1
|
Tsai CY, Chen PH, Chen AL, Wang TSA. Spatiotemporal Investigation of Intercellular Heterogeneity via Multiple Photocaged Probes. Chemistry 2023; 29:e202301067. [PMID: 37382047 DOI: 10.1002/chem.202301067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Intercellular heterogeneity occurs widely under both normal physiological environments and abnormal disease-causing conditions. Several attempts to couple spatiotemporal information to cell states in a microenvironment were performed to decipher the cause and effect of heterogeneity. Furthermore, spatiotemporal manipulation can be achieved with the use of photocaged/photoactivatable molecules. Here, we provide a platform to spatiotemporally analyze differential protein expression in neighboring cells by multiple photocaged probes coupled with homemade photomasks. We successfully established intercellular heterogeneity (photoactivable ROS trigger) and mapped the targets (directly ROS-affected cells) and bystanders (surrounding cells), which were further characterized by total proteomic and cysteinomic analysis. Different protein profiles were shown between bystanders and target cells in both total proteome and cysteinome. Our strategy should expand the toolkit of spatiotemporal mapping for elucidating intercellular heterogeneity.
Collapse
Affiliation(s)
- Chun-Yi Tsai
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Po-Hsun Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Ai-Lin Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
2
|
Kaplan L, Drexler C, Pfaller AM, Brenna S, Wunderlich KA, Dimitracopoulos A, Merl-Pham J, Perez MT, Schlötzer-Schrehardt U, Enzmann V, Samardzija M, Puig B, Fuchs P, Franze K, Hauck SM, Grosche A. Retinal regions shape human and murine Müller cell proteome profile and functionality. Glia 2023; 71:391-414. [PMID: 36334068 DOI: 10.1002/glia.24283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022]
Abstract
The human macula is a highly specialized retinal region with pit-like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone- and rod-rich retinae from human and mice and identified different expression profiles of cone- and rod-associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell-derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region-specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo.
Collapse
Affiliation(s)
- Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
- Vienna Biocenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Anna M Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kirsten A Wunderlich
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Maria-Theresa Perez
- Department of Clinical Sciences, Division of Ophthalmology, Lund University, Lund, Sweden
- NanoLund, Nanometer Structure Consortium, Lund University, Lund, Sweden
| | | | - Volker Enzmann
- Department of Ophthalmology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Marijana Samardzija
- Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
3
|
Ratajczyk S, Drexler C, Windoffer R, Leube RE, Fuchs P. A Ca 2+-Mediated Switch of Epiplakin from a Diffuse to Keratin-Bound State Affects Keratin Dynamics. Cells 2022; 11:cells11193077. [PMID: 36231039 PMCID: PMC9563781 DOI: 10.3390/cells11193077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Keratins exert important structural but also cytoprotective functions. They have to be adaptable to support cellular homeostasis. Epiplakin (EPPK1) has been shown to decorate keratin filaments in epithelial cells and to play a protective role under stress, but the mechanism is still unclear. Using live-cell imaging of epithelial cells expressing fluorescently tagged EPPK1 and keratin, we report here an unexpected dynamic behavior of EPPK1 upon stress. EPPK1 was diffusely distributed throughout the cytoplasm and not associated with keratin filaments in living cells under standard culture conditions. However, ER-, oxidative and UV-stress, as well as cell fixation, induced a rapid association of EPPK1 with keratin filaments. This re-localization of EPPK1 was reversible and dependent on the elevation of cytoplasmic Ca2+ levels. Moreover, keratin filament association of EPPK1 led to significantly reduced keratin dynamics. Thus, we propose that EPPK1 stabilizes the keratin network in stress conditions, which involve increased cytoplasmic Ca2+.
Collapse
Affiliation(s)
- Sonia Ratajczyk
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Vienna Biocenter PhD Program, A Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), A-1030 Vienna, Austria
- Correspondence: ; Tel.: +43-1-4277-52855
| |
Collapse
|
4
|
Fuchs P, Drexler C, Ratajczyk S, Eckhart L. Comparative genomics reveals evolutionary loss of epiplakin in cetaceans. Sci Rep 2022; 12:1112. [PMID: 35064199 PMCID: PMC8782857 DOI: 10.1038/s41598-022-05087-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
The adaptation of vertebrates to different environments was associated with changes in the molecular composition and regulation of epithelia. Whales and dolphins, together forming the clade cetaceans, have lost multiple epithelial keratins during or after their evolutionary transition from life on land to life in water. It is unknown whether the changes in keratins were accompanied by gain or loss of cytoskeletal adapter proteins of the plakin family. Here we investigated whether plakin proteins are conserved in cetaceans and other vertebrates. Comparative analysis of genome sequences showed conservation of dystonin, microtubule actin crosslinking factor 1 (MACF1), plectin, desmoplakin, periplakin and envoplakin in cetaceans. By contrast, EPPK1 (epiplakin) was disrupted by inactivating mutations in all cetaceans investigated. Orthologs of EPPK1 are present in bony and cartilaginous fishes and tetrapods, indicating an evolutionary origin of EPPK1 in a common ancestor of jawed vertebrates (Gnathostomes). In many vertebrates, EPPK1 is flanked by an as-yet uncharacterized gene that encodes protein domains homologous to the carboxy-terminal segment of MACF1. We conclude that epiplakin, unlike other plakins, was lost in cetaceans.
Collapse
Affiliation(s)
- Peter Fuchs
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria.
| | - Corinne Drexler
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Sonia Ratajczyk
- Max Perutz Labs, Department of Biochemistry and Cell Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Leopold Eckhart
- Skin Biology Laboratory, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Mohammed F, Trieber C, Overduin M, Chidgey M. Molecular mechanism of intermediate filament recognition by plakin proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118801. [PMID: 32712070 DOI: 10.1016/j.bbamcr.2020.118801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
The plakin family of cytolinkers interacts with intermediate filaments (IFs) through plakin repeat domain (PRD) and linker modules. Recent structure/function studies have established the molecular basis of envoplakin-PRD and periplakin-linker interactions with vimentin. Both plakin modules share a broad basic groove which recognizes acidic rod elements on IFs, a mechanism that is applicable to other plakin family members. This review postulates a universal IF engagement mechanism that illuminates the specific effects of pathogenic mutations associated with diseases including arrhythmogenic right ventricular cardiomyopathy, and reveals how diverse plakin proteins offer tailored IF tethering to ensure stable, dynamic and regulated cellular structures.
Collapse
Affiliation(s)
- Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK.
| | - Catharine Trieber
- Department of Biochemistry, Faculty of Medicine and Dentistry, 474 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Michael Overduin
- Department of Biochemistry, Faculty of Medicine and Dentistry, 474 Medical Sciences Building, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| | - Martyn Chidgey
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
6
|
Gujrati M, Mittal R, Ekal L, Mishra RK. SUMOylation of periplakin is critical for efficient reorganization of keratin filament network. Mol Biol Cell 2018; 30:357-369. [PMID: 30516430 PMCID: PMC6589569 DOI: 10.1091/mbc.e18-04-0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The architecture of the cytoskeleton and its remodeling are tightly regulated by dynamic reorganization of keratin-rich intermediate filaments. Plakin family proteins associate with the network of intermediate filaments (IFs) and affect its reorganization during migration, differentiation, and response to stress. The smallest plakin, periplakin (PPL), interacts specifically with intermediate filament proteins K8, K18, and vimentin via its C-terminal linker domain. Here, we show that periplakin is SUMOylated at a conserved lysine in its linker domain (K1646) preferentially by small ubiquitin-like modifier 1 (SUMO1). Our data indicate that PPL SUMOylation is essential for the proper reorganization of the keratin IF network. Stresses perturbing intermediate-filament and cytoskeletal architecture induce hyper--SUMOylation of periplakin. Okadaic acid induced hyperphosphorylation-dependent collapse of the keratin IF network results in a similar hyper-SUMOylation of PPL. Strikingly, exogenous overexpression of a non-SUMOylatable periplakin mutant (K1646R) induced aberrant bundling and loose network interconnections of the keratin filaments. Time-lapse imaging of cells expressing the K1646R mutant showed the enhanced sensitivity of keratin filament collapse upon okadaic acid treatment. Our data identify an important regulatory role for periplakin SUMOylation in dynamic reorganization and stability of keratin IFs.
Collapse
Affiliation(s)
- Mansi Gujrati
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Rohit Mittal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
7
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
8
|
Consequences of Keratin Phosphorylation for Cytoskeletal Organization and Epithelial Functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 330:171-225. [DOI: 10.1016/bs.ircmb.2016.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Mechanism of intermediate filament recognition by plakin repeat domains revealed by envoplakin targeting of vimentin. Nat Commun 2016; 7:10827. [PMID: 26935805 PMCID: PMC4782060 DOI: 10.1038/ncomms10827] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/23/2016] [Indexed: 01/14/2023] Open
Abstract
Plakin proteins form critical connections between cell junctions and the cytoskeleton; their disruption within epithelial and cardiac muscle cells cause skin-blistering diseases and cardiomyopathies. Envoplakin has a single plakin repeat domain (PRD) which recognizes intermediate filaments through an unresolved mechanism. Herein we report the crystal structure of envoplakin's complete PRD fold, revealing binding determinants within its electropositive binding groove. Four of its five internal repeats recognize negatively charged patches within vimentin via five basic determinants that are identified by nuclear magnetic resonance spectroscopy. Mutations of the Lys1901 or Arg1914 binding determinants delocalize heterodimeric envoplakin from intracellular vimentin and keratin filaments in cultured cells. Recognition of vimentin is abolished when its residues Asp112 or Asp119 are mutated. The latter slot intermediate filament rods into basic PRD domain grooves through electrosteric complementarity in a widely applicable mechanism. Together this reveals how plakin family members form dynamic linkages with cytoskeletal frameworks. Plakin proteins link cell junctions to cytoskeletal frameworks, and their disruption within epithelial and cardiac muscle cells cause skin blistering diseases and cardiomyopathies. Here the authors use structural biology approaches to reveal the mechanism that allows plakins to recognize intermediate filaments within the cytoskeleton.
Collapse
|
10
|
Epiplakin Is a Paraneoplastic Pemphigus Autoantigen and Related to Bronchiolitis Obliterans in Japanese Patients. J Invest Dermatol 2016; 136:399-408. [DOI: 10.1038/jid.2015.408] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/23/2015] [Accepted: 09/26/2015] [Indexed: 11/09/2022]
|
11
|
Robert A, Hookway C, Gelfand VI. Intermediate filament dynamics: What we can see now and why it matters. Bioessays 2016; 38:232-43. [PMID: 26763143 DOI: 10.1002/bies.201500142] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical properties of vertebrate cells are largely defined by the system of intermediate filaments (IF). As part of a dense network, IF polymers are constantly rearranged and relocalized in the cell to fulfill their duty as cells change shape, migrate, or divide. With the development of new imaging technologies, such as photoconvertible proteins and super-resolution microscopy, a new appreciation for the complexity of IF dynamics has emerged. This review highlights new findings about the transport of IF, the remodeling of filaments by a process of severing and re-annealing, and the subunit exchange that occurs between filament precursors and a soluble pool of IF. We will also discuss the unique dynamic features of the keratin IF network. Finally, we will speculate about how the dynamic properties of IF are related to their functions.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Szabo S, Wögenstein KL, Fuchs P. Functional and Genetic Analysis of Epiplakin in Epithelial Cells. Methods Enzymol 2015; 569:261-85. [PMID: 26778563 DOI: 10.1016/bs.mie.2015.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Epiplakin is a large member (>700 kDa) of the plakin protein family and exclusively expressed in epithelial cell types. Compared to other plakin proteins epiplakin exhibits an unusual structure as it consists entirely of a variable number of consecutive plakin repeat domains (13 in humans, 16 in mice). The only binding partners of epiplakin identified so far are keratins of simple as well as of stratified epithelia. Epiplakin-deficient mice show no obvious spontaneous phenotype. However, ex vivo studies using epiplakin-deficient primary cells indicated protective functions of epiplakin in response to stress. Recent studies using stress models for organs of the gastrointestinal tract revealed that epiplakin-deficient mice develop more pronounced pancreas and liver injuries than their wild-type littermates. In addition, impaired stress-induced keratin network reorganization was observed in the affected organs, and primary epiplakin-deficient hepatocytes showed reduced tolerance for forced keratin overexpression which could be rescued by a chemical chaperone. These findings indicate protective functions of epiplakin in chaperoning disease-induced keratin reorganization. In this review, we describe some of the methods we used to analyze epiplakin's function with the focus on biochemical and ex vivo techniques.
Collapse
Affiliation(s)
- Sandra Szabo
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Karl L Wögenstein
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Peter Fuchs
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria.
| |
Collapse
|
13
|
Szabo S, Wögenstein KL, Österreicher CH, Guldiken N, Chen Y, Doler C, Wiche G, Boor P, Haybaeck J, Strnad P, Fuchs P. Epiplakin attenuates experimental mouse liver injury by chaperoning keratin reorganization. J Hepatol 2015; 62:1357-66. [PMID: 25617501 PMCID: PMC4451473 DOI: 10.1016/j.jhep.2015.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Epiplakin is a member of the plakin protein family and exclusively expressed in epithelial tissues where it binds to keratins. Epiplakin-deficient (Eppk1(-/-)) mice displayed no obvious spontaneous phenotype, but their keratinocytes showed a faster keratin network breakdown in response to stress. The role of epiplakin in the stressed liver remained to be elucidated. METHODS Wild-type (WT) and Eppk1(-/-) mice were subjected to common bile duct ligation (CBDL) or fed with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-containing diet. The importance of epiplakin during keratin reorganization was assessed in primary hepatocytes. RESULTS Our experiments revealed that epiplakin is expressed in hepatocytes and cholangiocytes, and binds to keratin 8 (K8) and K18 via multiple domains. In several liver stress models epiplakin and K8 genes displayed identical expression patterns and transgenic K8 overexpression resulted in elevated hepatic epiplakin levels. After CBDL and DDC treatment, Eppk1(-/-) mice developed a more pronounced liver injury and their livers contained larger amounts of hepatocellular keratin granules, indicating impaired disease-induced keratin network reorganization. In line with these findings, primary Eppk1(-/-) hepatocytes showed increased formation of keratin aggregates after treatment with the phosphatase inhibitor okadaic acid, a phenotype which was rescued by the chemical chaperone trimethylamine N-oxide (TMAO). Finally, transfection experiments revealed that Eppk1(-/-) primary hepatocytes were less able to tolerate forced K8 overexpression and that TMAO treatment rescued this phenotype. CONCLUSION Our data indicate that epiplakin plays a protective role during experimental liver injuries by chaperoning disease-induced keratin reorganization.
Collapse
Affiliation(s)
- Sandra Szabo
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Karl L Wögenstein
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Christoph H Österreicher
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nurdan Guldiken
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Yu Chen
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Carina Doler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Peter Boor
- Division of Nephrology and Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | | | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Peter Fuchs
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Nolting JF, Möbius W, Köster S. Mechanics of individual keratin bundles in living cells. Biophys J 2014; 107:2693-9. [PMID: 25468348 PMCID: PMC4255224 DOI: 10.1016/j.bpj.2014.10.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/04/2022] Open
Abstract
Along with microtubules and microfilaments, intermediate filaments are a major component of the eukaryotic cytoskeleton and play a key role in cell mechanics. In cells, keratin intermediate filaments form networks of bundles that are sparser in structure and have lower connectivity than, for example, actin networks. Because of this, bending and buckling play an important role in these networks. Buckling events, which occur due to compressive intracellular forces and cross-talk between the keratin network and other cytoskeletal components, are measured here in situ. By applying a mechanical model for the bundled filaments, we can access the mechanical properties of both the keratin bundles themselves and the surrounding cytosol. Bundling is characterized by a coupling parameter that describes the strength of the linkage between the individual filaments within a bundle. Our findings suggest that coupling between the filaments is mostly complete, although it becomes weaker for thicker bundles, with some relative movement allowed.
Collapse
Affiliation(s)
- Jens-Friedrich Nolting
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, Department of Neurogenetics, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
15
|
Wögenstein KL, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, Boor P, Wagner M, Fuchs P. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS One 2014; 9:e108323. [PMID: 25232867 PMCID: PMC4169488 DOI: 10.1371/journal.pone.0108323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/19/2014] [Indexed: 11/23/2022] Open
Abstract
Epiplakin, a member of the plakin protein family, is exclusively expressed in epithelial tissues and was shown to bind to keratins. Epiplakin-deficient (EPPK−/−) mice showed no obvious spontaneous phenotype, however, EPPK−/− keratinocytes displayed faster keratin network breakdown in response to stress. The role of epiplakin in pancreas, a tissue with abundant keratin expression, was not yet known. We analyzed epiplakin’s expression in healthy and inflamed pancreatic tissue and compared wild-type and EPPK−/− mice during caerulein-induced acute pancreatitis. We found that epiplakin was expressed primarily in ductal cells of the pancreas and colocalized with apicolateral keratin bundles in murine pancreatic acinar cells. Epiplakin’s diffuse subcellular localization in keratin filament-free acini of K8-deficient mice indicated that its filament-associated localization in acinar cells completely depends on its binding partner keratin. During acute pancreatitis, epiplakin was upregulated in acinar cells and its redistribution closely paralleled keratin reorganization. EPPK−/− mice suffered from aggravated pancreatitis but showed no obvious regeneration phenotype. At the most severe stage of the disease, EPPK−/− acinar cells displayed more keratin aggregates than those of wild-type mice. Our data propose epiplakin to be a protective protein during acute pancreatitis, and that its loss causes impaired disease-associated keratin reorganization.
Collapse
Affiliation(s)
- Karl L. Wögenstein
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Sandra Szabo
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mariia Lunova
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Institute of Pathology, RWTH University of Aachen, Aachen, Germany
| | - Martin Wagner
- Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Peter Fuchs
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
16
|
Shimada H, Nambu-Niibori A, Wilson-Morifuji M, Mizuguchi S, Araki N, Sumiyoshi H, Sato M, Mezaki Y, Senoo H, Ishikawa K, Hatano Y, Okamoto O, Fujiwara S. Epiplakin modifies the motility of the HeLa cells and accumulates at the outer surfaces of 3-D cell clusters. J Dermatol 2013; 40:249-58. [PMID: 23398049 DOI: 10.1111/1346-8138.12076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 11/21/2012] [Indexed: 11/27/2022]
Abstract
Elimination of epiplakin (EPPK) by gene targeting in mice results in acceleration of keratinocyte migration during wound healing, suggesting that epithelial cellular EPPK may be important for the regulation of cellular motility. To study the function of EPPK, we developed EPPK knock-down (KD) and EPPK-overexpressing HeLa cells and analyzed cellular phenotypes and motility by fluorescence/differential interference contrast time-lapse microscopy and immunolocalization of actin and vimentin. Cellular motility of EPPK-KD cells was significantly elevated, but that of EPPK-overexpressing cells was obviously depressed. Many spike-like projections were observed on EPPK-KD cells, with fewer such structures on overexpressing cells. By contrast, in EPPK-KD cells, expression of E-cadherin was unchanged but vimentin fibers were thinner and sparser than in controls, and they were more concentrated at the peri-nucleus, as observed in migrating keratinocytes at wound edges in EPPK(-/-) mice. In Matrigel 3-D cultures, EPPK co-localized on the outer surface of cell clusters with zonula occludens-1 (ZO-1), a marker of tight junctions. Our results suggest that EPPK is associated with the machinery for cellular motility and contributes to tissue architecture via the rearrangement of intermediate filaments.
Collapse
Affiliation(s)
- Hiromitsu Shimada
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Windoffer R, Beil M, Magin TM, Leube RE. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. ACTA ACUST UNITED AC 2012; 194:669-78. [PMID: 21893596 PMCID: PMC3171125 DOI: 10.1083/jcb.201008095] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | |
Collapse
|
18
|
Ishikawa K, Sumiyoshi H, Matsuo N, Takeo N, Goto M, Okamoto O, Tatsukawa S, Kitamura H, Fujikura Y, Yoshioka H, Fujiwara S. Epiplakin accelerates the lateral organization of keratin filaments during wound healing. J Dermatol Sci 2010; 60:95-104. [PMID: 20926261 DOI: 10.1016/j.jdermsci.2010.08.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 08/03/2010] [Accepted: 08/25/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Epiplakin (EPPK) belongs to the plakin family of cytolinker proteins and, resembling other members of the plakin family such as BPAG1 (an autoantigen of bullous pemphigoid) and plectin, EPPK has plakin repeat domains (PRDs) that bind to intermediate filaments. Elimination of EPPK by gene targeting in mice resulted in the acceleration of keratinocyte migration during wound healing. EPPK is expressed in proliferating keratinocytes at wound edges and, in view of its putative function in binding to keratin, we postulated that the keratin network in EPPK-null (EPPK(-/-)) mice might be disrupted during wound healing. OBJECTIVE To examine this hypothesis and to determine the precise localization of EPPK in relation to keratin filaments, we compared the non-wounded and wounded epidermis of wild-type and EPPK(-/-) mice. METHODS Non-wounded epidermis and wounded epidermis from wild-type and EPPK(-/-) mice were examined by immunofluorescence staining and electron microscopy before and after double immunostaining. RESULTS EPPK was colocalized with keratin 17 (K17) more extensively than with other keratins examined in wounded epidermis. The expression of K5, K10, K6, and K17 was the same in EPPK(-/-) mice after wounding as in normal mice, but diameters of keratin filaments were reduced in EPPK(-/-) keratinocytes. Electron microscopy after immunostaining revealed that EPPK colocalized with K5, K10 and K6 after wounding in wild-type mice. CONCLUSION Our data indicate that EPPK accelerates keratin bundling in proliferating keratinocytes during wound healing and suggest that EPPK might contribute to reinforcement of keratin networks under mechanical stress.
Collapse
Affiliation(s)
- Kazushi Ishikawa
- Department of Dermatology, Faculty of Medicine, Oita University, Hasama-machi, Oita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee CH, Coulombe PA. Self-organization of keratin intermediate filaments into cross-linked networks. ACTA ACUST UNITED AC 2009; 186:409-21. [PMID: 19651890 PMCID: PMC2728393 DOI: 10.1083/jcb.200810196] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Keratins, the largest subgroup of intermediate filament (IF) proteins, form a network of 10-nm filaments built from type I/II heterodimers in epithelial cells. A major function of keratin IFs is to protect epithelial cells from mechanical stress. Like filamentous actin, keratin IFs must be cross-linked in vitro to achieve the high level of mechanical resilience characteristic of live cells. Keratins 5 and 14 (K5 and K14), the main pairing occurring in the basal progenitor layer of epidermis and related epithelia, can readily self-organize into large filament bundles in vitro and in vivo. Here, we show that filament self-organization is mediated by multivalent interactions involving distinct regions in K5 and K14 proteins. Self-organization is determined independently of polymerization into 10-nm filaments, but involves specific type I–type II keratin complementarity. We propose that self-organization is a key determinant of the structural support function of keratin IFs in vivo.
Collapse
Affiliation(s)
- Chang-Hun Lee
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|