1
|
Zong YJ, Liu XZ, Tu L, Sun Y. Cytomembrane Trafficking Pathways of Connexin 26, 30, and 43. Int J Mol Sci 2023; 24:10349. [PMID: 37373495 DOI: 10.3390/ijms241210349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The connexin gene family is the most prevalent gene that contributes to hearing loss. Connexins 26 and 30, encoded by GJB2 and GJB6, respectively, are the most abundantly expressed connexins in the inner ear. Connexin 43, which is encoded by GJA1, appears to be widely expressed in various organs, including the heart, skin, the brain, and the inner ear. The mutations that arise in GJB2, GJB6, and GJA1 can all result in comprehensive or non-comprehensive genetic deafness in newborns. As it is predicted that connexins include at least 20 isoforms in humans, the biosynthesis, structural composition, and degradation of connexins must be precisely regulated so that the gap junctions can properly operate. Certain mutations result in connexins possessing a faulty subcellular localization, failing to transport to the cell membrane and preventing gap junction formation, ultimately leading to connexin dysfunction and hearing loss. In this review, we provide a discussion of the transport models for connexin 43, connexins 30 and 26, mutations affecting trafficking pathways of these connexins, the existing controversies in the trafficking pathways of connexins, and the molecules involved in connexin trafficking and their functions. This review can contribute to a new way of understanding the etiological principles of connexin mutations and finding therapeutic strategies for hereditary deafness.
Collapse
Affiliation(s)
- Yan-Jun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao-Zhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
2
|
Au A, Shao Q, White KK, Lucaciu SA, Esseltine JL, Barr K, Laird DW. Comparative Analysis of Cx31 and Cx43 in Differentiation-Competent Rodent Keratinocytes. Biomolecules 2020; 10:biom10101443. [PMID: 33066499 PMCID: PMC7602205 DOI: 10.3390/biom10101443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/25/2022] Open
Abstract
When considering connexin expression and regulation, the epidermis of the skin is one of the most complex tissues found in mammals even though it largely contains a single cell type, the keratinocyte. In the rodent epidermis, up to 9 connexin family members have been detected at the mRNA level. Many of these connexins are temporally and spatially regulated in coordination with keratinocyte progenitor cell differentiation and migration from the stratum basale to form the stratum spinosum and stratum granulosum layers before finally forming the stratum corneum. Cx43 is the principal connexin found in basal keratinocytes and to a lesser degree found in keratinocytes that have begun to differentiate where Cx26, Cx30 and Cx31 become prevalent. Here we show that the CRISPR-Cas9 ablation of Cx43 reduces overall gap junction coupling in monolayer cultures of rat epidermal keratinocytes (REKs) and dysregulates the differentiation of REKs when grown in organotypic cultures. Natively found in differentiated keratinocytes, Cx31 readily assembles into gap junctions when expressed in REKs where it can extensively co-assemble into the same gap junctions with co-expressed Cx30. Time-lapse imaging indicated that many Cx31 gap junctions are mobile within the plasma membrane undergoing both fusion and fission events. Finally, the persistence of pre-existing Cx31 gap junctions in the presence of the protein trafficking blocker, brefeldin A, is longer than that found for Cx43 gap junctions indicating that it has a distinctly different life expectancy in REKs. Collectively, this study highlights the importance of Cx43 in rodent keratinocyte differentiation and suggests that Cx31 acquires life-cycle properties that are distinct from Cx43.
Collapse
Affiliation(s)
- Akina Au
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (A.A.); (S.A.L.)
| | - Qing Shao
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
| | - Kyra K. White
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
| | - Sergiu A. Lucaciu
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (A.A.); (S.A.L.)
| | - Jessica L. Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada;
| | - Kevin Barr
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
| | - Dale W. Laird
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5C1, Canada; (A.A.); (S.A.L.)
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON N6A 5C1, Canada; (Q.S.); (K.K.W.); (K.B.)
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 86827)
| |
Collapse
|
3
|
van de Wiel J, Meigh L, Bhandare A, Cook J, Nijjar S, Huckstepp R, Dale N. Connexin26 mediates CO 2-dependent regulation of breathing via glial cells of the medulla oblongata. Commun Biol 2020; 3:521. [PMID: 32958814 PMCID: PMC7505967 DOI: 10.1038/s42003-020-01248-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/21/2020] [Indexed: 01/12/2023] Open
Abstract
Breathing is highly sensitive to the PCO2 of arterial blood. Although CO2 is detected via the proxy of pH, CO2 acting directly via Cx26 may also contribute to the regulation of breathing. Here we exploit our knowledge of the structural motif of CO2-binding to Cx26 to devise a dominant negative subunit (Cx26DN) that removes the CO2-sensitivity from endogenously expressed wild type Cx26. Expression of Cx26DN in glial cells of a circumscribed region of the mouse medulla - the caudal parapyramidal area - reduced the adaptive change in tidal volume and minute ventilation by approximately 30% at 6% inspired CO2. As central chemosensors mediate about 70% of the total response to hypercapnia, CO2-sensing via Cx26 in the caudal parapyramidal area contributed about 45% of the centrally-mediated ventilatory response to CO2. Our data unequivocally link the direct sensing of CO2 to the chemosensory control of breathing and demonstrates that CO2-binding to Cx26 is a key transduction step in this fundamental process.
Collapse
Affiliation(s)
| | - Louise Meigh
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Amol Bhandare
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Robert Huckstepp
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
4
|
Lee MY, Wang HZ, White TW, Brooks T, Pittman A, Halai H, Petrova A, Xu D, Hart SL, Kinsler VA, Di WL. Allele-Specific Small Interfering RNA Corrects Aberrant Cellular Phenotype in Keratitis-Ichthyosis-Deafness Syndrome Keratinocytes. J Invest Dermatol 2019; 140:1035-1044.e7. [PMID: 31705875 DOI: 10.1016/j.jid.2019.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022]
Abstract
Keratitis-ichthyosis-deafness (KID) syndrome is a severe, untreatable condition characterized by ocular, auditory, and cutaneous abnormalities, with major complications of infection and skin cancer. Most cases of KID syndrome (86%) are caused by a heterozygous missense mutation (c.148G>A, p.D50N) in the GJB2 gene, encoding gap junction protein Cx26, which alters gating properties of Cx26 channels in a dominant manner. We hypothesized that a mutant allele-specific small interfering RNA could rescue the cellular phenotype in patient keratinocytes (KCs). A KID syndrome cell line (KID-KC) was established from primary patient KCs with a heterozygous p.D50N mutation. This cell line displayed impaired gap junction communication and hyperactive hemichannels, confirmed by dye transfer, patch clamp, and neurobiotin uptake assays. A human-murine chimeric skin graft model constructed with KID-KCs mimicked patient skin in vivo, further confirming the validity of these cells as a model. In vitro treatment with allele-specific small interfering RNA led to robust inhibition of the mutant GJB2 allele without altering expression of the wild-type allele. This corrected both gap junction and hemichannel activity. Notably, allele-specific small interfering RNA treatment caused only low-level off-target effects in KID-KCs, as detected by genome-wide RNA sequencing. Our data provide an important proof-of-concept and model system for the potential use of allele-specific small interfering RNA in treating KID syndrome and other dominant genetic conditions.
Collapse
Affiliation(s)
- Ming Yang Lee
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Hong-Zhan Wang
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Thomas W White
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York
| | - Tony Brooks
- UCL Genomics, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alan Pittman
- Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; Genetics Research Centre, St George's, University of London, London, United Kingdom
| | - Heerni Halai
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Anastasia Petrova
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Diane Xu
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L Hart
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Veronica A Kinsler
- Department of Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Paediatric Dermatology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Wei-Li Di
- Infection, Immunity and Inflammation Programme/Immunobiology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
5
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
6
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
7
|
Press ER, Shao Q, Kelly JJ, Chin K, Alaga A, Laird DW. Induction of cell death and gain-of-function properties of connexin26 mutants predict severity of skin disorders and hearing loss. J Biol Chem 2017; 292:9721-9732. [PMID: 28428247 DOI: 10.1074/jbc.m116.770917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/20/2017] [Indexed: 11/06/2022] Open
Abstract
Connexin26 (Cx26) is a gap junction protein that oligomerizes in the cell to form hexameric transmembrane channels called connexons. Cell surface connexons dock between adjacent cells to allow for gap junctional intercellular communication. Numerous autosomal dominant mutations in the Cx26-encoding GJB2 gene lead to many skin disorders and sensorineural hearing loss. Although some insights have been gained into the pathogenesis of these diseases, it is not fully understood how distinct GJB2 mutations result in hearing loss alone or in skin pathologies with comorbid hearing loss. Here we investigated five autosomal dominant Cx26 mutants (N14K, D50N, N54K, M163V, and S183F) linked to various syndromic or nonsyndromic diseases to uncover the molecular mechanisms underpinning these disease links. We demonstrated that when gap junction-deficient HeLa cells expressed the N14K and D50N mutants, they undergo cell death. The N54K mutant was retained primarily within intracellular compartments and displayed dominant or transdominant properties on wild-type Cx26 and coexpressed Cx30 and Cx43. The S183F mutant formed some gap junction plaques but was largely retained within the cell and exhibited only a mild transdominant reduction in gap junction communication when co-expressed with Cx30. The M163V mutant, which causes only hearing loss, exhibited impaired gap junction function and showed no transdominant interactions. These findings suggest that Cx26 mutants that promote cell death or exert transdominant effects on other connexins in keratinocytes will lead to skin diseases and hearing loss, whereas mutants having reduced channel function but exhibiting no aberrant effects on coexpressed connexins cause only hearing loss. Moreover, cell death-inducing GJB2 mutations lead to more severe syndromic disease.
Collapse
Affiliation(s)
- Eric R Press
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Qing Shao
- From the Departments of Anatomy and Cell Biology and
| | - John J Kelly
- From the Departments of Anatomy and Cell Biology and
| | - Katrina Chin
- From the Departments of Anatomy and Cell Biology and
| | - Anton Alaga
- From the Departments of Anatomy and Cell Biology and
| | - Dale W Laird
- Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada .,From the Departments of Anatomy and Cell Biology and
| |
Collapse
|
8
|
Tang C, Chen X, Chi J, Yang D, Liu S, Liu M, Pan Q, Fan J, Wang D, Zhang Z. Pathogenic Cx31 is un/misfolded to cause skin abnormality via a Fos/JunB-mediated mechanism. Hum Mol Genet 2015; 24:6054-65. [DOI: 10.1093/hmg/ddv317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/31/2015] [Indexed: 01/29/2023] Open
|
9
|
Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3. Biochem J 2015; 468:449-58. [DOI: 10.1042/bj20150148] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/07/2015] [Indexed: 11/17/2022]
Abstract
Claudins, tetraspan transmembrane proteins forming tight junction strands, regulate the paracellular pathway of epithelia. FRET experiments were carried out on claudin-1 and claudin-3 to determine strand architecture. Results are consistent with an antiparallel double-row arrangement within each membrane.
Collapse
|
10
|
Koval M, Molina SA, Burt JM. Mix and match: investigating heteromeric and heterotypic gap junction channels in model systems and native tissues. FEBS Lett 2014; 588:1193-204. [PMID: 24561196 DOI: 10.1016/j.febslet.2014.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/12/2022]
Abstract
This review is based in part on a roundtable discussion session: "Physiological roles for heterotypic/heteromeric channels" at the 2013 International Gap Junction Conference (IGJC 2013) in Charleston, South Carolina. It is well recognized that multiple connexins can specifically co-assemble to form mixed gap junction channels with unique properties as a means to regulate intercellular communication. Compatibility determinants for both heteromeric and heterotypic gap junction channel formation have been identified and associated with specific connexin amino acid motifs. Hetero-oligomerization is also a regulated process; differences in connexin quality control and monomer stability are likely to play integral roles to control interactions between compatible connexins. Gap junctions in oligodendrocyte:astrocyte communication and in the cardiovascular system have emerged as key systems where heterotypic and heteromeric channels have unique physiologic roles. There are several methodologies to study heteromeric and heterotypic channels that are best applied to either heterologous expression systems, native tissues or both. There remains a need to use and develop different experimental approaches in order to understand the prevalence and roles for mixed gap junction channels in human physiology.
Collapse
Affiliation(s)
- Michael Koval
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States; Department of Cell Biology, Emory University, Atlanta, GA, United States.
| | - Samuel A Molina
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
de Zwart-Storm EA, Martin PE, van Steensel MAM. Gap junction diseases of the skin: novel insights from new mutations. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.09.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Scott CA, Tattersall D, O'Toole EA, Kelsell DP. Connexins in epidermal homeostasis and skin disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1952-61. [DOI: 10.1016/j.bbamem.2011.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022]
|
13
|
Abrams CK, Scherer SS. Gap junctions in inherited human disorders of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:2030-47. [PMID: 21871435 PMCID: PMC3771870 DOI: 10.1016/j.bbamem.2011.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022]
Abstract
CNS glia and neurons express connexins, the proteins that form gap junctions in vertebrates. We review the connexins expressed by oligodendrocytes and astrocytes, and discuss their proposed physiologic roles. Of the 21 members of the human connexin family, mutations in three are associated with significant central nervous system manifestations. For each, we review the phenotype and discuss possible mechanisms of disease. Mutations in GJB1, the gene for connexin 32 (Cx32) cause the second most common form of Charcot-Marie-Tooth disease (CMT1X). Though the only consistent phenotype in CMT1X patients is a peripheral demyelinating neuropathy, CNS signs and symptoms have been found in some patients. Recessive mutations in GJC2, the gene for Cx47, are one cause of Pelizaeus-Merzbacher-like disease (PMLD), which is characterized by nystagmus within the first 6 months of life, cerebellar ataxia by 4 years, and spasticity by 6 years of age. MRI imaging shows abnormal myelination. A different recessive GJC2 mutation causes a form of hereditary spastic paraparesis, which is a milder phenotype than PMLD. Dominant mutations in GJA1, the gene for Cx43, cause oculodentodigital dysplasia (ODDD), a pleitropic disorder characterized by oculo-facial abnormalities including micropthalmia, microcornia and hypoplastic nares, syndactyly of the fourth to fifth fingers and dental abnormalities. Neurologic manifestations, including spasticity and gait difficulties, are often but not universally seen. Recessive GJA1 mutations cause Hallermann-Streiff syndrome, a disorder showing substantial overlap with ODDD. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Charles K. Abrams
- Department of Neurology and Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, 1-718-270-1270 Phone, 1-718-270-8944 Fax,
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania School of Medicine, Room 450 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6077, 215-573-3198,
| |
Collapse
|
14
|
Piontek J, Fritzsche S, Cording J, Richter S, Hartwig J, Walter M, Yu D, Turner JR, Gehring C, Rahn HP, Wolburg H, Blasig IE. Elucidating the principles of the molecular organization of heteropolymeric tight junction strands. Cell Mol Life Sci 2011; 68:3903-18. [PMID: 21533891 PMCID: PMC4336547 DOI: 10.1007/s00018-011-0680-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/07/2011] [Accepted: 03/24/2011] [Indexed: 11/26/2022]
Abstract
Paracellular barrier properties of tissues are mainly determined by the composition of claudin heteropolymers. To analyze the molecular organization of tight junctions (TJ), we investigated the ability of claudins (Cld) to form homo- and heteromers. Cld1, -2, -3, -5, and -12 expressed in cerebral barriers were investigated. TJ-strands were reconstituted by claudin-transfection of HEK293-cells. cis-Interactions and/or spatial proximity were analyzed by fluorescence resonance energy transfer inside and outside of strands and ranked: Cld5/Cld5 > Cld5/Cld1 > Cld3/Cld1 > Cld3/Cld3 > Cld3/Cld5, no Cld3/Cld2. Classic Cld1, -3, and -5 but not non-classic Cld12 showed homophilic trans-interaction. Freeze-fracture electron microscopy revealed that, in contrast to classic claudins, YFP-tagged Cld12 does not form homopolymers. Heterophilic trans-interactions were analyzed in cocultures of differently monotransfected cells. trans-Interaction of Cld3/Cld5 was less pronounced than that of Cld3/Cld1, Cld5/Cld1, Cld5/Cld5 or Cld3/Cld3. The barrier function of reconstituted TJ-strands was demonstrated by a novel imaging assay. A model of the molecular organization of TJ was generated.
Collapse
Affiliation(s)
- Jörg Piontek
- Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cx (connexin) proteins are components of gap junctions which are aqueous pores that allow intercellular exchange of ions and small molecules. Mutations in Cx genes are linked to a range of human disorders. In the present review we discuss mutations in β-Cx genes encoding Cx26, Cx30, Cx30.3 and Cx31 which lead to skin disease and deafness. Functional studies with Cx proteins have given insights into disease-associated mechanisms and non-gap junctional roles for Cx proteins.
Collapse
|
16
|
Higashi M, Yu J, Tsuchiya H, Saito T, Oyama T, Kawana H, Kitagawa M, Tamaru JI, Harigaya K. Visualization of the Activity of Rac1 Small GTPase in a Cell. Acta Histochem Cytochem 2010; 43:163-8. [PMID: 21245983 PMCID: PMC3015054 DOI: 10.1267/ahc.10025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/17/2010] [Indexed: 11/22/2022] Open
Abstract
Rho family G proteins including Rac regulate a variety of cellular functions, such as morphology, motility, and gene expression. Here we developed a fluorescence resonance energy transfer-based analysis in which we could monitor the activity of Rac1. To detect fluorescence resonance energy transfer, yellow fluorescent protein fused Rac1 and cyan fluorescent protein fused Cdc42-Rac1-interaction-binding domain of Pak1 protein were used as intermolecular probes of FRET. The fluorophores were separated with linear unmixing method. The fluorescence resonance energy transfer efficiency was measured by acceptor photobleaching assisted assay. With these methods, the Rac1 activity was visualized in a cell. The present findings indicate that this approach is sensitive enough to achieve results similar to those from ratiometric fluorescence resonance energy transfer analysis.
Collapse
Affiliation(s)
- Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
| | - Jianyong Yu
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
| | - Hiroshi Tsuchiya
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
| | - Teruyoshi Saito
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
| | - Toshinao Oyama
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
| | | | - Motoo Kitagawa
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
| | - Jun-ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University
| | - Kenichi Harigaya
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine
| |
Collapse
|
17
|
Dominant connexin26 mutants associated with human hearing loss have trans-dominant effects on connexin30. Neurobiol Dis 2010; 38:226-36. [PMID: 20096356 DOI: 10.1016/j.nbd.2010.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 11/27/2009] [Accepted: 01/12/2010] [Indexed: 11/23/2022] Open
Abstract
Dominant mutations in GJB2, the gene encoding the human gap junction protein connexin26 (Cx26), cause hearing loss. We investigated whether dominant Cx26 mutants interact directly with Cx30. HeLa cells stably expressing nine dominant Cx26 mutants, six associated with non-syndromic hearing loss (W44C, W44S, R143Q, D179N, R184Q and C202F) and three associated with hearing loss and palmoplantar keratoderma (G59A, R75Q and R75W), individually or together with Cx30, were analyzed by immunocytochemistry, co-immunoprecipitation, and functional assays (scrape-loading and/or fluorescence recovery after photobleaching). When expressed alone, all mutants formed gap junction plaques, but with impaired intercellular dye transfer. When expressed with Cx30, all mutants co-localized and co-immunoprecipitated with Cx30, indicating they likely co-assembled into heteromers. Furthermore, 8/9 Cx26 mutants inhibited the transfer of neurobiotin or calcein, indicating that these Cx26 mutants have trans-dominant effects on Cx30, an effect that may contribute to the pathogenesis of hearing loss.
Collapse
|
18
|
Carette D, Gilleron J, Decrouy X, Fiorini C, Diry M, Segretain D, Pointis G. Connexin 33 impairs gap junction functionality by accelerating connexin 43 gap junction plaque endocytosis. Traffic 2009; 10:1272-85. [PMID: 19548984 DOI: 10.1111/j.1600-0854.2009.00949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell-cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P(1) phosphorylated and P(0) unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.
Collapse
Affiliation(s)
- Diane Carette
- INSERM U 895, Team 5 "Physiopathology of germ cell control: genomic and non genomic mechanisms", Centre Méditerranéen Moléculaire (C3M), Université Sophia Antipolis, F-06204 Nice Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Svensson L, Redvall E, Johnsson M, Stenfeldt AL, Dahlgren C, Wennerås C. Interplay between signaling via the formyl peptide receptor (FPR) and chemokine receptor 3 (CCR3) in human eosinophils. J Leukoc Biol 2009; 86:327-36. [PMID: 19414538 DOI: 10.1189/jlb.0908514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils express the chemoattractant receptors CCR3 and FPR. CCR3 binds several agonists such as eotaxin-1, -2, and -3 and RANTES, whereas the FPR binds the formylated tripeptide fMLP and a host of other ligands. The aim of this study was to investigate if there is interplay between these two receptors regarding the elicitation of migration and respiratory burst in human blood-derived eosinophils. Inhibition of the FPR with the antagonists CyH and boc-MLP abrogated the migration of eosinophils toward all of the CCR3 agonists. Similar results were seen when the FPR was desensitized with its cognate ligand, fMLP. In contrast, the respiratory burst triggered by eotaxin-1 was not inhibited by CyH. Thus, signals evoked via the FPR caused unidirectional down-regulation of CCR3-mediated chemotaxis but not respiratory burst in human eosinophils. The underlying mechanism was neither reduced ability of the CCR3 ligand eotaxin-1 to bind to CCR3 nor down-regulation of CCR3 from the cell surface. Finally, confocal microscopy and adFRET analysis ruled out homo- or heterodimer formation between FPR and/or CCR3 as an explanation for the reduction in chemotaxis via CCR3. Pharmacologic inhibition of signal transduction molecules showed that the release of free oxygen radicals in response to eotaxin-1 compared with fMLP is relatively more dependent on the p38 MAPK pathway.
Collapse
Affiliation(s)
- Lena Svensson
- Department of Clinical Bacteriology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
20
|
Higashi M, Ishikawa C, Yu J, Toyoda A, Kawana H, Kurokawa K, Matsuda M, Kitagawa M, Harigaya K. Human Mena associates with Rac1 small GTPase in glioblastoma cell lines. PLoS One 2009; 4:e4765. [PMID: 19277120 PMCID: PMC2651628 DOI: 10.1371/journal.pone.0004765] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 02/06/2009] [Indexed: 11/18/2022] Open
Abstract
Mammarian enabled (Mena), a member of the Enabled (Ena)/Vasodilator-stimulated phosphoprotein (VASP) family of proteins, has been implicated in cell motility through regulation of the actin cytoskeleton assembly, including lamellipodial protrusion. Rac1, a member of the Rho family GTPases, also plays a pivotal role in the formation of lamellipodia. Here we report that human Mena (hMena) colocalizes with Rac1 in lamellipodia, and using an unmixing assisted acceptor depletion fluorescence resonance energy transfer (u-adFRET) analysis that hMena associates with Rac1 in vivo in the glioblastoma cell line U251MG. Depletion of hMena by siRNA causes cells to be highly spread with the formation of lamellipodia. This cellular phenotype is canceled by introduction of a dominant negative form of Rac1. A Rac activity assay and FRET analysis showed that hMena knock-down cells increased the activation of Rac1 at the lamellipodia. These results suggest that hMena possesses properties which help to regulate the formation of lamellipodia through the modulation of the activity of Rac1.
Collapse
Affiliation(s)
- Morihiro Higashi
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Chieko Ishikawa
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Jianyong Yu
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Akihiro Toyoda
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Hidetada Kawana
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Kazuo Kurokawa
- Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, Wako, Saitama, Japan
| | - Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida Sakyo-ku, Kyoto, Japan
| | - Motoo Kitagawa
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | - Kenichi Harigaya
- Molecular and Tumor Pathology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan
| |
Collapse
|
21
|
Hoang Dinh E, Ahmad S, Chang Q, Tang W, Stong B, Lin X. Diverse deafness mechanisms of connexin mutations revealed by studies using in vitro approaches and mouse models. Brain Res 2009; 1277:52-69. [PMID: 19230829 DOI: 10.1016/j.brainres.2009.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 02/01/2009] [Accepted: 02/04/2009] [Indexed: 12/12/2022]
Abstract
Mutations in connexins (Cxs), the constitutive protein subunits of gap junction (GJ) intercellular channels, are one of the most common human genetic defects that cause severe prelingual non-syndromic hearing impairments. Many subtypes of Cxs (e.g., Cxs 26, 29, 30, 31, 43) and pannexins (Panxs) are expressed in the cochlea where they contribute to the formation of a GJ-based intercellular communication network. Cx26 and Cx30 are the predominant cochlear Cxs and they co-assemble in most GJ plaques to form hybrid GJs. The cellular localization of specific Cx subtypes provides a basis for understanding the molecular structure of GJs and hemichannels in the cochlea. Information about the interactions among the various co-assembled Cx partners is critical to appreciate the functional consequences of various types of genetic mutations. In vitro studies of reconstituted GJs in cell lines have yielded surprisingly heterogeneous mechanisms of dysfunction caused by various Cx mutations. Availability of multiple lines of Cx-mutant mouse models has provided some insight into the pathogenesis processes in the cochlea of deaf mice. Here we summarize recent advances in understanding the structure and function of cochlear GJs and give a critical review of current findings obtained from both in vitro studies and mouse models on the mechanisms of Cx mutations that lead to cell death in the cochlea and hearing loss.
Collapse
Affiliation(s)
- Emilie Hoang Dinh
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Martínez AD, Acuña R, Figueroa V, Maripillan J, Nicholson B. Gap-junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal 2009; 11:309-22. [PMID: 18837651 PMCID: PMC2673109 DOI: 10.1089/ars.2008.2138] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Gap-junction channels connect the cytoplasm of adjacent cells, allowing the diffusion of ions and small metabolites. They are formed at the appositional plasma membranes by a family of related proteins named connexins. Mutations in connexins 26, 31, 30, 32, and 43 have been associated with nonsyndromic or syndromic deafness. The majority of these mutations are inherited in an autosomal recessive manner, but a few of them have been associated with dominantly inherited hearing loss. Mutations in the connexin26 gene (GJB2) are the most common cause of genetic deafness. This review summarizes the most relevant and recent information about different mutations in connexin genes found in human patients, with emphasis on GJB2. The possible effects of the mutations on channel expression and function are discussed, in addition to their possible physiologic consequences for inner ear physiology. Finally, we propose that connexin channels (gap junctions and hemichannels) may be targets for age-related hearing loss induced by oxidative damage.
Collapse
Affiliation(s)
- Agustín D Martínez
- Centro de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| | | | | | | | | |
Collapse
|
23
|
Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg 2009; 16:452-7. [PMID: 18797288 DOI: 10.1097/moo.0b013e32830e20b0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Mutations in GJB2 and GJB6, the genes encoding the gap-junction proteins connexin 26 and connexin 30, are the most common cause of autosomal recessive nonsyndromic deafness in many populations across the world. In this review, we discuss current ideas about the roles of gap junctions in the inner ear and the implications of connexin mutations on auditory function. RECENT FINDINGS In recent years, a complex picture of the roles of gap junctions in cochlear physiology emerged. Rather than being mere conduits for the circulation of potassium ions in the inner ear, gap junctions have been implicated in intercellular signaling among nonsensory cells and may be involved in the maintenance of the endothelial barrier in the stria vascularis. Studies of mutant channels and mouse models for connexin-related deafness have provided valuable insights into some of the mechanisms by which connexin dysfunction causes cochlear degeneration. They have also identified potential therapeutic interventions for specific connexin mutations, such as the restoration of normal connexin 26 protein levels in GJB6-associated deafness. SUMMARY Despite recent advances, a better understanding of the complexity of gap-junctional communication in the inner ear and the structure-function relationships of connexin proteins is required for the development of mechanism-based treatments of connexin-associated hearing loss.
Collapse
|
24
|
Abstract
In vertebrates, a family of related proteins called connexins form gap junctions (GJs), which are intercellular channels. In the central nervous system (CNS), GJs couple oligodendrocytes and astrocytes (O/A junctions) and adjacent astrocytes (A/A junctions), but not adjacent oligodendrocytes, forming a "glial syncytium." Oligodendrocytes and astrocytes each express different connexins. Mutations of these connexin genes demonstrate that the proper functioning of myelin and oligodendrocytes requires the expression of these connexins. The physiological function of O/A and A/A junctions, however, remains to be illuminated.
Collapse
|
25
|
Perez-Rosado A, Artiga M, Vargiu P, Sanchez-Aguilera A, Alvarez-Barrientos A, Piris M. BCL6 represses NFkappaB activity in diffuse large B-cell lymphomas. J Pathol 2008; 214:498-507. [PMID: 18189332 DOI: 10.1002/path.2279] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BCL6 is a transcriptional repressor whose deregulated expression plays a key role in diffuse large B-cell lymphomas (DLBCLs). BCL6 expression characterizes one of the two main subtypes (GC type) of DLBCL, while the other (ABC type) is recognized by increased NFkappaB activation. The mechanistic basis of this distinction remains unclear and the BCL6 targets have been only partially explored. Here we describe how NFkappaB activity is increased after BCL6 silencing by shRNA in DLBCL cells, leading us to propose that BCL6 represses NFkappaB activity. We also demonstrate that this repression is brought about by a mechanism involving protein-protein interaction between BCL6 and NFkappaB members, both in vitro and in vivo. Analysis of a series of DLBCLs shows a negative correlation between the expression of NFkappaB target genes and BCL6. This combined approach using silenced cells and a series of human DLBCL samples leads us to a better understanding of the role of BCL6 as an NFkappaB regulator in B-cells.
Collapse
Affiliation(s)
- A Perez-Rosado
- Lymphoma Group, Molecular Pathology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Matos TD, Caria H, Simões-Teixeira H, Aasen T, Dias O, Andrea M, Kelsell DP, Fialho G. A novel M163L mutation in connexin 26 causing cell death and associated with autosomal dominant hearing loss. Hear Res 2008; 240:87-92. [PMID: 18472371 DOI: 10.1016/j.heares.2008.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/17/2022]
Abstract
Mutations in GJB2 gene (encoding connexin 26) are the most common cause of hereditary non-syndromic sensorineural hearing loss (NSSHL) in different populations. The majority of GJB2 mutations are recessive, but a few dominant mutations have been associated with hearing loss either isolated or associated with skin disease. We describe a novel dominant pathogenic GJB2 mutation, identified in a Portuguese family affected with bilateral mild/moderate high-frequency NSSHL. In vitro functional studies demonstrate that the mutant protein (p.M163L) has defective trafficking to the plasma membrane and is associated with increased cell death.
Collapse
Affiliation(s)
- T D Matos
- Centro de Genética e Biologia Molecular, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Periasamy A, Wallrabe H, Chen Y, Barroso M. Chapter 22: Quantitation of protein-protein interactions: confocal FRET microscopy. Methods Cell Biol 2008; 89:569-98. [PMID: 19118691 DOI: 10.1016/s0091-679x(08)00622-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Förster resonance energy transfer (FRET) is an effective and high resolution method to monitor protein-protein interactions in live or fixed specimens. FRET can be used to estimate the distance between interacting protein molecules in vivo or in vitro using laser-scanning confocal FRET microscopy. The spectral overlap of donor and acceptor-essential for FRET-also generates a contamination of the FRET signal, which should be removed in order to carry out quantitative data analysis with confidence. Quantitative FRET data analysis addresses the wealth of information contained in the data set, once optimized FRET imaging has been completed. In this chapter, we describe step-by-step what the issues are in quantitative FRET data analysis, using membrane receptor trafficking and organization as an example. The assays described are applicable to many other biological applications.
Collapse
Affiliation(s)
- Ammasi Periasamy
- University of Virginia, W. M. Keck Center for Cellular Imaging, Department of Biology, Charlottesville, Virginia 22904, USA
| | | | | | | |
Collapse
|
28
|
Intermediate-affinity LFA-1 binds alpha-actinin-1 to control migration at the leading edge of the T cell. EMBO J 2007; 27:62-75. [PMID: 18079697 PMCID: PMC2147999 DOI: 10.1038/sj.emboj.7601959] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 11/20/2007] [Indexed: 12/14/2022] Open
Abstract
T lymphocytes use LFA-1 to migrate into lymph nodes and inflammatory sites. To investigate the mechanisms regulating this migration, we utilize mAbs selective for conformational epitopes as probes for active LFA-1. Expression of the KIM127 epitope, but not the 24 epitope, defines the extended conformation of LFA-1, which has intermediate affinity for ligand ICAM-1. A key finding is that KIM127-positive LFA-1 forms new adhesions at the T lymphocyte leading edge. This LFA-1 links to the cytoskeleton through α-actinin-1 and disruption at the level of integrin or actin results in loss of cell spreading and migratory speed due to a failure of attachment at the leading edge. The KIM127 pattern contrasts with high-affinity LFA-1 that expresses both 24 and KIM127 epitopes, is restricted to the mid-cell focal zone and controls ICAM-1 attachment. Identification of distinctive roles for intermediate- and high-affinity LFA-1 in T lymphocyte migration provides a biological function for two active conformations of this integrin for the first time.
Collapse
|
29
|
Yamaguchi Y, Passeron T, Hoashi T, Watabe H, Rouzaud F, Yasumoto KI, Hara T, Tohyama C, Katayama I, Miki T, Hearing VJ. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes. FASEB J 2007; 22:1009-20. [PMID: 17984176 DOI: 10.1096/fj.07-9475com] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epidermis (containing primarily keratinocytes and melanocytes) overlies the dermis (containing primarily fibroblasts) of human skin. We previously reported that dickkopf 1 (DKK1) secreted by fibroblasts in the dermis elicits the hypopigmented phenotype of palmoplantar skin due to suppression of melanocyte function and growth via the regulation of two important signaling factors, microphthalmia-associated transcription factor (MITF) and beta-catenin. We now report that treatment of keratinocytes with DKK1 increases their proliferation and decreases their uptake of melanin and that treatment of reconstructed skin with DKK1 induces a thicker and less pigmented epidermis. DNA microarray analysis revealed many genes regulated by DKK1, and several with critical expression patterns were validated by reverse transcriptase-polymerase chain reaction and Western blotting. DKK1 induced the expression of keratin 9 and alpha-Kelch-like ECT2 interacting protein (alphaKLEIP) but down-regulated the expression of beta-catenin, glycogen synthase kinase 3beta, protein kinase C, and proteinase-activated receptor-2 (PAR-2), which is consistent with the expression patterns of those proteins in human palmoplantar skin. Treatment of reconstructed skin with DKK1 reproduced the expression patterns of those key proteins observed in palmoplantar skin. These findings further elucidate why human skin is thicker and paler on the palms and soles than on the trunk through topographical and site-specific differences in the secretion of DKK1 by dermal fibroblasts that affects the overlying epidermis.
Collapse
Affiliation(s)
- Yuji Yamaguchi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Langlois S, Maher AC, Manias JL, Shao Q, Kidder GM, Laird DW. Connexin Levels Regulate Keratinocyte Differentiation in the Epidermis. J Biol Chem 2007; 282:30171-80. [PMID: 17693411 DOI: 10.1074/jbc.m703623200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role of connexin43 (Cx43) in epidermal differentiation, we reduced Cx43 levels by RNA-mediated interference knockdown and impaired its functional status by overexpressing loss-of-function Cx43 mutants associated with the human disease oculodentodigital dysplasia (ODDD) in rat epidermal keratinocytes. When Cx43 expression was knocked down by 50-75%, there was a coordinate 55-65% reduction in Cx26 level, gap junction-based dye coupling was reduced by 60%, and transepithelial resistance decreased. Importantly, the overall growth and differentiation of Cx43 knockdown organotypic epidermis was severely impaired as revealed by alterations in the levels of the differentiation markers loricrin and involucrin and by reductions in vital and cornified layer thicknesses. Conversely, although the expression of Cx43 mutants reduced the coupling status of rat epidermal keratinocytes by approximately 80% without altering the levels of endogenous Cx43 or Cx26, their ability to differentiate was not altered. In addition, we used a mouse model of ODDD and found that newborn mice harboring the loss-of-function Cx43(G60S) mutant had slightly reduced Cx43 levels, whereas Cx26 levels, epidermis differentiation, and barrier function remained unaltered. This properly differentiated epidermis was maintained even when Cx43 and Cx26 levels decreased by more than 70% in 3-week-old mutant mice. Our studies indicate that Cx43 and Cx26 collectively co-regulate epidermal differentiation from basal keratinocytes but play a more minimal role in the maintenance of established epidermis. Altogether, these studies provide an explanation as to why the vast majority of ODDD patients, where Cx43 function is highly compromised, do not suffer from skin disease.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Yum SW, Zhang J, Valiunas V, Kanaporis G, Brink PR, White TW, Scherer SS. Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol 2007; 293:C1032-48. [PMID: 17615163 DOI: 10.1152/ajpcell.00011.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in GJB2 and GJB6, the genes that encode the human gap junction proteins connexin26 (Cx26) and connexin30 (Cx30), respectively, cause hearing loss. Cx26 and Cx30 are both expressed in the cochlea, leading to the potential formation of heteromeric hemichannels and heterotypic gap junction channels. To investigate their interactions, we expressed human Cx26 and Cx30 individually or together in HeLa cells. When they were expressed together, Cx26 and Cx30 appeared to interact directly (by their colocalization in gap junction plaques, by coimmunoprecipitation, and by fluorescence resonance energy transfer). Scrape-loading cells that express either Cx26 or Cx30 demonstrated that Cx26 homotypic channels robustly transferred both cationic and anionic tracers, whereas Cx30 homotypic channels transferred cationic but not anionic tracers. Cells expressing both Cx26 and Cx30 also transferred both cationic and anionic tracers by scrape loading, and the rate of calcein (an anionic tracer) transfer was intermediate between their homotypic counterparts by fluorescence recovery after photobleaching. Fluorescence recovery after photobleaching also showed that Cx26 and Cx30 form functional heterotypic channels, allowing the transfer of calcein, which did not pass the homotypic Cx30 channels. Electrophysiological recordings of cell pairs expressing different combinations of Cx26 and/or Cx30 demonstrated unique gating properties of cell pairs expressing both Cx26 and Cx30. These results indicate that Cx26 and Cx30 form functional heteromeric and heterotypic channels, whose biophysical properties and permeabilities are different from their homotypic counterparts.
Collapse
Affiliation(s)
- Sabrina W Yum
- Section of Neurology, St. Christopher's Hospital for Children, Erie Ave. at Front St., Philadelphia, PA 19134, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Levin M. Gap junctional communication in morphogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:186-206. [PMID: 17481700 PMCID: PMC2292839 DOI: 10.1016/j.pbiomolbio.2007.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Devlopmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Orthmann-Murphy JL, Enriquez AD, Abrams CK, Scherer SS. Loss-of-function GJA12/Connexin47 mutations cause Pelizaeus-Merzbacher-like disease. Mol Cell Neurosci 2007; 34:629-41. [PMID: 17344063 PMCID: PMC1937038 DOI: 10.1016/j.mcn.2007.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/05/2007] [Accepted: 01/18/2007] [Indexed: 12/31/2022] Open
Abstract
Recessive mutations in GJA12/Cx47, the gene encoding the gap junction protein connexin47 (Cx47), cause Pelizaeus-Merzbacher-like disease (PMLD), which is characterized by severe CNS dysmyelination. Three missense PMLD mutations, P87S, Y269D and M283T, were expressed in communication-incompetent HeLa cells, and in each case the mutant proteins appeared to at least partially accumulate in the ER. Cells expressing each mutant did not pass Lucifer Yellow or neurobiotin in scrape loading assays, in contrast to robust transfer in cells expressing wild type Cx47. Dual whole-cell patch clamping of transfected Neuro2A cells demonstrated that none of the mutants formed functional channels, in contrast to wild type Cx47. Immunostaining sections of primate brains demonstrated that oligodendrocytes express Cx47, which is primarily localized to their cell bodies. Thus, the Cx47 mutants associated with PMLD likely disrupt the gap junction coupling between astrocytes and oligodendrocytes.
Collapse
Affiliation(s)
- Jennifer L Orthmann-Murphy
- Department of Neurology, University of Pennsylvania School of Medicine, Room 464 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6077, USA.
| | | | | | | |
Collapse
|
34
|
Abstract
Evaluation of the human genome suggests that all members of the connexin family of gap-junction proteins have now been successfully identified. This large and diverse family of proteins facilitates a number of vital cellular functions coupled with their roles, which range from the intercellular propagation of electrical signals to the selective intercellular passage of small regulatory molecules. Importantly, the extent of gap-junctional intercellular communication is under the direct control of regulatory events associated with channel assembly and turnover, as the vast majority of connexins have remarkably short half-lives of only a few hours. Since most cell types express multiple members of the connexin family, compensatory mechanisms exist to salvage tissue function in cases when one connexin is mutated or lost. However, numerous studies of the last decade have revealed that mutations in connexin genes can also lead to severe and debilitating diseases. In many cases, single point mutations lead to dramatic effects on connexin trafficking, assembly and channel function. This review will assess the current understanding of wild-type and selected disease-linked mutant connexin transport through the secretory pathway, gap-junction assembly at the cell surface, internalization and degradation.
Collapse
Affiliation(s)
- Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1.
| |
Collapse
|
35
|
Wallrabe H, Chen Y, Periasamy A, Barroso M. Issues in confocal microscopy for quantitative FRET analysis. Microsc Res Tech 2006; 69:196-206. [PMID: 16538626 DOI: 10.1002/jemt.20281] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previously, we have carried out extensive quantitative analysis of Förster (or fluorescence) resonance energy transfer (FRET) data to show that polymeric IgA receptors and their ligands cluster in endocytic membranes in the process of sorting and trafficking in polarized cells. Here, we use a similar technique to assay the organization and distribution of another membrane-bound receptor: transferrin receptor (TFR) and its ligand, holo-transferrin (Tfn), while explaining the step-by-step measures to be taken for successful quantitative analysis of the FRET data. In particular, methodological issues in FRET quantitative imaging, such as spectral bleed-through and background correction, optimal selection of regions of interest, how to deal with outliers and pooling data and statistical analysis of FRET data, are addressed. Our results indicating a clustered organization of TFR-Tfn complexes fit the well-known homodimeric structure of TFR. These quantitative approaches can be adapted for other biological applications of FRET.
Collapse
Affiliation(s)
- Horst Wallrabe
- Keck Center for Cellular Imaging, Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, Virginia 22903, USA
| | | | | | | |
Collapse
|
36
|
Abrams CK, Freidin MM, Verselis VK, Bargiello TA, Kelsell DP, Richard G, Bennett MVL, Bukauskas FF. Properties of human connexin 31, which is implicated in hereditary dermatological disease and deafness. Proc Natl Acad Sci U S A 2006; 103:5213-8. [PMID: 16549784 PMCID: PMC1458820 DOI: 10.1073/pnas.0511091103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The connexins are a family of at least 20 homologous proteins in humans that form aqueous channels connecting the interiors of coupled cells and mediating electrical and chemical communication. Mutations in the gene for human connexin 31 (hCx31) are associated with disorders of the skin and auditory system. Alterations in functional properties of Cx31 junctions are likely to play a role in these diseases; nonetheless, little is known about the properties of the wild-type channels. Here we show that hCx31 channels, like other connexin channels, are gated by voltage and close at low pH and when exposed to long-chain alkanols. Single-channel conductance of the fully open channel is approximately 85 pS, and it is permeable to Lucifer yellow, Alexa Fluor(350), ethidium bromide, and DAPI, which have valences of -2, -1, +1, and +2, respectively. In contrast to what has been reported for mouse Cx31, hCx31 appears to form functional heterotypic channels with all four connexins tested, Cx26, Cx30, Cx32, and Cx45. These findings provide an important first step in evaluating the pathogenesis of inherited human diseases associated with mutations in the gene for Cx31.
Collapse
Affiliation(s)
- Charles K. Abrams
- Departments of *Neuroscience, and
- Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- To whom correspondence may be addressed. E-mail:
or
| | | | | | | | - David P. Kelsell
- Centre for Cutaneous Research, Institute for Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, 2 Newark Street, Whitechapel, London E1 2AT, United Kingdom; and
| | | | - Michael V. L. Bennett
- Departments of *Neuroscience, and
- To whom correspondence may be addressed. E-mail:
or
| | | |
Collapse
|
37
|
Minogue PJ, Liu X, Ebihara L, Beyer EC, Berthoud VM. An aberrant sequence in a connexin46 mutant underlies congenital cataracts. J Biol Chem 2005; 280:40788-95. [PMID: 16204255 PMCID: PMC2720622 DOI: 10.1074/jbc.m504765200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An increasing number of diseases have been mapped to genes coding for ion channel proteins, including the gap junction proteins, connexins. Here, we report on the identification of an amino acid sequence underlying the behavior of a non-functional mutant connexin46 (CX46) associated with congenital cataracts. The mutant protein, CX46fs380, is 31 amino acids longer than CX46 and contains 87 aberrant amino acids in its C terminus. When expressed in mammalian cells, the mutant CX46 was not found at gap junctional plaques, but it showed extensive co-localization with markers for ERGIC and Golgi. The severe reductions in function and formation of gap junctional plaques were transferred to other connexins by creating chimeras containing the last third (or more) of the aberrant C terminus of the CX46 mutant. This sequence also impaired trafficking of a CD8 chimera. Site-directed mutagenesis of a diphenylalanine restored appositional membrane localization and function. These results suggest a novel mechanism in which a mutation causes disease by generating a motif that leads to retention within the synthetic/secretory pathway.
Collapse
Affiliation(s)
- Peter J. Minogue
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | - Xiaoqin Liu
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Lisa Ebihara
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064
| | - Eric C. Beyer
- Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | | |
Collapse
|
38
|
Common JEA, O'Toole EA, Leigh IM, Thomas A, Griffiths WAD, Venning V, Grabczynska S, Peris Z, Kansky A, Kelsell DP. Clinical and Genetic Heterogeneity of Erythrokeratoderma Variabilis. J Invest Dermatol 2005; 125:920-7. [PMID: 16297190 DOI: 10.1111/j.0022-202x.2005.23919.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The skin disease erythrokeratoderma variabilis (EKV) has been shown to be associated with mutations in GJB3 and GJB4 encoding connexin (Cx)31 and Cx30.3, respectively. Gap junctions composed of Cx proteins are intracellular channels providing a mechanism of synchronized cellular response facilitating metabolic and electronic functions of the cell. In the skin, Cx31 and Cx30.3 are expressed in the stratum granulosum of the epidermis with a suggested role in late keratinocyte differentiation. Molecular investigations of GJB3 and GJB4 were performed in five pedigrees and three sporadic cases of EKV. Mutational analyzes revealed disease-associated Cx31 or Cx30.3 mutations in only three probands of which two were novel mutations and one was a recurrent mutation. These genetic studies further demonstrate the heterogeneous nature of the erythrokeratodermas as not all individuals that were clinically diagnosed with EKV harbor Cx31 or Cx30.3 mutations.
Collapse
Affiliation(s)
- John E A Common
- Centre for Cutaneous Research, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, Whitechapel, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|