1
|
Wang TT, Hirons A, Doerflinger M, Morris KV, Ledger S, Purcell DFJ, Kelleher AD, Ahlenstiel CL. Current State of Therapeutics for HTLV-1. Viruses 2024; 16:1616. [PMID: 39459949 PMCID: PMC11512412 DOI: 10.3390/v16101616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Human T cell leukaemia virus type-1 (HTLV-1) is an oncogenic retrovirus that causes lifelong infection in ~5-10 million individuals globally. It is endemic to certain First Nations populations of Northern and Central Australia, Japan, South and Central America, Africa, and the Caribbean region. HTLV-1 preferentially infects CD4+ T cells and remains in a state of reduced transcription, often being asymptomatic in the beginning of infection, with symptoms developing later in life. HTLV-1 infection is implicated in the development of adult T cell leukaemia/lymphoma (ATL) and HTLV-1-associated myelopathies (HAM), amongst other immune-related disorders. With no preventive or curative interventions, infected individuals have limited treatment options, most of which manage symptoms. The clinical burden and lack of treatment options directs the need for alternative treatment strategies for HTLV-1 infection. Recent advances have been made in the development of RNA-based antiviral therapeutics for Human Immunodeficiency Virus Type-1 (HIV-1), an analogous retrovirus that shares modes of transmission with HTLV-1. This review highlights past and ongoing efforts in the development of HTLV-1 therapeutics and vaccines, with a focus on the potential for gene therapy as a new treatment modality in light of its successes in HIV-1, as well as animal models that may help the advancement of novel antiviral and anticancer interventions.
Collapse
Affiliation(s)
- Tiana T. Wang
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Ashley Hirons
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Marcel Doerflinger
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Kevin V. Morris
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD 4059, Australia;
| | - Scott Ledger
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
| | - Damian F. J. Purcell
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3052, Australia; (A.H.); (D.F.J.P.)
| | - Anthony D. Kelleher
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chantelle L. Ahlenstiel
- Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia; (T.T.W.); (S.L.); (A.D.K.)
- UNSW RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
2
|
Smith S, Seth J, Midkiff A, Stahl R, Syu YC, Shkriabai N, Kvaratskhelia M, Musier-Forsyth K, Jain P, Green PL, Panfil AR. The Pleiotropic Effects of YBX1 on HTLV-1 Transcription. Int J Mol Sci 2023; 24:13119. [PMID: 37685922 PMCID: PMC10487795 DOI: 10.3390/ijms241713119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
HTLV-1 is an oncogenic human retrovirus and the etiologic agent of the highly aggressive ATL malignancy. Two viral genes, Tax and Hbz, are individually linked to oncogenic transformation and play an important role in the pathogenic process. Consequently, regulation of HTLV-1 gene expression is a central feature in the viral lifecycle and directly contributes to its pathogenic potential. Herein, we identified the cellular transcription factor YBX1 as a binding partner for HBZ. We found YBX1 activated transcription and enhanced Tax-mediated transcription from the viral 5' LTR promoter. Interestingly, YBX1 also interacted with Tax. shRNA-mediated loss of YBX1 decreased transcript and protein abundance of both Tax and HBZ in HTLV-1-transformed T-cell lines, as well as Tax association with the 5' LTR. Conversely, YBX1 transcriptional activation of the 5' LTR promoter was increased in the absence of HBZ. YBX1 was found to be associated with both the 5' and 3' LTRs in HTLV-1-transformed and ATL-derived T-cell lines. Together, these data suggest that YBX1 positively influences transcription from both the 5' and 3' promoter elements. YBX1 is able to interact with Tax and help recruit Tax to the 5' LTR. However, through interactions with HBZ, YBX1 transcriptional activation of the 5' LTR is repressed.
Collapse
Affiliation(s)
- Susan Smith
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Jaideep Seth
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Amanda Midkiff
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Rachel Stahl
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA; (S.S.); (J.S.); (A.M.)
| | - Yu-Ci Syu
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Nikoloz Shkriabai
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA; (N.S.); (M.K.)
| | - Karin Musier-Forsyth
- Center for Retrovirus Research, Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA; (Y.-C.S.); (K.M.-F.)
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA;
| | - Patrick L. Green
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Amanda R. Panfil
- Center for Retrovirus Research, Comprehensive Cancer Center and Solove Research Institute, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
3
|
Liu Z, Larocque É, Xie Y, Xiao Y, Lemay G, Peloponese JM, Mesnard JM, Rassart É, Lin R, Zhou S, Zeng Y, Gao H, Cen S, Barbeau B. A newly identified interaction between nucleolar NPM1/B23 and the HTLV-I basic leucine zipper factor in HTLV-1 infected cells. Front Microbiol 2022; 13:988944. [PMID: 36532440 PMCID: PMC9753777 DOI: 10.3389/fmicb.2022.988944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 08/05/2023] Open
Abstract
Human T-cell leukemia virus type 1 is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia-lymphoma (ATL). The HTLV-1 basic leucine zipper factor (HBZ) has been associated to the cancer-inducing properties of this virus, although the exact mechanism is unknown. In this study, we identified nucleophosmin (NPM1/B23) as a new interaction partner of HBZ. We show that sHBZ and the less abundant uHBZ isoform interact with nucleolar NPM1/B23 in infected cells and HTLV-1 positive patient cells, unlike equivalent antisense proteins of related non-leukemogenic HTLV-2, -3 and-4 viruses. We further demonstrate that sHBZ association to NPM1/B23 is sensitive to RNase. Interestingly, sHBZ was shown to interact with its own RNA. Through siRNA and overexpression experiments, we further provide evidence that NPM1/B23 acts negatively on viral gene expression with potential impact on cell transformation. Our results hence provide a new insight over HBZ-binding partners in relation to cellular localization and potential function on cell proliferation and should lead to a better understanding of the link between HBZ and ATL development.
Collapse
Affiliation(s)
- Zhenlong Liu
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Émilie Larocque
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Yongli Xie
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong Xiao
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
| | - Guy Lemay
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, Université Montpellier, Montpellier, France
| | - Éric Rassart
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital & Department of Medicine, McGill University, Montreal, QC, Canada
| | - Shuang Zhou
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yiming Zeng
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hongzhi Gao
- Neurosurgery Department, 2nd Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Benoit Barbeau
- Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
- Centre d’excellence en recherche sur les maladies orphelines-Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Accolla RS. The Road to HTLV-1-Induced Leukemia by Following the Subcellular Localization of HTLV-1-Encoded HBZ Protein. Front Immunol 2022; 13:940131. [PMID: 35812456 PMCID: PMC9259882 DOI: 10.3389/fimmu.2022.940131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Human T cell leukemia virus-1 (HTLV-1) is the causative agent of a severe cancer of the lymphoid lineage that develops in 3-5% of infected individuals after many years. HTLV-1 infection may also induce a serious inflammatory pathology of the nervous system designated HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Two virus-encoded proteins, the viral transactivator Tax-1 and the HTLV-1 basic leucine-zipper factor HBZ, are strongly involved in the oncogenic process. Tax-1 is involved in initial phases of the oncogenic process. Conversely, HBZ seems to be involved in maintenance of the neoplastic state as witnessed by the generation of leukemic/lymphomatous phenotype in HBZ transgenic mice and the persistent expression of HBZ in all phases of the oncogenic process. Nevertheless, the intimate molecular and cellular mechanism mediated by the two viral proteins, particularly HBZ, in oncogenesis still remain elusive. An important step toward the complete comprehension of HBZ-associated oncogenicity is the clarification of the anatomical correlates of HBZ during the various phases of HTLV-1 infection to development of HTLV-1-associated inflammatory pathology and ultimately to the establishment of leukemia. In this review, I will summarize recent studies that have established for the first time a temporal and unidirectional expression of HBZ, beginning with an exclusive cytoplasmic localization in infected asymptomatic individuals and in HAM/TSP patients and ending to a progressive cytoplasmic-to-nuclear transition in leukemic cells. These results are framed within the present knowledge of HTLV-1 infection and the future lines of research that may shed new light on the complex mechanism of HTLV-1- mediated oncogenesis.
Collapse
|
5
|
Toyoda K, Matsuoka M. Functional and Pathogenic Roles of Retroviral Antisense Transcripts. Front Immunol 2022; 13:875211. [PMID: 35572593 PMCID: PMC9100821 DOI: 10.3389/fimmu.2022.875211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous retroviruses such as human immunodeficiency virus type 1 (HIV-1), human T-cell leukemia virus type 1 (HTLV-1) and bovine leukemia virus (BLV) can cause various diseases including immunodeficiency, inflammatory diseases and hematologic malignancies. These retroviruses persistently infect their hosts. Therefore, they need to evade host immune surveillance. One way in which these viruses might avoid immune detection is to utilize functional RNAs, rather than proteins, for certain activities, because RNAs are not recognized by the host immune system. HTLV-1 encodes the HTLV-1 bZIP factor (HBZ) gene in the antisense strand of the provirus. The HBZ protein is constantly expressed in HTLV-1 carriers and patients with adult T-cell leukemia-lymphoma, and it plays critical roles in pathogenesis. However, HBZ not only encodes this protein, but also functions as mRNA. Thus, HBZ gene mRNA is bifunctional. HIV-1 and BLV also encode long non-coding RNAs as antisense transcripts. In this review, we reshape our current understanding of how these antisense transcripts function and how they influence disease pathogenesis.
Collapse
|
6
|
Forlani G, Shallak M, Tedeschi A, Cavallari I, Marçais A, Hermine O, Accolla RS. Dual cytoplasmic and nuclear localization of HTLV-1-encoded HBZ protein is a unique feature of adult T-cell leukemia. Haematologica 2021; 106:2076-2085. [PMID: 33626865 PMCID: PMC8327710 DOI: 10.3324/haematol.2020.272468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 01/28/2023] Open
Abstract
Adult T-cell leukemia-lymphoma (ATL), is a highly malignant T-cell neoplasm caused by human T-cell leukemia virus type 1 (HTLV-1), characterized by poor prognosis. Two viral proteins, Tax-1 and HTLV-1 basic-zipper factor (HBZ) play important roles in the pathogenesis of ATL. While Tax-1 can be found in both the cytoplasm and nucleus of HTLV-1 infected patients, HBZ is exclusively localized in the cytoplasm of HTLV-1 asymptomatic carriers and in patients with the chronic neurologic disease HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HBZ is only localized in the nucleus of ATL cell lines, suggesting that the nuclear localization of HBZ can be a hallmark of neoplastic transformation. In order to clarify this crucial point, we investigated in detail the pattern of HBZ expression in ATL patients. We made use of our monoclonal antibody 4D4-F3, that at present is the only reported reagent, among the few described, able to detect endogenous HBZ by immunofluorescence and confocal microscopy in cells from asymptomatic carriers, HAM/TSP and ATL patients. We found that HBZ is localized both in the cytoplasm and nucleus of cells of ATL patients irrespective of their clinical status, with a strong preference for the cytoplasmic localization. Also Tax-1 is localized in both compartments. As HBZ is exclusively localized in the cytoplasm in asymptomatic carriers and in non-neoplastic pathologies, this finding shows that neoplastic transformation consequent to HTLV-1 infection is accompanied and associated with the capacity of HBZ to translocate to the nucleus, which suggests a role of cytoplasmic-to-nuclear translocation in HTLV-1- mediated oncogenesis.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese
| | - Mariam Shallak
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese
| | | | - Ambroise Marçais
- Department of Hematology, Necker-Enfants Malades, University Hospital, Assistance Publique Hopitaux de Paris, Paris Descartes University, Paris
| | - Olivier Hermine
- Department of Hematology, Necker-Enfants Malades, University Hospital, Assistance Publique Hopitaux de Paris, Paris Descartes University, Paris
| | - Roberto S Accolla
- Laboratories of General Pathology and Immunology "Giovanna Tosi", Department of Medicine and Surgery, University of Insubria, Varese.
| |
Collapse
|
7
|
Cucco MS, de Moraes LEP, de Oliveira Andrade F, Khouri R, Galvão-Castro B, Araujo THA, de Almeida Rego FF, Gois LL, Barreto FK, Santos LA. Molecular characterization of HTLV-1 genomic region hbz from patients with different clinical conditions. J Med Virol 2021; 93:6418-6423. [PMID: 33835501 DOI: 10.1002/jmv.27005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 01/19/2023]
Abstract
The human T-cell lymphotropic virus type-1 (HTLV-1) is associated with severe pathologies, such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), adult T-cell leukemia-lymphoma (ATLL), and infective dermatitis associated with the HTLV-1 (IDH). Interestingly, HTLV-1 infection does not necessarily imply the development of pathological processes and it is unknown why some patients remain asymptomatic carriers (AC). Despite some mutations in the HTLV-1 genome appear to influence the outcome of HTLV-1, there are few studies that characterize molecularly the hbz region. This study aimed to perform the molecular characterization of hbz gene isolated from patients with different clinical outcomes. A total of 15 sequences were generated and analyzed with 571 sequences previously published. The analises showed that the R119Q mutation seems to be related to HTLV-1 clinical conditions since the frequency of this HBZ mutation is significantly different in comparison between AC with HAM/TSP and ATLL. The R119Q mutation is possibly a protective factor as the frequency is higher in AC sequences.
Collapse
Affiliation(s)
| | - Laise Eduarda Paixão de Moraes
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | | | - Ricardo Khouri
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brasil
| | | | | | | | - Luana Leandro Gois
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brasil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Universidade Católica do Salvador, Salvador, Bahia, Brasil
| | | | - Luciane Amorim Santos
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia, Brasil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brasil.,Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brasil.,Universidade Católica do Salvador, Salvador, Bahia, Brasil
| |
Collapse
|
8
|
Tanaka Y, Mukai R, Ohshima T. HTLV-1 viral oncoprotein HBZ contributes to the enhancement of HAX-1 stability by impairing the ubiquitination pathway. J Cell Physiol 2020; 236:2756-2766. [PMID: 32893878 DOI: 10.1002/jcp.30044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that causes adult T-cell leukemia (ATL). The viral protein HTLV-1 basic leucine-zipper factor (HBZ), which is constitutively expressed in all ATL patient cells, contributes toward the development of ATL; however, the underlying mechanism has not been elucidated yet. Here, we identified HS-1-associated protein X-1 (HAX-1) as a novel binding partner of HBZ. Interestingly, HAX-1 specifically associated with HBZ-US, but not HBZ-SI, in the cytoplasm. HBZ suppressed the polyubiquitination levels of HAX-1 protein by inhibiting the association HAX-1 with F-box protein 25 (FBXO25), which is a member of the SCF E3 ubiquitin ligase complex, and promoted the stabilization of HAX-1 levels. In fact, the protein levels of HAX-1 were significantly increased in HTLV-1 infected and the overexpressing HBZ in uninfected T-cell lines. Enhanced HAX-1 correlated well to suppression of caspase 9 processing, suggesting that HBZ may contribute to the enhancement of antiapoptotic function for HAX-1. Our results revealed a role for HBZ on HAX-1 stabilization by abrogating the ubiquitination-mediated degradation pathway, which may play an important role in understanding the potential mechanisms of HTLV-1 related pathogenesis.
Collapse
Affiliation(s)
- Yuka Tanaka
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - Risa Mukai
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa, Japan.,Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Takayuki Ohshima
- Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa, Japan
| |
Collapse
|
9
|
The splice 1 variant of HTLV-1 bZIP factor stabilizes c-Jun. Virology 2020; 549:51-58. [PMID: 32841759 DOI: 10.1016/j.virol.2020.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/24/2022]
Abstract
HBZ is expressed by the complex retrovirus, Human T-cell Leukemia Virus type 1, and implicated in pathological effects associated with viral infection. From the nucleus, HBZ alters gene expression by interacting with a variety of transcriptional regulatory proteins, among which is c-Jun. Previously, one of the three HBZ variants, HBZUS, was reported to decrease c-Jun expression by promoting its degradation. Here we show that another variant, HBZS1, produces the opposite effect. In the presence of HBZS1, c-Jun expression increases due to its stabilization. Our data suggest that this effect requires the ability of HBZS1 to interact with c-Jun. We provide evidence that HBZS1 inhibits the proteosomal degradation of c-Jun initiated by the Cop1-containing ubiquitin ligase complex. HBZS1 is the most abundant variant in HTLV-1-infected T-cells, and our data indicate that levels of c-Jun expression in infected cells are consistent with effects of HBZS1.
Collapse
|
10
|
Nozuma S, Kubota R, Jacobson S. Human T-lymphotropic virus type 1 (HTLV-1) and cellular immune response in HTLV-1-associated myelopathy/tropical spastic paraparesis. J Neurovirol 2020; 26:652-663. [PMID: 32705480 PMCID: PMC7532128 DOI: 10.1007/s13365-020-00881-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 03/29/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) is associated with adult T cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is an inflammatory disease of the spinal cord and clinically characterized by progressive spastic paraparesis, urinary incontinence, and mild sensory disturbance. The interaction between the host immune response and HTLV-1-infected cells regulates the development of HAM/TSP. HTLV-1 preferentially infects CD4+ T cells and is maintained by proliferation of the infected T cells. HTLV-1-infected cells rarely express viral antigens in vivo; however, they easily express the antigens after short-term culture. Therefore, such virus-expressing cells may lead to activation and expansion of antigen-specific T cell responses. Infected T cells with HTLV-1 and HTLV-1-specific CD8+ cytotoxic T lymphocytes invade the central nervous system and produce various proinflammatory cytokines and chemokines, leading to neuronal damage and degeneration. Therefore, cellular immune responses to HTLV-1 have been considered to play important roles in disease development of HAM/TSP. Recent studies have clarified the viral strategy for persistence in the host through genetic and epigenetic changes by HTLV-1 and host immune responses including T cell function and differentiation. Newly developed animal models could provide the opportunity to uncover the precise pathogenesis and development of clinically effective treatment. Several molecular target drugs are undergoing clinical trials with promising efficacy. In this review, we summarize recent advances in the immunopathogenesis of HAM/TSP and discuss the perspectives of the research on this disease.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cell Proliferation/drug effects
- Cytokines/biosynthesis
- Cytokines/immunology
- Disease Models, Animal
- Host-Pathogen Interactions/immunology
- Human T-lymphotropic virus 1/drug effects
- Human T-lymphotropic virus 1/immunology
- Human T-lymphotropic virus 1/pathogenicity
- Humans
- Immunity, Cellular/drug effects
- Immunologic Factors/therapeutic use
- Leukemia-Lymphoma, Adult T-Cell/drug therapy
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Leukemia-Lymphoma, Adult T-Cell/virology
- Lymphocyte Activation/drug effects
- Neurons/drug effects
- Neurons/immunology
- Neurons/pathology
- Neurons/virology
- Neuroprotective Agents/therapeutic use
- Paraparesis, Tropical Spastic/drug therapy
- Paraparesis, Tropical Spastic/immunology
- Paraparesis, Tropical Spastic/pathology
- Paraparesis, Tropical Spastic/virology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Urinary Incontinence/drug therapy
- Urinary Incontinence/immunology
- Urinary Incontinence/pathology
- Urinary Incontinence/virology
Collapse
Affiliation(s)
- Satoshi Nozuma
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ryuji Kubota
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Matsuoka M, Mesnard JM. HTLV-1 bZIP factor: the key viral gene for pathogenesis. Retrovirology 2020; 17:2. [PMID: 31915026 PMCID: PMC6950816 DOI: 10.1186/s12977-020-0511-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. The HTLV-1 bZIP factor (HBZ) gene is constantly expressed in HTLV-1 infected cells and ATL cells. HBZ protein suppresses transcription of the tax gene through blocking the LTR recruitment of not only ATF/CREB factors but also CBP/p300. HBZ promotes transcription of Foxp3, CCR4, and T-cell immunoreceptor with Ig and ITIM domains (TIGIT). Thus, HBZ is critical for the immunophenotype of infected cells and ATL cells. HBZ also functions in its RNA form. HBZ RNA suppresses apoptosis and promotes proliferation of T cells. Since HBZ RNA is not recognized by cytotoxic T cells, HTLV-1 has a clever strategy for avoiding immune detection. HBZ plays central roles in maintaining infected T cells in vivo and determining their immunophenotype.
Collapse
Affiliation(s)
- Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan. .,Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | | |
Collapse
|
12
|
Affram Y, Zapata JC, Gholizadeh Z, Tolbert WD, Zhou W, Iglesias-Ussel MD, Pazgier M, Ray K, Latinovic OS, Romerio F. The HIV-1 Antisense Protein ASP Is a Transmembrane Protein of the Cell Surface and an Integral Protein of the Viral Envelope. J Virol 2019; 93:e00574-19. [PMID: 31434734 PMCID: PMC6803264 DOI: 10.1128/jvi.00574-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
The negative strand of HIV-1 encodes a highly hydrophobic antisense protein (ASP) with no known homologs. The presence of humoral and cellular immune responses to ASP in HIV-1 patients indicates that ASP is expressed in vivo, but its role in HIV-1 replication remains unknown. We investigated ASP expression in multiple chronically infected myeloid and lymphoid cell lines using an anti-ASP monoclonal antibody (324.6) in combination with flow cytometry and microscopy approaches. At baseline and in the absence of stimuli, ASP shows polarized subnuclear distribution, preferentially in areas with low content of suppressive epigenetic marks. However, following treatment with phorbol 12-myristate 13-acetate (PMA), ASP translocates to the cytoplasm and is detectable on the cell surface, even in the absence of membrane permeabilization, indicating that 324.6 recognizes an ASP epitope that is exposed extracellularly. Further, surface staining with 324.6 and anti-gp120 antibodies showed that ASP and gp120 colocalize, suggesting that ASP might become incorporated in the membranes of budding virions. Indeed, fluorescence correlation spectroscopy studies showed binding of 324.6 to cell-free HIV-1 particles. Moreover, 324.6 was able to capture and retain HIV-1 virions with efficiency similar to that of the anti-gp120 antibody VRC01. Our studies indicate that ASP is an integral protein of the plasma membranes of chronically infected cells stimulated with PMA, and upon viral budding, ASP becomes a structural protein of the HIV-1 envelope. These results may provide leads to investigate the possible role of ASP in the virus replication cycle and suggest that ASP may represent a new therapeutic or vaccine target.IMPORTANCE The HIV-1 genome contains a gene expressed in the opposite, or antisense, direction to all other genes. The protein product of this antisense gene, called ASP, is poorly characterized, and its role in viral replication remains unknown. We provide evidence that the antisense protein, ASP, of HIV-1 is found within the cell nucleus in unstimulated cells. In addition, we show that after PMA treatment, ASP exits the nucleus and localizes on the cell membrane. Moreover, we demonstrate that ASP is present on the surfaces of viral particles. Altogether, our studies identify ASP as a new structural component of HIV-1 and show that ASP is an accessory protein that promotes viral replication. The presence of ASP on the surfaces of both infected cells and viral particles might be exploited therapeutically.
Collapse
Affiliation(s)
- Yvonne Affram
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zahra Gholizadeh
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - William D Tolbert
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei Zhou
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maria D Iglesias-Ussel
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marzena Pazgier
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Krishanu Ray
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga S Latinovic
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Fabio Romerio
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Harrod R. Silencers of HTLV-1 and HTLV-2: the pX-encoded latency-maintenance factors. Retrovirology 2019; 16:25. [PMID: 31492165 PMCID: PMC6731619 DOI: 10.1186/s12977-019-0487-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/30/2019] [Indexed: 11/10/2022] Open
Abstract
Of the members of the primate T cell lymphotropic virus (PTLV) family, only the human T-cell leukemia virus type-1 (HTLV-1) causes disease in humans—as the etiological agent of adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), and other auto-inflammatory disorders. Despite having significant genomic organizational and structural similarities, the closely related human T-cell lymphotropic virus type-2 (HTLV-2) is considered apathogenic and has been linked with benign lymphoproliferation and mild neurological symptoms in certain infected patients. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infections in vivo. The conserved pX sequences of HTLV-1 and HTLV-2 encode several ancillary factors which have been shown to negatively regulate proviral gene expression, while simultaneously activating host cellular proliferative and pro-survival pathways. In particular, the ORF-II proteins, HTLV-1 p30II and HTLV-2 p28II, suppress Tax-dependent transactivation from the viral promoter—whereas p30II also inhibits PU.1-mediated inflammatory-signaling, differentially augments the expression of p53-regulated metabolic/pro-survival genes, and induces lymphoproliferation which could promote mitotic proviral replication. The ubiquitinated form of the HTLV-1 p13II protein localizes to nuclear speckles and interferes with recruitment of the p300 coactivator by the viral transactivator Tax. Further, the antisense-encoded HTLV-1 HBZ and HTLV-2 APH-2 proteins and mRNAs negatively regulate Tax-dependent proviral gene expression and activate inflammatory signaling associated with enhanced T-cell lymphoproliferation. This review will summarize our current understanding of the pX latency-maintenance factors of HTLV-1 and HTLV-2 and discuss how these products may contribute to the differences in pathogenicity between the human PTLVs.
Collapse
Affiliation(s)
- Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX, 75275-0376, USA.
| |
Collapse
|
14
|
Novel Interactions between the Human T-Cell Leukemia Virus Type 1 Antisense Protein HBZ and the SWI/SNF Chromatin Remodeling Family: Implications for Viral Life Cycle. J Virol 2019; 93:JVI.00412-19. [PMID: 31142665 DOI: 10.1128/jvi.00412-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022] Open
Abstract
The human T-cell leukemia virus type 1 (HTLV-1) regulatory proteins Tax and HBZ play indispensable roles in regulating viral and cellular gene expression. BRG1, the ATPase subunit of the SWI/SNF chromatin remodeling complex, has been demonstrated to be essential not only for Tax transactivation but also for viral replication. We sought to investigate the physical interaction between HBZ and BRG1 and to determine the effect of these interactions on Tax-mediated long terminal repeat (LTR) activation. We reveal that HTLV-1 cell lines and adult T-cell leukemia (ATL) cells harbor high levels of BRG1. Using glutathione S-transferase (GST) pulldown and coimmunoprecipitation assays, we have demonstrated physical interactions between BRG1 and HBZ and characterized the protein domains involved. Moreover, we have identified the PBAF signature subunits BAF200 and BAF180 as novel interaction partners of HBZ, suggesting that the PBAF complex may be required for HTLV-1 transcriptional repression by HBZ. Additionally, we found that BRG1 expression translocates HBZ into distinct nuclear foci. We show that HBZ substantially represses HTLV-1 LTR activation by Tax/BRG1. Interestingly, we found that Tax stabilizes the expression of exogenous and endogenous BRG1 and that HBZ reverses this effect. Finally, using a chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay, we illustrate that HBZ facilitates the downregulation of HTLV-1 transcription by deregulating the recruitment of SWI/SNF complexes to the promoter. Overall, we conclude that SWI/SNF complexes, in addition to other cellular transcription factors, are involved in HBZ-mediated suppression of HTLV-1 viral gene expression.IMPORTANCE The pathogenic potential of HTLV-1 is linked to the indispensable multifaceted functions of the viral regulatory proteins Tax and HBZ, encoded by the sense and antisense viral transcripts, respectively. The interaction between Tax and the SWI/SNF family of chromatin remodeling complexes has been associated with HTLV-1 transcriptional activation. To date, the relationship between the SWI/SNF chromatin remodeling family and HBZ, the only viral protein that is consistently expressed in infected cells and ATL cells, has not been elucidated. Here, we have characterized the biological significance of the SWI/SNF family in regard to viral transcriptional repression by HBZ. This is important because it provides a better understanding of the function and role of HBZ in downregulating viral transcription and, hence, its contribution to viral latency and persistence in vivo, a process that may ultimately lead to the development of ATL.
Collapse
|
15
|
The human T-cell leukemia virus type-1 tax oncoprotein dissociates NF-κB p65 RelA-Stathmin complexes and causes catastrophic mitotic spindle damage and genomic instability. Virology 2019; 535:83-101. [PMID: 31299491 DOI: 10.1016/j.virol.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022]
Abstract
Genomic instability is a hallmark of many cancers; however, the molecular etiology of chromosomal dysregulation is not well understood. The human T-cell leukemia virus type-1 (HTLV-1) oncoprotein Tax activates NF-κB-signaling and induces DNA-damage and aberrant chromosomal segregation through diverse mechanisms which contribute to viral carcinogenesis. Intriguingly, Stathmin/oncoprotein-18 (Op-18) depolymerizes tubulin and interacts with the p65RelA subunit and functions as a cofactor for NF-κB-dependent transactivation. We thus hypothesized that the dissociation of p65RelA-Stathmin/Op-18 complexes by Tax could lead to the catastrophic destabilization of microtubule (MT) spindle fibers during mitosis and provide a novel mechanistic link between NF-κB-signaling and genomic instability. Here we report that the inhibition of Stathmin expression by the retroviral latency protein, p30II, or knockdown with siRNA-stathmin, dampens Tax-mediated NF-κB transactivation and counters Tax-induced genomic instability and cytotoxicity. The Tax-G148V mutant, defective for NF-κB activation, exhibited reduced p65RelA-Stathmin binding and diminished genomic instability and cytotoxicity. Dominant-negative inhibitors of NF-κB also prevented Tax-induced multinucleation and apoptosis. Moreover, cell clones containing the infectious HTLV-1 ACH. p30II mutant provirus, impaired for p30II production, exhibited increased multinucleation and the accumulation of cytoplasmic tubulin aggregates following nocodozole-treatment. These findings allude to a mechanism whereby NF-κB-signaling regulates tubulin dynamics and mitotic instability through the modulation of p65RelA-Stathmin/Op-18 interactions, and support the notion that p30II enhances the survival of Tax-expressing HTLV-1-transformed cells.
Collapse
|
16
|
Rushing AW, Rushing B, Hoang K, Sanders SV, Péloponèse JM, Polakowski N, Lemasson I. HTLV-1 basic leucine zipper factor protects cells from oxidative stress by upregulating expression of Heme Oxygenase I. PLoS Pathog 2019; 15:e1007922. [PMID: 31251786 PMCID: PMC6623464 DOI: 10.1371/journal.ppat.1007922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/11/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022] Open
Abstract
Adult T-cell Leukemia (ATL) is a lymphoproliferative disease of CD4+ T-cells infected with Human T-cell Leukemia Virus type I (HTLV-1). With the exception of allogeneic hematopoietic stem cell transplantation, there are no effective treatments to cure ATL, and ATL cells often acquire resistance to conventional chemotherapeutic agents. Accumulating evidence shows that development and maintenance of ATL requires key contributions from the viral protein, HTLV-1 basic leucine zipper factor (HBZ). In this study we found that HBZ activates expression of Heme Oxygenase 1 (HMOX-1), a component of the oxidative stress response that functions to detoxify free heme. Transcription of HMOX1 and other antioxidant genes is regulated by the small Mafs. These cellular basic leucine zipper (bZIP) factors control transcription by forming homo- or heterodimers among themselves or with other cellular bZIP factors that then bind Maf responsive elements (MAREs) in promoters or enhancers of antioxidant genes. Our data support a model in which HBZ activates HMOX1 transcription by forming heterodimers with the small Mafs that bind MAREs located in an upstream enhancer region. Consistent with this model, we found that HMOX-1 is upregulated in HTLV-1-transformed T-cell lines and confers these cells with resistance to heme-induced cytotoxicity. In this context, HBZ-mediated activation of HMOX-1 expression may contribute to resistance of ATL cells to certain chemotherapeutic agents. We also provide evidence that HBZ counteracts oxidative stress caused by two other HTLV-1-encoded proteins, Tax and p13. Tax induces oxidative stress as a byproduct of driving mitotic expansion of infected cells, and p13 is believed to induce oxidative stress to eliminate infected cells that have become transformed. Therefore, in this context, HBZ-mediated activation of HMOX-1 expression may facilitate transformation. Overall, this study characterizes a novel function of HBZ that may support the development and maintenance of ATL.
Collapse
Affiliation(s)
- Amanda W. Rushing
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail: (AWR); (IL)
| | - Blake Rushing
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Kimson Hoang
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Stephanie V. Sanders
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jean-Marie Péloponèse
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Nicholas Polakowski
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Isabelle Lemasson
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail: (AWR); (IL)
| |
Collapse
|
17
|
Forlani G, Baratella M, Tedeschi A, Pique C, Jacobson S, Accolla RS. HTLV-1 HBZ Protein Resides Exclusively in the Cytoplasm of Infected Cells in Asymptomatic Carriers and HAM/TSP Patients. Front Microbiol 2019; 10:819. [PMID: 31080441 PMCID: PMC6497793 DOI: 10.3389/fmicb.2019.00819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Human T cell lymphotropic virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. Two viral proteins, Tax-1 and HTLV-1 basic leucine zipper factor (HBZ), play important roles in the pathogenesis of both diseases. We recently demonstrated that HBZ, previously considered a nuclear protein, is exclusively localized in the cytoplasm of peripheral blood mononuclear cells (PBMCs) of HAM/TSP patients. Here, the analysis of a larger panel of HAM/TSP cases confirmed that HBZ is a cytoplasmic protein, while Tax-1 preferentially localized in the cytoplasm with fewer speckle-like dots in the nucleus. More importantly, here we report for the first time that HBZ, when expressed in asymptomatic carriers (AC), is also confined in the cytoplasm. Similarly, Tax-1 was preferentially expressed in the cytoplasm in a significant proportion of AC. Interestingly, in both HAM/TSP and AC patients, the expression of HBZ and Tax-1 was rarely found in the same cell. We observed only few cases coexpressing the two oncoprotein in a very limited number of cells. In representative AC and HAM/TSP patients, cells expressing cytoplasmic HBZ were almost exclusively found in the CD4+ T cell compartment and very rarely in CD8+ T cells. Interestingly, at least in the cases analyzed, the expression of thymocite-expressed molecule involved in selection (THEMIS) is dispensable for the cytoplasmic localization of HBZ in both AC and HAM/TSP. The study of an HTLV-1-immortalized cell line established from an HAM/TSP patient confirmed HBZ as a resident cytoplasmic protein not shuttling between the cytoplasm and nucleus. These results extend our previous observation on the dichotomy of HBZ localization between HAM/TSP and ATL, pointing to the exclusive either cytoplasmic or nuclear localization in the two diseased states, respectively. Moreover, they show a rather selective expression in distinct cells of either HBZ or Tax-1. The unprecedented observation that HBZ is expressed only in the cytoplasm in AC strongly suggests a progressive modification of HBZ localization during the disease states associated to HTLV-1 infection. Future studies will clarify whether the distinct HBZ intracellular localization is a marker or a causative event of disease evolution.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratories of General Pathology and Immunology “Giovanna Tosi,” Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Marco Baratella
- Laboratories of General Pathology and Immunology “Giovanna Tosi,” Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Alessandra Tedeschi
- Laboratories of General Pathology and Immunology “Giovanna Tosi,” Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| | - Claudine Pique
- INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Sorbonne Paris Cité, Institut Cochin, Paris, France
| | - Steve Jacobson
- Viral Immunology Section, Neuroimmunology Branch, NINDS/NIH, Bethesda, MD, United States
| | - Roberto S. Accolla
- Laboratories of General Pathology and Immunology “Giovanna Tosi,” Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| |
Collapse
|
18
|
The Human T-Cell Leukemia Virus Type 1 Basic Leucine Zipper Factor Attenuates Repair of Double-Stranded DNA Breaks via Nonhomologous End Joining. J Virol 2018; 92:JVI.00672-18. [PMID: 29769340 DOI: 10.1128/jvi.00672-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a fatal malignancy of CD4+ T cells infected with human T-cell leukemia virus type 1 (HTLV-1). ATL cells often exhibit random gross chromosomal rearrangements that are associated with the induction and improper repair of double-stranded DNA breaks (DSBs). The viral oncoprotein Tax has been reported to impair DSB repair but has not been shown to be consistently expressed throughout all phases of infection. The viral oncoprotein HTLV-1 basic leucine zipper (bZIP) factor (HBZ) is consistently expressed prior to and throughout disease progression, but it is unclear whether it also influences DSB repair. We report that HBZ attenuates DSB repair by nonhomologous end joining (NHEJ), in a manner dependent upon the bZIP domain. HBZ was found to interact with two vital members of the NHEJ core machinery, Ku70 and Ku80, and to be recruited to DSBs in a bZIP-dependent manner in vitro We observed that HBZ expression also resulted in a bZIP-dependent delay in DNA protein kinase (DNA-PK) activation following treatment with etoposide. Although Tax is reported to interact with Ku70, we did not find Tax expression to interfere with HBZ:Ku complex formation. However, as Tax was reported to saturate NHEJ, we found that this effect masked the attenuation of NHEJ by HBZ. Overall, these data suggest that DSB repair mechanisms are impaired not only by Tax but also by HBZ and show that HBZ expression may significantly contribute to the accumulation of chromosomal abnormalities during HTLV-1-mediated oncogenesis.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) infects 15 million to 20 million people worldwide. Approximately 90% of infected individuals are asymptomatic and may remain undiagnosed, increasing the risk that they will unknowingly transmit the virus. About 5% of the HTLV-1-positive population develop adult T-cell leukemia (ATL), a fatal disease that is not highly responsive to treatment. Although ATL development remains poorly understood, two viral proteins, Tax and HBZ, have been implicated in driving disease progression by manipulating host cell signaling and transcriptional pathways. Unlike Tax, HBZ expression is consistently observed in all infected individuals, making it important to elucidate the specific role of HBZ in disease progression. Here, we present evidence that HBZ could promote the accumulation of double-stranded DNA breaks (DSBs) through the attenuation of the nonhomologous end joining (NHEJ) repair pathway. This effect may lead to genome instability, ultimately contributing to the development of ATL.
Collapse
|
19
|
Hutchison T, Malu A, Yapindi L, Bergeson R, Peck K, Romeo M, Harrod C, Pope J, Smitherman L, Gwinn W, Ratner L, Yates C, Harrod R. The TP53-Induced Glycolysis and Apoptosis Regulator mediates cooperation between HTLV-1 p30 II and the retroviral oncoproteins Tax and HBZ and is highly expressed in an in vivo xenograft model of HTLV-1-induced lymphoma. Virology 2018; 520:39-58. [PMID: 29777913 DOI: 10.1016/j.virol.2018.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
The human T-cell leukemia virus type-1 (HTLV-1) is an oncoretrovirus that infects and transforms CD4+ T-cells and causes adult T-cell leukemia/lymphoma (ATLL) -an aggressive lymphoproliferative disease that is highly refractive to most anticancer therapies. The HTLV-1 proviral genome encodes several regulatory products within a conserved 3' nucleotide sequence, known as pX; however, it remains unclear how these factors might cooperate or dynamically interact in virus-infected cells. Here we demonstrate that the HTLV-1 latency-maintenance factor p30II induces the TP53-induced glycolysis and apoptosis regulator (TIGAR) and counters the oxidative stress, mitochondrial damage, and cytotoxicity caused by the viral oncoproteins Tax and HBZ. The p30II protein cooperates with Tax and HBZ and enhances their oncogenic potential in colony transformation/foci-formation assays. Further, we have shown that TIGAR is highly expressed in HTLV-1-induced tumors associated with oncogene dysregulation and increased angiogenesis in an in vivo xenograft model of HTLV-1-induced T-cell lymphoma. These findings provide the first evidence that p30II likely collaborates as an ancillary factor for the major oncoproteins Tax and HBZ during retroviral carcinogenesis.
Collapse
Affiliation(s)
- Tetiana Hutchison
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Aditi Malu
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Laçin Yapindi
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Rachel Bergeson
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Kendra Peck
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Megan Romeo
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Carolyn Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Jordan Pope
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Louisa Smitherman
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Wesleigh Gwinn
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States
| | - Lee Ratner
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Courtney Yates
- Laboratory Animal Resource Center, Southern Methodist University, Dallas, TX 75275, United States
| | - Robert Harrod
- Laboratory of Molecular Virology, Department of Biological Sciences, and The Dedman College Center for Drug Discovery, Design & Delivery, Southern Methodist University, 6501 Airline Drive, 334-DLS, Dallas, TX 75275-0376, United States.
| |
Collapse
|
20
|
Tanaka A, Matsuoka M. HTLV-1 Alters T Cells for Viral Persistence and Transmission. Front Microbiol 2018; 9:461. [PMID: 29615995 PMCID: PMC5869182 DOI: 10.3389/fmicb.2018.00461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first retrovirus to be discovered as a causative agent of adult T-cell leukemia-lymphoma (ATL) and chronic inflammatory diseases. Two viral factors, Tax and HTLV-1 bZIP factor (HBZ), are thought to be involved in the leukemogenesis of ATL. Tax expression is frequently lost due to DNA methylation in the promoter region, genetic changes to the tax gene, and deletion of the 5′ long terminal repeat (LTR) in approximately half of all ATL cases. On the other hand, HBZ is expressed in all ATL cases. HBZ is known to function in both protein form and mRNA form, and both forms play an important role in the oncogenic process of HTLV-1. HBZ protein has a variety of functions, including the suppression of apoptosis, the promotion of proliferation, and the impairment of anti-viral activity, through the interaction with several host cellular proteins including p300/CBP, Foxp3, and Foxo3a. These functions dramatically modify the transcriptional profiling of host T cells. HBZ mRNA also promotes T cell proliferation and viability. HBZ changes infected T cells to CCR4+TIGIT+CD4+ effector/memory T cells. This unique immunophenotype enables T cells to migrate into various organs and tissues and to survive in vivo. In this review, we summarize how HBZ hijacks the transcriptional networks and immune systems of host T cells to contribute to HTLV-1 pathogenesis on the basis of recent new findings about HBZ and tax.
Collapse
Affiliation(s)
- Azusa Tanaka
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Gazon H, Barbeau B, Mesnard JM, Peloponese JM. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front Microbiol 2018; 8:2686. [PMID: 29379481 PMCID: PMC5775265 DOI: 10.3389/fmicb.2017.02686] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of a fatal malignancy known as adult T-cell leukemia (ATL). One way to address the pathology of the disease lies on conducting research with a molecular approach. In addition to the analysis of ATL-relevant signaling pathways, understanding the regulation of important and relevant transcription factors allows researchers to reach this fundamental objective. HTLV-1 encodes for two oncoproteins, Tax and HTLV-1 basic leucine-zipper factor, which play significant roles in the cellular transformation and the activation of the host's immune responses. Activating protein-1 (AP-1) transcription factor has been linked to cancer and neoplastic transformation ever since the first representative members of the Jun and Fos gene family were cloned and shown to be cellular homologs of viral oncogenes. AP-1 is a dimeric transcription factor composed of proteins belonging to the Jun (c-Jun, JunB, and JunD), Fos (c-Fos, FosB, Fra1, and Fra2), and activating transcription factor protein families. Activation of AP-1 transcription factor family by different stimuli, such as inflammatory cytokines, stress inducers, or pathogens, results in innate and adaptive immunity. AP-1 is also involved in various cellular events including differentiation, proliferation, survival, and apoptosis. Deregulated expression of AP-1 transcription factors is implicated in various lymphomas such as classical Hodgkin lymphomas, anaplastic large cell lymphomas, diffuse large B-cell lymphomas, and adult T-cell leukemia. Here, we review the current thinking behind deregulation of the AP-1 pathway and its contribution to HTLV-induced cellular transformation.
Collapse
Affiliation(s)
- Hélène Gazon
- Belgium Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Benoit Barbeau
- Département des Sciences Biologiques and Centre de Recherche BioMed, Université du Québec à Montréal, Montréal, QC, Canada
| | - Jean-Michel Mesnard
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Jean-Marie Peloponese
- Institut de Recherche en Infectiologie de Montpellier, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| |
Collapse
|
22
|
Gazon H, Chauhan P, Hamaidia M, Hoyos C, Li L, Safari R, Willems L. How Does HTLV-1 Undergo Oncogene-Dependent Replication Despite a Strong Immune Response? Front Microbiol 2018; 8:2684. [PMID: 29379479 PMCID: PMC5775241 DOI: 10.3389/fmicb.2017.02684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/26/2017] [Indexed: 12/16/2022] Open
Abstract
In 1987, Mitsuaki Yoshida proposed the following model (Yoshida and Seiki, 1987): “... T-cells activated through the endogenous p40x would express viral antigens including the envelope glycoproteins which are exposed on the cell surface. These glycoproteins are targets of host immune surveillance, as is evidenced by the cytotoxic effects of anti-envelope antibodies or patient sera. Eventually all cells expressing the viral antigens, that is, all cells driven by the p40x would be rejected by the host. Only those cells that did not express the viral antigens would survive. Later, these antigen-negative infected cells would begin again to express viral antigens, including p40x, thus entering into the second cycle of cell propagation. These cycles would be repeated in so-called healthy virus carriers for 20 or 30 years or longer....” Three decades later, accumulated experimental facts particularly on intermittent viral transcription and regulation by the host immune response appear to prove that Yoshida was right. This Hypothesis and Theory summarizes the evidences that support this paradigm.
Collapse
Affiliation(s)
- Hélène Gazon
- National Fund for Scientific Research, Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, Liège, Belgium.,Molecular Biology, TERRA, Gemboux Agro-Bio Tech, Gembloux, Belgium
| | - Pradeep Chauhan
- National Fund for Scientific Research, Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, Liège, Belgium.,Molecular Biology, TERRA, Gemboux Agro-Bio Tech, Gembloux, Belgium
| | - Malik Hamaidia
- National Fund for Scientific Research, Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, Liège, Belgium.,Molecular Biology, TERRA, Gemboux Agro-Bio Tech, Gembloux, Belgium
| | - Clotilde Hoyos
- National Fund for Scientific Research, Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, Liège, Belgium.,Molecular Biology, TERRA, Gemboux Agro-Bio Tech, Gembloux, Belgium
| | - Lin Li
- National Fund for Scientific Research, Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, Liège, Belgium.,Molecular Biology, TERRA, Gemboux Agro-Bio Tech, Gembloux, Belgium
| | - Roghaiyeh Safari
- National Fund for Scientific Research, Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, Liège, Belgium.,Molecular Biology, TERRA, Gemboux Agro-Bio Tech, Gembloux, Belgium
| | - Luc Willems
- National Fund for Scientific Research, Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics, Liège, Belgium.,Molecular Biology, TERRA, Gemboux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
23
|
Baratella M, Forlani G, Accolla RS. HTLV-1 HBZ Viral Protein: A Key Player in HTLV-1 Mediated Diseases. Front Microbiol 2017; 8:2615. [PMID: 29312275 PMCID: PMC5744428 DOI: 10.3389/fmicb.2017.02615] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/14/2017] [Indexed: 01/11/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus that has infected 10-15 million people worldwide. After a long latency, 3-5% of infected individuals will develop either a severe malignancy of CD4+ T cells, known as Adult T-cell Leukemia (ATL) or a chronic and progressive inflammatory disease of the nervous system designated Tropical Spastic Paraparesis/HTLV-1-Associated Myelopathy (HAM/TSP). The precise mechanism behind HTLV-1 pathogenesis still remains elusive. Two viral regulatory proteins, Tax-1 and HTLV-1 bZIP factor (HBZ) are thought to play a critical role in HTLV-1-associated diseases. Tax-1 is mainly involved in the onset of neoplastic transformation and in elicitation of the host's inflammatory responses; its expression may be lost during cell clonal proliferation and oncogenesis. Conversely, HBZ remains constantly expressed in all patients with ATL, playing a role in the proliferation and maintenance of leukemic cells. Recent studies have shown that the subcellular distribution of HBZ protein differs in the two pathologies: it is nuclear with a speckled-like pattern in leukemic cells and is cytoplasmic in cells from HAM/TSP patients. Thus, HBZ expression and distribution could be critical in the progression of HTLV-1 infection versus the leukemic state or the inflammatory disease. Here, we reviewed recent findings on the role of HBZ in HTLV-1 related diseases, highlighting the new perspectives open by the possibility of studying the physiologic expression of endogenous protein in primary infected cells.
Collapse
Affiliation(s)
| | | | - Roberto S. Accolla
- Laboratories of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, School of Medicine, University of Insubria, Varese, Italy
| |
Collapse
|
24
|
Enose-Akahata Y, Vellucci A, Jacobson S. Role of HTLV-1 Tax and HBZ in the Pathogenesis of HAM/TSP. Front Microbiol 2017; 8:2563. [PMID: 29312243 PMCID: PMC5742587 DOI: 10.3389/fmicb.2017.02563] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/11/2017] [Indexed: 01/25/2023] Open
Abstract
Human T cell lymphotropic virus type 1 (HTLV-1) infection can lead to development of adult T cell leukemia/lymphoma (ATL) or HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in a subset of infected subjects. Understanding the interaction between host and HTLV-1 and the molecular mechanisms associated with disease pathogenesis is critical for development efficient therapies. Two HTLV-1 genes, tax and HTLV-1 basic leucine zipper factor (HBZ), have been demonstrated to play important roles in HTLV-1 infectivity and the growth and survival of leukemic cells. Increased HTLV-1 Tax expression induces the expression of various cellular genes such as IL-2 and IL-15, which directly contributes to lymphocyte activation and immunopathogenesis in HAM/TSP patients. However, little is known about the molecular and cellular mechanism of HBZ in development of HAM/TSP. It has been reported that HBZ mRNA expression was detected in HAM/TSP patients higher than in asymptomatic carriers and correlated with proviral load and disease severity. Unlike HTLV-1 tax, HBZ escapes efficient anti-viral immune responses and therefore these reactivities are difficult to detect. Thus, it is important to focus on understanding the function and the role of HTLV-1 tax and HBZ in disease development of HAM/TSP and discuss the potential use of these HTLV-1 viral gene products as biomarkers and therapeutic targets for HAM/TSP.
Collapse
Affiliation(s)
- Yoshimi Enose-Akahata
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ashley Vellucci
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Steven Jacobson
- Viral Immunology Section, Division of Neuroimmunology and Neurovirology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
25
|
Molecular Highlighting Analysis of Mutational P27 Gene Products in Association with Human T-lymphotropic (HTLV-1) Infection in Tissues from Iraqi Patients with Non-Hodgkin’s lymphoma. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.3.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Positive and Negative Regulation of Type I Interferons by the Human T Cell Leukemia Virus Antisense Protein HBZ. J Virol 2017; 91:JVI.00853-17. [PMID: 28768861 DOI: 10.1128/jvi.00853-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/14/2017] [Indexed: 01/11/2023] Open
Abstract
The pathogenesis of human T cell leukemia virus type 1 (HTLV-1) is strongly linked to the viral regulatory proteins Tax1 and HBZ, whose opposing functions contribute to the clinical outcome of infection. Type I interferons alpha and beta (IFN-α and IFN-β) are key cytokines involved in innate immunity, and IFN-α, in combination with other antivirals, is extensively used in the treatment of HTLV-1 infection. The relationship between HTLV-1 and IFN signaling is unclear, and to date the effect of HBZ on this pathway has not been examined. Here we report that HBZ significantly enhances interferon regulatory factor 7 (IRF7)-induced IFN-α- and IFN-stimulated response element (ISRE) promoter activities and IFN-α production and can counteract the inhibitory effect of Tax1. In contrast to this, we show that HBZ and Tax1 cooperate to inhibit the induction of IFN-β and ISRE promoters by IRF3 and IFN-β production. In addition, we reveal that HBZ enhances ISRE activation by IFN-α. We further show that HBZ enhances IRF7 and suppresses IRF3 activation by TBK1 and IKKε. We demonstrate that HBZ has no effect on virus-induced nuclear accumulation of IRF3, suggesting that it may inhibit IRF3 activity at a transcriptional level. We show that HBZ physically interacts with IRF7 and IKKε but not with IRF3 or TBK1. Overall, our findings suggest that both HBZ and Tax1 are negative regulators of immediate early IFN-β innate immune responses, while HBZ but not Tax1 positively regulates the induction of IFN-α and downstream IFN-α signaling.IMPORTANCE Type I interferons are powerful antiviral cytokines and are used extensively in the treatment of HTLV-1-induced adult T cell leukemia (ATL). To date, the relationship between HTLV-1 and the IFN pathway is poorly understood, and studies so far have focused on Tax1. Our study is unique in that it examined the effect of HBZ, alone or in combination with Tax1, on type I IFN signaling. This is important because HBZ is frequently the only viral protein expressed in infected cells, particularly at later stages of infection. A better understanding of the how HBZ regulates IFN signaling may lead to the development of therapeutics that can modify such responses and improve the clinical outcome for infected individuals.
Collapse
|
27
|
Fang Y, Tyler BM. Nuclear localization of a putative Phytophthora sojae bZIP1 transcription factor is mediated by multiple targeting motifs. Mol Microbiol 2017; 104:621-635. [PMID: 28213898 DOI: 10.1111/mmi.13652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 11/28/2022]
Abstract
Oomycetes are fungal-like eukaryotic microbes in the kingdom Stramenopila. We recently found that the oomycete plant pathogen Phytophthora sojae uses nuclear localization signals (NLSs) for translocation of proteins into the nucleus that differ from conventional well-characterized NLSs from mammals and yeast. Here, we have characterized in depth the NLSs of a P. sojae basic leucine zipper transcription factor, PsbZIP1. Nuclear localization of PsbZIP1 was determined by a central conserved region overlapping the DNA binding domain. Mutational analysis of this region identified four distinct elements that contributed multiplicatively to nuclear localization, but the conserved DNA binding residues were not required. Three of the elements showed autonomous NLS activity and the fourth served as a nuclear localization enhancer. Sequences within two of the nuclear localization elements defined a new form of bipartite NLS consisting of a triplet of basic residues followed by a tail of scattered basic amino acids.
Collapse
Affiliation(s)
- Yufeng Fang
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics & Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.,Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brett M Tyler
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics & Computational Biology, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, 24061, USA.,Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
28
|
HBZ-mediated shift of JunD from growth suppressor to tumor promoter in leukemic cells by inhibition of ribosomal protein S25 expression. Leukemia 2017; 31:2235-2243. [PMID: 28260789 DOI: 10.1038/leu.2017.74] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/21/2023]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) basic-leucine zipper (bZIP) factor (HBZ) is a key player in proliferation and transformation of HTLV-1-infected cells, thus contributing to adult T-cell leukemia (ATL) development. HBZ deregulates gene expression within the host cell by interacting with several cellular partners. Through its C-terminal ZIP domain, HBZ is able to contact and activate JunD, a transcription factor of the AP-1 family. JunD mRNA is intronless but can generate two protein isoforms by alternative translation initiation: JunD full-length and Δ JunD, an N-terminal truncated form unresponsive to the tumor suppressor menin. Using various cell lines and primary T-lymphocytes, we show that after serum deprivation HBZ induces the expression of Δ JunD isoform. We demonstrate that, unlike JunD, Δ JunD induces proliferation and transformation of cells. To decipher the mechanisms for Δ JunD production, we looked into the translational machinery and observed that HBZ induces nuclear retention of RPS25 mRNA and loss of RPS25 protein expression, a component of the small ribosomal subunit. Therefore, HBZ bypasses translational control of JunD uORF and favors the expression of Δ JunD. In conclusion, we provide strong evidences that HBZ induces Δ JunD expression through alteration of the cellular translational machinery and that the truncated isoform Δ JunD has a central role in the oncogenic process leading to ATL.
Collapse
|
29
|
Ma Y, Zhang B, Wang D, Qian L, Song X, Wang X, Yang C, Zhao G. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB. Int J Mol Med 2017; 39:764-770. [PMID: 28204810 DOI: 10.3892/ijmm.2017.2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.
Collapse
Affiliation(s)
- Yunyun Ma
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Bo Zhang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Dong Wang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Lili Qian
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Xianmei Song
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Xueyin Wang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Chaokuan Yang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
30
|
Cytoplasmic Localization of HTLV-1 HBZ Protein: A Biomarker of HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). PLoS Negl Trop Dis 2017; 11:e0005285. [PMID: 28095504 PMCID: PMC5271414 DOI: 10.1371/journal.pntd.0005285] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/27/2017] [Accepted: 12/20/2016] [Indexed: 11/19/2022] Open
Abstract
HTLV-1 is the causative agent of a severe form of adult T cell leukemia/Lymphoma (ATL), and of a chronic progressive neuromyelopathy designated HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Two important HTLV-1-encoded proteins, Tax-1 and HBZ, play crucial roles in the generation and maintenance of the oncogenic process. Less information is instead available on the molecular and cellular mechanisms leading to HAM/TSP. More importantly, no single specific biomarker has been described that unambiguously define the status of HAM/TSP. Here we report for the first time the finding that HBZ, described until now as an exclusive nuclear protein both in chronically infected and in ATL cells, is instead exclusively localized in the cytoplasm of peripheral blood mononuclear cells (PBMC) from patients suffering of HAM/TSP. Interestingly, at the single cell level, HBZ and Tax-1 proteins are never found co-expressed in the same cell, suggesting the existence of mechanisms of expression uncoupling of these two important HTLV-1 viral products in HAM/TSP patients. Cells expressing cytoplasmic HBZ were almost exclusively found in the CD4+ T cell compartment that was not, at least in a representative HAM/TSP patient, expressing the CD25 marker. Less than 1 percent CD8+ T cells were fond positive for HBZ, while B cells and NK cells were found negative for HBZ in HAM/TSP patients. Our results identify the cytoplasmic localization of HBZ in HAM/TSP patient as a possible biomarker of this rather neglected tropical disease, and raise important hypotheses on the role of HBZ in the pathogenesis of the neuromyelopathy associated to HTLV-1 infection. Currently, more than 10 million people worldwide are infected with HTLV-1, the first discovered human oncogenic retrovirus. Up to 7% of infected individuals experience during their life a severe form of T cell malignancy or a chronic progressive inflammatory disease of the nervous system designated HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). At present, there is no resolutive therapy for both of these diseases. In HAM/TSP patients, besides classical neurological signs and the degree of proviral load, no specific virus-related biomarker has been defined that unambiguously distinguishes infected cells of HAM/TSP from those of asymptomatic carriers or ATL patients. Here for the first time, we present evidence that an HTLV-1 protein, designated HBZ, previously found expressed only in the nucleus, is indeed exclusively localized in the cytoplasm of peripheral blood mononuclear cells of HAM/TSP patients and almost exclusively in the CD4+ T cell compartment without the need that these cells co-express the Treg-associated marker CD25. This finding establishes an association between development of the inflammatory HAM/TSP disease and presence of a viral product in the cytoplasm, opening new ways to understand the molecular basis of the HTLV-1-mediated pathogenesis of this severe form of neuromyelopathy.
Collapse
|
31
|
HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog 2017; 13:e1006120. [PMID: 28046066 PMCID: PMC5234849 DOI: 10.1371/journal.ppat.1006120] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 01/13/2017] [Accepted: 12/12/2016] [Indexed: 12/21/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. To enhance cell-to-cell transmission of HTLV-1, the virus increases the number of infected cells in vivo. HTLV-1 bZIP factor (HBZ) is constitutively expressed in HTLV-1 infected cells and ATL cells and promotes T-cell proliferation. However, the detailed mechanism by which it does so remains unknown. Here, we show that HBZ enhances the proliferation of expressing T cells after stimulation via the T-cell receptor. HBZ promotes this proliferation by influencing the expression and function of multiple co-inhibitory receptors. HBZ suppresses the expression of BTLA and LAIR-1 in HBZ expressing T cells and ATL cells. Expression of T cell immunoglobulin and ITIM domain (TIGIT) and Programmed cell death 1 (PD-1) was enhanced, but their suppressive effect on T-cell proliferation was functionally impaired. HBZ inhibits the co-localization of SHP-2 and PD-1 in T cells, thereby leading to impaired inhibition of T-cell proliferation and suppressed dephosphorylation of ZAP-70 and CD3ζ. HBZ does this by interacting with THEMIS, which associates with Grb2 and SHP-2. Thus, HBZ interacts with the SHP containing complex, impedes the suppressive signal from PD-1 and TIGIT, and enhances the proliferation of T cells. Although HBZ was present in both the nucleus and the cytoplasm of T cells, HBZ was localized largely in the nucleus by suppressed expression of THEMIS by shRNA. This indicates that THEMIS is responsible for cytoplasmic localization of HBZ in T cells. Since THEMIS is expressed only in T-lineage cells, HBZ mediated inhibition of the suppressive effects of co-inhibitory receptors accounts for how HTLV-1 induces proliferation only of T cells in vivo. This study reveals that HBZ targets co-inhibitory receptors to cause the proliferation of infected cells. Since HTLV-1 infects only through cell-to-cell transmission, increasing the number of infected cells is critical for transmission of HTLV-1. Proliferation of HTLV-1 infected cells is critical for development of leukemia and inflammatory diseases. In this study, we showed that HBZ promotes the proliferation of infected cells by targeting co-inhibitory receptors. Paradoxically, HBZ enhances the expression of the co-inhibitory receptors TIGIT and PD-1. We found that HBZ concurrently hampers the growth-inhibitory signal of TIGIT and PD-1, thereby leading to the enhanced proliferation of HTLV-1 infected cells in vivo. HBZ does this by interacting with THEMIS, which is expressed only in T cells. It is known that HTLV-1 infects different types of cells but increases only T cells. Functional impairment of co-inhibitory receptors by interaction of HBZ with THEMIS is a mechanism how HTLV-1 specifically induces proliferation of T cells.
Collapse
|
32
|
Enhanced Stabilization of MCL1 by the Human T-Cell Leukemia Virus Type 1 bZIP Factor Is Modulated by Blocking the Recruitment of Cullin 1 to the SCF Complex. Mol Cell Biol 2016; 36:3075-3085. [PMID: 27697867 DOI: 10.1128/mcb.00450-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that is the etiological agent of adult T-cell leukemia (ATL). The HTLV-1 basic leucine zipper factor (HBZ), which is encoded by the minus strand of the provirus, is constitutively expressed in all ATL patient cells and likely contributes to the development and maintenance of ATL. Furthermore, the overexpression of the myeloid cell leukemia 1 (MCL1) protein is frequently observed in hematological cancers as well as several other types of cancers. Here, we found that the expression of HBZ in cells stabilized MCL1 protein expression and suppressed the MCL1-mediated release of cytochrome c from the mitochondria. This effect was mediated by inhibition of the ubiquitin-dependent degradation of MCL1. In a serial binding assay, HBZ interacted with cullin 1 (CUL1) through a head-to-tail interaction. The association between CUL1 and Skp1, which serves as the molecular scaffold for the components of SCF ubiquitin ligase complexes, was markedly repressed in the presence of HBZ. Mechanistic analysis indicated that HBZ abrogated the CUL1 association with Skp1, which in turn promoted the cellular expression of MCL1. This novel function of HBZ likely plays a role in the viral pathogenesis of HTLV-1 and provides important insights into our understanding of the development of ATL.
Collapse
|
33
|
Shiohama Y, Naito T, Matsuzaki T, Tanaka R, Tomoyose T, Takashima H, Fukushima T, Tanaka Y, Saito M. Absolute quantification of HTLV-1 basic leucine zipper factor (HBZ) protein and its plasma antibody in HTLV-1 infected individuals with different clinical status. Retrovirology 2016; 13:29. [PMID: 27117327 PMCID: PMC4847349 DOI: 10.1186/s12977-016-0263-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human T cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ), which is encoded by a minus strand mRNA, is thought to play important roles in the development of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, a comprehensive analysis of HBZ, including mRNA and protein expression, humoral immunoreactivity against HBZ, and HTLV-1 proviral load (PVL), in HTLV-1-infected individuals with different clinical status has not been reported previously. RESULTS In this study, using novel monoclonal antibody-based in-house enzyme-linked immunosorbent assay systems, we report the absolute quantification of HBZ protein and its plasma antibody in clinical samples from HTLV-1-infected individuals with different clinical status. The data were compared to both HBZ mRNA levels and PVL. The results showed that plasma anti-HBZ antibody was detectable only in 10.4 % (5/48) of asymptomatic carriers (ACs), 10.8 % (13/120) of HAM/TSP patients, and 16.7 % (7/42) of ATL patients. HBZ protein was detected in three out of five patients with acute ATL, but was not detected in patients with HAM/TSP (0/10) or ACs (0/4). Thus, an antibody response to HBZ was not associated with the PVL or the expression of HBZ (both at the mRNA and protein levels) or the clinical status of the infection. CONCLUSIONS The present results emphasize the extremely low expression and immunogenicity of HBZ in natural HTLV-1 infection. However, there is a possibility that the low but distinct expression of HBZ protein in PBMCs is associated with the survival of HTLV-1-infected cells and the development of ATL.
Collapse
Affiliation(s)
- Yasuo Shiohama
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.,Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Toshio Matsuzaki
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmnology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
34
|
Murphy J, Hall WW, Ratner L, Sheehy N. Novel interactions between the HTLV antisense proteins HBZ and APH-2 and the NFAR protein family: Implications for the HTLV lifecycles. Virology 2016; 494:129-42. [PMID: 27110706 DOI: 10.1016/j.virol.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/17/2023]
Abstract
The human T-cell leukaemia virus type 1 and type 2 (HTLV-1/HTLV-2) antisense proteins HBZ and APH-2 play key roles in the HTLV lifecycles and persistence in the host. Nuclear Factors Associated with double-stranded RNA (NFAR) proteins NF90/110 function in the lifecycles of several viruses and participate in host innate immunity against infection and oncogenesis. Using GST pulldown and co-immunoprecipitation assays we demonstrate specific novel interactions between HBZ/APH-2 and NF90/110 and characterised the protein domains involved. Moreover we show that NF90/110 significantly enhance Tax mediated LTR activation, an effect that was abolished by HBZ but enhanced by APH-2. Additionally we found that HBZ and APH-2 modulate the promoter activity of survivin and are capable of antagonising NF110-mediated survivin activation. Thus interactions between HTLV antisense proteins and the NFAR protein family have an overall positive impact on HTLV infection. Hence NFARs may represent potential therapeutic targets in HTLV infected cells.
Collapse
Affiliation(s)
- Jane Murphy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - William W Hall
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Noreen Sheehy
- Centre for Research in Infectious Diseases, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
35
|
Ma G, Yasunaga JI, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 2016; 13:16. [PMID: 26979059 PMCID: PMC4793531 DOI: 10.1186/s12977-016-0249-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus responsible for the development of adult T-cell leukemia (ATL). Although HTLV-1 harbors an oncogene, tax, that transforms T cells in vitro and induces leukemia in transgenic mice, tax expression is frequently disrupted in ATL, making the oncogenesis of ATL a bit mysterious. The HTLV-1 bZIP factor (HBZ) gene was discovered in 2002 and has been found to promote T-cell proliferation and cause lymphoma in transgenic mice. Thus HBZ has become a novel hotspot of HTLV-1 research. This review summarizes the current findings on HBZ with a special focus on its potential links to the oncogenesis of ATL. We propose viewing HBZ as a critical contributing factor in ATL development.
Collapse
Affiliation(s)
- Guangyong Ma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| |
Collapse
|
36
|
Zhao T. The Role of HBZ in HTLV-1-Induced Oncogenesis. Viruses 2016; 8:v8020034. [PMID: 26848677 PMCID: PMC4776189 DOI: 10.3390/v8020034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and chronic inflammatory diseases. HTLV-1 bZIP factor (HBZ) is transcribed as an antisense transcript of the HTLV-1 provirus. Among the HTLV-1-encoded viral genes, HBZ is the only gene that is constitutively expressed in all ATL cases. Recent studies have demonstrated that HBZ plays an essential role in oncogenesis by regulating viral transcription and modulating multiple host factors, as well as cellular signaling pathways, that contribute to the development and continued growth of cancer. In this article, I summarize the current knowledge of the oncogenic function of HBZ in cell proliferation, apoptosis, T-cell differentiation, immune escape, and HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
37
|
Ciminale V, Rende F, Bertazzoni U, Romanelli MG. HTLV-1 and HTLV-2: highly similar viruses with distinct oncogenic properties. Front Microbiol 2014; 5:398. [PMID: 25120538 PMCID: PMC4114287 DOI: 10.3389/fmicb.2014.00398] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/15/2014] [Indexed: 12/29/2022] Open
Abstract
HTLV-1 and HTLV-2 share broad similarities in their overall genetic organization and expression pattern, but they differ substantially in their pathogenic properties. This review outlines distinctive features of HTLV-1 and HTLV-2 that might provide clues to explain their distinct clinical outcomes. Differences in the kinetics of viral mRNA expression, functional properties of the regulatory and accessory proteins, and interactions with cellular factors and signal transduction pathways are discussed.
Collapse
Affiliation(s)
- Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Francesca Rende
- Department of Surgery, Oncology and Gastroenterology, University of Padua Padua, Italy
| | - Umberto Bertazzoni
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| | - Maria G Romanelli
- Department of Life and Reproduction Sciences, University of Verona Verona, Italy
| |
Collapse
|
38
|
Mukai R, Ohshima T. HTLV-1 HBZ positively regulates the mTOR signaling pathway via inhibition of GADD34 activity in the cytoplasm. Oncogene 2014; 33:2317-28. [PMID: 23708656 DOI: 10.1038/onc.2013.181] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 12/11/2022]
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) infection causes adult T-cell leukemia (ATL). Modulation of the transcriptional control of cellular genes by HTLV-1 is thought to be associated with the development of ATL. The viral protein HTLV-1 basic leucine-zipper factor (HBZ) has been shown to dysregulate the activity of cellular transcription factors. Here, we demonstrate that HBZ is exported from the nucleus to the cytoplasm, where it activates the mammalian target of rapamycin (mTOR) signaling pathway through an association with growth arrest and DNA damage gene 34 (GADD34). The N-terminal region of HBZ interacts with the C-terminal region of GADD34. HBZ contains a functional nuclear export signal (NES) sequence within its N-terminal region and it is exported from the nucleus via the CRM1-dependent pathway. Nuclear export of HBZ is essential for its interaction with GADD34 and increased phosphorylation of S6 kinase, which is an established downstream target of the mTOR pathway. Starvation-induced autophagy is significantly suppressed by the overexpression of HBZ. These findings indicate that HBZ is actively exported to the cytoplasm, where it dysregulates the function of cellular factors.
Collapse
Affiliation(s)
- R Mukai
- Faculty of Engineering, Tokushima Bunri University, Sanuki, Kagawa, Japan
| | - T Ohshima
- 1] Faculty of Engineering, Tokushima Bunri University, Sanuki, Kagawa, Japan [2] Faculty of Pharmaceutical Science at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa, Japan
| |
Collapse
|
39
|
Azuma Y, Kükenshöner T, Ma G, Yasunaga JI, Imanishi M, Tanaka G, Nakase I, Maruno T, Kobayashi Y, Arndt KM, Matsuoka M, Futaki S. Controlling leucine-zipper partner recognition in cells through modification of a–g interactions. Chem Commun (Camb) 2014; 50:6364-7. [DOI: 10.1039/c4cc00555d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By focusing on the a–g interactions, successful design and selection were accomplished to obtain a leucine-zipper segment that discriminates the appropriate partner.
Collapse
Affiliation(s)
- Yusuke Azuma
- Institute for Chemical Research
- Kyoto University
- Uji, Japan
| | - Tim Kükenshöner
- Institute for Biochemistry and Biology
- University of Potsdam
- 14476 Potsdam-Golm, Germany
| | - Guangyong Ma
- Institute for Virus Research
- Kyoto University
- Sakyo-ku, Japan
| | | | - Miki Imanishi
- Institute for Chemical Research
- Kyoto University
- Uji, Japan
| | - Gen Tanaka
- Institute for Chemical Research
- Kyoto University
- Uji, Japan
| | - Ikuhiko Nakase
- Institute for Chemical Research
- Kyoto University
- Uji, Japan
| | | | - Yuji Kobayashi
- Graduate School of Engineering
- Osaka University
- Suita, Japan
| | - Katja M. Arndt
- Institute for Biochemistry and Biology
- University of Potsdam
- 14476 Potsdam-Golm, Germany
| | - Masao Matsuoka
- Institute for Virus Research
- Kyoto University
- Sakyo-ku, Japan
| | - Shiroh Futaki
- Institute for Chemical Research
- Kyoto University
- Uji, Japan
| |
Collapse
|
40
|
Ma Y, Zheng S, Wang Y, Zang W, Li M, Wang N, Li P, Jin J, Dong Z, Zhao G. The HTLV-1 HBZ protein inhibits cyclin D1 expression through interacting with the cellular transcription factor CREB. Mol Biol Rep 2013; 40:5967-75. [PMID: 24065533 DOI: 10.1007/s11033-013-2706-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus that can cause adult T-cell leukemia (ATL) and other diseases. The HTLV-1 bZIP factor (HBZ), which is encoded by an mRNA of the opposite polarity of the viral genomic RNA, interacts with several transcription factors and is involved in T cell proliferation, viral gene transcription and cellular transformation. Cyclin D1 is a pivotal regulatory protein involved in cell cycle progression, and its depressed expression correlates with cell cycle prolongation or arrested at the G1/S transition. In our present study, we observed that HBZ expression suppressed cyclin D1 level. To investigate the role of HBZ on cyclin D1 depression, we transduced HBZ with lentivirus vector into 293T cells, CEM cells and Jurkat cells. The results of Western blot, RT-PCR and luciferase assays showed that transcriptional activity of the cyclin D1 promoter was suppressed by the bZIP domain of HBZ (HBZ-bZIP) through cyclic AMP response element (CRE) site. Immunoprecipitation and GST pull-down assays showed the binding of HBZ-bZIP to CRE-binding protein (CREB), which confirmed that the cyclin D1 promoter activity inhibition via the CRE-site was mediated by HBZ-bZIP. The results suggested that HBZ suppressed cyclin D1 transcription through interactions with CREB and along with other viral protein, HBZ may play a causal role for leukemogenesis.
Collapse
Affiliation(s)
- Yunyun Ma
- College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
bZIP transcription factors in the oomycete phytophthora infestans with novel DNA-binding domains are involved in defense against oxidative stress. EUKARYOTIC CELL 2013; 12:1403-12. [PMID: 23975888 DOI: 10.1128/ec.00141-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.
Collapse
|
42
|
Barbeau B, Peloponese JM, Mesnard JM. Functional comparison of antisense proteins of HTLV-1 and HTLV-2 in viral pathogenesis. Front Microbiol 2013; 4:226. [PMID: 23966985 PMCID: PMC3736048 DOI: 10.3389/fmicb.2013.00226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022] Open
Abstract
The production of antisense transcripts from the 3′ long terminal repeat (LTR) in human T-lymphotropic retroviruses has now been clearly demonstrated. After the identification of the antisense strand-encoded human T-lymphotropic virus type 1 (HTLV-1) bZIP (HBZ) factor, we reported that HBZ could interact with CRE-binding protein (CREB) transcription factors and consequently turn off the important activating potential of the viral Tax protein on HTLV-1 5′ LTR promoter activity. We have recently accumulated new results demonstrating that antisense transcripts also exist in HTLV-2, -3, and -4. Furthermore, our data have confirmed the existence of encoded proteins from these antisense transcripts (termed antisense proteins of HTLVs or APHs). APHs are also involved in the down-regulation of Tax-dependent viral transcription. In this review, we will focus on the different molecular mechanisms used by HBZ and APH-2 to control viral expression. While HBZ interacts with CREB through its basic zipper domain, APH-2 binds to this cellular factor through a five amino acid motif localized in its carboxyl terminus. Moreover, unlike APH-2, HBZ possesses an N-terminal activation domain that also contributes to the inhibition of the viral transcription by interacting with the KIX domain of p300/CBP. On the other hand, HBZ was found to induce T cell proliferation while APH-2 was unable to promote such proliferation. Interestingly, HTLV-2 has not been causally linked to human T cell leukemia, while HTLV-1 is responsible for the development of the adult T cell leukemia/lymphoma. We will further discuss the possible role played by antisense proteins in the establishment of pathologies induced by viral infection.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal Montréal, QC, Canada
| | | | | |
Collapse
|
43
|
Zhao T, Matsuoka M. HBZ and its roles in HTLV-1 oncogenesis. Front Microbiol 2012; 3:247. [PMID: 22787458 PMCID: PMC3391691 DOI: 10.3389/fmicb.2012.00247] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/19/2012] [Indexed: 12/16/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL). The minus strand of HTLV-1 provirus encodes a bZIP protein donated as HTLV-1 bZIP factor (HBZ). Among the HTLV-1 regulatory and accessory genes, the tax and HBZ genes were thought to play critical roles in oncogenesis. However, HBZ is the only gene that remains intact and is consistently expressed in all ATL cases, while the tax gene is frequently inactivated by epigenetic modifications or deletion of the 5’LTR. HBZ gene promotes the proliferation of ATL cells through its mRNA form. Moreover, HBZ induces T-cell lymphoma and systemic inflammation in vivo. HBZ fulfills its functions mainly through regulating HTLV-1 5’LTR transcription and modulating a variety of cellular signaling pathways which are related with cell growth, immune response, and T-cell differentiation. Taken together, the multiple functions of HBZ render its predominant function in leukemogenesis of ATL.
Collapse
Affiliation(s)
- Tiejun Zhao
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
44
|
Macaire H, Riquet A, Moncollin V, Biémont-Trescol MC, Duc Dodon M, Hermine O, Debaud AL, Mahieux R, Mesnard JM, Pierre M, Gazzolo L, Bonnefoy N, Valentin H. Tax protein-induced expression of antiapoptotic Bfl-1 protein contributes to survival of human T-cell leukemia virus type 1 (HTLV-1)-infected T-cells. J Biol Chem 2012; 287:21357-70. [PMID: 22553204 DOI: 10.1074/jbc.m112.340992] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4(+) T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-x(L), and Bcl-2. Indeed, both Bfl-1 and Bcl-x(L) knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-x(L) in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-x(L) represent potential therapeutic targets for ATLL treatment.
Collapse
|
45
|
Comparison of the Genetic Organization, Expression Strategies and Oncogenic Potential of HTLV-1 and HTLV-2. LEUKEMIA RESEARCH AND TREATMENT 2011; 2012:876153. [PMID: 23213551 PMCID: PMC3504254 DOI: 10.1155/2012/876153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/24/2011] [Indexed: 11/30/2022]
Abstract
Human T cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are genetically related complex retroviruses that are capable of immortalizing human T-cells in vitro and establish life-long persistent infections in vivo. In spite of these apparent similarities, HTLV-1 and HTLV-2 exhibit a significantly different pathogenic potential. HTLV-1 is recognized as the causative agent of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-1-associated myelopathy (TSP/HAM). In contrast, HTLV-2 has not been causally linked to human malignancy, although it may increase the risk of developing inflammatory neuropathies and infectious diseases. The present paper is focused on the studies aimed at defining the viral genetic determinants of the pathobiology of HTLV-1 and HTLV-2 through a comparison of the expression strategies and functional properties of the different gene products of the two viruses.
Collapse
|
46
|
Clerc I, Laverdure S, Torresilla C, Landry S, Borel S, Vargas A, Arpin-André C, Gay B, Briant L, Gross A, Barbeau B, Mesnard JM. Polarized expression of the membrane ASP protein derived from HIV-1 antisense transcription in T cells. Retrovirology 2011; 8:74. [PMID: 21929758 PMCID: PMC3182985 DOI: 10.1186/1742-4690-8-74] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/19/2011] [Indexed: 12/28/2022] Open
Abstract
Background Retroviral gene expression generally depends on a full-length transcript that initiates in the 5' LTR, which is either left unspliced or alternatively spliced. We and others have demonstrated the existence of antisense transcription initiating in the 3' LTR in human lymphotropic retroviruses, including HTLV-1, HTLV-2, and HIV-1. Such transcripts have been postulated to encode antisense proteins important for the establishment of viral infections. The antisense strand of the HIV-1 proviral DNA contains an ORF termed asp, coding for a highly hydrophobic protein. However, although anti-ASP antibodies have been described to be present in HIV-1-infected patients, its in vivo expression requires further support. The objective of this present study was to clearly demonstrate that ASP is effectively expressed in infected T cells and to provide a better characterization of its subcellular localization. Results We first investigated the subcellular localization of ASP by transfecting Jurkat T cells with vectors expressing ASP tagged with the Flag epitope to its N-terminus. Using immunofluorescence microscopy, we found that ASP localized to the plasma membrane in transfected Jurkat T cells, but with different staining patterns. In addition to an entire distribution to the plasma membrane, ASP showed an asymmetric localization and could also be detected in membrane connections between two cells. We then infected Jurkat T cells with NL4.3 virus coding for ASP tagged with the Flag epitope at its C-terminal end. By this approach, we were capable of showing that ASP is effectively expressed from the HIV-1 3' LTR in infected T cells, with an asymmetric localization of the viral protein at the plasma membrane. Conclusion These results demonstrate for the first time that ASP can be detected when expressed from full-length HIV-1 proviral DNA and that its localization is consistent with Jurkat T cells overexpressing ASP.
Collapse
Affiliation(s)
- Isabelle Clerc
- Université Montpellier 1, Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Human T-cell lymphotropic virus type 3 (HTLV-3)- and HTLV-4-derived antisense transcripts encode proteins with similar Tax-inhibiting functions but distinct subcellular localization. J Virol 2011; 85:12673-85. [PMID: 21917984 DOI: 10.1128/jvi.05296-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The human T-cell lymphotropic virus (HTLV) retrovirus family is composed of the well-known HTLV type 1 (HTLV-1) and HTLV-2 and the most recently discovered HTLV-3 and HTLV-4. Like other retroviruses, HTLV-1 and HTLV-2 gene expression has been thought to be orchestrated through a single transcript. However, recent reports have demonstrated the unique potential of both HTLV-1 and HTLV-2 to produce an antisense transcript. Furthermore, these unexpected and newly identified transcripts lead to the synthesis of viral proteins termed HBZ (HTLV-1 basic leucine zipper) and APH-2 (antisense protein of HTLV-2), respectively. As potential open reading frames are present on the antisense strand of HTLV-3 and HTLV-4, we tested whether in vitro antisense transcription occurred in these viruses and whether these transcripts had a coding potential. Using HTLV-3 and HTLV-4 proviral DNA constructs, antisense transcripts were detected by reverse transcriptase PCR. These transcripts are spliced and polyadenylated and initiate at multiple sites from the 3' long terminal repeat (LTR). The resulting proteins, termed APH-3 and APH-4, are devoid of a typical basic leucine zipper domain but contain basic amino acid-rich regions. Confocal microscopy and Western blotting experiments demonstrated a nucleus-restricted pattern for APH-4, while APH-3 was localized both in the cytoplasm and in the nucleus. Both proteins showed partial colocalization with nucleoli and HBZ-associated structures. Finally, both proteins inhibited Tax1- and Tax3-mediated HTLV-1 and HTLV-3 LTR activation. These results further demonstrate that retroviral antisense transcription is not exclusive to HTLV-1 and HTLV-2 and that APH-3 and APH-4 could impact HTLV-3 and HTLV-4 replication.
Collapse
|
48
|
Olière S, Douville R, Sze A, Belgnaoui SM, Hiscott J. Modulation of innate immune responses during human T-cell leukemia virus (HTLV-1) pathogenesis. Cytokine Growth Factor Rev 2011; 22:197-210. [DOI: 10.1016/j.cytogfr.2011.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Lairmore MD, Anupam R, Bowden N, Haines R, Haynes RAH, Ratner L, Green PL. Molecular determinants of human T-lymphotropic virus type 1 transmission and spread. Viruses 2011; 3:1131-65. [PMID: 21994774 PMCID: PMC3185783 DOI: 10.3390/v3071131] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 07/01/2011] [Accepted: 07/02/2011] [Indexed: 01/23/2023] Open
Abstract
Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The virus is spread through contact with bodily fluids containing infected cells, most often from mother to child through breast milk or via blood transfusion. After prolonged latency periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of this complex retrovirus contains typical gag, pol, and env genes, but also unique nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in the understanding of viral determinants of cell transformation and host immune responses, host and viral determinants of HTLV-1 transmission and spread during the early phases of infection are unclear. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the early events of HTLV-1 infection. This review will focus on studies that test HTLV-1 determinants in context to full length infectious clones of the virus providing insights into the mechanisms of transmission and spread of HTLV-1.
Collapse
Affiliation(s)
- Michael D. Lairmore
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-9203; Fax: +1-614-292-6473
| | - Rajaneesh Anupam
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Nadine Bowden
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Robyn Haines
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Rashade A. H. Haynes
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
| | - Lee Ratner
- Department of Medicine, Pathology, and Molecular Microbiology, Division of Biology and Biological Sciences, Washington University School of Medicine, Campus Box 8069, 660 S. Euclid Ave., St. Louis, MO 63110, USA; E-Mail: (L.R.)
| | - Patrick L. Green
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; E-Mails: (R.A.); (N.B.); (R.H.); (R.A.H.H.); (P.L.G.)
- Comprehensive Cancer Center, The Arthur G. James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
50
|
Barbeau B, Mesnard JM. Making sense out of antisense transcription in human T-cell lymphotropic viruses (HTLVs). Viruses 2011; 3:456-68. [PMID: 21994742 PMCID: PMC3185765 DOI: 10.3390/v3050456] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/22/2022] Open
Abstract
Retroviral gene expression generally depends on a full-length transcript that initiates in the 5′ long terminal repeat (LTR), which is either unspliced or alternatively spliced. We and others have demonstrated the existence of an antisense transcript initiating in the 3′ LTR of the Human T-cell Leukemia Virus type 1 (HTLV-1) that is involved in the production of HBZ (HTLV-1 basic leucine zipper (bZIP) factor). HBZ is a Fos-like factor capable of inhibiting Tax-mediated activation of the HTLV-1 LTR by interacting with the cellular transcription factor cAMP-response element-binding protein (CREB) and the pleiotropic cellular coactivators p300/CBP. HBZ can also activate cellular transcription through its interaction with p300/CBP. Interestingly, HBZ has also been found to promote T-lymphocyte proliferation. By down-regulating viral expression and by stimulating T-cell proliferation, HBZ could be essential in the establishment of a chronic infection. Antisense transcription also occurs in the closely related HTLV-2 retrovirus as well as in the recently discovered HTLV-3 and HTLV-4. These antisense transcripts are also involved in the production of retroviral proteins that we have termed Antisense Protein of HTLVs (APH). Like HBZ, the APH proteins are localized in the nucleus of transfected cells and repress Tax-mediated viral transcription.
Collapse
Affiliation(s)
- Benoit Barbeau
- Département des Sciences Biologiques, Centre de recherche Bio Med, Université du Québec à Montréal, Montréal (Québec) H2X 3X8, Canada; E-Mail:
| | - Jean-Michel Mesnard
- Centre d’études d’agents Pathogènes et Biotechnologies pour la Santé, Université Montpellier 1, 34293 Montpellier Cedex 5, France
- CNRS, UM5236, CPBS, F-34965 Montpellier, France
- CPBS, Université Montpellier 2, F-34095 Montpellier, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-434-359-440; Fax: +33-434-359-411
| |
Collapse
|