frequent in patients with B-cell malignancies treated with the irreversible BTKi ibrutinib and the recently approved 2nd generation BTKi acalabrutinib, zanubrutinib and tirabrutinib, and also in volunteers receiving in a phase-1 study the novel irreversible BTKi BI-705564. In contrast, no bleeding has been reported in clinical trials of other BTKi. These include the brain-penetrant irreversible tolebrutinib and evobrutinib (against multiple sclerosis), the irreversible branebrutinib, the reversible BMS-986142 and fenebrutinib (targeting rheumatoid arthritis and lupus erythematodes), and the reversible covalent rilzabrutinib (against pemphigus and immune thrombocytopenia). Remibrutinib, a novel highly selective covalent BTKi, is currently in clinical studies of autoimmune dermatological disorders. This review describes twelve BTKi approved or in clinical trials. By focusing on their pharmacological properties, targeted disease, bleeding side effects and actions on platelets it attempts to clarify the mechanisms underlying bleeding. Specific platelet function tests in blood might help to estimate the probability of bleeding of newly developed BTKi.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
27
|
Megakaryocyte migration defects due to nonmuscle myosin IIA mutations underlie thrombocytopenia in MYH9-related disease. Blood 2021; 135:1887-1898. [PMID: 32315395 DOI: 10.1182/blood.2019003064] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Megakaryocytes (MKs), the precursor cells for platelets, migrate from the endosteal niche of the bone marrow (BM) toward the vasculature, extending proplatelets into sinusoids, where circulating blood progressively fragments them into platelets. Nonmuscle myosin IIA (NMIIA) heavy chain gene (MYH9) mutations cause macrothrombocytopenia characterized by fewer platelets with larger sizes leading to clotting disorders termed myosin-9-related disorders (MYH9-RDs). MYH9-RD patient MKs have proplatelets with thicker and fewer branches that produce fewer and larger proplatelets, which is phenocopied in mouse Myh9-RD models. Defective proplatelet formation is considered to be the principal mechanism underlying the macrothrombocytopenia phenotype. However, MYH9-RD patient MKs may have other defects, as NMII interactions with actin filaments regulate physiological processes such as chemotaxis, cell migration, and adhesion. How MYH9-RD mutations affect MK migration and adhesion in BM or NMIIA activity and assembly prior to proplatelet production remain unanswered. NMIIA is the only NMII isoform expressed in mature MKs, permitting exploration of these questions without complicating effects of other NMII isoforms. Using mouse models of MYH9-RD (NMIIAR702C+/-GFP+/-, NMIIAD1424N+/-, and NMIIAE1841K+/-) and in vitro assays, we investigated MK distribution in BM, chemotaxis toward stromal-derived factor 1, NMIIA activity, and bipolar filament assembly. Results indicate that different MYH9-RD mutations suppressed MK migration in the BM without compromising bipolar filament formation but led to divergent adhesion phenotypes and NMIIA contractile activities depending on the mutation. We conclude that MYH9-RD mutations impair MK chemotaxis by multiple mechanisms to disrupt migration toward the vasculature, impairing proplatelet release and causing macrothrombocytopenia.
Collapse
|
28
|
Spurgeon BEJ, Michelson AD, Frelinger AL. Platelet mass cytometry: Optimization of sample, reagent, and analysis parameters. Cytometry A 2021; 99:170-179. [DOI: 10.1002/cyto.a.24300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Benjamin E. J. Spurgeon
- Center for Platelet Research Studies, Dana‐Farber/Boston Children's Cancer and Blood Disorders Center Harvard Medical School Boston Massachusetts USA
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana‐Farber/Boston Children's Cancer and Blood Disorders Center Harvard Medical School Boston Massachusetts USA
| | - Andrew L. Frelinger
- Center for Platelet Research Studies, Dana‐Farber/Boston Children's Cancer and Blood Disorders Center Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
29
|
Dapat C, Kumaki S, Sakurai H, Nishimura H, Labayo HKM, Okamoto M, Saito M, Oshitani H. Gene signature of children with severe respiratory syncytial virus infection. Pediatr Res 2021; 89:1664-1672. [PMID: 33510411 PMCID: PMC8249238 DOI: 10.1038/s41390-020-01347-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND The limited treatment options for children with severe respiratory syncytial virus (RSV) infection highlights the need for a comprehensive understanding of the host cellular response during infection. We aimed to identify host genes that are associated with severe RSV disease and to identify drugs that can be repurposed for the treatment of severe RSV infection. METHODS We examined clinical data and blood samples from 37 hospitalized children (29 mild and 8 severe) with RSV infection. We tested RNA from blood samples using next-generation sequencing to profile global mRNA expression and identify cellular processes. RESULTS Retractions, decreased breath sounds, and tachypnea were associated with disease severity. We observed upregulation of genes related to neutrophil, inflammatory response, blood coagulation, and downregulation of genes related to T cell response in children with severe RSV. Using network-based approach, 43 drugs were identified that are predicted to interact with the gene products of these differentially expressed genes. CONCLUSIONS These results suggest that the changes in the expression pattern in the innate and adaptive immune responses may be associated with RSV clinical severity. Compounds that target these cellular processes can be repositioned as candidate drugs in the treatment of severe RSV. IMPACT Neutrophil, inflammation, and blood coagulation genes are upregulated in children with severe RSV infection. Expression of T cell response genes are suppressed in cases of severe RSV. Genes identified in this study can contribute in understanding the pathogenesis of RSV disease severity. Drugs that target cellular processes associated with severe RSV can be repositioned as potential therapeutic options.
Collapse
Affiliation(s)
- Clyde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| | - Satoru Kumaki
- grid.415495.8Department of Pediatrics, Sendai Medical Center, 11-12 Miyagino 2-chome, Miyagino-ku, Sendai, 983-8520 Japan
| | - Hiroki Sakurai
- grid.415988.90000 0004 0471 4457Department of General Pediatrics, Miyagi Children’s Hospital, 3-17 Ochiai 4-chome, Aoba-ku, Sendai, 989-3126 Japan
| | - Hidekazu Nishimura
- grid.415495.8Virus Research Center, Sendai Medical Center, 11-12 Miyagino 2-chome, Miyagino-ku, Sendai, 983-8520 Japan
| | - Hannah Karen Mina Labayo
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Michiko Okamoto
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Mayuko Saito
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| | - Hitoshi Oshitani
- grid.69566.3a0000 0001 2248 6943Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575 Japan
| |
Collapse
|
30
|
Harbi MH, Smith CW, Nicolson PLR, Watson SP, Thomas MR. Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases. Platelets 2020; 32:29-41. [PMID: 33307909 DOI: 10.1080/09537104.2020.1849600] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antiplatelet medications comprise the cornerstone of treatment for diseases that involve arterial thrombosis, including acute coronary syndromes (ACS), stroke and peripheral arterial disease. However, antiplatelet medications may cause bleeding and, furthermore, thrombotic events may still recur despite treatment. The interaction of collagen with GPVI receptors on the surface of platelets has been identified as one of the major players in the pathophysiology of arterial thrombosis that occurs following atherosclerotic plaque rupture. Promisingly, GPVI deficiency in humans appears to have a minimal impact on bleeding. These findings together suggest that targeting platelet GPVI may provide a novel treatment strategy that provides additional antithrombotic efficacy with minimal disruption of normal hemostasis compared to conventional antiplatelet medications. CLEC-2 is gaining interest as a therapeutic target for a variety of thrombo-inflammatory disorders including deep vein thrombosis (DVT) with treatment also predicted to cause minimal disruption to hemostasis. GPVI and CLEC-2 signal through Src, Syk and Tec family tyrosine kinases, providing additional strategies for inhibiting both receptors. In this review, we summarize the evidence regarding GPVI and CLEC-2 and strategies for inhibiting these receptors to inhibit platelet recruitment and activation in thrombotic diseases.
Collapse
Affiliation(s)
- Maan H Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK.,Sandwell and West Birmingham NHS Trust , Birmingham, UK
| |
Collapse
|
31
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
32
|
GPR56/ADGRG1 is a platelet collagen-responsive GPCR and hemostatic sensor of shear force. Proc Natl Acad Sci U S A 2020; 117:28275-28286. [PMID: 33097663 PMCID: PMC7668045 DOI: 10.1073/pnas.2008921117] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We identified the known collagen receptor GPR56/ADGRG1 on platelets. GPR56 is an adhesion G protein-coupled receptor that becomes activated following forced dissociation of its N-terminal fragment and C-terminal fragment or seven-transmembrane spanning domain (7TM). Fragment dissociation reveals the cryptic stalk of the 7TM, which acts as a tethered peptide agonist, and for GPR56, this activates platelet G13 signaling. GPR56 pharmacological probes activated platelets to undergo shape change and aggregation, which are critical for the formation of hemostatic plugs. Gpr56−/− mice exhibit prolonged bleeding, defective platelet plug formation in vessel injury assays, and delayed thrombotic vessel occlusion. Shear-force dependency of platelet adhesion to immobilized collagen was found to be GPR56 dependent. Circulating platelets roll along exposed collagen at vessel injury sites and respond with filipodia protrusion, shape change, and surface area expansion to facilitate platelet adhesion and plug formation. Various glycoproteins were considered to be both collagen responders and mediators of platelet adhesion, yet the signaling kinetics emanating from these receptors do not fully account for the rapid platelet cytoskeletal changes that occur in blood flow. We found the free N-terminal fragment of the adhesion G protein-coupled receptor (GPCR) GPR56 in human plasma and report that GPR56 is the platelet receptor that transduces signals from collagen and blood flow-induced shear force to activate G protein 13 signaling for platelet shape change. Gpr56−/− mice have prolonged bleeding, defective platelet plug formation, and delayed thrombotic occlusion. Human and mouse blood perfusion studies demonstrated GPR56 and shear-force dependence of platelet adhesion to immobilized collagen. Our work places GPR56 as an initial collagen responder and shear-force transducer that is essential for platelet shape change during hemostasis.
Collapse
|
33
|
Apte G, Börke J, Rothe H, Liefeith K, Nguyen TH. Modulation of Platelet-Surface Activation: Current State and Future Perspectives. ACS APPLIED BIO MATERIALS 2020; 3:5574-5589. [PMID: 35021790 DOI: 10.1021/acsabm.0c00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modulation of platelet-surface activation is important for many biomedical applications such as in vivo performance, platelet storage, and acceptance of an implant. Reducing platelet-surface activation is challenging because they become activated immediately after short contact with nonphysiological surfaces. To date, controversies and open questions in the field of platelet-surface activation still remain. Here, we review state-of-the-art approaches in inhibiting platelet-surface activation, mainly focusing on modification, patterning, and methodologies for characterization of the surfaces. As a future perspective, we discuss how the combination of biochemical and physiochemical strategies together with the topographical modulations would assist in the search for an ideal nonthrombogenic surface.
Collapse
|
34
|
The Antimicrobial Cathelicidin CRAMP Augments Platelet Activation during Psoriasis in Mice. Biomolecules 2020; 10:biom10091267. [PMID: 32887440 PMCID: PMC7565973 DOI: 10.3390/biom10091267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Platelet-associated complications including thrombosis, thrombocytopenia, and haemorrhage are commonly observed during various inflammatory diseases such as psoriasis. Although several mechanisms that may contribute to the dysfunction of platelets during inflammatory diseases have been reported, knowledge on the primary molecules/mechanisms that underpin platelet-associated complications in such conditions is not fully established. Here, we report the significance of the mouse antimicrobial cathelicidin, mouse cathelicidin-related antimicrobial peptide (mCRAMP) (an orthologue of LL37 in humans), on the modulation of platelet reactivity during psoriasis using Imiquimod-induced psoriasis in mice as an inflammatory disease model for psoriasis vulgaris in humans. The activation of platelets during psoriasis is increased as evidenced by the elevated levels of fibrinogen binding and P-selectin exposure on the surface of platelets, and the level of soluble P-selectin in the plasma of psoriatic mice. The skin and plasma of psoriatic mice displayed increased levels of mCRAMP. Moreover, the plasma of psoriatic mice augmented the activation of platelets obtained from healthy mice. The effect of mCRAMP is partially mediated through formyl peptide receptor 2/3 (Fpr2/3, the orthologue to human FPR2/ALX) in platelets as a significant reduction in their activation was observed when FPR2/ALX-selective inhibitors such as WRW4 or Fpr2/3-deficient mouse platelets were used in these assays. Since the level of antimicrobial cathelicidin is increased in numerous inflammatory diseases such as psoriasis, atherosclerosis, and inflammatory bowel disease, the results of this study point towards a critical role for antimicrobial cathelicidin and FPR2/ALX in the development of platelet-related complications in such diseases.
Collapse
|
35
|
Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: The Rollercoaster of Fibrin(Ogen), D-Dimer, Von Willebrand Factor, P-Selectin and Their Interactions with Endothelial Cells, Platelets and Erythrocytes. Int J Mol Sci 2020; 21:ijms21145168. [PMID: 32708334 PMCID: PMC7403995 DOI: 10.3390/ijms21145168] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies that may result in either bleeding and thrombocytopenia or hypercoagulation and thrombosis. Thrombotic and bleeding or thrombotic pathologies are significant accompaniments to acute respiratory syndrome and lung complications in COVID-19. Thrombotic events and bleeding often occur in subjects with weak constitutions, multiple risk factors and comorbidities. Of particular interest are the various circulating inflammatory coagulation biomarkers involved directly in clotting, with specific focus on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Central to the activity of these biomarkers are their receptors and signalling pathways on endothelial cells, platelets and erythrocytes. In this review, we discuss vascular implications of COVID-19 and relate this to circulating biomarker, endothelial, erythrocyte and platelet dysfunction. During the progression of the disease, these markers may either be within healthy levels, upregulated or eventually depleted. Most significant is that patients need to be treated early in the disease progression, when high levels of VWF, P-selectin and fibrinogen are present, with normal or slightly increased levels of D-dimer (however, D-dimer levels will rapidly increase as the disease progresses). Progression to VWF and fibrinogen depletion with high D-dimer levels and even higher P-selectin levels, followed by the cytokine storm, will be indicative of a poor prognosis. We conclude by looking at point-of-care devices and methodologies in COVID-19 management and suggest that a personalized medicine approach should be considered in the treatment of patients.
Collapse
Affiliation(s)
- Corlia Grobler
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Siphosethu C. Maphumulo
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - L. Mireille Grobbelaar
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Jhade C. Bredenkamp
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
| | - Gert J. Laubscher
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Petrus J. Lourens
- Elsie du Toit Street, Stellenbosch MediClinic, Stellenbosch 7600, South Africa; (G.J.L.); (P.J.L.)
| | - Janami Steenkamp
- PathCare Laboratories, PathCare Business Centre, Neels Bothma Street, N1 City, Cape Town 7460, South Africa;
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Kemitorve Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (D.B.K.); (E.P.)
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7602, South Africa; (C.G.); (S.C.M.); (L.M.G.); (J.C.B.)
- Correspondence: (D.B.K.); (E.P.)
| |
Collapse
|
36
|
Foster H, Wilson C, Philippou H, Foster R. Progress toward a Glycoprotein VI Modulator for the Treatment of Thrombosis. J Med Chem 2020; 63:12213-12242. [PMID: 32463237 DOI: 10.1021/acs.jmedchem.0c00262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pathogenic thrombus formation accounts for the etiology of many serious conditions including myocardial infarction, stroke, deep vein thrombosis, and pulmonary embolism. Despite the development of numerous anticoagulants and antiplatelet agents, the mortality rate associated with these diseases remains high. In recent years, however, significant epidemiological evidence and clinical models have emerged to suggest that modulation of the glycoprotein VI (GPVI) platelet receptor could be harnessed as a novel antiplatelet strategy. As such, many peptidic agents have been described in the past decade, while more recent efforts have focused on the development of small molecule modulators. Herein the rationale for targeting GPVI is summarized and the published GPVI modulators are reviewed, with particular focus on small molecules. A qualitative pharmacophore hypothesis for small molecule ligands at GPVI is also presented.
Collapse
Affiliation(s)
- Holly Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Clare Wilson
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| | - Richard Foster
- School of Chemistry and Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
37
|
Yang M, Liu Q, Niu T, Kuang J, Zhang X, Jiang L, Li S, He X, Wang L, Li J. Trp53 regulates platelets in bone marrow via the PI3K pathway. Exp Ther Med 2020; 20:1253-1260. [PMID: 32765666 PMCID: PMC7388439 DOI: 10.3892/etm.2020.8850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
The p53 gene is well known as a key tumor suppressor gene; it is vital for hematopoietic stem cell differentiation and growth. In the present study, the change of platelets (PLTs) in p53 knockout mice (p53-/- mice) was investigated. The peripheral blood cell subsets and PLT parameters in p53-/-mice were compared with those in age-matched p53+/+ mice. Bleeding time as well as the alteration of PLT levels, were analyzed with the PLT marker CD41 antibody using flow cytometry. The results revealed that the number of PLTs in p53-/- mice was significantly lower than that in p53+/+ mice. Bleeding time was prolonged in the peripheral blood of p53-/- mice compared with that of p53+/+ mice. Furthermore, the related gene expression of the PI3K signaling pathway in the bone marrow of p53-/- mice was shown to be associated with plateletogenesis. PI3K inhibitor (LY294002) was also used to treat p53-/- mice, and the results demonstrated that LY294002 revert the change of PLTs in these mice. In summary, PLTs were altered in p53-/- mice, and the PI3K signaling pathway was involved in that process, suggesting that the p53-dependent PI3K signaling pathway is involved in thrombocytopenia or PLT diseases. PLT number is reduced in p53 deficiency; however, this reduction could be reverted by inhibiting the PI3K pathway.
Collapse
Affiliation(s)
- Mingming Yang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Qing Liu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Ting Niu
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jianbiao Kuang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaohan Zhang
- Department of Pathology, Zhuhai Branch of Traditional Chinese Medicine Hospital of Guangdong Province, Zhuhai, Guangdong 519015, P.R. China
| | - Lingbi Jiang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Siqi Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xiaodong He
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiangchao Li
- Vascular Biology Research Institute, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
38
|
Hosseini E, Mohtashami M, Ghasemzadeh M. Down-regulation of platelet adhesion receptors is a controlling mechanism of thrombosis, while also affecting post-transfusion efficacy of stored platelets. Thromb J 2019; 17:20. [PMID: 31660046 PMCID: PMC6806620 DOI: 10.1186/s12959-019-0209-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Physiologically, upon platelet activation, uncontrolled propagation of thrombosis is prevented by regulating mechanisms which affect the expression and function of either platelet adhesion receptors or integrins. Receptor ectodomain shedding is an elective mechanism which is mainly involved in down-regulation of adhesion receptors GPIbα and GPVI. Platelet integrin αIIbβ3 can also be modulated with a calpain-dependent proteolytic cleavage. In addition, activating signals may induce the internalization of expressed receptors to selectively down-regulate their intensity. Alternatively, further activation of platelets is associated with microvesiculation as a none-selective mechanism which leads to the loss of membrane- bearing receptors. In a non-physiological condition, the storage of therapeutic platelets has also shown to be associated with the unwilling activation of platelets which triggers receptors down-regulation via aforementioned different mechanisms. Notably, herein the changes are time-dependent and not controllable. While the expression and shedding of pro-inflammatory molecules can induce post-transfusion adverse effects, stored-dependent loss of adhesion receptors by ectodomain shedding or microvesiculation may attenuate post-transfusion adhesive functions of platelets causing their premature clearance from circulation. In its first part, the review presented here aims to describe the mechanisms involved in down-regulation of platelet adhesion receptors. It then highlights the crucial role of ectodomain shedding and microvesiculation in the propagation of "platelet storage lesion" which may affect the post-transfusion efficacy of platelet components.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Maryam Mohtashami
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Mehran Ghasemzadeh
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran.,2Australian Center for Blood Diseases, Monash University, Melbourne, Victoria 3004 Australia
| |
Collapse
|
39
|
Affiliation(s)
- Thomas A. Blair
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Andrew L. Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Makhoul S, Trabold K, Gambaryan S, Tenzer S, Pillitteri D, Walter U, Jurk K. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal 2019; 17:122. [PMID: 31519182 PMCID: PMC6743169 DOI: 10.1186/s12964-019-0428-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Background The glycoprotein (GP) Ib-IX-V complex is a unique platelet plasma membrane receptor, which is essential for platelet adhesion and thrombus formation. GPIbα, part of the GPIb-IX-V complex, has several physiological ligands such as von Willebrand factor (vWF), thrombospondin and distinct coagulation factors, which trigger platelet activation. Despite having an important role, intracellular GPIb-IX-V signaling and its regulation by other pathways are not well defined. Our aim was to establish the intracellular signaling response of selective GPIbα activation in human platelets, in particular the role of the tyrosine kinase Syk and its regulation by cAMP/PKA and cGMP/PKG pathways, respectively. We addressed this using echicetin beads (EB), which selectively bind to GPIbα and induce platelet aggregation. Methods Purified echicetin from snake Echis carinatus venom was validated by mass spectrometry. Washed human platelets were incubated with EB, in the presence or absence of echicetin monomers (EM), Src family kinase (SFK) inhibitors, Syk inhibitors and the cAMP- and cGMP-elevating agents iloprost and riociguat, respectively. Platelet aggregation was analyzed by light transmission aggregometry, protein phosphorylation by immunoblotting. Intracellular messengers inositolmonophosphate (InsP1) and Ca2+i were measured by ELISA and Fluo-3 AM/FACS, respectively. Results EB-induced platelet aggregation was dependent on integrin αIIbβ3 and secondary mediators ADP and TxA2, and was antagonized by EM. EB stimulated Syk tyrosine phosphorylation at Y352, which was SFK-dependent and Syk-independent, whereas Y525/526 phosphorylation was SFK-dependent and partially Syk-dependent. Furthermore, phosphorylation of both Syk Y352 and Y525/526 was completely integrin αIIbβ3-independent but, in the case of Y525/526, was partially ADP/TxA2-dependent. Syk activation, observed as Y352/ Y525/Y526 phosphorylation, led to the phosphorylation of direct substrates (LAT Y191, PLCγ2 Y759) and additional targets (Akt S473). PKA/PKG pathways inhibited EB-induced platelet aggregation and Akt phosphorylation but, surprisingly, enhanced Syk and LAT/PLCγ2 tyrosine phosphorylation. A similar PKA/PKG effect was confirmed with convulxin−/GPVI-stimulated platelets. EB-induced InsP1 accumulation/InsP3 production and Ca2+-release were Syk-dependent, but only partially inhibited by PKA/PKG pathways. Conclusion EB and EM are specific agonists and antagonists, respectively, of GPIbα-mediated Syk activation leading to platelet aggregation. The cAMP/PKA and cGMP/PKG pathways do not inhibit but enhance GPIbα−/GPVI-initiated, SFK-dependent Syk activation, but strongly inhibit further downstream responses including aggregation. These data establish an important intracellular regulatory network induced by GPIbα. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Trabold
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stepan Gambaryan
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute for Immunology, University Medical Center Mainz, Mainz, Germany
| | | | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
41
|
Stainer AR, Sasikumar P, Bye AP, Unsworth AJ, Holbrook LM, Tindall M, Lovegrove JA, Gibbins JM. The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects. TH OPEN 2019; 3:e244-e258. [PMID: 31367693 PMCID: PMC6667742 DOI: 10.1055/s-0039-1694028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/24/2019] [Indexed: 01/09/2023] Open
Abstract
Quercetin, a dietary flavonoid, has been reported to possess antiplatelet activity. However, its extensive metabolism following ingestion has resulted in difficulty elucidating precise mechanisms of action. In this study, we aimed to characterize the antiplatelet mechanisms of two methylated metabolites of quercetin-isorhamnetin and tamarixetin-and explore potential interactions with aspirin. Isorhamnetin and tamarixetin inhibited human platelet aggregation, and suppressed activatory processes including granule secretion, integrin αIIbβ3 function, calcium mobilization, and spleen tyrosine kinase (Syk)/linker for activation of T cells (LAT) phosphorylation downstream of glycoprotein VI with similar potency to quercetin. All three flavonoids attenuated thrombus formation in an in vitro microfluidic model, and isoquercetin, a 3-O-glucoside of quercetin, inhibited thrombosis in a murine laser injury model. Isorhamnetin, tamarixetin, and quercetin enhanced the antiplatelet effects of aspirin more-than-additively in a plate-based aggregometry assay, reducing aspirin IC 50 values by an order of magnitude, with this synergy maintained in a whole blood test of platelet function. Our data provide mechanistic evidence for the antiplatelet activity of two quercetin metabolites, isorhamnetin and tamarixetin, and suggest a potential antithrombotic role for these flavonoids. In combination with their interactions with aspirin, this may represent a novel avenue of investigation for the development of new antithrombotic strategies and management of current therapies.
Collapse
Affiliation(s)
- Alexander R Stainer
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Parvathy Sasikumar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Haematology, Imperial College London, London, United Kingdom
| | - Alexander P Bye
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Amanda J Unsworth
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom.,School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - Lisa M Holbrook
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom.,School of Cardiovascular Medicine and Sciences, King's College London, London, United Kingdom
| | - Marcus Tindall
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Julie A Lovegrove
- Department of Food and Nutritional Sciences, Hugh Sinclair Unit of Human Nutrition, University of Reading, Reading, United Kingdom
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
42
|
Yin X, Liu P, Liu YY, Liu MY, Fan WL, Liu BY, Zhao JH. LRRFIP1 expression triggers platelet agglutination by enhancing αIIbβ3 expression. Exp Ther Med 2019; 18:269-277. [PMID: 31258662 PMCID: PMC6566026 DOI: 10.3892/etm.2019.7571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/29/2018] [Indexed: 02/06/2023] Open
Abstract
Platelets primarily participate in hemostasis and antimicrobial host defense. The present study aimed to investigate the effects of leucine-rich repeat flightless-interacting protein-1 (LRRFIP1) on platelet agglutination. The bacterial strain of LRRFIP1 was used to synthesize the recombinant protein and a mouse model of LRRFIP1 gene knockout was established. Platelets were isolated from the mice and divided into the different trial groups according to their treatment with collagen, thrombin receptor SFLLRN, anti-wild-type (w)LRRFIP1monoclonal antibodies and the model of LRRFIP1 gene knockout. The platelets were prepared and platelet agglutination was examined using platelet aggregation apparatus. The active αIIbβ3 integrin was examined by flow cytometry. The results revealed that the combined wLRRFIP1 protein was successfully expressed. wLRRFIP1 treatment significantly triggered platelet agglutination of collagen, thrombin and monoclonal antibody treated platelets. wLRRFIP1 knockout significantly decreased αIIbβ3 levels compared with the wild-type. Platelet agglutination was also significantly inhibited in the LRRFIP1−/−mouse model compared with the wild-type. LRRFIP1 knockout significantly decreased the αIIbβ3 levels in platelets undergoing convulxin treatment. In conclusion, LRRFIP1 treatment triggered platelet agglutination and LRRFIP1 gene knockout inhibited platelet agglutination. In addition, LRRFIP1 gene knockout significantly decreased the levels of αIIbβ3. This suggests that LRRFIP1 my be applied to patients in a clinical setting to trigger platelet agglutination in inflammatory diseases and atherothrombotic diseases.
Collapse
Affiliation(s)
- Xiang Yin
- Department of Spinal Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Peng Liu
- Department of Spinal Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Yao-Yao Liu
- Department of Spinal Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Ming-Yong Liu
- Department of Spinal Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Wei-Li Fan
- Department of Spinal Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Bai-Yi Liu
- Department of Spinal Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| | - Jian-Hua Zhao
- Department of Spinal Surgery, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
43
|
Synthetic Flavonoids as Novel Modulators of Platelet Function and Thrombosis. Int J Mol Sci 2019; 20:ijms20123106. [PMID: 31242657 PMCID: PMC6627635 DOI: 10.3390/ijms20123106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/27/2023] Open
Abstract
Cardiovascular diseases represent a major cause of mortality and morbidity in the world, and specifically, thrombotic conditions such as heart attacks and strokes are caused by unwarranted activation of platelets and subsequent formation of blood clots (thrombi) within the blood vessels during pathological circumstances. Therefore, platelets act as a primary therapeutic target to treat and prevent thrombotic conditions. Current treatments are limited due to intolerance, and they are associated with severe side effects such as bleeding complications. Hence, the development of novel therapeutic strategies for thrombotic diseases is an urgent priority. Flavonoids are naturally occurring plant-derived molecules that exert numerous beneficial effects in humans through modulating the functions of distinct cell types. However, naturally occurring flavonoids suffer from several issues such as poor solubility, lipophilicity, and bioavailability, which hinder their efficacy and potency. Despite these, flavonoids act as versatile templates for the design and synthesis of novel molecules for various therapeutic targets. Indeed, several synthetic flavonoids have recently been developed to improve their stability, bioavailability, and efficacy, including for the modulation of platelet function. Here, we provide insight into the actions of certain natural flavonoids along with the advantages of synthetic flavonoids in the modulation of platelet function, haemostasis, and thrombosis.
Collapse
|
44
|
Pennell EN, Wagner KH, Mosawy S, Bulmer AC. Acute bilirubin ditaurate exposure attenuates ex vivo platelet reactive oxygen species production, granule exocytosis and activation. Redox Biol 2019; 26:101250. [PMID: 31226648 PMCID: PMC6586953 DOI: 10.1016/j.redox.2019.101250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Bilirubin, a by-product of haem catabolism, possesses potent endogenous antioxidant and platelet inhibitory properties. These properties may be useful in inhibiting inappropriate platelet activation and ROS production; for example, during storage for transfusion. Given the hydrophobicity of unconjugated bilirubin (UCB), we investigated the acute platelet inhibitory and ROS scavenging ability of a water-soluble bilirubin analogue, bilirubin ditaurate (BRT) on ex vivo platelet function to ascertain its potential suitability for inclusion during platelet storage. Methods The inhibitory potential of BRT (10–100 μM) was assessed using agonist induced platelet aggregation, dense granule exocytosis and flow cytometric analysis of P-selectin and GPIIb/IIIa expression. ROS production was investigated by analysis of H2DCFDA fluorescence following agonist simulation while mitochondrial ROS production investigated using MitoSOX™ Red. Platelet mitochondrial membrane potential and viability was assessed using TMRE and Zombie Green™ respectively. Results Our data shows ≤35 μM BRT significantly inhibits both dense and alpha granule exocytosis as measured by ATP release and P-selectin surface expression, respectively. Significant inhibition of GPIIb/IIIa expression was also reported upon ≤35 μM BRT exposure. Furthermore, platelet exposure to ≤10 μM BRT significantly reduces platelet mitochondrial ROS production. Despite the inhibitory effect of BRT, platelet viability, mitochondrial membrane potential and agonist induced aggregation were not perturbed. Conclusions These data indicate, for the first time, that BRT, a water-soluble bilirubin analogue, inhibits platelet activation and reduces platelet ROS production ex vivo and may, therefore, may be of use in preserving platelet function during storage. The impact of conjugated bilirubin on platelet function has not been investigated to date. Bilirubin ditaurate (BDT) is a water-soluble analogue of conjugated bilirubin. BDT attenuates ex vivo platelet activation and ROS generation. Conjugated forms of bilirubin might inhibit platelet activation during storage.
Collapse
Affiliation(s)
- Evan Noel Pennell
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Karl-Heinz Wagner
- Research Platform Active Aging, Department of Nutritional Science, University of Vienna, Austria.
| | - Sapha Mosawy
- School of Medical Science, Griffith University, Gold Coast, Australia; Endeavour College of Natural Health, Melbourne, Australia
| | | |
Collapse
|
45
|
Zanotty Y, Álvarez M, Perdomo L, Sánchez EE, Giron ME, Jimenez JC, Suntravat M, Guerrero B, Ibarra C, Montero Y, Medina R, Navarrete LF, Rodríguez-Acosta A. Mutacytin-1, a New C-Type Lectin-Like Protein from the Venezuelan Cuaima ( Lachesis muta muta Linnaeus, 1766) (Serpentes: Viperidae) Snake Venom Inducing Cardiotoxicity in Developing Zebrafish ( Danio rerio) Embryos. Zebrafish 2019; 16:379-387. [PMID: 31145051 DOI: 10.1089/zeb.2019.1731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Envenomation by the Venezuelan bushmaster snake (Lachesis muta muta) (Serpentes: Viperidae) is characterized by local and cardiac alterations. This study investigates the in vivo cardiac dysfunction, tissue destruction, and cellular processes triggered by Lachesis muta muta snake crude venom and a C-type lectin (CTL)-like toxin named Mutacytin-1 (MC-1). The 28 kDa MC-1 was obtained by molecular exclusion, ion exchange, and C-18 (checking pureness) reverse-phase chromatographies. N-terminal sequencing of the first eight amino acids (NNCPQ LLM) revealed 100% identity with Mutina (CTL-like) isolated from Lachesis stenophrys, which is a Ca2+-dependent-type galactoside-binding lectin from Bothrops jararaca and CTL BpLec from Bothrops pauloensis. The cardiotoxicity in zebrafish of MC-1 was evaluated by means of specific phenotypic expressions and larvae behavior at 5, 15, 30, 40 and 60 min post-treatment. The L. muta muta venom and MC-1 also produced heart rate/rhythm alterations, circulation modifications, and the presence of thrombus and apoptotic phenomenon with pericardial damages. Acridine orange (100 μg/mL) was used to visualize apoptosis cellular process in control and treated whole embryos. The cardiotoxic alterations happened in more than 90% of all larvae under the action of L. muta muta venom and MC-1. The findings have demonstrated the potential cardiotoxicity by L. muta muta venom, suggesting the possibility of cardiovascular damages to patients after bushmaster envenoming.
Collapse
Affiliation(s)
- Yurisbeth Zanotty
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela.,2Sección de Microscopia Electrónica, Instituto Anatómico "José Izquierdo," Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Marco Álvarez
- 2Sección de Microscopia Electrónica, Instituto Anatómico "José Izquierdo," Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Lourdes Perdomo
- 2Sección de Microscopia Electrónica, Instituto Anatómico "José Izquierdo," Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Elda E Sánchez
- 3Department of Chemistry, National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, Texas
| | - María E Giron
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Juan C Jimenez
- 4Instituto de Inmunología, Universidad Central de Venezuela, Caracas, Venezuela
| | - Montamas Suntravat
- 3Department of Chemistry, National Natural Toxins Research Center, Texas A&M University-Kingsville, Kingsville, Texas
| | - Belsy Guerrero
- 5Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Carlos Ibarra
- 5Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Yuyibeth Montero
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Rafael Medina
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Luis F Navarrete
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| | - Alexis Rodríguez-Acosta
- 1Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico "José Izquierdo," Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
46
|
Santos MNND. Does gender influence reference values of platelet indices? Hematol Transfus Cell Ther 2019; 41:104-105. [PMID: 31053489 PMCID: PMC6517684 DOI: 10.1016/j.htct.2019.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 11/29/2022] Open
|
47
|
Inhibition of Human Platelet Aggregation and Low-Density Lipoprotein Oxidation by Premna foetida Extract and Its Major Compounds. Molecules 2019; 24:molecules24081469. [PMID: 31013947 PMCID: PMC6514998 DOI: 10.3390/molecules24081469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 01/27/2023] Open
Abstract
Many Premna species have been used in traditional medicine to treat hypertension and cardiac insufficiency, and as a tonic for cardiac-related problems. Some have been reported to possess cardiovascular protective activity through several possible mechanisms, but not Premna foetida. In the present study, the methanol extract of P. foetida leaves (PFM) and its isolated compounds were evaluated for their ability to inhibit copper-mediated human low-density lipoprotein (LDL) oxidation and arachidonic acid (AA)- and adenosine diphosphate (ADP)-induced platelet aggregation. Six flavonoids, three triterpenoids, vanillic acid and stigmasterol were successfully isolated from PFM. Of the isolated compounds, quercetin was the most active against LDL oxidation (IC50 4.25 µM). The flavonols were more active than the flavones against LDL oxidation, suggesting that hydroxyl group at C-3 and the catechol moiety at B-ring may play important roles in protecting LDL from oxidation. Most tested flavonoids showed stronger inhibition towards AA-induced than the ADP-induced platelet aggregation with apigenin exhibiting the strongest effect (IC50 52.3 and 127.4 µM, respectively) while quercetin and kaempferol showed moderate activity. The results suggested that flavonoids, especially quercetin, apigenin and kaempferol were among the major constituents of P. foetida responsible for anti-LDL oxidation and anti-platelet aggregation.
Collapse
|
48
|
Jeon BR, Irfan M, Kim M, Lee SE, Lee JH, Rhee MH. Schizonepeta tenuifolia inhibits collagen stimulated platelet function via suppressing MAPK and Akt signaling. J Biomed Res 2019; 33:250. [PMID: 30783025 PMCID: PMC6813526 DOI: 10.7555/jbr.32.20180031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing at a rapid pace in developed countries, and CVDs are the leading cause of morbidity and mortality. Natural products and ethnomedicine have been shown to reduce the risk of CVDs. Schizonepeta (S.) tenuifolia is a medicinal plant widely used in China, Korea, and Japan and is known to exhibit anti-inflammatory, antioxidant, and immunomodulatory activities. We hypothesized that given herbal plant exhibit pharmacological activities against CVDs, we specifically explored its effects on platelet function. Platelet aggregation was evaluated using standard light transmission aggregometry. Intracellular calcium mobilization was assessed using Fura-2/AM, and granule secretion (ATP release) was measured in a luminometer. Fibrinogen binding to integrin αⅡbβ3, was assessed using flow cytometry. Phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules and activation of the protein kinase B (Akt) was assessed using Western blot assays. S. tenuifolia, extract potently and significantly inhibited platelet aggregation, calcium mobilization, granule secretion, and fibrinogen binding to integrin αⅡbβ3. Moreover, all extracts significantly inhibited MAPK and Akt phosphorylation. S. tenuifolia extract inhibited platelet aggregation and granule secretion, and attenuated collagen mediated GPVI downstream signaling, indicating the potential therapeutic effects of these plant extracts on the cardiovascular system and platelet function. We suggest that S. tenuifolia extract may be a potent candidate to treat platelet-related CVDs and to be used as an antiplatelet and antithrombotic agent.
Collapse
Affiliation(s)
- Bo-Ra Jeon
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Irfan
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minki Kim
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung Eun Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong 27709, Republic of Korea
| | - Jeong Hoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong 27709, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
49
|
Qi QM, Dunne E, Oglesby I, Schoen I, Ricco AJ, Kenny D, Shaqfeh ESG. In Vitro Measurement and Modeling of Platelet Adhesion on VWF-Coated Surfaces in Channel Flow. Biophys J 2019; 116:1136-1151. [PMID: 30824114 DOI: 10.1016/j.bpj.2019.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/13/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
The process of platelet adhesion is initiated by glycoprotein (GP)Ib and GPIIbIIIa receptors on the platelet surface binding with von Willebrand factor on the vascular walls. This initial adhesion and detachment of a single platelet is a complex process that involves multiple bonds forming and breaking and is strongly influenced by the surrounding blood-flow environment. In addition to bond-level kinetics, external factors such as shear rate, hematocrit, and GPIb and GPIIbIIIa receptor densities have also been identified as influencing the platelet-level rate constants in separate studies, but this still leaves a gap in understanding between these two length scales. In this study, we investigate the fundamental relationship of the dynamics of platelet adhesion, including these interrelating factors, using a coherent strategy. We build a, to our knowledge, novel and computationally efficient multiscale model accounting for multibond kinetics and hydrodynamic effects due to the flow of a cellular suspension. The model predictions of platelet-level kinetics are verified by our microfluidic experiments, which systematically investigate the role of each external factor on platelet adhesion in an in vitro setting. We derive quantitative formulas describing how the rates of platelet adhesion, translocation, and detachment are defined by the molecular-level kinetic constants, the local platelet concentration near the reactive surface determined by red-blood-cell migration, the platelet effective reactive area due to its tumbling motion, and the platelet surface receptor density. Furthermore, if any of these aspects involved have abnormalities, e.g., in a disease condition, our findings also have clinical relevance in predicting the resulting change in the adhesion dynamics, which is essential to hemostasis and thrombosis.
Collapse
Affiliation(s)
- Qin M Qi
- Chemical Engineering, Stanford University, Stanford, California.
| | - Eimear Dunne
- Irish Centre for Vascular Biology and Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Irene Oglesby
- Irish Centre for Vascular Biology and Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology and Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Antonio J Ricco
- Electrical Engineering, Stanford University, Stanford, California
| | - Dermot Kenny
- Irish Centre for Vascular Biology and Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eric S G Shaqfeh
- Chemical Engineering, Stanford University, Stanford, California; Mechanical Engineering, Stanford University, Stanford, California; Institute for Computational and Mathmatical Engineering, Stanford University, Stanford, California
| |
Collapse
|
50
|
Farkhondeh T, Samarghandian S, Bafandeh F. The Cardiovascular Protective Effects of Chrysin: A Narrative Review on Experimental Researches. Cardiovasc Hematol Agents Med Chem 2019; 17:17-27. [PMID: 30648526 PMCID: PMC6865076 DOI: 10.2174/1871525717666190114145137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022]
Abstract
Chrysin is one of the flavonoids fruits, vegetables, and plant especially found in honey, it has been indicated that its cardiovascular protective effect is due to its antioxidative effects and anti inflammatory activities. Chrysin exerts an antioxidant effect by enhancing the antioxidant system, suppressing pro-oxidant enzymes, scavenging free radicals and chelating redox active transition metal ions. Chrysin decreases lipid synthesis and also increases its metabolism, thereby ameliorating blood lipid profile. Chrysin modulates vascular function by increasing the bioavailability of endothelial nitric oxide. Chrysin inhibits the development of atherosclerosis by decreasing vascular inflammation. The anti-inflammatory effects of chrysin may relate to its inhibitory effect on the nuclear transcriptional factor-kB signaling pathway. It also prevents vascular smooth muscle cells proliferation and thrombogenesis. Altogether, chrysin may be effective as a natural agent for the prevention and treatment of cardiovascular diseases; however, several clinical trial studies should be done to confirm its protective effects on humans.
Collapse
Affiliation(s)
| | - Saeed Samarghandian
- Address correspondence to this author at the Noncommunicable Diseases Research Center, University of Medical Sciences, Neyshabur, Iran; Tel: +989151200945; E-mail:
| | | |
Collapse
|