1
|
Mukhamedova F, Mukhamedov F. Stability and robustness of kinetochore dynamics under sudden perturbations and stochastic influences. Sci Rep 2025; 15:14883. [PMID: 40295768 PMCID: PMC12038042 DOI: 10.1038/s41598-025-98415-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Understanding the dynamic behavior of kinetochores is crucial for understanding the mechanisms of accurate chromosome segregation during cell division. In this study, we introduced non-linear exponents p and q into two new systems to capture the complex movements that govern the intersister movement of kinetochores during chromosome segregation. Our analysis revealed a power-law relationship between these exponents and the maximum amplitude A of sister kinetochore 2, indicating that even small adjustments in p and q lead to significant changes in kinetochore movement. This sensitivity suggests that kinetochore dynamics are governed by scale-invariant principles, potentially reflecting intrinsic properties of the kinetochore-microtubule interface such as motor protein activity. We observed that the Type II model with perturbation functions, demonstrated stability with rapidly dampening oscillations across various forms of noise and sudden shocks. This highlights the effectiveness of adaptable regulatory mechanisms in maintaining stability during mitosis. In contrast, the Type I model without such regulatory parameters exhibited sustained, bounded oscillations that did not dampen over time and showed significant fragility under stochastic noise, potentially compromising chromosome segregation fidelity. Our findings highlight the role of the exponents p and q in modulating kinetochore behavior and suggest that enhancing or mimicking these regulatory mechanisms could be a potential strategy for improving cell division fidelity as shown in our theoretical work.
Collapse
Affiliation(s)
| | - Farrukh Mukhamedov
- Department of Mathematical Sciences, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Ishikawa Y, Fukue H, Iwakami R, Ikeda M, Iemura K, Tanaka K. Fibrous corona is reduced in cancer cell lines that attenuate microtubule nucleation from kinetochores. Cancer Sci 2025; 116:420-431. [PMID: 39604214 PMCID: PMC11786318 DOI: 10.1111/cas.16406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Most cancer cells show increased chromosome missegregation, known as chromosomal instability (CIN), which promotes cancer progression and drug resistance. The underlying causes of CIN in cancer cells are not fully understood. Here we found that breast cancer cell lines show a reduced kinetochore localization of ROD, ZW10, and Zwilch, components of the fibrous corona, compared with non-transformed breast epithelial cell lines. The fibrous corona is a structure formed on kinetochores before their end-on attachment to microtubules and plays a role in efficient kinetochore capture and the spindle assembly checkpoint. The reduction in the fibrous corona was not due to reduced expression levels of the fibrous corona components or to a reduction in outer kinetochore components. Kinetochore localization of Bub1 and CENP-E, which play a role in the recruitment of the fibrous corona to kinetochores, was reduced in cancer cell lines, presumably due to reduced activity of Mps1, which is required for their recruitment to kinetochores through phosphorylating KNL1. Increasing kinetochore localization of Bub1 and CENP-E in cancer cells restored the level of the fibrous corona. Cancer cell lines showed a reduced capacity to nucleate microtubules from kinetochores, which was recently shown to be dependent on the fibrous corona, and increasing kinetochore localization of Bub1 and CENP-E restored the microtubule nucleation capacity on kinetochores. Our study revealed a distinct feature of cancer cell lines that may be related to CIN.
Collapse
Grants
- 18H04896 Ministry of Education, Culture, Sports, Science and Technology
- 21H05738 Ministry of Education, Culture, Sports, Science and Technology
- 23H04272 Ministry of Education, Culture, Sports, Science and Technology
- Yamaguchi Educational and Scholarship Foundation
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- JPMJAX2112 Japan Science and Technology Agency
- Takeda Science Foundation
- The Pharmacological Research Foundation. Tokyo
- 15H04368 Japan Society for the Promotion of Science
- 16H06635 Japan Society for the Promotion of Science
- 16K14604 Japan Society for the Promotion of Science
- 18H02434 Japan Society for the Promotion of Science
- 18K15234 Japan Society for the Promotion of Science
- 22H02614 Japan Society for the Promotion of Science
- 23K05629 Japan Society for the Promotion of Science
- Ministry of Education, Culture, Sports, Science and Technology
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- Japan Science and Technology Agency
- Takeda Science Foundation
- Japan Society for the Promotion of Science
Collapse
Affiliation(s)
- Yudai Ishikawa
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Hirotaka Fukue
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Runa Iwakami
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kenji Iemura
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer (IDAC)Tohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of MedicineTohoku UniversitySendaiJapan
- Department of Molecular Oncology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
3
|
Caspers J, Ritter A, Bahrami B, Hoock SC, Roth S, Friemel A, Oswald F, Louwen F, Kreis NN, Yuan J. Involvement of RBP-J interacting and tubulin-associated protein in the distribution of protein regulator of cytokinesis 1 in mitotic spindles. Front Cell Dev Biol 2025; 12:1472340. [PMID: 39839673 PMCID: PMC11747798 DOI: 10.3389/fcell.2024.1472340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
The protein regulator of cytokinesis 1 (PRC1) is a key regulator of microtubule crosslinking and bundling, which is crucial for spindle formation and cytokinesis. RITA, the RBP-J interacting and tubulin-associated protein, is a microtubule associated protein. We have reported that RITA localizes to mitotic spindles modulating microtubule dynamics and stability as well as to spindle poles affecting the activity of Aurora A. As defective chromosome congression and segregation are the most remarkable features of cells depleted of RITA, we aimed to explore further potential related mechanisms, using various cellular and molecular techniques, including clustered regularly interspaced short palindromic repeats technique/deactivated CRISPR-associated protein 9 (CRISPR/dCas9), mass spectrometry, confocal microscopy, immunofluorescence, immunoprecipitation and Western blot analysis. Here, we show that FLAG-RITA precipitates PRC1 and tubulin, and that these two proteins co-localize in the central region of the central spindle. Reduction of RITA enlarges the staining area of PRC1 in mitotic spindles as well as in the central spindle. Its suppression reduces the inter-centromere distance in metaphase cells. Interestingly, microtubule bundles of the central spindle are often less organized in a non-parallel pattern, as evidenced by increased angles, relative to corresponding separating chromosomes. These data suggest a novel role for RITA in mitotic distribution of PRC1 and that its deregulation may contribute to defective chromosome movement during mitosis. As both RITA and PRC1 are closely associated with malignant progression, further work is required to elucidate the detailed molecular mechanisms by which RITA acts as a modulator in central spindle formation and cytokinesis.
Collapse
Affiliation(s)
- Julia Caspers
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Andreas Ritter
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Badi Bahrami
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Samira Catharina Hoock
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Department of Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
4
|
Shioya M, Takahashi K, Nakano S, Kobayashi T, Koga K, Shozu M. Anti-Centromere Protein A Antibody Disrupts the Competence of Mouse Oocytes Matured In Vitro. Am J Reprod Immunol 2024; 92:e70024. [PMID: 39665768 DOI: 10.1111/aji.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Anticentromere autoantibodies are associated with refractory IVF/ET failure, but causality is unclear. Experimental models are needed. METHODS Immature oocytes collected from 23-day-old mice were matured in vitro for 18 h in a culture medium containing an anti-human centromere protein A (CENP-A) polyclonal antibody, and those oocytes' maturity and chromosome/spindle structure were assessed. RESULTS Antibody exposure did not affect the germinal vesicle breakdown ratio but reduced the first polar body formation ratio by 13% at the highest concentration (70.0 µg/mL). Metaphase II (MII) oocytes were stained for chromosomes/spindles and grouped into aligned/barrel-like (AB), scattered/weakly-stained (SW), and condensed/absent (CA). Antibody exposure decreased AB and increased SW and CA in a dose-dependent manner. The AB/SW/CA percentages were 86/14/0, 86/14/0, 35/65/0, and 0/0/100 in the 0, 17.5, 35.0, and 70.0 µg/mL antibody groups, respectively (underlined values represent p < 0.05 compared with 0 µg/mL). Next, metaphase II oocytes were subjected to intracytoplasmic sperm injection, and the number of pronucleus/pronuclei (PN) was counted 6 h later. Antibody exposure decreased two pronuclei oocytes and increased non-two pronuclei oocytes dose-dependently. The percentages of 0/1/2/3 pronuclei oocytes were 43/0/57/0, 37/0/21/42, 16/28/48/8, and 91/4/4/0 in the 0, 17.5, 35.0, and 70.0 µg/mL groups, respectively. CONCLUSIONS Anti-CENP-A antibody impaired a linear alignment of chromosomes at metaphase II and enhanced one or three PN formation after ICSI, which are similar to findings reported for infertile women with anticentromere autoantibodies.
Collapse
Affiliation(s)
- Masashi Shioya
- Takahashi Women's Clinic, Chuo-ku, Chiba, Japan
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | | | - Shun Nakano
- Takahashi Women's Clinic, Chuo-ku, Chiba, Japan
| | - Tatsuya Kobayashi
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Department of Regulatory Science, Fujita Health University, Ohta-ku, Tokyo, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Makio Shozu
- Department of Obstetrics and Gynecology, Reproductive Medicine, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
- Evolution and Reproduction Biology, Medical Mycology Research Center, Chiba University, Chuo-ku, Chiba, Japan
| |
Collapse
|
5
|
Li J, Chen Q, Ni S, Dong X, Mi T, Xie Y, Yuan X, Luo X, Wang H. CENPF May Act as a Novel Marker and Highlight the Influence of Pericyte in Infantile Hemangioma. Angiology 2024:33197241262373. [PMID: 38898633 DOI: 10.1177/00033197241262373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Infantile hemangioma (IH), a benign microvascular tumor, is marked by early and extensive proliferation of immature hemangioma endothelial cells (Hem-ECs) that naturally regress through differentiation into fibroblasts or adipocytes. However, a challenge persists, as the unique biological behavior of IH remains elusive, despite its general sensitivity to propranolol treatment. Recent evidence suggests that abnormal volume proliferation in IH is primarily attributed to the accumulation of hemangioma pericytes (Hem-Pericytes), in addition to Hem-ECs. Centromere protein F (CENPF) is involved in regulating mitotic processes and has been associated with malignant tumor cell proliferation. It is a key player in maintaining genomic stability during cell division. Our findings revealed specific expression of CENPF in Hem-Pericytes, with a proliferation index (PI) approximately half that of Ki67 (3.28 vs 6.97%) during the proliferative phase of IH. This index decreased rapidly in the involuting phase (P < .05), suggesting that the contribution of pericytes to IH development was comparable to that of Hem-ECs. Tumor expansion and shrinkage may be due to the proliferation, reduction, and differentiation of Hem-Pericytes. In conclusion, we speculate CENPF as a novel marker for clinical pathological diagnosis and a potential therapeutic target, fostering advancements in drug development.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Kunming Children's Hospital, Kunming, China
| | - Qiang Chen
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Sili Ni
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Dong
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Mi
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xingang Yuan
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Luo
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Wang
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Xie S, Yang Y, Jin Z, Liu X, Zhang S, Su N, Liu J, Li C, Zhang D, Gao L, Yang Z. Mouse KL2 is a unique MTSE involved in chromosome-based spindle organization and regulated by multiple kinases during female meiosis. J Biomed Res 2024; 38:1-15. [PMID: 38808565 PMCID: PMC11461529 DOI: 10.7555/jbr.37.20230290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 05/30/2024] Open
Abstract
Microtubule-severing enzymes (MTSEs) play important roles in mitosis and meiosis of the primitive organisms. However, no studies have assessed their roles in mammalian meiosis of females, whose abnormality accounts for over 80% of the cases of gamete-originated human reproductive disease. In the current study, we reported that katanin-like 2 (KL2) was the only MTSE concentrating at chromosomes. Furthermore, the knockdown of KL2 significantly reduced chromosome-based increase in the microtubule (MT) polymer, increased aberrant kinetochore-MT (K-MT) attachment, delayed meiosis, and severely affected normal fertility. Importantly, we demonstrated that the inhibition of aurora B, a key kinase for correcting aberrant K-MT attachment, eliminated KL2 from chromosomes completely. KL2 also interacted with phosphorylated eukaryotic elongation factor-2 kinase; they competed for chromosome binding. We also observed that the phosphorylated KL2 was localized at spindle poles, and that KL2 phosphorylation was regulated by extracellular signal-regulated kinase 1/2. In summary, our study reveals a novel function of MTSEs in mammalian female meiosis and demonstrates that multiple kinases coordinate to regulate the levels of KL2 at chromosomes.
Collapse
Affiliation(s)
- Shiya Xie
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanjie Yang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Zhen Jin
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaocong Liu
- Laboratory Department of Shihezi People's Hospital, Shihezi, Xinjiang 832099, China
| | - Shuping Zhang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ning Su
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiaqi Liu
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Congrong Li
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dong Zhang
- State Key Lab of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Gynaecology and Obstetrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Leilei Gao
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhixia Yang
- Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
7
|
Serafim RB, Cardoso C, Storti CB, da Silva P, Qi H, Parasuram R, Navegante G, Peron JPS, Silva WA, Espreafico EM, Paçó-Larson ML, Price BD, Valente V. HJURP is recruited to double-strand break sites and facilitates DNA repair by promoting chromatin reorganization. Oncogene 2024; 43:804-820. [PMID: 38279062 DOI: 10.1038/s41388-024-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation. In addition, HJURP is associated with DNA repair but its function in this process is still scarcely explored. Here, we demonstrate that HJURP is recruited to DSBs through a mechanism requiring chromatin PARylation and promotes epigenetic alterations that favor the execution of DNA repair. Incorporation of HJURP at DSBs promotes turnover of H3K9me3 and HP1, facilitating DNA damage signaling and DSB repair. Moreover, HJURP overexpression in glioma cell lines also affected global structure of heterochromatin independently of DNA damage induction, promoting genome-wide reorganization and assisting DNA damage response. HJURP overexpression therefore extensively alters DNA damage signaling and DSB repair, and also increases radioresistance of glioma cells. Importantly, HJURP expression levels in tumors are also associated with poor response of patients to radiation. Thus, our results enlarge the understanding of HJURP involvement in DNA repair and highlight it as a promising target for the development of adjuvant therapies that sensitize tumor cells to irradiation.
Collapse
Affiliation(s)
- Rodolfo B Serafim
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
| | - Cibele Cardoso
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Camila B Storti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Patrick da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hongyun Qi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geovana Navegante
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Jean Pierre S Peron
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Wilson A Silva
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Enilza M Espreafico
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Maria L Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Valeria Valente
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil.
| |
Collapse
|
8
|
Laguillo-Diego A, Kiewisz R, Martí-Gómez C, Baum D, Müller-Reichert T, Vernos I. MCRS1 modulates the heterogeneity of microtubule minus-end morphologies in mitotic spindles. Mol Biol Cell 2022; 34:ar1. [PMID: 36350698 PMCID: PMC9816640 DOI: 10.1091/mbc.e22-08-0306-t] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Faithful chromosome segregation requires the assembly of a bipolar spindle, consisting of two antiparallel microtubule (MT) arrays having most of their minus ends focused at the spindle poles and their plus ends overlapping in the spindle midzone. Spindle assembly, chromosome alignment, and segregation require highly dynamic MTs. The plus ends of MTs have been extensively investigated but their minus-end structure remains poorly characterized. Here, we used large-scale electron tomography to study the morphology of the MT minus ends in three dimensionally reconstructed metaphase spindles in HeLa cells. In contrast to the homogeneous open morphology of the MT plus ends at the kinetochores, we found that MT minus ends are heterogeneous, showing either open or closed morphologies. Silencing the minus end-specific stabilizer, MCRS1 increased the proportion of open MT minus ends. Altogether, these data suggest a correlation between the morphology and the dynamic state of the MT ends. Taking this heterogeneity of the MT minus-end morphologies into account, our work indicates an unsynchronized behavior of MTs at the spindle poles, thus laying the groundwork for further studies on the complexity of MT dynamics regulation.
Collapse
Affiliation(s)
- Alejandra Laguillo-Diego
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Carlos Martí-Gómez
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Daniel Baum
- Department of Visual and Data-Centric Computing, Zuse Institute Berlin, 14195 Berlin, Germany
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Isabelle Vernos
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain,Universitat Pompeu Fabra, Barcelona 08003, Spain,ICREA, Barcelona 08010, Spain,*Address correspondence to: Isabelle Vernos ()
| |
Collapse
|
9
|
Oh W, Wu TT, Jeong SY, You HJ, Lee JH. CtIP Regulates Mitotic Spindle Assembly by Modulating the TPX2-Aurora A Signaling Axis. Cells 2022; 11:cells11182814. [PMID: 36139389 PMCID: PMC9497199 DOI: 10.3390/cells11182814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
CtBP-interacting protein (CtIP) plays a critical role in controlling the homologous recombination-mediated DNA double-stranded break (DSB) repair pathway through DNA end resection, and recent studies suggest that it also plays a role in mitosis. However, the mechanism by which CtIP contributes to mitosis regulation remains elusive. Here, we show that depletion of CtIP leads to a delay in anaphase progression resulting in misaligned chromosomes, an aberrant number of centrosomes, and defects in chromosome segregation. Additionally, we demonstrate that CtIP binds and colocalizes with Targeting protein for Xklp2 (TPX2) during mitosis to regulate the recruitment of TPX2 to the spindle poles. Furthermore, depletion of CtIP resulted in both a lower concentration of Aurora A, its downstream target, and very low microtubule intensity at the spindle poles, suggesting an important role for the CtIP-TPX2-Auroa A complex in microtubule dynamics at the centrosomal spindles. Our findings reveal a novel function of CtIP in regulating spindle dynamics through interactions with TPX2 and indicate that CtIP is involved in the proper execution of the mitotic program, where deregulation may lead to chromosomal instability.
Collapse
Affiliation(s)
- Wonkyung Oh
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ting Ting Wu
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Pharmacology, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| |
Collapse
|
10
|
Conway W, Kiewisz R, Fabig G, Kelleher CP, Wu HY, Anjur-Dietrich M, Müller-Reichert T, Needleman DJ. Self-organization of kinetochore-fibers in human mitotic spindles. eLife 2022; 11:75458. [PMID: 35876665 PMCID: PMC9398449 DOI: 10.7554/elife.75458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/24/2022] [Indexed: 11/22/2022] Open
Abstract
During eukaryotic cell division, chromosomes are linked to microtubules (MTs) in the spindle by a macromolecular complex called the kinetochore. The bound kinetochore microtubules (KMTs) are crucial to ensuring accurate chromosome segregation. Recent reconstructions by electron tomography (Kiewisz et al., 2022) captured the positions and configurations of every MT in human mitotic spindles, revealing that roughly half the KMTs in these spindles do not reach the pole. Here, we investigate the processes that give rise to this distribution of KMTs using a combination of analysis of large-scale electron tomography, photoconversion experiments, quantitative polarized light microscopy, and biophysical modeling. Our results indicate that in metaphase, KMTs grow away from the kinetochores along well-defined trajectories, with the speed of the KMT minus ends continually decreasing as the minus ends approach the pole, implying that longer KMTs grow more slowly than shorter KMTs. The locations of KMT minus ends, and the turnover and movements of tubulin in KMTs, are consistent with models in which KMTs predominately nucleate de novo at kinetochores in metaphase and are inconsistent with substantial numbers of non-KMTs being recruited to the kinetochore in metaphase. Taken together, this work leads to a mathematical model of the self-organization of kinetochore-fibers in human mitotic spindles.
Collapse
Affiliation(s)
- William Conway
- Department of Physics, Harvard University, Cambridge, United States
| | - Robert Kiewisz
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Colm P Kelleher
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Hai-Yin Wu
- Department of Physics, Harvard University, Cambridge, United States
| | - Maya Anjur-Dietrich
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniel J Needleman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| |
Collapse
|
11
|
Zuilkoski CM, Skibbens RV. Integrating Sister Chromatid Cohesion Establishment to DNA Replication. Genes (Basel) 2022; 13:genes13040625. [PMID: 35456431 PMCID: PMC9032331 DOI: 10.3390/genes13040625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The intersection through which two fundamental processes meet provides a unique vantage point from which to view cellular regulation. On the one hand, DNA replication is at the heart of cell division, generating duplicate chromosomes that allow each daughter cell to inherit a complete copy of the parental genome. Among other factors, the PCNA (proliferating cell nuclear antigen) sliding clamp ensures processive DNA replication during S phase and is essential for cell viability. On the other hand, the process of chromosome segregation during M phase—an act that occurs long after DNA replication—is equally fundamental to a successful cell division. Eco1/Ctf7 ensures that chromosomes faithfully segregate during mitosis, but functions during DNA replication to activate cohesins and thereby establish cohesion between sister chromatids. To achieve this, Eco1 binds PCNA and numerous other DNA replication fork factors that include MCM helicase, Chl1 helicase, and the Rtt101-Mms1-Mms22 E3 ubiquitin ligase. Here, we review the multi-faceted coordination between cohesion establishment and DNA replication. SUMMARY STATEMENT: New findings provide important insights into the mechanisms through which DNA replication and the establishment of sister chromatid cohesion are coupled.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47401, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA;
- Correspondence: ; Tel.: +610-758-6162
| |
Collapse
|
12
|
Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol 2021; 22:777-795. [PMID: 34408299 DOI: 10.1038/s41580-021-00399-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Microtubule dynamics and their control are essential for the normal function and division of all eukaryotic cells. This plethora of functions is, in large part, supported by dynamic microtubule tips, which can bind to various intracellular targets, generate mechanical forces and couple with actin microfilaments. Here, we review progress in the understanding of microtubule assembly and dynamics, focusing on new information about the structure of microtubule tips. First, we discuss evidence for the widely accepted GTP cap model of microtubule dynamics. Next, we address microtubule dynamic instability in the context of structural information about assembly intermediates at microtubule tips. Three currently discussed models of microtubule assembly and dynamics are reviewed. These are considered in the context of established facts and recent data, which suggest that some long-held views must be re-evaluated. Finally, we review structural observations about the tips of microtubules in cells and describe their implications for understanding the mechanisms of microtubule regulation by associated proteins, by mechanical forces and by microtubule-targeting drugs, prominently including cancer chemotherapeutics.
Collapse
|
13
|
Ota M, Funakoshi T, Aki T, Unuma K, Uemura K. Oxcarbazepine induces mitotic catastrophe and apoptosis in NRK-52E proximal tubular cells. Toxicol Lett 2021; 350:240-248. [PMID: 34333065 DOI: 10.1016/j.toxlet.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Certain medicines including anticancer drugs, NSAIDs and antiepileptic drugs are known to cause drug-induced nephropathy. For example, antiepileptic drugs such as carbamazepine (CBZ) and valproic acid have been reported to cause damage to the proximal tubular cells. Although there has been a great deal of research concerning the nephrotoxicity of CBZ, little is known about that of oxcarbazepine (OXC), a derivative of CBZ. To investigate the molecular mechanism underlying renal proximal tubular cell death caused by OXC, we examined alterations in the gene expression profile of NRK-52E proximal tubular cells during OXC exposure. DNA microarray analysis revealed that the levels of genes related to mitotic processes including chromosomal and cytoplasmic segregation, progression to G2/M phase, and formation of the mitotic spindle are increased after exposure to 50 μM OXC for 6 h. Cell cycle analysis by flow cytometry showed that OXC at concentrations between 25 and 100 μM induces G2/M arrest. We also found that OXC significantly increases histone H3 phosphorylation, indicative of mitotic cells. These results imply that OXC induces cell cycle arrest at the mitotic phase. Immunofluorescence analysis showed monopolar spindles, which are formed in response to centrosome separation defects, in OXC-treated cells. We also show that OXC suppresses the phosphorylation of PLK1, which is involved not only in the activation of the kinesin family of motor proteins for centrosome separation and bipolar spindle assembly, but also in the cleavage of centrosomal proteins. Thus, our results indicate that OXC inhibits centrosome separation by reducing the activation of PLK1, which leads to the formation of an abnormal spindle and induces mitotic catastrophe and apoptosis in NRK-52E cells.
Collapse
Affiliation(s)
- Momoka Ota
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Subramonian D, Chen TA, Paolini N, Zhang XDD. Poly-SUMO-2/3 chain modification of Nuf2 facilitates CENP-E kinetochore localization and chromosome congression during mitosis. Cell Cycle 2021; 20:855-873. [PMID: 33910471 DOI: 10.1080/15384101.2021.1907509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SUMO modification is required for the kinetochore localization of the kinesin-like motor protein CENP-E, which subsequently mediates the alignment of chromosomes to the spindle equator during mitosis. However, the underlying mechanisms by which sumoylation regulates CENP-E kinetochore localization are still unclear. In this study, we first elucidate that the kinetochore protein Nuf2 is not only required for CENP-E kinetochore localization but also preferentially modified by poly-SUMO-2/3 chains. In addition, poly-SUMO-2/3 modification of Nuf2 is significantly upregulated during mitosis, which is temporally correlated to the kinetochore localization of CENP-E during mitosis. We further show that the mitotic defects in CENP-E kinetochore localization and chromosome congression caused by global inhibition of sumoylation can be rescued by expressing a fusion protein between Nuf2 and the SUMO-conjugating enzyme Ubc9 for stimulating Nuf2 SUMO-2/3 modification. Moreover, the expression of another fusion protein between Nuf2 and three SUMO-2 moieties (SUMO-2 trimer), which mimics the trimeric SUMO-2/3 chain modification of Nuf2, can also rescue the mitotic defects due to global inhibition of sumoylation. Conversely, expressing the other forms of Nuf2-SUMO fusion proteins, which imitate Nuf2 modifications by SUMO-2/3 monomer, SUMO-2/3 dimer, and SUMO-1 trimer, respectively, cannot rescue the same mitotic defects. Lastly, compared to Nuf2, the fusion protein simulating the trimeric SUMO-2 chain-modified Nuf2 exhibits a significantly higher binding affinity to CENP-E wild type containing a functional SUMO-interacting motif (SIM) but not the CENP-E SIM mutant. Hence, our results support a model that poly-SUMO-2/3 chain modification of Nuf2 facilitates CENP-E kinetochore localization and chromosome congression during mitosis.Abbreviations: CENP-E, centromere-associated protein E; SUMO, small ubiquitin-related modifier; SIM, SUMO-interacting motif.
Collapse
Affiliation(s)
- Divya Subramonian
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Te-An Chen
- Department of Biology, SUNY Buffalo State, Buffalo, NY, USA
| | | | - Xiang-Dong David Zhang
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.,Department of Biology, SUNY Buffalo State, Buffalo, NY, USA
| |
Collapse
|
15
|
Ludzia P, Lowe ED, Marcianò G, Mohammed S, Redfield C, Akiyoshi B. Structural characterization of KKT4, an unconventional microtubule-binding kinetochore protein. Structure 2021; 29:1014-1028.e8. [PMID: 33915106 PMCID: PMC8443799 DOI: 10.1016/j.str.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/17/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023]
Abstract
The kinetochore is the macromolecular machinery that drives chromosome segregation by interacting with spindle microtubules. Kinetoplastids (such as Trypanosoma brucei), a group of evolutionarily divergent eukaryotes, have a unique set of kinetochore proteins that lack any significant homology to canonical kinetochore components. To date, KKT4 is the only kinetoplastid kinetochore protein that is known to bind microtubules. Here we use X-ray crystallography, NMR spectroscopy, and crosslinking mass spectrometry to characterize the structure and dynamics of KKT4. We show that its microtubule-binding domain consists of a coiled-coil structure followed by a positively charged disordered tail. The structure of the C-terminal BRCT domain of KKT4 reveals that it is likely a phosphorylation-dependent protein-protein interaction domain. The BRCT domain interacts with the N-terminal region of the KKT4 microtubule-binding domain and with a phosphopeptide derived from KKT8. Taken together, these results provide structural insights into the unconventional kinetoplastid kinetochore protein KKT4. Structures of microtubule-binding and BRCT domains in KKT4 are reported The microtubule-binding domain consists of a coiled coil and a disordered tail KKT4 interacts with microtubules via a basic surface at the coiled-coil N terminus KKT4 has a phosphopeptide-binding BRCT domain
Collapse
Affiliation(s)
- Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Edward D Lowe
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Gabriele Marcianò
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
16
|
Jiang Z, Zhang S, Lee YM, Teng X, Yang Q, Toyama Y, Liou YC. Hyaluronan-Mediated Motility Receptor Governs Chromosome Segregation by Regulating Microtubules Sliding Within the Bridging Fiber. Adv Biol (Weinh) 2021; 5:e2000493. [PMID: 33788418 DOI: 10.1002/adbi.202000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/20/2021] [Indexed: 11/06/2022]
Abstract
Accurate segregation of chromosomes during anaphase relies on the central spindle and its regulators. A newly raised concept of the central spindle, the bridging fiber, shows that sliding of antiparallel microtubules (MTs) within the bridging fiber promotes chromosome segregation. However, the regulators of the bridging fiber and its regulatory mechanism on MTs sliding remain largely unknown. In this study, the non-motor microtubule-associated protein, hyaluronan-mediated motility receptor (HMMR), is identified as a novel regulator of the bridging fiber. It then identifies that HMMR regulates MTs sliding within the bridging fiber by cooperating with its binding partner HSET. By utilizing a laser-based cell ablation system and photoactivation approach, the study's results reveal that depletion of HMMR causes an inhibitory effect on MTs sliding within the bridging fiber and disrupts the forced uniformity on the kinetochore-attached microtubules-formed fibers (k-fibers). These are created by suppressing the dynamics of HSET, which functions in transiting the force from sliding of bridging MTs to the k-fiber. This study sheds new light on the novel regulatory mechanism of MTs sliding within the bridging fiber by HMMR and HSET and uncovers the role of HMMR in chromosome segregation during anaphase.
Collapse
Affiliation(s)
- Zemin Jiang
- Laboratory of Precision Cancer Medicine, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.,Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shiyu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yew Mun Lee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Xiang Teng
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Qiaoyun Yang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yusuke Toyama
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.,Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
17
|
Su T, Qin XY, Dohmae N, Wei F, Furutani Y, Kojima S, Yu W. Inhibition of Ganglioside Synthesis Suppressed Liver Cancer Cell Proliferation through Targeting Kinetochore Metaphase Signaling. Metabolites 2021; 11:metabo11030167. [PMID: 33803928 PMCID: PMC7998610 DOI: 10.3390/metabo11030167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence and mortality of liver cancer, mostly hepatocellular carcinoma (HCC), have increased during the last two decades, partly due to persistent inflammation in the lipid-rich microenvironment associated with lifestyle diseases, such as obesity. Gangliosides are sialic acid-containing glycosphingolipids known to be important in the organization of the membrane and membrane protein-mediated signal transduction. Ganglioside synthesis is increased in several types of cancers and has been proposed as a promising target for cancer therapy. Here, we provide evidence that ganglioside synthesis was increased in the livers of an animal model recapitulating the features of activation and expansion of liver progenitor-like cells and liver cancer (stem) cells. Chemical inhibition of ganglioside synthesis functionally suppressed proliferation and sphere growth of liver cancer cells, but had no impact on apoptotic and necrotic cell death. Proteome-based mechanistic analysis revealed that inhibition of ganglioside synthesis downregulated the expression of AURKA, AURKB, TTK, and NDC80 involved in the regulation of kinetochore metaphase signaling, which is essential for chromosome segregation and mitotic progression and probably under the control of activation of TP53-dependent cell cycle arrest. These data suggest that targeting ganglioside synthesis holds promise for the development of novel preventive/therapeutic strategies for HCC treatment.
Collapse
Affiliation(s)
- Ting Su
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China;
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
- Correspondence: (X.-Y.Q.); (W.Y.); Tel.: +81-(48)-467-7938 (X.-Y.Q.); +86-(25)-6818-2222 (W.Y.)
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan;
| | - Feifei Wei
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Kanagawa, Yokohama 230-0045, Japan;
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan; (Y.F.); (S.K.)
| | - Wenkui Yu
- Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China;
- Correspondence: (X.-Y.Q.); (W.Y.); Tel.: +81-(48)-467-7938 (X.-Y.Q.); +86-(25)-6818-2222 (W.Y.)
| |
Collapse
|
18
|
Chen YJ, You GR, Lai MY, Lu LS, Chen CY, Ting LL, Lee HL, Kanno Y, Chiou JF, Cheng AJ. A Combined Systemic Strategy for Overcoming Cisplatin Resistance in Head and Neck Cancer: From Target Identification to Drug Discovery. Cancers (Basel) 2020; 12:cancers12113482. [PMID: 33238517 PMCID: PMC7700594 DOI: 10.3390/cancers12113482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The efficiency of cisplatin is limited by drug resistance in head–neck cancer (HNC) patients. In this study, we established a cisplatin resistance (CR) cell model, generated CR related transcriptome profiling, and combined application of bioinformatics methodology to discover a possible way to overcome CR. Analysis of the functional pathway revealed that mitotic division is a novel mechanism significantly contributing to CR. Spindle pole body component 25 (SPC25), a kinetochore protein, was overexpressed in CR cells and significantly correlated with worse HNC patient survival. The silencing of SPC25 increased cisplatin sensitivity and reduced cancer stemness property. Integration of CR transcriptome profiling and drug database discovered a natural extract compound, celastrol, possessing a potent cytotoxic effect in CR cells to reverse CR. Thus, we combined systemic strategies to demonstrated that a novel biological process (mitotic cell division), a hub gene (SPC25), and a natural compound (celastrol) as novel strategies for the treatment of refractory HNC. Abstract Cisplatin is the first-line chemotherapy agent for head and neck cancer (HNC), but its therapeutic effects are hampered by its resistance. In this study, we employed systemic strategies to overcome cisplatin resistance (CR) in HNC. CR cells derived from isogenic HNC cell lines were generated. The CR related hub genes, functional mechanisms, and the sensitizing candidates were globally investigated by transcriptomic and bioinformatic analyses. Clinically, the prognostic significance was assessed by the Kaplan–Meier method. Cellular and molecular techniques, including cell viability assay, tumorsphere formation assay, RT-qPCR, and immunoblot, were used. Results showed that these CR cells possessed highly invasive and stem-like properties. A total of 647 molecules was identified, and the mitotic division exhibited a novel functional mechanism significantly related to CR. A panel of signature molecules, MSRB3, RHEB, ULBP1, and spindle pole body component 25 (SPC25), was found to correlate with poor prognosis in HNC patients. SPC25 was further shown as a prominent molecule, which markedly suppressed cancer stemness and attenuated CR after silencing. Celastrol, a nature extract compound, was demonstrated to effectively inhibit SPC25 expression and reverse CR phenotype. In conclusion, the development of SPC25 inhibitors, such as the application of celastrol, maybe a novel strategy to sensitize cisplatin for the treatment of refractory HNC.
Collapse
Affiliation(s)
- Yin-Ju Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.C.); (L.-S.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Guo-Rung You
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Meng-Yu Lai
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (Y.-J.C.); (L.-S.L.)
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Yu Chen
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; (C.-Y.C.); (Y.K.)
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Lai-Lei Ting
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuzuka Kanno
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan; (C.-Y.C.); (Y.K.)
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 11031, Taiwan; (L.-L.T.); (H.-L.L.); (J.-F.C.)
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Taipei Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
| | - Ann-Joy Cheng
- Department of Medical Biotechnology, Medical College, Chang Gung University, Taoyuan 33302, Taiwan; (G.-R.Y.); (M.-Y.L.)
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800
| |
Collapse
|
19
|
Hara M, Fukagawa T. Dynamics of kinetochore structure and its regulations during mitotic progression. Cell Mol Life Sci 2020; 77:2981-2995. [PMID: 32052088 PMCID: PMC11104943 DOI: 10.1007/s00018-020-03472-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 12/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Faithful chromosome segregation during mitosis in eukaryotes requires attachment of the kinetochore, a large protein complex assembled on the centromere of each chromosome, to the spindle microtubules. The kinetochore is a structural interface for the microtubule attachment and provides molecular surveillance mechanisms that monitor and ensure the precise microtubule attachment as well, including error correction and spindle assembly checkpoint. During mitotic progression, the kinetochore undergoes dynamic morphological changes that are observable through electron microscopy as well as through fluorescence microscopy. These structural changes might be associated with the kinetochore function. In this review, we summarize how the dynamics of kinetochore morphology are associated with its functions and discuss recent findings on the switching of protein interaction networks in the kinetochore during cell cycle progression.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| |
Collapse
|
20
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
21
|
He Y, Li R, Gu L, Deng H, Zhao Y, Guo Y, Yu S, Wang G. Anaphase-promoting complex/cyclosome-Cdc-20 promotes Zwint-1 degradation. Cell Biochem Funct 2020; 38:451-459. [PMID: 31945194 DOI: 10.1002/cbf.3499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
ZW10 interactor (Zwint-1) is an important component of the centromere and can recruit the dynamic protein kinase and dynein to promote chromosome movement and regulate the spindle assembly checkpoint (SAC). Zwint-1 activity is tightly regulated during the cell cycle. However, how the stability of Zwint-1 is regulated has not been clarified. Here, we show that the relative levels of Zwint-1 expression gradually decreased with the progression of cell cycling and decline sharply during mitotic exit. Treatment with cycloheximide reduced the levels of Zwint-1 while treatment with MG132 to inhibit endogenous ubiquitin-proteasome elevated the levels of Zwint-1 in HEK293T cells or Hela cells. Such data suggest that Zwint-1 may be degraded by endogenous ubiquitin-proteasome. Furthermore, induction of cell-division cycle protein 20 (Cdc20) overexpression decreased the levels of Zwint-1, which was abrogated by MG132 treatment. In contrast, Cdc20 silencing promoted the accumulation of Zwint-1. in vivo ubiquitination assay revealed that Cdc20 promoted the formation of Zwint-1 and ubiquitin-proteasome conjugates. Cotransfection with Cdc20 and wild-type Zwint-1, but not Zwint-1ΔD-box , reduced the levels of Zwint-1. Immunoprecipitation and western blot analyses showed that Cdc20 interacted with wild-type Zwint-1, but not Zwint-1ΔD-box although both Zwint-1 and Zwint-1ΔD-box overexpression did not induce mitotic arrest. Collectively, our data indicated that Zwint-1 was ubiquitinated by anaphase-promoting complex/cyclosome (APC/C)-Cdc20 in a D-box-dependent manner. Therefore, the APC/C-Cdc20 controls the stability of Zwint-1, ensuring accurate regulation of the spindle assembly during the cell cycling in HEK293T cells.
Collapse
Affiliation(s)
- Yan He
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Rui Li
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Liming Gu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Ying Zhao
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Yingzhu Guo
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Shun Yu
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Gefei Wang
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, China
- Pathogen Biology and Immunology Center, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
22
|
Auckland P, Roscioli E, Coker HLE, McAinsh AD. CENP-F stabilizes kinetochore-microtubule attachments and limits dynein stripping of corona cargoes. J Cell Biol 2020; 219:e201905018. [PMID: 32207772 PMCID: PMC7199848 DOI: 10.1083/jcb.201905018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 01/14/2023] Open
Abstract
Accurate chromosome segregation demands efficient capture of microtubules by kinetochores and their conversion to stable bioriented attachments that can congress and then segregate chromosomes. An early event is the shedding of the outermost fibrous corona layer of the kinetochore following microtubule attachment. Centromere protein F (CENP-F) is part of the corona, contains two microtubule-binding domains, and physically associates with dynein motor regulators. Here, we have combined CRISPR gene editing and engineered separation-of-function mutants to define how CENP-F contributes to kinetochore function. We show that the two microtubule-binding domains make distinct contributions to attachment stability and force transduction but are dispensable for chromosome congression. We further identify a specialized domain that functions to limit the dynein-mediated stripping of corona cargoes through a direct interaction with Nde1. This antagonistic activity is crucial for maintaining the required corona composition and ensuring efficient kinetochore biorientation.
Collapse
Affiliation(s)
- Philip Auckland
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Emanuele Roscioli
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Helena Louise Elvidge Coker
- Computing and Advanced Microscopy Development Unit, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Zhang L, Chen D, Zhang J, Cai R, Xu L, Yu N, Zhang S, Yan H, Jiang J, Du F, Gong A. A novel cholchicine/gadolinium-loading tubulin self-assembly nanocarrier for MR imaging and chemotherapy of glioma. NANOTECHNOLOGY 2020; 31:255601. [PMID: 32126545 DOI: 10.1088/1361-6528/ab7c48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To enhance the therapeutic efficiency and reduce side effects from drug delivery and chemotherapy, image-guided nanoscale systems have attracted tremendous attention in recent decades. In this study, we developed a novel method to fabricate a colchicine/gadolinium-loaded tubulin self-assembly nanocarrier (Col-Gd@Tub NC) for the image-guided chemotherapy of glioma. The Col-Gd@Tub NCs were spontaneously formed via tubulin self-assembly and were subsequently functionalized by colchicine and gadolinium elements. These resultant Col-Gd@Tub NCs with a diameter of 45 nm exhibited uniform particle size distribution and favorable stability without any leakage of gadolinium in water. Meanwhile, the introduction of gadolinium endowed Col-Gd@Tub NCs with high T 1-weighted MRI performance in vitro. After tail vein injection, Col-Gd@Tub NCs exhibited excellent MRI contrast capability and relatively long circulation time (∼12 h) and were finally cleared out from the bladder. More significantly, the binding colchicine still exerted an anti-tumor effect after the Col-Gd@Tub NCs were taken up by the tumor cells. These results show that the Col-Gd@Tub NCs may be served as a versatile nanoscale platform for the integration of biomedical imaging probes and therapeutic molecules for tumor therapy.
Collapse
Affiliation(s)
- Lirong Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Edelmaier C, Lamson AR, Gergely ZR, Ansari S, Blackwell R, McIntosh JR, Glaser MA, Betterton MD. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. eLife 2020; 9:48787. [PMID: 32053104 PMCID: PMC7311174 DOI: 10.7554/elife.48787] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
The essential functions required for mitotic spindle assembly and chromosome biorientation and segregation are not fully understood, despite extensive study. To illuminate the combinations of ingredients most important to align and segregate chromosomes and simultaneously assemble a bipolar spindle, we developed a computational model of fission-yeast mitosis. Robust chromosome biorientation requires progressive restriction of attachment geometry, destabilization of misaligned attachments, and attachment force dependence. Large spindle length fluctuations can occur when the kinetochore-microtubule attachment lifetime is long. The primary spindle force generators are kinesin-5 motors and crosslinkers in early mitosis, while interkinetochore stretch becomes important after biorientation. The same mechanisms that contribute to persistent biorientation lead to segregation of chromosomes to the poles after anaphase onset. This model therefore provides a framework to interrogate key requirements for robust chromosome biorientation, spindle length regulation, and force generation in the spindle. Before a cell divides, it must make a copy of its genetic material and then promptly split in two. This process, called mitosis, is coordinated by many different molecular machines. The DNA is copied, then the duplicated chromosomes line up at the middle of the cell. Next, an apparatus called the mitotic spindle latches onto the chromosomes before pulling them apart. The mitotic spindle is a bundle of long, thin filaments called microtubules. It attaches to chromosomes at the kinetochore, the point where two copied chromosomes are cinched together in their middle. Proper cell division is vital for the healthy growth of all organisms, big and small, and yet some parts of the process remain poorly understood despite extensive study. Specifically, there is more to learn about how the mitotic spindle self-assembles, and how microtubules and kinetochores work together to correctly orient and segregate chromosomes into two sister cells. These nanoscale processes are happening a hundred times a minute, so computer simulations are a good way to test what we know. Edelmaier et al. developed a computer model to simulate cell division in fission yeast, a species of yeast often used to study fundamental processes in the cell. The model simulates how the mitotic spindle assembles, how its microtubules attach to the kinetochore and the force required to pull two sister chromosomes apart. Building the simulation involved modelling interactions between the mitotic spindle and kinetochore, their movement and forces applied. To test its accuracy, model simulations were compared to recordings of the mitotic spindle – including its length, structure and position – imaged from dividing yeast cells. Running the simulation, Edelmaier et al. found that several key effects are essential for the proper movement of chromosomes in mitosis. This includes holding chromosomes in the correct orientation as the mitotic spindle assembles and controlling the relative position of microtubules as they attach to the kinetochore. Misaligned attachments must also be readily deconstructed and corrected to prevent any errors. The simulations also showed that kinetochores must begin to exert more force (to separate the chromosomes) once the mitotic spindle is attached correctly. Altogether, these findings improve the current understanding of how the mitotic spindle and its counterparts control cell division. Errors in chromosome segregation are associated with birth defects and cancer in humans, and this new simulation could potentially now be used to help make predictions about how to correct mistakes in the process.
Collapse
Affiliation(s)
| | - Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Zachary R Gergely
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Saad Ansari
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Robert Blackwell
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, United States
| | - Meredith D Betterton
- Department of Physics, University of Colorado Boulder, Boulder, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
25
|
Barbosa J, Martins T, Bange T, Tao L, Conde C, Sunkel C. Polo regulates Spindly to prevent premature stabilization of kinetochore-microtubule attachments. EMBO J 2020; 39:e100789. [PMID: 31849090 PMCID: PMC6960449 DOI: 10.15252/embj.2018100789] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Accurate chromosome segregation in mitosis requires sister kinetochores to bind to microtubules from opposite spindle poles. The stability of kinetochore-microtubule attachments is fine-tuned to prevent or correct erroneous attachments while preserving amphitelic interactions. Polo kinase has been implicated in both stabilizing and destabilizing kinetochore-microtubule attachments. However, the mechanism underlying Polo-destabilizing activity remains elusive. Here, resorting to an RNAi screen in Drosophila for suppressors of a constitutively active Polo mutant, we identified a strong genetic interaction between Polo and the Rod-ZW10-Zwilch (RZZ) complex, whose kinetochore accumulation has been shown to antagonize microtubule stability. We find that Polo phosphorylates Spindly and impairs its ability to bind to Zwilch. This precludes dynein-mediated removal of the RZZ from kinetochores and consequently delays the formation of stable end-on attachments. We propose that high Polo-kinase activity following mitotic entry directs the RZZ complex to minimize premature stabilization of erroneous attachments, whereas a decrease in active Polo in later mitotic stages allows the formation of stable amphitelic spindle attachments. Our findings demonstrate that Polo tightly regulates the RZZ-Spindly-dynein module during mitosis to ensure the fidelity of chromosome segregation.
Collapse
Affiliation(s)
- João Barbosa
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
| | | | - Tanja Bange
- MPI für molekulare PhysiologieDortmundGermany
| | - Li Tao
- Department of BiologyUniversity of HawaiiHiloHIUSA
| | - Carlos Conde
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
| | - Claudio Sunkel
- IBMC—Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do PortoPortoPortugal
- ICBAS—Instituto de Ciência Biomédica de Abel SalazarUniversidade do PortoPortoPortugal
| |
Collapse
|
26
|
Leary A, Sim S, Nazarova E, Shulist K, Genthial R, Yang SK, Bui KH, Francois P, Vogel J. Successive Kinesin-5 Microtubule Crosslinking and Sliding Promote Fast, Irreversible Formation of a Stereotyped Bipolar Spindle. Curr Biol 2019; 29:3825-3837.e3. [DOI: 10.1016/j.cub.2019.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/24/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
|
27
|
Raab M, Kobayashi NF, Becker S, Kurunci‐Csacsko E, Krämer A, Strebhardt K, Sanhaji M. Boosting the apoptotic response of high‐grade serous ovarian cancers with
CCNE1
amplification to paclitaxel
in vitro
by targeting APC/C and the pro‐survival protein MCL‐1. Int J Cancer 2019; 146:1086-1098. [DOI: 10.1002/ijc.32559] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/03/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Monika Raab
- Department of GynecologyGoethe‐University Frankfurt Germany
| | | | - Sven Becker
- Department of GynecologyGoethe‐University Frankfurt Germany
| | | | - Andrea Krämer
- Department of GynecologyGoethe‐University Frankfurt Germany
| | - Klaus Strebhardt
- Department of GynecologyGoethe‐University Frankfurt Germany
- German Cancer Consortium (DKTK)/German Cancer Research Center Heidelberg Germany
| | - Mourad Sanhaji
- Department of GynecologyGoethe‐University Frankfurt Germany
| |
Collapse
|
28
|
Williams MM, Mathison AJ, Christensen T, Greipp PT, Knutson DL, Klee EW, Zimmermann MT, Iovanna J, Lomberk GA, Urrutia RA. Aurora kinase B-phosphorylated HP1α functions in chromosomal instability. Cell Cycle 2019; 18:1407-1421. [PMID: 31130069 PMCID: PMC6592258 DOI: 10.1080/15384101.2019.1618126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 05/08/2019] [Indexed: 01/25/2023] Open
Abstract
Heterochromatin Protein 1 α (HP1α) associates with members of the chromosome passenger complex (CPC) during mitosis, at centromeres where it is required for full Aurora Kinase B (AURKB) activity. Conversely, recent reports have identified AURKB as the major kinase responsible for phosphorylation of HP1α at Serine 92 (S92) during mitosis. Thus, the current study was designed to better understand the functional role of this posttranslationally modified form of HP1α. We find that S92-phosphorylated HP1α is generated in cells at early prophase, localizes to centromeres, and associates with regulators of chromosome stability, such as Inner Centromere Protein, INCENP. In mouse embryonic fibroblasts, HP1α knockout alone or reconstituted with a non-phosphorylatable (S92A) HP1α mutant results in mitotic chromosomal instability characterized by the formation of anaphase/telophase chromatin bridges and micronuclei. These effects are rescued by exogenous expression of wild type HP1α or a phosphomimetic (S92D) variant. Thus, the results from the current study extend our knowledge of the role of HP1α in chromosomal stability during mitosis.
Collapse
Affiliation(s)
- Monique M. Williams
- Departments of Biochemistry and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Angela J. Mathison
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Trent Christensen
- Departments of Biochemistry and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Patricia T. Greipp
- Medical Genome Facility, Cytogenetics Core Laboratory, Rochester, MN, USA
| | - Darlene L. Knutson
- Medical Genome Facility, Cytogenetics Core Laboratory, Rochester, MN, USA
| | - Eric W. Klee
- Departments of Biochemistry and Biostatistics, Mayo Clinic, Rochester, MN, USA
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Gwen A. Lomberk
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Raul A. Urrutia
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
29
|
Tahmasebi-Birgani M, Ansari H, Carloni V. Defective mitosis-linked DNA damage response and chromosomal instability in liver cancer. Biochim Biophys Acta Rev Cancer 2019; 1872:60-65. [PMID: 31152819 DOI: 10.1016/j.bbcan.2019.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/29/2019] [Accepted: 05/11/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), the most common form of liver cancer, represents a health problem in hepatic viruses-eradicating era because obesity, type 2 diabetes, and nonalcoholic steatohepatitis (NASH) are considered emerging pathogenic factors. Metabolic disorders underpin mitotic errors that lead to numerical and structural chromosome aberrations in a significant proportion of cell divisions. Here, we review that genomically unstable HCCs show evidence for a paradoxically DNA damage response (DDR) which leads to ongoing chromosome segregation errors. The understanding of DDR induced by defective mitoses is crucial to our ability to develop or improve liver cancer therapeutic strategies.
Collapse
Affiliation(s)
- Maryam Tahmasebi-Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ansari
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
30
|
The quantification and regulation of microtubule dynamics in the mitotic spindle. Curr Opin Cell Biol 2019; 60:36-43. [PMID: 31108428 DOI: 10.1016/j.ceb.2019.03.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 12/18/2022]
Abstract
Microtubules play essential roles in cellular organization, cargo transport, and chromosome segregation during cell division. During mitosis microtubules form a macromolecular structure known as the mitotic spindle that is responsible for the accurate segregation of chromosomes between the two daughter cells. This is accomplished thanks to finely tuned control of microtubule dynamics. Even small changes in microtubule dynamics during spindle formation and/or operation may lead to chromosome mis-segregation, chromosome instability and aneuploidy. These three events are directly correlated with human diseases like cancer and developmental defects. Precise measurements of microtubule dynamics in the spindle will allow us to discover new molecules involved in regulating microtubule dynamics and enable a deeper understanding of the mechanisms that underlie mitosis and cancer emergence and development. Moreover, many chemotherapeutic agents for cancer treatment are targeted to microtubules, so continued investigation of their dynamics with utmost precision will facilitate the development of new drugs. Measuring microtubule dynamics in the spindle has been a difficult task until recently. With the development of new and gentler microscopic techniques, and new computer programs, we can perform better and more accurate measurements of microtubule dynamics during mitosis.
Collapse
|
31
|
Li W, Wang HY, Zhao X, Duan H, Cheng B, Liu Y, Zhao M, Shu W, Mei Y, Wen Z, Tang M, Guo L, Li G, Chen Q, Liu X, Du HN. A methylation-phosphorylation switch determines Plk1 kinase activity and function in DNA damage repair. SCIENCE ADVANCES 2019; 5:eaau7566. [PMID: 30854428 PMCID: PMC6402851 DOI: 10.1126/sciadv.aau7566] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 05/27/2023]
Abstract
Polo-like kinase 1 (Plk1) is a crucial regulator of cell cycle progression; but the mechanism of regulation of Plk1 activity is not well understood. We present evidence that Plk1 activity is controlled by a balanced methylation and phosphorylation switch. The methyltransferase G9a monomethylates Plk1 at Lys209, which antagonizes phosphorylation of T210 to inhibit Plk1 activity. We found that the methyl-deficient Plk1 mutant K209A affects DNA replication, whereas the methyl-mimetic Plk1 mutant K209M prolongs metaphase-to-anaphase duration through the inability of sister chromatids separation. We detected accumulation of Plk1 K209me1 when cells were challenged with DNA damage stresses. Ablation of K209me1 delays the timely removal of RPA2 and RAD51 from DNA damage sites, indicating the critical role of K209me1 in guiding the machinery of DNA damage repair. Thus, our study highlights the importance of a methylation-phosphorylation switch of Plk1 in determining its kinase activity and functioning in DNA damage repair.
Collapse
Affiliation(s)
- Weizhe Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hong-Yan Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaolu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Binghua Cheng
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Yafei Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Mengjie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenjie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuchao Mei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zengqi Wen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Mingliang Tang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lin Guo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences ,Beijing 100101, China
| | - Qiang Chen
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
32
|
Abstract
Fertilizable eggs develop from diploid precursor cells termed oocytes. Once every menstrual cycle, an oocyte matures into a fertilizable egg in the ovary. To this end, the oocyte eliminates half of its chromosomes into a small cell termed a polar body. The egg is then released into the Fallopian tube, where it can be fertilized. Upon fertilization, the egg completes the second meiotic division, and the mitotic division of the embryo starts. This review highlights recent work that has shed light on the cytoskeletal structures that drive the meiotic divisions of the oocyte in mammals. In particular, we focus on how mammalian oocytes assemble a microtubule spindle in the absence of centrosomes, how they position the spindle in preparation for polar body extrusion, and how the spindle segregates the chromosomes. We primarily focus on mouse oocytes as a model system but also highlight recent insights from human oocytes.
Collapse
Affiliation(s)
- Binyam Mogessie
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
- Current affiliation: School of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Kathleen Scheffler
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany;
| |
Collapse
|
33
|
Puerma E, Orengo DJ, Cruz F, Gómez-Garrido J, Librado P, Salguero D, Papaceit M, Gut M, Segarra C, Alioto TS, Aguadé M. The High-Quality Genome Sequence of the Oceanic Island Endemic Species Drosophila guanche Reveals Signals of Adaptive Evolution in Genes Related to Flight and Genome Stability. Genome Biol Evol 2018; 10:1956-1969. [PMID: 29947749 PMCID: PMC6101566 DOI: 10.1093/gbe/evy135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Drosophila guanche is a member of the obscura group that originated in the Canary Islands archipelago upon its colonization by D. subobscura. It evolved into a new species in the laurisilva, a laurel forest present in wet regions that in the islands have only minor long-term weather fluctuations. Oceanic island endemic species such as D. guanche can become model species to investigate not only the relative role of drift and adaptation in speciation processes but also how population size affects nucleotide variation. Moreover, the previous identification of two satellite DNAs in D. guanche makes this species attractive for studying how centromeric DNA evolves. As a prerequisite for its establishment as a model species suitable to address all these questions, we generated a high-quality D. guanche genome sequence composed of 42 cytologically mapped scaffolds, which are assembled into six super-scaffolds (one per chromosome). The comparative analysis of the D. guanche proteome with that of twelve other Drosophila species identified 151 genes that were subject to adaptive evolution in the D. guanche lineage, with a subset of them being involved in flight and genome stability. For example, the Centromere Identifier (CID) protein, directly interacting with centromeric satellite DNA, shows signals of adaptation in this species. Both genomic analyses and FISH of the two satellites would support an ongoing replacement of centromeric satellite DNA in D. guanche.
Collapse
Affiliation(s)
- Eva Puerma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Dorcas J Orengo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Pablo Librado
- Centre for GeoGenetics, Natural History Museum of Denmark, Copenhagen, Denmark.,Laboratoire d'Anthropobiologie Moléculaire et d'Imagerie de Synthèse, CNRS UMR 5288, Université de Toulouse, Université Paul Sabatier, France
| | - David Salguero
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Montserrat Papaceit
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carmen Segarra
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| | - Tyler S Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Montserrat Aguadé
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, i Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Spain
| |
Collapse
|
34
|
Yoo TY, Choi JM, Conway W, Yu CH, Pappu RV, Needleman DJ. Measuring NDC80 binding reveals the molecular basis of tension-dependent kinetochore-microtubule attachments. eLife 2018; 7:36392. [PMID: 30044223 PMCID: PMC6089600 DOI: 10.7554/elife.36392] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Proper kinetochore-microtubule attachments, mediated by the NDC80 complex, are required for error-free chromosome segregation. Erroneous attachments are corrected by the tension dependence of kinetochore-microtubule interactions. Here, we present a method, based on fluorescence lifetime imaging microscopy and Förster resonance energy transfer, to quantitatively measure the fraction of NDC80 complexes bound to microtubules at individual kinetochores in living human cells. We found that NDC80 binding is modulated in a chromosome autonomous fashion over prometaphase and metaphase, and is predominantly regulated by centromere tension. We show that this tension dependency requires phosphorylation of the N-terminal tail of Hec1, a component of the NDC80 complex, and the proper localization of Aurora B kinase, which modulates NDC80 binding. Our results lead to a mathematical model of the molecular basis of tension-dependent NDC80 binding to kinetochore microtubules in vivo. When a cell divides, each new cell that forms needs to contain a complete set of DNA, which is stored in structures called chromosomes. So first, the chromosomes duplicate, and the two copies are held together. A protein structure known as a kinetochore then forms on each copy of the chromosome. The kinetochores act as a pair of hands that pull the chromosome copies apart and toward opposite sides of the dividing cell. They do this by grabbing protein ‘ropes’ called microtubules that extend toward the chromosomes from each side of the cell. Kinetochores grip the microtubule ropes more tightly when the connection is under greater tension. This helps the kinetochores to remain attached to the microtubules that will separate the chromosome copies while releasing the microtubules that would pull both copies to the same side. Previous research has shown that hundreds of finger-like structures made out of a protein group called NDC80 extend from each kinetochore ‘hand’ and attach to the microtubules. What remains a mystery is whether and how the NDC80 fingers grip the microtubules more tightly when tension is greater in cells. Yoo et al. developed a technique for counting how many of the available NDC80 fingers of a single kinetochore are attached to microtubules within a living human cell. The new technique combines genetic engineering, fluorescence imaging and statistical methods to quantify the attachment of NDC80 to microtubules over time and space. Yoo et al. found that more NDC80 bound to microtubules when there was greater tension. This relationship between binding and tension depends on an enzyme called Aurora B, which modifies the tip of each NDC80 finger and consequently changes the binding of NDC80 to microtubules. Yoo et al. further showed that Aurora B needs to be properly placed between two kinetochore hands to make NDC80-microtubule binding dependent on tension. Without this tension dependency, chromosomes could segregate unevenly into the newly formed cells – a problem that can lead to cancer, infertility and birth defects. The results presented by Yoo et al. therefore expand our understanding of how these diseases originate and may eventually help researchers to develop new treatments for them.
Collapse
Affiliation(s)
- Tae Yeon Yoo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, United States
| | - Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, United States.,Center for Biological Systems Engineering, Washington University in St Louis, St Louis, United States
| | - William Conway
- Department of Physics, Harvard University, Cambridge, United States
| | - Che-Hang Yu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, United States.,Center for Biological Systems Engineering, Washington University in St Louis, St Louis, United States
| | - Daniel J Needleman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States.,Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, United States.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| |
Collapse
|
35
|
Sacristan C, Ahmad MUD, Keller J, Fermie J, Groenewold V, Tromer E, Fish A, Melero R, Carazo JM, Klumperman J, Musacchio A, Perrakis A, Kops GJ. Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis. Nat Cell Biol 2018; 20:800-810. [PMID: 29915359 PMCID: PMC6485389 DOI: 10.1038/s41556-018-0130-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 01/28/2023]
Abstract
Faithful chromosome segregation depends on the ability of sister kinetochores to attach to spindle microtubules. The outer layer of kinetochores transiently expands in early mitosis to form a fibrous corona, and compacts following microtubule capture. Here we show that the dynein adaptor Spindly and the RZZ (ROD-Zwilch-ZW10) complex drive kinetochore expansion in a dynein-independent manner. C-terminal farnesylation and MPS1 kinase activity cause conformational changes of Spindly that promote oligomerization of RZZ-Spindly complexes into a filamentous meshwork in cells and in vitro. Concurrent with kinetochore expansion, Spindly potentiates kinetochore compaction by recruiting dynein via three conserved short linear motifs. Expanded kinetochores unable to compact engage in extensive, long-lived lateral microtubule interactions that persist to metaphase, and result in merotelic attachments and chromosome segregation errors in anaphase. Thus, dynamic kinetochore size regulation in mitosis is coordinated by a single, Spindly-based mechanism that promotes initial microtubule capture and subsequent correct maturation of attachments.
Collapse
Affiliation(s)
- Carlos Sacristan
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Misbha Ud Din Ahmad
- Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jenny Keller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Job Fermie
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Vincent Groenewold
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Eelco Tromer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander Fish
- Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roberto Melero
- Biocomputing Unit, National Center for Biotechnology (CSIC), Darwin 3, Campus Universidad Autónoma, Madrid, Spain
| | - José María Carazo
- Biocomputing Unit, National Center for Biotechnology (CSIC), Darwin 3, Campus Universidad Autónoma, Madrid, Spain
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße, Essen, Germany
| | - Anastassis Perrakis
- Department of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Geert Jpl Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Amin MA, McKenney RJ, Varma D. Antagonism between the dynein and Ndc80 complexes at kinetochores controls the stability of kinetochore-microtubule attachments during mitosis. J Biol Chem 2018; 293:5755-5765. [PMID: 29475948 DOI: 10.1074/jbc.ra117.001699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/06/2018] [Indexed: 01/22/2023] Open
Abstract
Chromosome alignment and segregation during mitosis require kinetochore-microtubule (kMT) attachments that are mediated by the molecular motor dynein and the kMT-binding complex Ndc80. The Rod-ZW10-Zwilch (RZZ) complex is central to this coordination as it has an important role in dynein recruitment and has recently been reported to have a key function in the regulation of stable kMT attachments in Caenorhabditis elegans besides its role in activating the spindle assembly checkpoint (SAC). However, the mechanism by which these protein complexes control kMT attachments to drive chromosome motility during early mitosis is still unclear. Here, using in vitro total internal reflection fluorescence microscopy, we observed that higher concentrations of Ndc80 inhibited dynein binding to MTs, providing evidence that Ndc80 and dynein antagonize each other's function. High-resolution microscopy and siRNA-mediated functional disruption revealed that severe defects in chromosome alignment induced by depletion of dynein or the dynein adapter Spindly are rescued by codepletion of the RZZ component Rod in human cells. Interestingly, rescue of the chromosome alignment defects was independent of Rod function in SAC activation and was accompanied by a remarkable restoration of stable kMT attachments. Furthermore, the chromosome alignment rescue depended on the plus-end-directed motility of centromere protein E (CENP-E) because cells codepleted of CENP-E, Rod, and dynein could not establish stable kMT attachments or align their chromosomes properly. Our findings support the idea that dynein may control the function of the Ndc80 complex in stabilizing kMT attachments directly by interfering with Ndc80-MT binding or indirectly by controlling the Rod-mediated inhibition of Ndc80.
Collapse
Affiliation(s)
- Mohammed A Amin
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, California 95616
| | - Dileep Varma
- From the Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| |
Collapse
|
37
|
Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget 2017; 7:24700-18. [PMID: 27015553 PMCID: PMC5029735 DOI: 10.18632/oncotarget.8267] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/04/2016] [Indexed: 01/26/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare premature aging disorder that leads to death at an average age of 14.7 years due to myocardial infarction or stroke. The most common mutation in HGPS is at position G608G (GGC>GGT) within exon 11 of the LMNA gene. This mutation results in the deletion of 50 amino acids at the carboxyl-terminal tail of prelamin A, producing a truncated farnesylated protein called progerin. Lamins play important roles in the organization and structure of the nucleus. The nuclear build-up of progerin causes severe morphological and functional changes in interphase HGPS cells. In this study, we investigated whether progerin elicits spatiotemporal deviations in mitotic processes in HGPS fibroblasts. We analyzed the nuclear distribution of endogenous progerin during mitosis in relation to components of the nuclear lamina, nuclear envelope (NE) and nuclear pores. We found that progerin caused defects in chromosome segregation as early as metaphase, delayed NE reformation and trapped lamina components and inner NE proteins in the endoplasmic reticulum at the end of mitosis. Progerin displaced the centromere protein F (CENP-F) from metaphase chromosome kinetochores, which caused increased chromatin lagging, binucleated cells and genomic instability. This accumulation of progerin-dependent defects with each round of mitosis predisposes cells to premature senescence.
Collapse
Affiliation(s)
- Veronika Eisch
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Xiang Lu
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Diana Gabriel
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology, TUM School of Medicine, Technical University Munich (TUM), Garching-Munich, Germany
| |
Collapse
|
38
|
Dumitru AMG, Rusin SF, Clark AEM, Kettenbach AN, Compton DA. Cyclin A/Cdk1 modulates Plk1 activity in prometaphase to regulate kinetochore-microtubule attachment stability. eLife 2017; 6:e29303. [PMID: 29154753 PMCID: PMC5706962 DOI: 10.7554/elife.29303] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022] Open
Abstract
The fidelity of chromosome segregation in mitosis is safeguarded by the precise regulation of kinetochore microtubule (k-MT) attachment stability. Previously, we demonstrated that Cyclin A/Cdk1 destabilizes k-MT attachments to promote faithful chromosome segregation. Here, we use quantitative phosphoproteomics to identify 156 Cyclin A/Cdk1 substrates in prometaphase. One Cyclin A/Cdk1 substrate is myosin phosphatase targeting subunit 1 (MYPT1), and we show that MYPT1 localization to kinetochores depends on Cyclin A/Cdk1 activity and that MYPT1 destabilizes k-MT attachments by negatively regulating Plk1 at kinetochores. Thus, Cyclin A/Cdk1 phosphorylation primes MYPT1 for Plk1 binding. Interestingly, priming of PBIP1 by Plk1 itself (self-priming) increased in MYPT1-depleted cells showing that MYPT1 provides a molecular link between the processes of Cdk1-dependent priming and self-priming of Plk1 substrates. These data demonstrate cross-regulation between Cyclin A/Cdk1-dependent and Plk1-dependent phosphorylation of substrates during mitosis to ensure efficient correction of k-MT attachment errors necessary for high mitotic fidelity.
Collapse
Affiliation(s)
- Ana Maria G Dumitru
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Scott F Rusin
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Amber E M Clark
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| | - Duane A Compton
- Department of Biochemistry and Cell BiologyGeisel School of Medicine at DartmouthHanoverUnited States
- Norris Cotton Cancer CenterLebanonUnited States
| |
Collapse
|
39
|
Limbeck E, Vanselow JT, Hofmann J, Schlosser A, Mally A. Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol 2017; 92:995-1014. [PMID: 29098329 DOI: 10.1007/s00204-017-2107-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a potent renal carcinogen but its mechanism has not been fully resolved. In vitro and in vivo gene expression studies consistently revealed down-regulation of gene expression as the predominant transcriptional response to OTA. Based on the importance of specific histone acetylation marks in regulating gene transcription and our recent finding that OTA inhibits histone acetyltransferases (HATs), leading to loss of acetylation of histones and non-histone proteins, we hypothesized that OTA-mediated repression of gene expression may be causally linked to HAT inhibition and loss of histone acetylation. In this study, we used a novel mass spectrometry approach employing chemical 13C-acetylation of unmodified lysine residues for quantification of post-translational acetylation sites to identify site-specific alterations in histone acetylation in human kidney epithelial cells (HK-2) exposed to OTA. These results showed OTA-mediated hypoacetylation at almost all lysine residues of core histones, including loss of acetylation at H3K9 and H3K14, which are hallmarks of gene activation. ChIP-qPCR used to establish a possible link between H3K9 or H3K14 hypoacetylation and OTA-mediated down-regulation of selected genes (AMIGO2, CLASP2, CTNND1) confirmed OTA-mediated H3K9 hypoacetylation at promoter regions of these genes. Integrated analysis of OTA-mediated genome-wide changes in H3K9 acetylation identified by ChIP-Seq with published gene expression data further demonstrated that among OTA-responsive genes almost 80% of hypoacetylated genes were down-regulated, thus confirming an association between H3K9 acetylation status and gene expression of these genes. However, only 7% of OTA repressed genes showed loss of H3K9 acetylation within promoter regions. Interestingly, however, GO analysis and functional enrichment of down-regulated genes showing loss of H3K9 acetylation at their respective promoter regions revealed enrichment of genes involved in the regulation of transcription, including a number of transcription factors that are predicted to directly or indirectly regulate the expression of 98% of OTA repressed genes. Thus, it is possible that histone acetylation changes in a fairly small set of genes but with key function in transcriptional regulation may trigger a cascade of events that may lead to overall repression of gene expression. Taken together, our data provide evidence for a mechanistic link between loss of H3K9 acetylation as a consequence of OTA-mediated inhibition of HATs and repression of gene expression by OTA, thereby affecting cellular processes critical to tumorigenesis.
Collapse
Affiliation(s)
- Elisabeth Limbeck
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97078, Würzburg, Germany
| | - Julian Hofmann
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97078, Würzburg, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| |
Collapse
|
40
|
Mogessie B, Schuh M. Actin protects mammalian eggs against chromosome segregation errors. Science 2017; 357:357/6353/eaal1647. [DOI: 10.1126/science.aal1647] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 06/28/2017] [Indexed: 11/02/2022]
|
41
|
Liu J, Zhang C. The equilibrium of ubiquitination and deubiquitination at PLK1 regulates sister chromatid separation. Cell Mol Life Sci 2017; 74:2127-2134. [PMID: 28188342 PMCID: PMC11107562 DOI: 10.1007/s00018-017-2457-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/15/2022]
Abstract
PLK1 regulates almost every aspect of mitotic events, including mitotic entry, spindle assembly, chromosome alignment, sister chromatid segregation, metaphase-anaphase transition, cytokinesis, etc. In regulating the chromosome alignment and sister chromatid segregation, PLK1 has to be localized to and removed from kinetochores at the right times, and the underlying mechanism that regulates PLK1 both spatially and temporally only became clearer recently. It has been found that deubiquitination and ubiquitination of PLK1 are responsible for its localization to and dissociation from the kinetochores, respectively. The equilibrium of this ubiquitination and deubiquitination plays an important role in regulating proper chromosome alignment and timely sister chromatid segregation. Here, we summarize and discuss the recent findings in investigating the spatial and temporal regulation of PLK1 during chromosome alignment and sister chromatid segregation.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
Maleki SS, Röcken C. Chromosomal Instability in Gastric Cancer Biology. Neoplasia 2017; 19:412-420. [PMID: 28431273 PMCID: PMC5397576 DOI: 10.1016/j.neo.2017.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus–positive, chromosomal-instable (CIN), and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus–positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6) and/or molecular-biological analysis. Epstein-Barr virus–positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA). However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer.
Collapse
Affiliation(s)
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
43
|
Musacchio A, Desai A. A Molecular View of Kinetochore Assembly and Function. BIOLOGY 2017; 6:E5. [PMID: 28125021 PMCID: PMC5371998 DOI: 10.3390/biology6010005] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Kinetochores are large protein assemblies that connect chromosomes to microtubules of the mitotic and meiotic spindles in order to distribute the replicated genome from a mother cell to its daughters. Kinetochores also control feedback mechanisms responsible for the correction of incorrect microtubule attachments, and for the coordination of chromosome attachment with cell cycle progression. Finally, kinetochores contribute to their own preservation, across generations, at the specific chromosomal loci devoted to host them, the centromeres. They achieve this in most species by exploiting an epigenetic, DNA-sequence-independent mechanism; notable exceptions are budding yeasts where a specific sequence is associated with centromere function. In the last 15 years, extensive progress in the elucidation of the composition of the kinetochore and the identification of various physical and functional modules within its substructure has led to a much deeper molecular understanding of kinetochore organization and the origins of its functional output. Here, we provide a broad summary of this progress, focusing primarily on kinetochores of humans and budding yeast, while highlighting work from other models, and present important unresolved questions for future studies.
Collapse
Affiliation(s)
- Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn Straße 11, Dortmund 44227, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen 45117, Germany.
| | - Arshad Desai
- Ludwig Institute for Cancer Research, La Jolla, CA 92093, USA.
- Department of Cellular & Molecular Medicine, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Grishchuk EL. Biophysics of Microtubule End Coupling at the Kinetochore. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:397-428. [PMID: 28840247 DOI: 10.1007/978-3-319-58592-5_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The main physiological function of mitotic kinetochores is to provide durable attachment to spindle microtubules, which segregate chromosomes in order to partition them equally between the two daughter cells. Numerous kinetochore components that can bind directly to microtubules have been identified, including ATP-dependent motors and various microtubule-associated proteins with no motor activity. A major challenge facing the field is to explain chromosome motions based on the biochemical and structural properties of these individual kinetochore components and their assemblies. This chapter reviews the molecular mechanisms responsible for the motions associated with dynamic microtubule tips at the single-molecule level, as well as the activities of multimolecular ensembles called couplers. These couplers enable persistent kinetochore motion even under load, but their exact composition and structure remain unknown. Because no natural or artificial macro-machines function in an analogous manner to these molecular nano-devices, understanding their underlying biophysical mechanisms will require conceptual advances.
Collapse
Affiliation(s)
- Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
45
|
Simunić J, Tolić IM. Mitotic Spindle Assembly: Building the Bridge between Sister K-Fibers. Trends Biochem Sci 2016; 41:824-833. [DOI: 10.1016/j.tibs.2016.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
|
46
|
Chung HJ, Park JE, Lee NS, Kim H, Jang CY. Phosphorylation of Astrin Regulates Its Kinetochore Function. J Biol Chem 2016; 291:17579-92. [PMID: 27325694 PMCID: PMC5016155 DOI: 10.1074/jbc.m115.712745] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.
Collapse
Affiliation(s)
- Hee Jin Chung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and
| | - Ji Eun Park
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Nam Soo Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and
| | - Hongtae Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Republic of Korea and From the Center for Neuroscience Imaging Research, Institute for Basic Science and
| | - Chang-Young Jang
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
47
|
Cojoc G, Roscioli E, Zhang L, García-Ulloa A, Shah JV, Berns MW, Pavin N, Cimini D, Tolić IM, Gregan J. Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. J Cell Biol 2016; 212:767-76. [PMID: 27002163 PMCID: PMC4810299 DOI: 10.1083/jcb.201506011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 02/25/2016] [Indexed: 11/29/2022] Open
Abstract
Accurate chromosome segregation depends on proper kinetochore-microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response of the kinetochore from its length change. In both mammalian PtK1 cells and in the fission yeast Schizosaccharomyces pombe, kinetochores shortened after microtubule severing. Interestingly, the inner kinetochore-centromere relaxed faster than the outer kinetochore. Whereas in fission yeast all kinetochores relaxed to a similar length, in PtK1 cells the more stretched kinetochores remained more stretched. Simple models suggest that these differences arise because the mechanical structure of the mammalian kinetochore is more complex. Our study establishes merotelic kinetochores as an experimental model for studying the mechanical response of the kinetochore in live cells and reveals a viscoelastic behavior of the kinetochore that is conserved in yeast and mammalian cells.
Collapse
Affiliation(s)
- Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emanuele Roscioli
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Lijuan Zhang
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| | - Alfonso García-Ulloa
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| | - Michael W Berns
- Beckman Laser Institute and University of California, Irvine, Irvine, CA 92612
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Daniela Cimini
- Department of Biological Sciences and Biocomplexity Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Iva M Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
48
|
Centromere Protein (CENP)-W Interacts with Heterogeneous Nuclear Ribonucleoprotein (hnRNP) U and May Contribute to Kinetochore-Microtubule Attachment in Mitotic Cells. PLoS One 2016; 11:e0149127. [PMID: 26881882 PMCID: PMC4755543 DOI: 10.1371/journal.pone.0149127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background Recent studies have shown that heterogeneous nuclear ribonucleoprotein U (hnRNP U), a component of the hnRNP complex, contributes to stabilize the kinetochore-microtubule interaction during mitosis. CENP-W was identified as an inner centromere component that plays crucial roles in the formation of a functional kinetochore complex. Results We report that hnRNP U interacts with CENP-W, and the interaction between hnRNP U and CENP-W mutually increased each other’s protein stability by inhibiting the proteasome-mediated degradation. Further, their co-localization was observed chiefly in the nuclear matrix region and at the microtubule-kinetochore interface during interphase and mitosis, respectively. Both microtubule-stabilizing and microtubule-destabilizing agents significantly decreased the protein stability of CENP-W. Furthermore, loss of microtubules and defects in microtubule organization were observed in CENP-W-depleted cells. Conclusion Our data imply that CENP-W plays an important role in the attachment and interaction between microtubules and kinetochore during mitosis.
Collapse
|
49
|
Reid TA, Schuster BM, Mann BJ, Balchand SK, Plooster M, McClellan M, Coombes CE, Wadsworth P, Gardner MK. Suppression of microtubule assembly kinetics by the mitotic protein TPX2. J Cell Sci 2016; 129:1319-28. [PMID: 26869224 DOI: 10.1242/jcs.178806] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
TPX2 is a widely conserved microtubule-associated protein that is required for mitotic spindle formation and function. Previous studies have demonstrated that TPX2 is required for the nucleation of microtubules around chromosomes; however, the molecular mechanism by which TPX2 promotes microtubule nucleation remains a mystery. In this study, we found that TPX2 acts to suppress tubulin subunit off-rates during microtubule assembly and disassembly, thus allowing for the support of unprecedentedly slow rates of plus-end microtubule growth, and also leading to a dramatically reduced microtubule shortening rate. These changes in microtubule dynamics can be explained in computational simulations by a moderate increase in tubulin-tubulin bond strength upon TPX2 association with the microtubule lattice, which in turn acts to reduce the departure rate of tubulin subunits from the microtubule ends. Thus, the direct suppression of tubulin subunit off-rates by TPX2 during microtubule growth and shortening could provide a molecular mechanism to explain the nucleation of new microtubules in the presence of TPX2.
Collapse
Affiliation(s)
- Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Breanna M Schuster
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Barbara J Mann
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Melissa Plooster
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney E Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pat Wadsworth
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Uittenbogaard M, Chiaramello A. Novel subcellular localization of the DNA helicase Twinkle at the kinetochore complex during mitosis in neuronal-like progenitor cells. Histochem Cell Biol 2015; 145:275-86. [PMID: 26678504 DOI: 10.1007/s00418-015-1388-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Abstract
During mitosis, the kinetochore, a multi-protein structure located on the centromeric DNA, is responsible for proper segregation of the replicated genome. More specifically, the outer kinetochore complex component Ndc80/Hec1 plays a critical role in regulating microtubule attachment to the spindle for accurate sister chromatid segregation. In addition, DNA helicases play a key contribution for precise and complete disjunction of sister chromatids held together through double-stranded DNA catenations until anaphase. In this study, we focused our attention on the nuclear-encoded DNA helicase Twinkle, which functions as an essential helicase for replication of mitochondrial DNA. It regulates the copy number of the mitochondrial genome, while maintaining its integrity, two processes essential for mitochondrial biogenesis and bioenergetic functions. Although the majority of the Twinkle protein is imported into mitochondria, a small fraction remains cytosolic with an unknown function. In this study, we report a novel expression pattern of Twinkle during chromosomal segregation at distinct mitotic phases. By immunofluorescence microscopy, we found that Twinkle protein colocalizes with the outer kinetochore protein HEC1 as early as prophase until late anaphase in neuronal-like progenitor cells. Thus, our collective results have revealed an unexpected cell cycle-regulated expression pattern of the DNA helicase Twinkle, known for its role in mtDNA replication. Therefore, its recruitment to the kinetochore suggests an evolutionary conserved function for both mitochondrial and nuclear genomic inheritance.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, 2300 I Street N.W., Washington, DC, 20037, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, 2300 I Street N.W., Washington, DC, 20037, USA.
| |
Collapse
|