1
|
Eltayeb A, Rubio-Casillas A, Uversky VN, Redwan EM. Intrinsic Factors Behind Long COVID: VI. Combined Impact of G3BPs and SARS-CoV-2 Nucleocapsid Protein on the Viral Persistence and Long COVID. J Cell Biochem 2025; 126:e70038. [PMID: 40415285 DOI: 10.1002/jcb.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 04/27/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
The efficient transmission of SARS-CoV-2 caused the COVID-19 pandemic, which affected millions of people around the globe. Despite extensive efforts, specific therapeutic interventions and preventive measures against COVID-19 and its consequences, such as long COVID, have not yet been identified due to the lack of a comprehensive knowledge of the SARS-CoV-2 biology. Therefore, a deeper understanding of the sophisticated strategies employed by SARS-CoV-2 to bypass the host antiviral defense systems is needed. One of these strategies is the inhibition of the Ras GTPase-activating protein-binding protein (GAP SH3-binding protein or G3BP)-dependent host immune response by the SARS-CoV-2 nucleocapsid (N) protein. This inhibition disrupts the formation of stress granules (SGs), which are crucial for antiviral defense. By preventing SG formation, the virus enhances its replication and evades the host's immune response, leading to increased disease severity. Given the involvement of G3BP1 in SG formation and its ability to interact with viral proteins, along with the crucial role of the N protein in the replication of the virus, we hypothesize that these proteins may have a potential role in the pathogenesis of long COVID. Despite the current lack of direct evidence linking these proteins to long COVID, their interactions and functions suggest a possible connection that warrants further investigation.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
2
|
Li X, Liao J, Chung KK, Feng L, Liao Y, Yang Z, Liu C, Zhou J, Shen W, Li H, Yang C, Zhuang X, Gao C. Stress granules sequester autophagy proteins to facilitate plant recovery from heat stress. Nat Commun 2024; 15:10910. [PMID: 39738069 PMCID: PMC11685989 DOI: 10.1038/s41467-024-55292-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/08/2024] [Indexed: 01/01/2025] Open
Abstract
The autophagy pathway regulates the degradation of misfolded proteins caused by heat stress (HS) in the cytoplasm, thereby maintaining cellular homeostasis. Although previous studies have established that autophagy (ATG) genes are transcriptionally upregulated in response to HS, the precise regulation of ATG proteins at the subcellular level remains poorly understood. In this study, we provide compelling evidence for the translocation of key autophagy components, including the ATG1/ATG13 kinase complex (ATG1a, ATG13a), PI3K complex (ATG6, VPS34), and ATG8-PE system (ATG5), to HS-induced stress granules (SGs) in Arabidopsis thaliana. As HS subsides, SGs disassemble, leading to the re-translocation of ATG proteins back to the cytoplasm, thereby facilitating the rapid activation of autophagy to degrade HS-induced ubiquitinated aggregates. Notably, autophagy activation is delayed in the SG-deficient (ubp1abc) mutants during the HS recovery phase, resulting in an insufficient clearance of ubiquitinated insoluble proteins that arise due to HS. Collectively, this study uncovers a previously unknown function of SGs in regulating autophagy as a temporary repository for ATG proteins under HS and provides valuable insights into the cellular mechanisms that maintain protein homeostasis during stress.
Collapse
Affiliation(s)
- Xibao Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ka Kit Chung
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei Feng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yanglan Liao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhixin Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chuanliang Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Zhou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongbo Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaohong Zhuang
- Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China.
- MOE Key Laboratory & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
3
|
Seto E, Kina S, Kawabata-Iwakawa R, Suzuki M, Onizuka Y, Nakajima-Shimada J. Trypanosoma cruzi assembles host cytoplasmic processing bodies to evade the innate immune response. Biochim Biophys Acta Gen Subj 2024; 1868:130686. [PMID: 39122157 DOI: 10.1016/j.bbagen.2024.130686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
Processing bodies (P-bodies, PBs) are cytoplasmic foci formed by condensation of translationally inactivated messenger ribonucleoprotein particles (mRNPs). Infection with the protozoan parasite Trypanosoma cruzi (T. cruzi) promotes PB accumulation in host cells, suggesting their involvement in host mRNA metabolism during parasite infection. To identify PB-regulated mRNA targets during T. cruzi infection, we established a PB-defective human fibrosarcoma cell line by knocking out the enhancer of mRNA decapping 4 (EDC4), an essential component of PB assembly. Next-generation sequencing was used to establish transcriptome profiles for wild-type (WT) and EDC4 knockout (KO) cells infected with T. cruzi for 0, 3, and 24 h. Ingenuity pathway analysis based on the differentially expressed genes revealed that PB depletion increased the activation of several signaling pathways involved in the innate immune response. The proinflammatory cytokine IL-1β was significantly upregulated following infection of PB-deficient KO cells, but not in WT cells, at the mRNA and protein levels. Furthermore, the rescue of PB assembly in KO cells by GFP-tagged wild-type EDC4 (+WT) suppressed IL-1β expression, whereas KO cells with the C-terminal-deleted mutant EDC4 (+Δ) failed to rescue PB assembly and downregulate IL-1β production. Our results suggest that T. cruzi assembles host PBs to counteract antiparasitic innate immunity.
Collapse
Affiliation(s)
- Eri Seto
- Education and Research Support Center, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | - Shinichiro Kina
- Center for Medical Education, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Makiko Suzuki
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Yoko Onizuka
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Junko Nakajima-Shimada
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
4
|
Riggs CL, Kedersha N, Amarsanaa M, Zubair SN, Ivanov P, Anderson P. UBAP2L contributes to formation of P-bodies and modulates their association with stress granules. J Cell Biol 2024; 223:e202307146. [PMID: 39007803 PMCID: PMC11248227 DOI: 10.1083/jcb.202307146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Stress triggers the formation of two distinct cytoplasmic biomolecular condensates: stress granules (SGs) and processing bodies (PBs), both of which may contribute to stress-responsive translation regulation. Though PBs can be present constitutively, stress can increase their number and size and lead to their interaction with stress-induced SGs. The mechanism of such interaction, however, is largely unknown. Formation of canonical SGs requires the RNA binding protein Ubiquitin-Associated Protein 2-Like (UBAP2L), which is a central SG node protein in the RNA-protein interaction network of SGs and PBs. UBAP2L binds to the essential SG and PB proteins G3BP and DDX6, respectively. Research on UBAP2L has mostly focused on its role in SGs, but not its connection to PBs. We find that UBAP2L is not solely an SG protein but also localizes to PBs in certain conditions, contributes to PB biogenesis and SG-PB interactions, and can nucleate hybrid granules containing SG and PB components in cells. These findings inform a new model for SG and PB formation in the context of UBAP2L's role.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nancy Kedersha
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Misheel Amarsanaa
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Safiyah Noor Zubair
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Cui Q, Liu Z, Bai G. Friend or foe: The role of stress granule in neurodegenerative disease. Neuron 2024; 112:2464-2485. [PMID: 38744273 DOI: 10.1016/j.neuron.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles that form in response to cellular stress. SGs are predominantly composed of RNA and RNA-binding proteins that assemble through liquid-liquid phase separation. Although the formation of SGs is considered a transient and protective response to cellular stress, their dysregulation or persistence may contribute to various neurodegenerative diseases. This review aims to provide a comprehensive overview of SG physiology and pathology. It covers the formation, composition, regulation, and functions of SGs, along with their crosstalk with other membrane-bound and membraneless organelles. Furthermore, this review discusses the dual roles of SGs as both friends and foes in neurodegenerative diseases and explores potential therapeutic approaches targeting SGs. The challenges and future perspectives in this field are also highlighted. A more profound comprehension of the intricate relationship between SGs and neurodegenerative diseases could inspire the development of innovative therapeutic interventions against these devastating diseases.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
| | - Zongyu Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ge Bai
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Ripin N, Macedo de Vasconcelos L, Ugay DA, Parker R. DDX6 modulates P-body and stress granule assembly, composition, and docking. J Cell Biol 2024; 223:e202306022. [PMID: 38536035 PMCID: PMC10978804 DOI: 10.1083/jcb.202306022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Stress granules and P-bodies are ribonucleoprotein (RNP) granules that accumulate during the stress response due to the condensation of untranslating mRNPs. Stress granules form in part by intermolecular RNA-RNA interactions and can be limited by components of the RNA chaperone network, which inhibits RNA-driven aggregation. Herein, we demonstrate that the DEAD-box helicase DDX6, a P-body component, can also limit the formation of stress granules, independent of the formation of P-bodies. In an ATPase, RNA-binding dependent manner, DDX6 limits the partitioning of itself and other RNPs into stress granules. When P-bodies are limited, proteins that normally partition between stress granules and P-bodies show increased accumulation within stress granules. Moreover, we show that loss of DDX6, 4E-T, and DCP1A increases P-body docking with stress granules, which depends on CNOT1 and PAT1B. Taken together, these observations identify a new role for DDX6 in limiting stress granules and demonstrate that P-body components can influence stress granule composition and docking with P-bodies.
Collapse
Affiliation(s)
- Nina Ripin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Daniella A. Ugay
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
8
|
Buchan JR. Stress granule and P-body clearance: Seeking coherence in acts of disappearance. Semin Cell Dev Biol 2024; 159-160:10-26. [PMID: 38278052 PMCID: PMC10939798 DOI: 10.1016/j.semcdb.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Stress granules and P-bodies are conserved cytoplasmic biomolecular condensates whose assembly and composition are well documented, but whose clearance mechanisms remain controversial or poorly described. Such understanding could provide new insight into how cells regulate biomolecular condensate formation and function, and identify therapeutic strategies in disease states where aberrant persistence of stress granules in particular is implicated. Here, I review and compare the contributions of chaperones, the cytoskeleton, post-translational modifications, RNA helicases, granulophagy and the proteasome to stress granule and P-body clearance. Additionally, I highlight the potentially vital role of RNA regulation, cellular energy, and changes in the interaction networks of stress granules and P-bodies as means of eliciting clearance. Finally, I discuss evidence for interplay of distinct clearance mechanisms, suggest future experimental directions, and suggest a simple working model of stress granule clearance.
Collapse
Affiliation(s)
- J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85716, United States.
| |
Collapse
|
9
|
Blake LA, Watkins L, Liu Y, Inoue T, Wu B. A rapid inducible RNA decay system reveals fast mRNA decay in P-bodies. Nat Commun 2024; 15:2720. [PMID: 38548718 PMCID: PMC10979015 DOI: 10.1038/s41467-024-46943-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
RNA decay is vital for regulating mRNA abundance and gene expression. Existing technologies lack the spatiotemporal precision or transcript specificity to capture the stochastic and transient decay process. We devise a general strategy to inducibly recruit protein factors to modulate target RNA metabolism. Specifically, we introduce a Rapid Inducible Decay of RNA (RIDR) technology to degrade target mRNAs within minutes. The fast and synchronous induction enables direct visualization of mRNA decay dynamics in cells. Applying RIDR to endogenous ACTB mRNA reveals rapid formation and dissolution of RNA granules in pre-existing P-bodies. Time-resolved RNA distribution measurements demonstrate rapid RNA decay inside P-bodies, which is further supported by knocking down P-body constituent proteins. Light and oxidative stress modulate P-body behavior, potentially reconciling the contradictory literature about P-body function. This study reveals compartmentalized RNA decay kinetics, establishing RIDR as a pivotal tool for exploring the spatiotemporal RNA metabolism in cells.
Collapse
Affiliation(s)
- Lauren A Blake
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Leslie Watkins
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang Liu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Takanari Inoue
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bin Wu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Bermudez Y, Hatfield D, Muller M. A Balancing Act: The Viral-Host Battle over RNA Binding Proteins. Viruses 2024; 16:474. [PMID: 38543839 PMCID: PMC10974049 DOI: 10.3390/v16030474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of a productive viral infection is the co-opting of host cell resources for viral replication. Despite the host repertoire of molecular functions and biological counter measures, viruses still subvert host defenses to take control of cellular factors such as RNA binding proteins (RBPs). RBPs are involved in virtually all steps of mRNA life, forming ribonucleoprotein complexes (mRNPs) in a highly ordered and regulated process to control RNA fate and stability in the cell. As such, the hallmark of the viral takeover of a cell is the reshaping of RNA fate to modulate host gene expression and evade immune responses by altering RBP interactions. Here, we provide an extensive review of work in this area, particularly on the duality of the formation of RNP complexes that can be either pro- or antiviral. Overall, in this review, we highlight the various ways viruses co-opt RBPs to regulate RNA stability and modulate the outcome of infection by gathering novel insights gained from research studies in this field.
Collapse
Affiliation(s)
| | | | - Mandy Muller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA; (Y.B.); (D.H.)
| |
Collapse
|
11
|
Zhang H, Zhang T, Wan X, Chen C, Wang S, Qin D, Li L, Yu L, Wu X. LSM14B coordinates protein component expression in the P-body and controls oocyte maturation. J Genet Genomics 2024; 51:48-60. [PMID: 37481122 DOI: 10.1016/j.jgg.2023.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/24/2023]
Abstract
The generation of mature and healthy oocytes is the most critical event in the entire female reproductive process, and the mechanisms regulating this process remain to be studied. Here, we demonstrate that Smith-like (LSM) family member 14B (LSM14B) regulates oocyte maturation, and the loss of LSM14B in mouse ovaries leads to abnormal oocyte MII arrest and female infertility. Next, we find the aberrant transcriptional activation, indicated by abnormal non-surrounded nucleolus and surrounded nucleolus oocyte proportions, and abnormal chromosome assembly and segregation in Lsm14b-deficient mouse oocytes. The global transcriptome analysis suggests that many transcripts involved in cytoplasmic processing body (P-body) function are altered in Lsm14b-deficient mouse oocytes. Deletion of Lsm14b results in the expression and/or localization changes of P-body components (such as LSM14A, DCP1A, and 4E-T). Notably, DDX6, a key component of the P-body, is downregulated and accumulates in the nuclei in Lsm14b-deficient mouse oocytes. Taken together, our data suggest that LSM14B links mouse oocyte maturation to female fertility through the regulation of the P-body.
Collapse
Affiliation(s)
- Huiru Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiang Wan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shu Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lufan Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Luping Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210029, China.
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
12
|
Mukhopadhyay C, Zhou P. Role(s) of G3BPs in Human Pathogenesis. J Pharmacol Exp Ther 2023; 387:100-110. [PMID: 37468286 PMCID: PMC10519580 DOI: 10.1124/jpet.122.001538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BP) are RNA binding proteins that play a critical role in stress granule (SG) formation. SGs protect critical mRNAs from various environmental stress conditions by regulating mRNA stability and translation to maintain regulated gene expression. Recent evidence suggests that G3BPs can also regulate mRNA expression through interactions with RNA outside of SGs. G3BPs have been associated with a number of disease states, including cancer progression, invasion, metastasis, and viral infections, and may be useful as a cancer therapeutic target. This review summarizes the biology of G3BP including their structure, function, localization, role in cancer progression, virus replication, mRNA stability, and SG formation. We will also discuss the potential of G3BPs as a therapeutic target. SIGNIFICANCE STATEMENT: This review will discuss the molecular mechanism(s) and functional role(s) of Ras-GTPase-activating protein (SH3 domain)-binding proteins in the context of stress granule formation, interaction with viruses, stability of RNA, and tumorigenesis.
Collapse
Affiliation(s)
- Chandrani Mukhopadhyay
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York
| |
Collapse
|
13
|
Majerciak V, Zhou T, Kruhlak M, Zheng ZM. RNA helicase DDX6 and scaffold protein GW182 in P-bodies promote biogenesis of stress granules. Nucleic Acids Res 2023; 51:9337-9355. [PMID: 37427791 PMCID: PMC10516652 DOI: 10.1093/nar/gkad585] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023] Open
Abstract
Two prominent cytoplasmic RNA granules, ubiquitous RNA-processing bodies (PB) and inducible stress granules (SG), regulate mRNA translation and are intimately related. In this study, we found that arsenite (ARS)-induced SG formed in a stepwise process is topologically and mechanically linked to PB. Two essential PB components, GW182 and DDX6, are repurposed under stress to play direct but distinguishable roles in SG biogenesis. By providing scaffolding activities, GW182 promotes the aggregation of SG components to form SG bodies. DEAD-box helicase DDX6 is also essential for the proper assembly and separation of PB from SG. DDX6 deficiency results in the formation of irregularly shaped 'hybrid' PB/SG granules with accumulated components of both PB and SG. Wild-type DDX6, but not its helicase mutant E247A, can rescue the separation of PB from SG in DDX6KO cells, indicating a requirement of DDX6 helicase activity for this process. DDX6 activity in biogenesis of both PB and SG in the cells under stress is further modulated by its interaction with two protein partners, CNOT1 and 4E-T, of which knockdown affects the formation of both PB and also SG. Together, these data highlight a new functional paradigm between PB and SG biogenesis during the stress.
Collapse
Affiliation(s)
- Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Tongqing Zhou
- Structural Biology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael J Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
14
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
15
|
Curdy N, Lanvin O, Cerapio JP, Pont F, Tosolini M, Sarot E, Valle C, Saint-Laurent N, Lhuillier E, Laurent C, Fournié JJ, Franchini DM. The proteome and transcriptome of stress granules and P bodies during human T lymphocyte activation. Cell Rep 2023; 42:112211. [PMID: 36884350 DOI: 10.1016/j.celrep.2023.112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 12/16/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Stress granules (SGs) and processing bodies (PBs) are membraneless cytoplasmic assemblies regulating mRNAs under environmental stress such as viral infections, neurological disorders, or cancer. Upon antigen stimulation, T lymphocytes mediate their immune functions under regulatory mechanisms involving SGs and PBs. However, the impact of T cell activation on such complexes in terms of formation, constitution, and relationship remains unknown. Here, by combining proteomic, transcriptomic, and immunofluorescence approaches, we simultaneously characterized the SGs and PBs from primary human T lymphocytes pre and post stimulation. The identification of the proteomes and transcriptomes of SGs and PBs indicate an unanticipated molecular and functional complementarity. Notwithstanding, these granules keep distinct spatial organizations and abilities to interact with mRNAs. This comprehensive characterization of the RNP granule proteomic and transcriptomic landscapes provides a unique resource for future investigations on SGs and PBs in T lymphocytes.
Collapse
Affiliation(s)
- Nicolas Curdy
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France
| | - Olivia Lanvin
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France
| | - Juan-Pablo Cerapio
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France
| | - Fréderic Pont
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France
| | - Marie Tosolini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France
| | - Emeline Sarot
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France
| | - Carine Valle
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Nathalie Saint-Laurent
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France
| | - Emeline Lhuillier
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048, 31432 Toulouse, France; GeT-Santé, Plateforme Génome et Transcriptome, GenoToul, 31100 Toulouse, France
| | - Camille Laurent
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France; Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France
| | - Jean-Jacques Fournié
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France
| | - Don-Marc Franchini
- Cancer Research Center of Toulouse (CRCT), INSERM UMR 1037, CNRS UMR 5071, 31037 Toulouse, France; Université Toulouse III Paul Sabatier, 31330 Toulouse, France; Institut Universitaire du Cancer de Toulouse-Oncopole, 31100 Toulouse, France; Laboratoire d'Excellence "TOUCAN-2", Toulouse, France; Institut Carnot Lymphome CALYM, Toulouse, France; Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France.
| |
Collapse
|
16
|
Oe S, Hayashi S, Tanaka S, Koike T, Hirahara Y, Seki-Omura R, Kakizaki R, Sakamoto S, Nakano Y, Noda Y, Yamada H, Kitada M. Cytoplasmic Polyadenylation Element-Binding Protein 1 Post-transcriptionally Regulates Fragile X Mental Retardation 1 Expression Through 3′ Untranslated Region in Central Nervous System Neurons. Front Cell Neurosci 2022; 16:869398. [PMID: 35496917 PMCID: PMC9051318 DOI: 10.3389/fncel.2022.869398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is an inherited intellectual disability caused by a deficiency in Fragile X mental retardation 1 (Fmr1) gene expression. Recent studies have proposed the importance of cytoplasmic polyadenylation element-binding protein 1 (CPEB1) in FXS pathology; however, the molecular interaction between Fmr1 mRNA and CPEB1 has not been fully investigated. Here, we revealed that CPEB1 co-localized and interacted with Fmr1 mRNA in hippocampal and cerebellar neurons and culture cells. Furthermore, CPEB1 knockdown upregulated Fmr1 mRNA and protein levels and caused aberrant localization of Fragile X mental retardation protein in neurons. In an FXS cell model, CPEB1 knockdown upregulated the mRNA levels of several mitochondria-related genes and rescued the intracellular heat shock protein family A member 9 distribution. These findings suggest that CPEB1 post-transcriptionally regulated Fmr1 expression through the 3′ untranslated region, and that CPEB1 knockdown might affect mitochondrial function.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- *Correspondence: Souichi Oe,
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | | | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yosuke Nakano
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yasuko Noda
- Department of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Japan
| | - Hisao Yamada
- Biwako Professional University of Rehabilitation, Higashiomi, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
- Masaaki Kitada,
| |
Collapse
|
17
|
Jamieson-Lucy AH, Kobayashi M, James Aykit Y, Elkouby YM, Escobar-Aguirre M, Vejnar CE, Giraldez AJ, Mullins MC. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev Biol 2022; 484:1-11. [PMID: 35065906 PMCID: PMC8967276 DOI: 10.1016/j.ydbio.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/17/2023]
Abstract
The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.
Collapse
Affiliation(s)
- Allison H Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Y James Aykit
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matias Escobar-Aguirre
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Cochard A, Garcia-Jove Navarro M, Piroska L, Kashida S, Kress M, Weil D, Gueroui Z. RNA at the surface of phase-separated condensates impacts their size and number. Biophys J 2022; 121:1675-1690. [PMID: 35364105 PMCID: PMC9117936 DOI: 10.1016/j.bpj.2022.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
While it is now recognized that specific RNAs and protein families are critical for the biogenesis of ribonucleoprotein (RNP) condensates, how these molecular constituents determine condensate size and morphology is unknown. To circumvent the biochemical complexity of endogenous RNP condensates, the use of programmable tools to reconstitute condensate formation with minimal constituents can be instrumental. Here we report a methodology to form RNA-containing condensates in living cells programmed to specifically recruit a single RNA species. Our bioengineered condensates are made of ArtiGranule scaffolds composed of an orthogonal protein that can bind to a specific heterologously expressed RNA. These scaffolds undergo liquid-liquid phase separation in cells and can be chemically controlled to prevent condensation or to trigger condensate dissolution. We found that the targeted RNAs localize at the condensate surface, either as isolated RNA molecules or as a homogenous corona of RNA molecules around the condensate. The recruitment of RNA changes the material properties of condensates by hardening the condensate body. Moreover, the condensate size scales with RNA surface density; the higher the RNA density, the smaller and more frequent the condensates. These results suggest a mechanism based on physical constraints, provided by RNAs at the condensate surface, that limit condensate growth and coalescence.
Collapse
Affiliation(s)
- Audrey Cochard
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France; Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France
| | - Marina Garcia-Jove Navarro
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Leonard Piroska
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Shunnichi Kashida
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Michel Kress
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France.
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
19
|
Li W, Jiang C, Zhang E. Advances in the phase separation-organized membraneless organelles in cells: a narrative review. Transl Cancer Res 2022; 10:4929-4946. [PMID: 35116344 PMCID: PMC8797891 DOI: 10.21037/tcr-21-1111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/29/2021] [Indexed: 11/26/2022]
Abstract
Membraneless organelles (MLOs) are micro-compartments that lack delimiting membranes, concentrating several macro-molecules with a high local concentration in eukaryotic cells. Recent studies have shown that MLOs have pivotal roles in multiple biological processes, including gene transcription, RNA metabolism, translation, protein modification, and signal transduction. These biological processes in cells have essential functions in many diseases, such as cancer, neurodegenerative diseases, and virus-related diseases. The liquid-liquid phase separation (LLPS) microenvironment within cells is thought to be the driving force for initiating the formation of micro-compartments with a liquid-like property, becoming an important organizing principle for MLOs to mediate organism responses. In this review, we comprehensively elucidated the formation of these MLOs and the relationship between biological functions and associated diseases. The mechanisms underlying the influence of protein concentration and valency on phase separation in cells are also discussed. MLOs undergoing the LLPS process have diverse functions, including stimulation of some adaptive and reversible responses to alter the transcriptional or translational processes, regulation of the concentrations of biomolecules in living cells, and maintenance of cell morphogenesis. Finally, we highlight that the development of this field could pave the way for developing novel therapeutic strategies for the treatment of LLPS-related diseases based on the understanding of phase separation in the coming years.
Collapse
Affiliation(s)
- Weihan Li
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Chenwei Jiang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.,Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
20
|
Chavrier P, Mamessier É, Aulas A. [Stress granules, emerging players in cancer research]. Med Sci (Paris) 2021; 37:735-741. [PMID: 34491181 DOI: 10.1051/medsci/2021109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cancer cells are submitted to numerous stresses during tumor development, such as hypoxia, lack of nutrient, oxidative stress, or mechanical constriction. A complex mechanism termed the integrated stress response (ISR) occurs allowing cell survival. This mechanism leads to the formation of membraneless cytoplasmic structures called stress granules. The hypothesis that these structures play a major role during tumorigenesis has recently emerged. Here, we describe the biological function of stress granules and of proteins that their formation. We also present the current evidences for their involvement in the development of tumors and in the tumor resistance to cancer drugs. Finally, we discuss the interest of targeting stress granule formation to enhance treatment efficiency in order to delay tumor progression.
Collapse
Affiliation(s)
- Pauline Chavrier
- Laboratoire d'oncologie prédictive, Centre de recherche en cancérologie de Marseille (CRCM), Unité mixte de rechercheInserm 1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 27 boulevard Leï Roure, 13009 Marseille, France
| | - Émilie Mamessier
- Laboratoire d'oncologie prédictive, Centre de recherche en cancérologie de Marseille (CRCM), Unité mixte de rechercheInserm 1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 27 boulevard Leï Roure, 13009 Marseille, France
| | - Anaïs Aulas
- Laboratoire d'oncologie prédictive, Centre de recherche en cancérologie de Marseille (CRCM), Unité mixte de rechercheInserm 1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, 27 boulevard Leï Roure, 13009 Marseille, France
| |
Collapse
|
21
|
Oe S, Hayashi S, Tanaka S, Koike T, Hirahara Y, Kakizaki R, Sakamoto S, Noda Y, Yamada H, Kitada M. Cpeb1 expression is post-transcriptionally regulated by AUF1, CPEB1, and microRNAs. FEBS Open Bio 2021; 12:82-94. [PMID: 34480525 PMCID: PMC8727934 DOI: 10.1002/2211-5463.13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/04/2023] Open
Abstract
Cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates the translation of numerous mRNAs. We previously showed that AU‐rich binding factor 1 (AUF1) regulates Cpeb1 expression through the 3’ untranslated region (3’UTR). To investigate the molecular basis of the regulatory potential of the Cpeb1 3’UTR, here we performed reporter analyses that examined expression levels of Gfp reporter mRNA containing the Cpeb1 3’UTR. Our findings indicate that CPEB1 represses the translation of Cpeb1 mRNA and that miR‐145a‐5p and let‐7b‐5p are involved in the reduction in Cpeb1 expression in the absence of AUF1. These results suggest that Cpeb1 expression is post‐transcriptionally regulated by AUF1, CPEB1, and microRNAs.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Susumu Tanaka
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| | - Yasuko Noda
- Department of Anatomy, Bio-imaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Japan
| | - Hisao Yamada
- Biwako Professional University of Rehabilitation, Higashi-Ohmi, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
22
|
The multiscale and multiphase organization of the transcriptome. Emerg Top Life Sci 2021; 4:265-280. [PMID: 32542380 DOI: 10.1042/etls20190187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Gene expression must be co-ordinated to cellular activity. From transcription to decay, the expression of millions of RNA molecules is highly synchronized. RNAs are covered by proteins that regulate every aspect of their cellular life: expression, storage, translational status, localization, and decay. Many RNAs and their associated regulatory proteins can coassemble to condense into liquid droplets, viscoelastic hydrogels, freeze into disorganized glass-like aggregates, or harden into quasi-crystalline solids. Phase separations provide a framework for transcriptome organization where the single functional unit is no longer a transcript but instead an RNA regulon. Here, we will analyze the interaction networks that underlie RNA super-assemblies, assess the complex multiscale, multiphase architecture of the transcriptome, and explore how the biophysical state of an RNA molecule can define its fate. Phase separations are emerging as critical routes for the epitranscriptomic control of gene expression.
Collapse
|
23
|
Dissecting the complexity of biomolecular condensates. Biochem Soc Trans 2021; 48:2591-2602. [PMID: 33300985 DOI: 10.1042/bst20200351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
Biomolecular condensates comprise a diverse and ubiquitous class of membraneless organelles. Condensate assembly is often described by liquid-liquid phase separation. While this process explains many key features, it cannot account for the compositional or architectural complexity that condensates display in cells. Recent work has begun to dissect the rich network of intermolecular interactions that give rise to biomolecular condensates. Here, we review the latest results from theory, simulations and experiments, and discuss what they reveal about the structure-function relationship of condensates.
Collapse
|
24
|
Campos-Melo D, Hawley ZCE, Droppelmann CA, Strong MJ. The Integral Role of RNA in Stress Granule Formation and Function. Front Cell Dev Biol 2021; 9:621779. [PMID: 34095105 PMCID: PMC8173143 DOI: 10.3389/fcell.2021.621779] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are phase-separated, membraneless, cytoplasmic ribonucleoprotein (RNP) assemblies whose primary function is to promote cell survival by condensing translationally stalled mRNAs, ribosomal components, translation initiation factors, and RNA-binding proteins (RBPs). While the protein composition and the function of proteins in the compartmentalization and the dynamics of assembly and disassembly of SGs has been a matter of study for several years, the role of RNA in these structures had remained largely unknown. RNA species are, however, not passive members of RNA granules in that RNA by itself can form homo and heterotypic interactions with other RNA molecules leading to phase separation and nucleation of RNA granules. RNA can also function as molecular scaffolds recruiting multivalent RBPs and their interactors to form higher-order structures. With the development of SG purification techniques coupled to RNA-seq, the transcriptomic landscape of SGs is becoming increasingly understood, revealing the enormous potential of RNA to guide the assembly and disassembly of these transient organelles. SGs are not only formed under acute stress conditions but also in response to different diseases such as viral infections, cancer, and neurodegeneration. Importantly, these granules are increasingly being recognized as potential precursors of pathological aggregates in neurodegenerative diseases. In this review, we examine the current evidence in support of RNA playing a significant role in the formation of SGs and explore the concept of SGs as therapeutic targets.
Collapse
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
25
|
Inherited deficiency of stress granule ZNFX1 in patients with monocytosis and mycobacterial disease. Proc Natl Acad Sci U S A 2021; 118:2102804118. [PMID: 33876776 DOI: 10.1073/pnas.2102804118] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for ZNFX1 variants (p.S959* and p.E1606Rfs*10) predicted to be loss of function (pLOF). There are no subjects homozygous for pLOF variants in public databases. ZNFX1 is a conserved and broadly expressed helicase, but its biology remains largely unknown. It is thought to act as a viral double-stranded RNA sensor in mice, but these patients do not suffer from severe viral illnesses. We analyze its subcellular localization upon overexpression in A549 and HeLa cell lines and upon stimulation of THP1 and fibroblastic cell lines. We find that this cytoplasmic protein can be recruited to or even induce stress granules. The endogenous ZNFX1 protein in cell lines of the patient homozygous for the p.E1606Rfs*10 variant is truncated, whereas ZNFX1 expression is abolished in cell lines from the patients with the p.S959* variant. Lymphocyte subsets are present at normal frequencies in these patients and produce IFN-γ normally. The hematopoietic and nonhematopoietic cells of the patients tested respond normally to IFN-γ. Our results indicate that human ZNFX1 is associated with stress granules and essential for both monocyte homeostasis and protective immunity to mycobacteria.
Collapse
|
26
|
Liau WS, Samaddar S, Banerjee S, Bredy TW. On the functional relevance of spatiotemporally-specific patterns of experience-dependent long noncoding RNA expression in the brain. RNA Biol 2021; 18:1025-1036. [PMID: 33397182 DOI: 10.1080/15476286.2020.1868165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The majority of transcriptionally active RNA derived from the mammalian genome does not code for protein. Long noncoding RNA (lncRNA) is the most abundant form of noncoding RNA found in the brain and is involved in many aspects of cellular metabolism. Beyond their fundamental role in the nucleus as decoys for RNA-binding proteins associated with alternative splicing or as guides for the epigenetic regulation of protein-coding gene expression, recent findings indicate that activity-induced lncRNAs also regulate neural plasticity. In this review, we discuss how lncRNAs may exert molecular control over brain function beyond their known roles in the nucleus. We propose that subcellular localization is a critical feature of experience-dependent lncRNA activity in the brain, and that lncRNA-mediated control over RNA metabolism at the synapse serves to regulate local mRNA stability and translation, thereby influencing neuronal function, learning and memory.
Collapse
Affiliation(s)
- Wei-Siang Liau
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | | | | | - Timothy W Bredy
- Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
28
|
Abstract
Stress granules (SGs) and processing bodies (PBs) are membraneless ribonucleoprotein-based cellular compartments that assemble in response to stress. SGs and PBs form through liquid-liquid phase separation that is driven by high local concentrations of key proteins and RNAs, both of which dynamically shuttle between the granules and the cytoplasm. SGs uniquely contain certain translation initiation factors and PBs are uniquely enriched with factors related to mRNA degradation and decay, although recent analyses reveal much broader protein commonality between these granules. Despite detailed knowledge of their composition and dynamics, the function of SGs and PBs remains poorly understood. Both, however, contain mRNAs, implicating their assembly in the regulation of RNA metabolism. SGs may also serve as hubs that rewire signaling events during stress. By contrast, PBs may constitute RNA storage centers, independent of mRNA decay. The aberrant assembly or disassembly of these granules has pathological implications in cancer, viral infection and neurodegeneration. Here, we review the current concepts regarding the formation, composition, dynamics, function and involvement in disease of SGs and PBs.
Collapse
Affiliation(s)
- Claire L Riggs
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard University, Boston, MA 02115, USA
| | - Nancy Kedersha
- Brigham and Woman's Hospital/Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard University, Boston, MA 02115, USA
| | - Paul Anderson
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
29
|
Tauber D, Tauber G, Parker R. Mechanisms and Regulation of RNA Condensation in RNP Granule Formation. Trends Biochem Sci 2020; 45:764-778. [PMID: 32475683 PMCID: PMC7211619 DOI: 10.1016/j.tibs.2020.05.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein (RNP) granules are RNA-protein assemblies that are involved in multiple aspects of RNA metabolism and are linked to memory, development, and disease. Some RNP granules form, in part, through the formation of intermolecular RNA-RNA interactions. In vitro, such trans RNA condensation occurs readily, suggesting that cells require mechanisms to modulate RNA-based condensation. We assess the mechanisms of RNA condensation and how cells modulate this phenomenon. We propose that cells control RNA condensation through ATP-dependent processes, static RNA buffering, and dynamic post-translational mechanisms. Moreover, perturbations in these mechanisms can be involved in disease. This reveals multiple cellular mechanisms of kinetic and thermodynamic control that maintain the proper distribution of RNA molecules between dispersed and condensed forms.
Collapse
Affiliation(s)
- Devin Tauber
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA
| | - Gabriel Tauber
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80308, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80308, USA.
| |
Collapse
|
30
|
Hyjek‐Składanowska M, Bajczyk M, Gołębiewski M, Nuc P, Kołowerzo‐Lubnau A, Jarmołowski A, Smoliński DJ. Core spliceosomal Sm proteins as constituents of cytoplasmic mRNPs in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1155-1173. [PMID: 32369637 PMCID: PMC7540296 DOI: 10.1111/tpj.14792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 05/15/2023]
Abstract
In recent years, research has increasingly focused on the key role of post-transcriptional regulation of messenger ribonucleoprotein (mRNP) function and turnover. As a result of the complexity and dynamic nature of mRNPs, the full composition of a single mRNP complex remains unrevealed and mRNPs are poorly described in plants. Here we identify canonical Sm proteins as part of the cytoplasmic mRNP complex, indicating their function in the post-transcriptional regulation of gene expression in plants. Sm proteins comprise an evolutionarily ancient family of small RNA-binding proteins involved in pre-mRNA splicing. The latest research indicates that Sm could also impact on mRNA at subsequent stages of its life cycle. In this work we show that in the microsporocyte cytoplasm of Larix decidua, the European larch, Sm proteins accumulate within distinct cytoplasmic bodies, also containing polyadenylated RNA. To date, several types of cytoplasmic bodies involved in the post-transcriptional regulation of gene expression have been described, mainly in animal cells. Their role and molecular composition in plants remain less well established, however. A total of 222 mRNA transcripts have been identified as cytoplasmic partners for Sm proteins. The specific colocalization of these mRNAs with Sm proteins within cytoplasmic bodies has been confirmed via microscopic analysis. The results from this work support the hypothesis, that evolutionarily conserved Sm proteins have been adapted to perform a whole repertoire of functions related to the post-transcriptional regulation of gene expression in Eukaryota. This adaptation presumably enabled them to coordinate the interdependent processes of splicing element assembly, mRNA maturation and processing, and mRNA translation regulation, and its degradation.
Collapse
Affiliation(s)
- Malwina Hyjek‐Składanowska
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
- Present address:
Laboratory of Protein StructureInternational Institute of Molecular and Cell Biology4 Trojdena St.02‐109WarsawPoland
| | - Mateusz Bajczyk
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Marcin Gołębiewski
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
- Department of Plant Physiology and BiotechnologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
| | - Przemysław Nuc
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Agnieszka Kołowerzo‐Lubnau
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
| | - Artur Jarmołowski
- Department of Gene ExpressionInstitute of Molecular Biology and BiotechnologyAdam Mickiewicz UniversityUmultowska 89Poznan61‐614Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular BiologyNicolaus Copernicus UniveristyLwowska 187‐100TorunPoland
- Centre For Modern Interdisciplinary TechnologiesNicolaus Copernicus UniversityWilenska 487‐100TorunPoland
| |
Collapse
|
31
|
DDX6 Helicase Behavior and Protein Partners in Human Adipose Tissue-Derived Stem Cells during Early Adipogenesis and Osteogenesis. Int J Mol Sci 2020; 21:ijms21072607. [PMID: 32283676 PMCID: PMC7177724 DOI: 10.3390/ijms21072607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
DDX6 helicase is an RNA-binding protein involved in different aspects of gene expression regulation. The roles played by DDX6 depend on the complexes associated with it. Here, for the first time, we characterize the protein complexes associated with DDX6 in human adipose tissue-derived stem cells (hASCs) and analyze the dynamics of this helicase under different conditions of translational activity and differentiation. The results obtained demonstrated that the DDX6 helicase is associated with proteins involved in the control of mRNA localization, translation and metabolism in hASCs. DDX6 complexes may also assemble into more complex structures, such as RNA-dependent granules, the abundance and composition of which change upon inhibited translational activity. This finding supports the supposition that DDX6 is possibly involved in the regulation of the mRNA life cycle in hASCs. Although there was no significant variation in the protein composition of these complexes during early adipogenic or osteogenic induction, there was a change in the distribution pattern of DDX6: the number of DDX6 granules per cell was reduced during adipogenesis and was enhanced during osteogenesis.
Collapse
|
32
|
Bridging biophysics and neurology: aberrant phase transitions in neurodegenerative disease. Nat Rev Neurol 2020; 15:272-286. [PMID: 30890779 DOI: 10.1038/s41582-019-0157-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomolecular condensation arising through phase transitions has emerged as an essential organizational strategy that governs many aspects of cell biology. In particular, the role of phase transitions in the assembly of large, complex ribonucleoprotein (RNP) granules has become appreciated as an important regulator of RNA metabolism. In parallel, genetic, histopathological and cell and molecular studies have provided evidence that disturbance of phase transitions is an important driver of neurological diseases, notably amyotrophic lateral sclerosis (ALS), but most likely also other diseases. Indeed, our growing knowledge of the biophysics underlying biological phase transitions suggests that this process offers a unifying mechanism to explain the numerous and diverse disturbances in RNA metabolism that have been observed in ALS and some related diseases - specifically, that these diseases are driven by disturbances in the material properties of RNP granules. Here, we review the evidence for this hypothesis, emphasizing the reciprocal roles in which disease-related protein and disease-related RNA can lead to disturbances in the material properties of RNP granules and consequent pathogenesis. Additionally, we review evidence that implicates aberrant phase transitions as a contributing factor to a larger set of neurodegenerative diseases, including frontotemporal dementia, certain repeat expansion diseases and Alzheimer disease.
Collapse
|
33
|
Kato Y, Iwamori T, Ninomiya Y, Kohda T, Miyashita J, Sato M, Saga Y. ELAVL2-directed RNA regulatory network drives the formation of quiescent primordial follicles. EMBO Rep 2019; 20:e48251. [PMID: 31657143 DOI: 10.15252/embr.201948251] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Formation of primordial follicles is a fundamental, early process in mammalian oogenesis. However, little is known about the underlying mechanisms. We herein report that the RNA-binding proteins ELAVL2 and DDX6 are indispensable for the formation of quiescent primordial follicles in mouse ovaries. We show that Elavl2 knockout females are infertile due to defective primordial follicle formation. ELAVL2 associates with mRNAs encoding components of P-bodies (cytoplasmic RNP granules involved in the decay and storage of RNA) and directs the assembly of P-body-like granules by promoting the translation of DDX6 in oocytes prior to the formation of primordial follicles. Deletion of Ddx6 disturbs the assembly of P-body-like granules and severely impairs the formation of primordial follicles, indicating the potential importance of P-body-like granules in the formation of primordial follicles. Furthermore, Ddx6-deficient oocytes are abnormally enlarged due to misregulated PI3K-AKT signaling. Our data reveal that an ELAVL2-directed post-transcriptional network is essential for the formation of quiescent primordial follicles.
Collapse
Affiliation(s)
- Yuzuru Kato
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Tokuko Iwamori
- Department of Biomedicine, Research Center for Human Disease Modeling, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Youichirou Ninomiya
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Jyunko Miyashita
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Mikiko Sato
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| |
Collapse
|
34
|
Liu L, Weiss E, Panas MD, Götte B, Sellberg S, Thaa B, McInerney GM. RNA processing bodies are disassembled during Old World alphavirus infection. J Gen Virol 2019; 100:1375-1389. [DOI: 10.1099/jgv.0.001310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA processing bodies (P-bodies) are non-membranous cytoplasmic aggregates of mRNA and proteins involved in mRNA decay and translation repression. P-bodies actively respond to environmental stresses, associated with another type of RNA granules, known as stress granules (SGs). Alphaviruses were previously shown to block SG induction at late stages of infection, which is important for efficient viral growth. In this study, we found that P-bodies were disassembled or reduced in number very early in infection with Semliki Forest virus (SFV) or chikungunya virus (CHIKV) in a panel of cell lines. Similar to SGs, reinduction of P-bodies by a second stress (sodium arsenite) was also blocked in infected cells. The disassembly of P-bodies still occurred in non-phosphorylatable eIF2α mouse embryonal fibroblasts (MEFs) that are impaired in SG assembly. Studies of translation status by ribopuromycylation showed that P-body disassembly is independent of host translation shutoff, which requires the phosphorylation of eIF2α in the SFV- or CHIKV-infected cells. Labelling of newly synthesized RNA with bromo-UTP showed that host transcription shutoff correlated with P-body disassembly at the same early stage (3–4 h) after infection. However, inhibition of global transcription with actinomycin D (ActD) failed to disassemble P-bodies as effectively as the viruses did. Interestingly, blocking nuclear import with importazole led to an efficient P-bodies loss. Our data reveal that P-bodies are disassembled independently from SG formation at early stages of Old World alphavirus infection and that nuclear import is involved in the dynamic of P-bodies.
Collapse
Affiliation(s)
- Lifeng Liu
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Eva Weiss
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Marc D. Panas
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Benjamin Götte
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Stina Sellberg
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Bastian Thaa
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| |
Collapse
|
35
|
Sharma NR, Majerciak V, Kruhlak MJ, Yu L, Kang JG, Yang A, Gu S, Fritzler MJ, Zheng ZM. KSHV RNA-binding protein ORF57 inhibits P-body formation to promote viral multiplication by interaction with Ago2 and GW182. Nucleic Acids Res 2019; 47:9368-9385. [PMID: 31400113 PMCID: PMC6755100 DOI: 10.1093/nar/gkz683] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
Cellular non-membranous RNA-granules, P-bodies (RNA processing bodies, PB) and stress granules (SG), are important components of the innate immune response to virus invasion. Mechanisms governing how a virus modulates PB formation remain elusive. Here, we report the important roles of GW182 and DDX6, but not Dicer, Ago2 and DCP1A, in PB formation, and that Kaposi's sarcoma-associated herpesvirus (KSHV) lytic infection reduces PB formation through several specific interactions with viral RNA-binding protein ORF57. The wild-type ORF57, but not its N-terminal dysfunctional mutant, inhibits PB formation by interacting with the N-terminal GW-domain of GW182 and the N-terminal domain of Ago2, two major components of PB. KSHV ORF57 also induces nuclear Ago2 speckles. Homologous HSV-1 ICP27, but not EBV EB2, shares this conserved inhibitory function with KSHV ORF57. By using time-lapse confocal microscopy of HeLa cells co-expressing GFP-tagged GW182, we demonstrated that viral ORF57 inhibits primarily the scaffolding of GW182 at the initial stage of PB formation. Consistently, KSHV-infected iSLK/Bac16 cells with reduced GW182 expression produced far fewer PB and SG, but 100-fold higher titer of infectious KSHV virions when compared to cells with normal GW182 expression. Altogether, our data provide the first evidence that a DNA virus evades host innate immunity by encoding an RNA-binding protein that promotes its replication by blocking PB formation.
Collapse
Affiliation(s)
- Nishi R Sharma
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Michael J Kruhlak
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda 20892, MD, USA
| | - Lulu Yu
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Jeong Gu Kang
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Acong Yang
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Shuo Gu
- RNA Mediated Gene Regulation Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Marvin J Fritzler
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD 21702, USA
| |
Collapse
|
36
|
Garcia-Jove Navarro M, Kashida S, Chouaib R, Souquere S, Pierron G, Weil D, Gueroui Z. RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates. Nat Commun 2019; 10:3230. [PMID: 31324804 PMCID: PMC6642089 DOI: 10.1038/s41467-019-11241-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Liquid-liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold ArtiG to generate concentration-dependent RNA-protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation. We demonstrate that intracellular RNA seeds the nucleation of the condensates, as it provides molecular cues to locally coordinate the formation of endogenous high-order RNP assemblies. Interestingly, the co-segregation of intracellular components ultimately impacts the size of the phase-separated condensates. Thus, RNA arises as an architectural element that can influence the composition and the morphological outcome of the condensate phases in an intracellular context.
Collapse
Affiliation(s)
- Marina Garcia-Jove Navarro
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Shunnichi Kashida
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Racha Chouaib
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005, Paris, France.,School of Arts and Sciences, Lebanese International University (LIU), Beirut, Lebanon.,Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Sylvie Souquere
- CNRS UMR-9196, Institut Gustave Roussy, F-94800, Villejuif, France
| | - Gérard Pierron
- CNRS UMR-9196, Institut Gustave Roussy, F-94800, Villejuif, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005, Paris, France
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
37
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
38
|
Guarino AM, Mauro GD, Ruggiero G, Geyer N, Delicato A, Foulkes NS, Vallone D, Calabrò V. YB-1 recruitment to stress granules in zebrafish cells reveals a differential adaptive response to stress. Sci Rep 2019; 9:9059. [PMID: 31227764 PMCID: PMC6588705 DOI: 10.1038/s41598-019-45468-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 06/04/2019] [Indexed: 01/14/2023] Open
Abstract
The survival of cells exposed to adverse environmental conditions entails various alterations in cellular function including major changes in the transcriptome as well as a radical reprogramming of protein translation. While in mammals this process has been extensively studied, stress responses in non-mammalian vertebrates remain poorly understood. One of the key cellular responses to many different types of stressors is the transient generation of structures called stress granules (SGs). These represent cytoplasmic foci where untranslated mRNAs are sorted or processed for re-initiation, degradation, or packaging into mRNPs. Here, using the evolutionarily conserved Y-box binding protein 1 (YB-1) and G3BP1 as markers, we have studied the formation of stress granules in zebrafish (D. rerio) in response to different environmental stressors. We show that following heat shock, zebrafish cells, like mammalian cells, form stress granules which contain both YB-1 and G3BP1 proteins. Moreover, zfYB-1 knockdown compromises cell viability, as well as recruitment of G3BP1 into SGs, under heat shock conditions highlighting the essential role played by YB-1 in SG assembly and cell survival. However, zebrafish PAC2 cells do not assemble YB-1-positive stress granules upon oxidative stress induced by arsenite, copper or hydrogen peroxide treatment. This contrasts with the situation in human cells where SG formation is robustly induced by exposure to oxidative stressors. Thus, our findings point to fundamental differences in the mechanisms whereby mammalian and zebrafish cells respond to oxidative stress.
Collapse
Affiliation(s)
- Andrea Maria Guarino
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Giuseppe Di Mauro
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,University of Ferrara, Department of Life Sciences and Biotechnology, Via Borsari 46, 44121, Ferrara, Italy
| | - Gennaro Ruggiero
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nathalie Geyer
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Antonella Delicato
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy
| | - Nicholas S Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Daniela Vallone
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Viola Calabrò
- University of Naples Federico II, Department of Biology, Monte Sant'Angelo Campus, Via Cinthia 4, Naples, 80126, Italy.
| |
Collapse
|
39
|
Pizzinga M, Bates C, Lui J, Forte G, Morales-Polanco F, Linney E, Knotkova B, Wilson B, Solari CA, Berchowitz LE, Portela P, Ashe MP. Translation factor mRNA granules direct protein synthetic capacity to regions of polarized growth. J Cell Biol 2019; 218:1564-1581. [PMID: 30877141 PMCID: PMC6504908 DOI: 10.1083/jcb.201704019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/12/2018] [Accepted: 02/28/2019] [Indexed: 12/22/2022] Open
Abstract
mRNA localization serves key functions in localized protein production, making it critical that the translation machinery itself is present at these locations. Here we show that translation factor mRNAs are localized to distinct granules within yeast cells. In contrast to many messenger RNP granules, such as processing bodies and stress granules, which contain translationally repressed mRNAs, these granules harbor translated mRNAs under active growth conditions. The granules require Pab1p for their integrity and are inherited by developing daughter cells in a She2p/She3p-dependent manner. These results point to a model where roughly half the mRNA for certain translation factors is specifically directed in granules or translation factories toward the tip of the developing daughter cell, where protein synthesis is most heavily required, which has particular implications for filamentous forms of growth. Such a feedforward mechanism would ensure adequate provision of the translation machinery where it is to be needed most over the coming growth cycle.
Collapse
Affiliation(s)
- Mariavittoria Pizzinga
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Christian Bates
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jennifer Lui
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gabriella Forte
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Fabián Morales-Polanco
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Emma Linney
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Barbora Knotkova
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Beverley Wilson
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clara A Solari
- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Medical Center, New York, NY
| | - Paula Portela
- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Mark P Ashe
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
40
|
Guzikowski AR, Chen YS, Zid BM. Stress-induced mRNP granules: Form and function of processing bodies and stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1524. [PMID: 30793528 PMCID: PMC6500494 DOI: 10.1002/wrna.1524] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/18/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
In response to stress, cells must quickly reprogram gene expression to adapt and survive. This is achieved in part by altering levels of mRNAs and their translation into proteins. Recently, the formation of two stress-induced messenger ribonucleoprotein (mRNP) assemblies named stress granules and processing bodies has been postulated to directly impact gene expression during stress. These assemblies sequester and concentrate specific proteins and RNAs away from the larger cytoplasm during stress, thereby providing a layer of posttranscriptional gene regulation with the potential to directly impact mRNA levels, protein translation, and cell survival. The function of these granules has generally been ascribed either by the protein components concentrated into them or, more broadly, by global changes that occur during stress. Recent proteome- and transcriptome-wide studies have provided a more complete view of stress-induced mRNP granule composition in varied cell types and stress conditions. However, direct measurements of the phenotypic and functional consequences of stress granule and processing body formation are lacking. This leaves our understanding of their roles during stress incomplete. Continued study into the function of these granules will be an important part in elucidating how cells respond to and survive stressful environmental changes. This article is categorized under: Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anna R. Guzikowski
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Yang S. Chen
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
41
|
Ivanov P, Kedersha N, Anderson P. Stress Granules and Processing Bodies in Translational Control. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032813. [PMID: 30082464 DOI: 10.1101/cshperspect.a032813] [Citation(s) in RCA: 322] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress granules (SGs) and processing bodies (PBs) are non-membrane-enclosed RNA granules that dynamically sequester translationally inactive messenger ribonucleoprotein particles (mRNPs) into compartments that are distinct from the surrounding cytoplasm. mRNP remodeling, silencing, and/or storage involves the dynamic partitioning of closed-loop polyadenylated mRNPs into SGs, or the sequestration of deadenylated, linear mRNPs into PBs. SGs form when stress-activated pathways stall translation initiation but allow elongation and termination to occur normally, resulting in a sudden excess of mRNPs that are spatially condensed into discrete foci by protein:protein, protein:RNA, and RNA:RNA interactions. In contrast, PBs can exist in the absence of stress, when specific factors promote mRNA deadenylation, condensation, and sequestration from the translational machinery. The formation and dissolution of SGs and PBs reflect changes in messenger RNA (mRNA) metabolism and allow cells to modulate the proteome and/or mediate life or death decisions during changing environmental conditions.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.,The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts 02142
| | - Nancy Kedersha
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115.,Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Abstract
RNA granules are cytoplasmic, microscopically visible, non-membrane ribo-nucleoprotein structures and are important posttranscriptional regulators in gene expression by controlling RNA translation and stability. TIA/G3BP/PABP-specific stress granules (SG) and GW182/DCP-specific RNA processing bodies (PB) are two major distinguishable RNA granules in somatic cells and contain various ribosomal subunits, translation factors, scaffold proteins, RNA-binding proteins, RNA decay enzymes and helicases to exclude mRNAs from the cellular active translational pool. Although SG formation is inducible due to cellular stress, PB exist physiologically in every cell. Both RNA granules are important components of the host antiviral defense. Virus infection imposes stress on host cells and thus induces SG formation. However, both RNA and DNA viruses must confront the hostile environment of host innate immunity and apply various strategies to block the formation of SG and PB for their effective infection and multiplication. This review summarizes the current research development in the field and the mechanisms of how individual viruses suppress the formation of host SG and PB for virus production.
Collapse
|
43
|
Recessive mutations in muscle-specific isoforms of FXR1 cause congenital multi-minicore myopathy. Nat Commun 2019; 10:797. [PMID: 30770808 PMCID: PMC6377633 DOI: 10.1038/s41467-019-08548-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
FXR1 is an alternatively spliced gene that encodes RNA binding proteins (FXR1P) involved in muscle development. In contrast to other tissues, cardiac and skeletal muscle express two FXR1P isoforms that incorporate an additional exon-15. We report that recessive mutations in this particular exon of FXR1 cause congenital multi-minicore myopathy in humans and mice. Additionally, we show that while Myf5-dependent depletion of all FXR1P isoforms is neonatal lethal, mice carrying mutations in exon-15 display non-lethal myopathies which vary in severity depending on the specific effect of each mutation on the protein.
Collapse
|
44
|
Abstract
Eukaryotic cells contain a large number of RNA-protein assemblies, generically referred to as ribonucleoprotein (RNP) granules. Such RNP granules include stress granules and P-bodies in the cytosol and the nucleolus, Cajal bodies, and paraspeckles in the nucleus. A variety of imaging approaches have been used to reveal different components, structural features, and dynamics of RNP granules. In this review, we discuss imaging approaches that have been used to study stress granules and the insights gained from these experiments. A general theme is that these approaches can be transferred to other RNP granules to examine similar aspects of their composition, ultrastructure, dynamics and control.
Collapse
Affiliation(s)
- Briana Van Treeck
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
| | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80303
- Howard Hughes Medical Institute, Boulder, Colorado 80303
| |
Collapse
|
45
|
Glass L, Wente SR. Gle1 mediates stress granule-dependent survival during chemotoxic stress. Adv Biol Regul 2018; 71:156-171. [PMID: 30262214 DOI: 10.1016/j.jbior.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022]
Abstract
Stress granules (SGs) are non-membrane bound organelles that form in response to multiple different stress stimuli, including exposure to sodium arsenite. SGs are postulated to support cells during periods of stress and provide a protective effect, allowing survival. Gle1 is a highly conserved, essential modulator of RNA-dependent DEAD-box proteins that exists as at least two distinct isoforms in human cells. Gle1A is required for proper SG formation, whereas Gle1B functions in mRNA export at the nuclear pore complex. Since Gle1A is required for SG function, we hypothesized that SG-dependent survival responses would also be Gle1-dependent. We describe here an experimental system for quantifying and testing the SG-associated survival response to sodium arsenite stress in HeLa cells. Gle1A was required for the sodium arsenite survival response, and overexpression of Gle1A supported the survival response. Overexpression of the SG-component G3BP also enabled the response. Next, we analyzed whether cells undergoing multiple rounds of stress yield a subpopulation with a higher propensity for SG formation and an increased resistance to undergoing apoptosis. After ten doses of sodium arsenite treatment, cells became resistant to sodium arsenite and to diclofenac sodium (another SG-inducing drug). The sodium arsenite-resistant cells exhibited changes in SG biology and had an increased survival response that was conferred in a paracrine manner. Changes in secreted factors occurred including a significantly lower level of MCP-1, a known regulator of stress granules and stress-induced apoptosis. This study supports models wherein SGs play a role in cell evasion of apoptosis and further reveal Gle1A and SG functions as targets for clinical approaches directed at chemoresistant/refractory cells.
Collapse
Affiliation(s)
- Laura Glass
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Susan R Wente
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.
| |
Collapse
|
46
|
Rasputin a decade on and more promiscuous than ever? A review of G3BPs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:360-370. [PMID: 30595162 PMCID: PMC7114234 DOI: 10.1016/j.bbamcr.2018.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (SH3 domain)-binding proteins (G3BPs, also known as Rasputin) are a family of RNA binding proteins that regulate gene expression in response to environmental stresses by controlling mRNA stability and translation. G3BPs appear to facilitate this activity through their role in stress granules for which they are considered a core component, however, it should be noted that not all stress granules contain G3BPs and this appears to be contextual depending on the environmental stress and the cell type. Although the role of G3BPs in stress granules appears to be one of its major roles, data also strongly suggests that they interact with mRNAs outside of stress granules to regulate gene expression. G3BPs have been implicated in several diseases including cancer progression, invasion, and metastasis as well as virus survival. There is now a body of evidence that suggests targeting of G3BPs could be explored as a form of cancer therapeutic. This review discusses the important discoveries and advancements made in the field of G3BPs biology over the last two decades including their roles in RNA stability, translational control of cellular transcripts, stress granule formation, cancer progression and its interactions with viruses during infection. An emerging theme for G3BPs is their ability to regulate gene expression in response to environmental stimuli, disease progression and virus infection making it an intriguing target for disease therapies. Triage of many cellular mRNA occurs via stress granules in a G3BP-dependant manner. G3BPs control intra cellular responses to viral infection. Transcript stability, degradation and translation are controlled by G3BPs. G3BPs can control cancer progression.
Collapse
|
47
|
Thiel CS, Tauber S, Christoffel S, Huge A, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Raig C, Layer LE, Ullrich O. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 2018; 8:13267. [PMID: 30185876 PMCID: PMC6125427 DOI: 10.1038/s41598-018-31596-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The gravitational force has been constant throughout Earth's evolutionary history. Since the cell nucleus is subjected to permanent forces induced by Earth's gravity, we addressed the question, if gene expression homeostasis is constantly shaped by the gravitational force on Earth. We therefore investigated the transcriptome in force-free conditions of microgravity, determined the time frame of initial gravitational force-transduction to the transcriptome and assessed the role of cation channels. We combined a parabolic flight experiment campaign with a suborbital ballistic rocket experiment employing the human myelomonocytic cell line U937 and analyzed the whole gene transcription by microarray, using rigorous controls for exclusion of effects not related to gravitational force and cross-validation through two fully independent research campaigns. Experiments with the wide range ion channel inhibitor SKF-96365 in combination with whole transcriptome analysis were conducted to study the functional role of ion channels in the transduction of gravitational forces at an integrative level. We detected profound alterations in the transcriptome already after 20 s of microgravity or hypergravity. In microgravity, 99.43% of all initially altered transcripts adapted after 5 min. In hypergravity, 98.93% of all initially altered transcripts adapted after 75 s. Only 2.4% of all microgravity-regulated transcripts were sensitive to the cation channel inhibitor SKF-96365. Inter-platform comparison of differentially regulated transcripts revealed 57 annotated gravity-sensitive transcripts. We assume that gravitational forces are rapidly and constantly transduced into the nucleus as omnipresent condition for nuclear and chromatin structure as well as homeostasis of gene expression.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, 48149, Muenster, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
- Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | | | | | - Christiane Raig
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
48
|
Ravanidis S, Kattan FG, Doxakis E. Unraveling the Pathways to Neuronal Homeostasis and Disease: Mechanistic Insights into the Role of RNA-Binding Proteins and Associated Factors. Int J Mol Sci 2018; 19:ijms19082280. [PMID: 30081499 PMCID: PMC6121432 DOI: 10.3390/ijms19082280] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
The timing, dosage and location of gene expression are fundamental determinants of brain architectural complexity. In neurons, this is, primarily, achieved by specific sets of trans-acting RNA-binding proteins (RBPs) and their associated factors that bind to specific cis elements throughout the RNA sequence to regulate splicing, polyadenylation, stability, transport and localized translation at both axons and dendrites. Not surprisingly, misregulation of RBP expression or disruption of its function due to mutations or sequestration into nuclear or cytoplasmic inclusions have been linked to the pathogenesis of several neuropsychiatric and neurodegenerative disorders such as fragile-X syndrome, autism spectrum disorders, spinal muscular atrophy, amyotrophic lateral sclerosis and frontotemporal dementia. This review discusses the roles of Pumilio, Staufen, IGF2BP, FMRP, Sam68, CPEB, NOVA, ELAVL, SMN, TDP43, FUS, TAF15, and TIA1/TIAR in RNA metabolism by analyzing their specific molecular and cellular function, the neurological symptoms associated with their perturbation, and their axodendritic transport/localization along with their target mRNAs as part of larger macromolecular complexes termed ribonucleoprotein (RNP) granules.
Collapse
Affiliation(s)
- Stylianos Ravanidis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Fedon-Giasin Kattan
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| | - Epaminondas Doxakis
- Basic Sciences Division I, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
49
|
Standart N, Weil D. P-Bodies: Cytosolic Droplets for Coordinated mRNA Storage. Trends Genet 2018; 34:612-626. [PMID: 29908710 DOI: 10.1016/j.tig.2018.05.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
Abstract
P-bodies (PBs) are cytosolic RNP granules that are conserved among eukaryotic organisms. In the past few years, major progress has been made in understanding the biochemical and biophysical mechanisms that lead to their formation. However, whether they play a role in mRNA storage or decay remains actively debated. P-bodies were recently isolated from human cells by a novel fluorescence-activated particle sorting (FAPS) approach that enabled the characterization of their protein and RNA content, providing new insights into their function. Together with recent innovative imaging studies, these new data show that mammalian PBs are primarily involved not in RNA decay but rather in the coordinated storage of mRNAs encoding regulatory functions. These small cytoplasmic droplets could thus be important for cell adaptation to the environment.
Collapse
Affiliation(s)
- Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005 Paris, France.
| |
Collapse
|
50
|
A stress-induced response complex (SIRC) shuttles miRNAs, siRNAs, and oligonucleotides to the nucleus. Proc Natl Acad Sci U S A 2018; 115:E5756-E5765. [PMID: 29866826 PMCID: PMC6016802 DOI: 10.1073/pnas.1721346115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The deregulation of miRNA function is critical in the pathogenesis of cancer and other diseases. miRNAs and other noncoding RNAs (ncRNAs) tightly regulate gene expression, often in the cell nucleus. Heretofore, there has been no understanding that there exists a general shuttling mechanism that brings miRNAs, in addition to therapeutic oligonucleotides and siRNAs, from the cytoplasm into the nucleus. We have identified this shuttling mechanism, which occurs in response to cell stress. Nuclear imported miRNAs are functional, can potentially alter gene expression, and participate in cell stress response mechanisms. This shuttling mechanism can be augmented to target specific RNAs, including miRNA sponges, and long ncRNAs like Malat-1, which have been implicated in promoting tumor metastasis. Although some information is available for specific subsets of miRNAs and several factors have been shown to bind oligonucleotides (ONs), no general transport mechanism for these molecules has been identified to date. In this work, we demonstrate that the nuclear transport of ONs, siRNAs, and miRNAs responds to cellular stress. Furthermore, we have identified a stress-induced response complex (SIRC), which includes Ago-1 and Ago-2 in addition to the transcription and splicing regulators YB1, CTCF, FUS, Smad1, Smad3, and Smad4. The SIRC transports endogenous miRNAs, siRNAs, and ONs to the nucleus. We show that cellular stress can significantly increase ON- or siRNA-directed splicing switch events and endogenous miRNA targeting of nuclear RNAs.
Collapse
|