1
|
Young LN, Sherrard A, Zhou H, Shaikh F, Hutchings J, Riggi M, Rosen MK, Giraldez AJ, Villa E. ExoSloNano: Multi-Modal Nanogold Tags for identification of Macromolecules in Live Cells & Cryo-Electron Tomograms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.617288. [PMID: 39416124 PMCID: PMC11482945 DOI: 10.1101/2024.10.12.617288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In situ cryo-Electron Microscopy (cryo-EM) enables the direct interrogation of structure-function relationships by resolving macromolecular structures in their native cellular environment. Tremendous progress in sample preparation, imaging and data processing over the past decade has contributed to the identification and determination of large biomolecular complexes. However, the majority of proteins are of a size that still eludes identification in cellular cryo-EM data, and most proteins exist in low copy numbers. Therefore, novel tools are needed for cryo-EM to identify the vast majority of macromolecules across multiple size scales (from microns to nanometers). Here, we introduce and validate novel nanogold probes that enable the detection of specific proteins using cryo-ET (cryo-Electron Tomography) and resin-embedded correlated light and electron microscopy (CLEM). We demonstrate that these nanogold probes can be introduced into live cells, in a manner that preserves intact molecular networks and cell viability. We use this system to identify both cytoplasmic and nuclear proteins by room temperature EM, and resolve associated structures by cryo-ET. We further employ gold particles of different sizes to enable future multiplexed labeling and structural analysis. By providing high efficiency protein labeling in live cells and molecular specificity within cryo-ET tomograms, we establish a broadly enabling tool that significantly expands the proteome available to electron microscopy.
Collapse
Affiliation(s)
- Lindsey N Young
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Huabin Zhou
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Margot Riggi
- Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Michael K Rosen
- University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Dallas, TX, USA
| | | | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Lai PM, Chan KM. Roles of Histone H2A Variants in Cancer Development, Prognosis, and Treatment. Int J Mol Sci 2024; 25:3144. [PMID: 38542118 PMCID: PMC10969971 DOI: 10.3390/ijms25063144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 07/16/2024] Open
Abstract
Histones are nuclear proteins essential for packaging genomic DNA and epigenetic gene regulation. Paralogs that can substitute core histones (H2A, H2B, H3, and H4), named histone variants, are constitutively expressed in a replication-independent manner throughout the cell cycle. With specific chaperones, they can be incorporated to chromatin to modify nucleosome stability by modulating interactions with nucleosomal DNA. This allows the regulation of essential fundamental cellular processes for instance, DNA damage repair, chromosomal segregation, and transcriptional regulation. Among all the histone families, histone H2A family has the largest number of histone variants reported to date. Each H2A variant has multiple functions apart from their primary role and some, even be further specialized to perform additional tasks in distinct lineages, such as testis specific shortH2A (sH2A). In the past decades, the discoveries of genetic alterations and mutations in genes encoding H2A variants in cancer had revealed variants' potentiality in driving carcinogenesis. In addition, there is growing evidence that H2A variants may act as novel prognostic indicators or biomarkers for both early cancer detection and therapeutic treatments. Nevertheless, no studies have ever concluded all identified variants in a single report. Here, in this review, we summarize the respective functions for all the 19 mammalian H2A variants and their roles in cancer biology whilst potentiality being used in clinical setting.
Collapse
Affiliation(s)
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
3
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
4
|
Brändle F, Frühbauer B, Jagannathan M. Principles and functions of pericentromeric satellite DNA clustering into chromocenters. Semin Cell Dev Biol 2022; 128:26-39. [PMID: 35144860 DOI: 10.1016/j.semcdb.2022.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022]
Abstract
Simple non-coding tandem repeats known as satellite DNA are observed widely across eukaryotes. These repeats occupy vast regions at the centromere and pericentromere of chromosomes but their contribution to cellular function has remained incompletely understood. Here, we review the literature on pericentromeric satellite DNA and discuss its organization and functions across eukaryotic species. We specifically focus on chromocenters, DNA-dense nuclear foci that contain clustered pericentromeric satellite DNA repeats from multiple chromosomes. We first discuss chromocenter formation and the roles that epigenetic modifications, satellite DNA transcripts and sequence-specific satellite DNA-binding play in this process. We then review the newly emerging functions of chromocenters in genome encapsulation, the maintenance of cell fate and speciation. We specifically highlight how the rapid divergence of satellite DNA repeats impacts reproductive isolation between closely related species. Together, we underline the importance of this so-called 'junk DNA' in fundamental biological processes.
Collapse
Affiliation(s)
- Franziska Brändle
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Benjamin Frühbauer
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland
| | - Madhav Jagannathan
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, Zürich CH-8093, Switzerland.
| |
Collapse
|
5
|
Parveen N, Dhawan S. DNA Methylation Patterning and the Regulation of Beta Cell Homeostasis. Front Endocrinol (Lausanne) 2021; 12:651258. [PMID: 34025578 PMCID: PMC8137853 DOI: 10.3389/fendo.2021.651258] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Pancreatic beta cells play a central role in regulating glucose homeostasis by secreting the hormone insulin. Failure of beta cells due to reduced function and mass and the resulting insulin insufficiency can drive the dysregulation of glycemic control, causing diabetes. Epigenetic regulation by DNA methylation is central to shaping the gene expression patterns that define the fully functional beta cell phenotype and regulate beta cell growth. Establishment of stage-specific DNA methylation guides beta cell differentiation during fetal development, while faithful restoration of these signatures during DNA replication ensures the maintenance of beta cell identity and function in postnatal life. Lineage-specific transcription factor networks interact with methylated DNA at specific genomic regions to enhance the regulatory specificity and ensure the stability of gene expression patterns. Recent genome-wide DNA methylation profiling studies comparing islets from diabetic and non-diabetic human subjects demonstrate the perturbation of beta cell DNA methylation patterns, corresponding to the dysregulation of gene expression associated with mature beta cell state in diabetes. This article will discuss the molecular underpinnings of shaping the islet DNA methylation landscape, its mechanistic role in the specification and maintenance of the functional beta cell phenotype, and its dysregulation in diabetes. We will also review recent advances in utilizing beta cell specific DNA methylation patterns for the development of biomarkers for diabetes, and targeting DNA methylation to develop translational approaches for supplementing the functional beta cell mass deficit in diabetes.
Collapse
Affiliation(s)
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| |
Collapse
|
6
|
At the Crossroad of Gene Regulation and Genome Organization: Potential Roles for ATP-Dependent Chromatin Remodelers in the Regulation of CTCF-Mediated 3D Architecture. BIOLOGY 2021; 10:biology10040272. [PMID: 33801596 PMCID: PMC8066914 DOI: 10.3390/biology10040272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Simple Summary The way DNA is packaged in the nucleus of a cell is important for when and how genes are expressed. There are many levels of packaging, and new techniques have revealed that long-range interactions are important for both promoting and restricting the transcription of genes. Some long-range interactions are mediated by physical loops in the genome where, like a rubber band, the ring-shaped cohesin complex loops sections of DNA bound by CCCTC-binding factor (CTCF). Both cohesin and CTCF act on DNA, and increasing evidence indicates that their function is inhibited by nucleosomes bound to the DNA. In this review, we summarize the current knowledge of how individual chromatin remodelers, which utilize ATP to move nucleosomes on DNA, facilitate or inhibit cohesin/CTCF-dependent looping interactions. Abstract In higher order organisms, the genome is assembled into a protein-dense structure called chromatin. Chromatin is spatially organized in the nucleus through hierarchical folding, which is tightly regulated both in cycling cells and quiescent cells. Assembly and folding are not one-time events in a cell’s lifetime; rather, they are subject to dynamic shifts to allow changes in transcription, DNA replication, or DNA damage repair. Chromatin is regulated at many levels, and recent tools have permitted the elucidation of specific factors involved in the maintenance and regulation of the three-dimensional (3D) genome organization. In this review/perspective, we aim to cover the potential, but relatively unelucidated, crosstalk between 3D genome architecture and the ATP-dependent chromatin remodelers with a specific focus on how the architectural proteins CTCF and cohesin are regulated by chromatin remodeling.
Collapse
|
7
|
Xu H, Zhou Q, Yi Q, Tan B, Tian J, Chen X, Wang Y, Yu X, Zhu J. Islet-1 synergizes with Gcn5 to promote MSC differentiation into cardiomyocytes. Sci Rep 2020; 10:1817. [PMID: 32019948 PMCID: PMC7000709 DOI: 10.1038/s41598-020-58387-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) specifically differentiate into cardiomyocytes as a potential way to reverse myocardial injury diseases, and uncovering this differentiation mechanism is immensely important. We have previously shown that histone acetylation/methylation and DNA methylation are involved in MSC differentiation into cardiomyocytes induced by islet-1. These modifications regulate cardiac-specific genes by interacting with each other in the promoter regions of these genes, but the molecular mechanism of these interactions remains unknown. In this study, we found that the key enzymes that regulate GATA4/Nkx2.5 expression are Gcn5/HDAC1, G9A, and DNMT-1. When α-methylene-γ-butyrolactone 3 (MB-3) was used to inhibit Gcn5 expression, we observed that the interactions among these key enzymes in the GATA4/Nkx2.5 promoters were blocked, and MSCs could not be induced into cardiomyocytes. Our results indicated that islet-1 could induce Gcn5 binding to GATA4/Nkx2.5 promoter regions and induce the interactions among Gcn5, HDAC1, G9A and DNMT-1, which upregulated GATA4/Nkx2.5 expression and promoted MSC differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Hao Xu
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Qin Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Qin Yi
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Bin Tan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Jie Tian
- Department of Cardiovascular (Internal Medicine), Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xueni Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Yue Wang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Xia Yu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jing Zhu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China.
| |
Collapse
|
8
|
Histone variant macroH2A: from chromatin deposition to molecular function. Essays Biochem 2019; 63:59-74. [DOI: 10.1042/ebc20180062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/01/2023]
Abstract
Abstract
The eukaryotic genome is regulated in the context of chromatin. Specialized histones, known as histone variants, incorporate into chromatin to replace their canonical counterparts and represent an important layer of regulation to diversify the structural characteristics and functional outputs of chromatin. MacroH2A is an unusual histone variant with a bulky C-terminal non-histone domain that distinguishes it from all other histones. It is a critical player in stabilizing differentiated cell identity by posing as a barrier to somatic cell reprogramming toward pluripotency and acts as a tumor suppressor in a wide range of cancers. MacroH2A histones are generally regarded as repressive variants that are enriched at the inactive X chromosome (Xi) and broad domains across autosomal chromatin. Recent studies have shed light on to how macroH2A influences transcriptional outputs within distinct genomic contexts and revealed new intriguing molecular functions of macroH2A variants beyond transcriptional regulation. Furthermore, the mechanisms of its mysterious chromatin deposition are beginning to be unraveled, facilitating our understanding of its complex regulation of genome function.
Collapse
|
9
|
Hernández-Saavedra D, Strakovsky RS, Ostrosky-Wegman P, Pan YX. Epigenetic Regulation of Centromere Chromatin Stability by Dietary and Environmental Factors. Adv Nutr 2017; 8:889-904. [PMID: 29141972 PMCID: PMC5683002 DOI: 10.3945/an.117.016402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The centromere is a genomic locus required for the segregation of the chromosomes during cell division. This chromosomal region together with pericentromeres has been found to be susceptible to damage, and thus the perturbation of the centromere could lead to the development of aneuploidic events. Metabolic abnormalities that underlie the generation of cancer include inflammation, oxidative stress, cell cycle deregulation, and numerous others. The micronucleus assay, an early clinical marker of cancer, has been shown to provide a reliable measure of genotoxic damage that may signal cancer initiation. In the current review, we will discuss the events that lead to micronucleus formation and centromeric and pericentromeric chromatin instability, as well transcripts emanating from these regions, which were previously thought to be inactive. Studies were selected in PubMed if they reported the effects of nutritional status (macro- and micronutrients) or environmental toxicant exposure on micronucleus frequency or any other chromosomal abnormality in humans, animals, or cell models. Mounting evidence from epidemiologic, environmental, and nutritional studies provides a novel perspective on the origination of aneuploidic events. Although substantial evidence exists describing the role that nutritional status and environmental toxicants have on the generation of micronuclei and other nuclear aberrations, limited information is available to describe the importance of macro- and micronutrients on centromeric and pericentromeric chromatin stability. Moving forward, studies that specifically address the direct link between nutritional status, excess, or deficiency and the epigenetic regulation of the centromere will provide much needed insight into the nutritional and environmental regulation of this chromosomal region and the initiation of aneuploidy.
Collapse
Affiliation(s)
| | | | | | - Yuan-Xiang Pan
- Division of Nutritional Sciences,,Department of Food Science and Human Nutrition,,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Champaign, IL; and
| |
Collapse
|
10
|
Hollar D. Epigenetic Significance of Chromatin Organization During Cellular Aging and Organismal Lifespan. EPIGENETICS, THE ENVIRONMENT, AND CHILDREN’S HEALTH ACROSS LIFESPANS 2016. [PMCID: PMC7153164 DOI: 10.1007/978-3-319-25325-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Hollar
- Pfeiffer University, Morrisville, North Carolina USA
| |
Collapse
|
11
|
Dutta B, Ren Y, Hao P, Sim KH, Cheow E, Adav S, Tam JP, Sze SK. Profiling of the Chromatin-associated Proteome Identifies HP1BP3 as a Novel Regulator of Cell Cycle Progression. Mol Cell Proteomics 2014; 13:2183-97. [PMID: 24830416 DOI: 10.1074/mcp.m113.034975] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Indexed: 12/31/2022] Open
Abstract
The chromatin-associated proteome (chromatome) regulates cellular gene expression by restricting access of transcriptional machinery to template DNA, and dynamic re-modeling of chromatin structure is required to regulate critical cell functions including growth and replication, DNA repair and recombination, and oncogenic transformation in progression to cancer. Central to the control of these processes is efficient regulation of the host cell cycle, which is maintained by rapid changes in chromatin conformation during normal cycle progression. A global overview of chromatin protein organization is therefore essential to fully understand cell cycle regulation, but the influence of the chromatome and chromatin binding topology on host cell cycle progression remains poorly defined. Here we used partial MNase digestion together with iTRAQ-based high-throughput quantitative proteomics to quantify chromatin-associated proteins during interphase progression. We identified a total of 481 proteins with high confidence that were involved in chromatin-dependent events including transcriptional regulation, chromatin re-organization, and DNA replication and repair, whereas the quantitative data revealed the temporal interactions of these proteins with chromatin during interphase progression. When combined with biochemical and functional assays, these data revealed a strikingly dynamic association of protein HP1BP3 with the chromatin complex during different stages of interphase, and uncovered a novel regulatory role for this molecule in transcriptional regulation. We report that HP1BP3 protein maintains heterochromatin integrity during G1-S progression and regulates the duration of G1 phase to critically influence cell proliferative capacity.
Collapse
Affiliation(s)
- Bamaprasad Dutta
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Yan Ren
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Piliang Hao
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Kae Hwan Sim
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Esther Cheow
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Sunil Adav
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - James P Tam
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- From the ‡School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
12
|
Najjar Sadeghi R, Vahedi M, Zojaji H, Zali MR. Correlation between global genome methylation and mutation at CpG codons of p53 gene. J Dig Dis 2013; 14:305-10. [PMID: 23452320 DOI: 10.1111/1751-2980.12053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hypomethylation within the body of the p53 gene, which is normally methylated, has been found in neoplasms. Also, the CG → TA transition was not detected in the CpG codons of the p53 gene in gastritis lesions in Iranian patients. Therefore, an evaluation of the probable correlation between global genome methylation and alteration at CpG codons of p53 gene was needed. METHODS For defining the genotypes of CpG codons, DNA sequencing was performed on 90 paired samples of gastritis and normal tissues. To measure global genome methylation status, the extracted DNA was digested with HpaII (methylation sensitive) and MspI (insensitive). Then, enzymatic digestion was quantitated using Pyrosequencing as peak height. By calculating the HpaII/ MspI peak ratio it is possible to evaluate the methylation level of normal and gastritis tissues. RESULTS Codons 9, 245 and 248 underwent a CG → AT transversion but not a CG → TA transition. In addition, the mean methylation level was significantly different between the patients with GG and GT genotypes at codon 245 (P = 0.019). CONCLUSIONS As CG → AT transversion at codon 245 is associated with global genome methylation, GG hypomethylation may induce different pattern of mutations, for example, C → A instead of C → T at the CpG codons of the p53 gene during gastritis development in Iranian patients.
Collapse
Affiliation(s)
- Rouhallah Najjar Sadeghi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
13
|
Cantariño N, Douet J, Buschbeck M. MacroH2A--an epigenetic regulator of cancer. Cancer Lett 2013; 336:247-52. [PMID: 23531411 DOI: 10.1016/j.canlet.2013.03.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/15/2013] [Accepted: 03/18/2013] [Indexed: 01/22/2023]
Abstract
Epigenetic regulation is one of the most promising and expanding areas of cancer research. One of the emerging, but least understood aspects of epigenetics is the facultative and locus-specific incorporation of histone variants and their function in chromatin. With the characterization of the first loss of function phenotypes of the macroH2A histone variants, previously unrecognized epigenetic mechanisms have now moved into the spotlight of cancer research. Here, we summarize data supporting different molecular mechanisms that could mediate the primarily tumor suppressive function of macroH2A. We further discuss context-dependent and isoform-specific functions. The aim of this review is to provide guidance for those assessing macroH2A's potential as biomarker or therapeutic intervention point.
Collapse
Affiliation(s)
- Neus Cantariño
- Institute for Predictive and Personalized Medicine of Cancer (IMPPC), Crta. Can Ruti, Cami de les Escoles, 08916 Badalona, Barcelona, Spain
| | | | | |
Collapse
|
14
|
Three-dimensional quantitative DNA methylation imagingfor chromatin texture analysis in pharmacoepigenomics and toxicoepigenomics. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Zhao Y, Guo S, Sun J, Huang Z, Zhu T, Zhang H, Gu J, He Y, Wang W, Ma K, Wang J, Yu J. Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS One 2012; 7:e35175. [PMID: 22529986 PMCID: PMC3328468 DOI: 10.1371/journal.pone.0035175] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/09/2012] [Indexed: 12/21/2022] Open
Abstract
PURPOSE There is a need to supplement or supplant the conventional diagnostic tools, namely, cystoscopy and B-type ultrasound, for bladder cancer (BC). We aimed to identify novel DNA methylation markers for BC through genome-wide profiling of BC cell lines and subsequent methylation-specific PCR (MSP) screening of clinical urine samples. EXPERIMENTAL DESIGN The methyl-DNA binding domain (MBD) capture technique, methylCap/seq, was performed to screen for specific hypermethylated CpG islands in two BC cell lines (5637 and T24). The top one hundred hypermethylated targets were sequentially screened by MSP in urine samples to gradually narrow the target number and optimize the composition of the diagnostic panel. The diagnostic performance of the obtained panel was evaluated in different clinical scenarios. RESULTS A total of 1,627 hypermethylated promoter targets in the BC cell lines was identified by Illumina sequencing. The top 104 hypermethylated targets were reduced to eight genes (VAX1, KCNV1, ECEL1, TMEM26, TAL1, PROX1, SLC6A20, and LMX1A) after the urine DNA screening in a small sample size of 8 normal control and 18 BC subjects. Validation in an independent sample of 212 BC patients enabled the optimization of five methylation targets, including VAX1, KCNV1, TAL1, PPOX1, and CFTR, which was obtained in our previous study, for BC diagnosis with a sensitivity and specificity of 88.68% and 87.25%, respectively. In addition, the methylation of VAX1 and LMX1A was found to be associated with BC recurrence. CONCLUSIONS We identified a promising diagnostic marker panel for early non-invasive detection and subsequent BC surveillance.
Collapse
Affiliation(s)
- Yangxing Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shicheng Guo
- Ministry of Education's Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jinfeng Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaohui Huang
- Oncology Institute of Wuxi, The Fourth Affiliated Hospital of Suzhou University, Wuxi, China
| | - Tongyu Zhu
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghua He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kelong Ma
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jina Wang
- Department of Urology, Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Pasque V, Halley-Stott RP, Gillich A, Garrett N, Gurdon JB. Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes. Nucleus 2011; 2:533-9. [PMID: 22064467 PMCID: PMC3324342 DOI: 10.4161/nucl.2.6.17799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How various epigenetic mechanisms restrict chromatin plasticity to determine the stability of repressed genes is poorly understood. Nuclear transfer to Xenopus oocytes induces the transcriptional reactivation of previously silenced genes. Recent work suggests that it can be used to analyze the epigenetic stability of repressed states. The notion that the epigenetic state of genes is an important determinant of the efficiency of nuclear reprogramming is supported by the differential reprogramming of given genes from different starting epigenetic configurations. After nuclear transfer, transcription from the inactive X chromosome of post-implantation-derived epiblast stem cells is reactivated. However, the same chromosome is resistant to reactivation when embryonic fibroblasts are used. Here, we discuss different kinds of evidence that link the histone variant macroH2A to the increased stability of repressed states. We focus on developmentally regulated X chromosome inactivation and repression of autosomal pluripotency genes, where macroH2A may help maintain the long-term stability of the differentiated state of somatic cells.
Collapse
Affiliation(s)
- Vincent Pasque
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
| | | | | | | | | |
Collapse
|
17
|
Varga F, Karlic H, Thaler R, Klaushofer K. Functional aspects of cytidine-guanosine dinucleotides and their locations in genes. Biomol Concepts 2011; 2:391-405. [DOI: 10.1515/bmc.2011.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022] Open
Abstract
AbstractOriginally, the finding of a particular distribution of cytidine-guanosine dinucleotides (CpGs) in genomic DNA was considered to be an interesting structural feature of eukaryotic genome organization. Despite a global depletion of CpGs, genes are frequently associated with CpG clusters called CpG islands (CGIs). CGIs are prevalently unmethylated but often found methylated in pathologic situations. On the other hand, CpGs outside of CGIs are generally methylated and are found mainly in the heterochromatic fraction of the genome. Hypomethylation of those CpGs is associated with genomic instability in malignancy. Additionally, CpG-rich and CpG-poor regions, as well as CpG-shores, are defined. Usually, the methylation status inversely correlates with gene expression. Methylation of CpGs, as well as demethylation and generation of hydroxmethyl-cytosines, is strictly regulated during development and differentiation. This review deals with the relevance of the organizational features of CpGs and their relation to each other.
Collapse
Affiliation(s)
- Franz Varga
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Heidrun Karlic
- 2Ludwig Boltzmann Institute for Leukemia Research and Hematology, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria and Ludwig Boltzmann Cluster Oncology, Vienna, Austria
| | - Roman Thaler
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- 1Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Heinrich Collin Str. 30, A-1140 Vienna, Austria
| |
Collapse
|
18
|
Herrera LA, Prada D, Andonegui MA, Dueñas-González A. The epigenetic origin of aneuploidy. Curr Genomics 2011; 9:43-50. [PMID: 19424483 PMCID: PMC2674307 DOI: 10.2174/138920208783884883] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 02/06/2023] Open
Abstract
Theodore Boveri, eminent German pathologist, observed aneuploidy in cancer cells more than a century ago and suggested that cancer cells derived from a single progenitor cell that acquires the potential for uncontrolled continuous proliferation. Currently, it is well known that aneuploidy is observed in virtually all cancers. Gain and loss of chromosomal material in neoplastic cells is considered to be a process of diversification that leads to survival of the fittest clones. According to Darwin’s theory of evolution, the environment determines the grounds upon which selection takes place and the genetic characteristics necessary for better adaptation. This concept can be applied to the carcinogenesis process, connecting the ability of cancer cells to adapt to different environments and to resist chemotherapy, genomic instability being the driving force of tumor development and progression. What causes this genome instability? Mutations have been recognized for a long time as the major source of genome instability in cancer cells. Nevertheless, an alternative hypothesis suggests that aneuploidy is a primary cause of genome instability rather than solely a simple consequence of the malignant transformation process. Whether genome instability results from mutations or from aneuploidy is not a matter of discussion in this review. It is most likely both phenomena are intimately related; however, we will focus on the mechanisms involved in aneuploidy formation and more specifically on the epigenetic origin of aneuploid cells. Epigenetic inheritance is defined as cellular information—other than the DNA sequence itself—that is heritable during cell division. DNA methylation and histone modifications comprise two of the main epigenetic modifications that are important for many physiological and pathological conditions, including cancer. Aberrant DNA methylation is the most common molecular cancer-cell lesion, even more frequent than gene mutations; tumor suppressor gene silencing by CpG island promoter hypermethylation is perhaps the most frequent epigenetic modification in cancer cells. Epigenetic characteristics of cells may be modified by several factors including environmental exposure, certain nutrient deficiencies, radiation, etc. Some of these alterations have been correlated with the formation of aneuploid cells in vivo. A growing body of evidence suggests that aneuploidy is produced and caused by chromosomal instability. We propose and support in this manuscript that not only genetics but also epigenetics, contribute in a major fashion to aneuploid cell formation.
Collapse
Affiliation(s)
- Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer (UIBC)-Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBM)-Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | | | | |
Collapse
|
19
|
Tanasijevic B, Rasmussen TP. X chromosome inactivation and differentiation occur readily in ES cells doubly-deficient for macroH2A1 and macroH2A2. PLoS One 2011; 6:e21512. [PMID: 21738686 PMCID: PMC3127949 DOI: 10.1371/journal.pone.0021512] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/31/2011] [Indexed: 12/29/2022] Open
Abstract
Macrohistones (mH2As) are unusual histone variants found exclusively in vertebrate chromatin. In mice, the H2afy gene encodes two splice variants, mH2A1.1 and mH2A1.2 and a second gene, H2afy2, encodes an additional mH2A2 protein. Both mH2A isoforms have been found enriched on the inactive X chromosome (Xi) in differentiated mammalian female cells, and are incorporated into the chromatin of developmentally-regulated genes. To investigate the functional significance of mH2A isoforms for X chromosome inactivation (XCI), we produced male and female embryonic stem cell (ESC) lines with stably-integrated shRNA constructs that simultaneously target both mH2A1 and mH2A2. Surprisingly, we find that female ESCs deficient for both mH2A1 and mH2A2 readily execute and maintain XCI upon differentiation. Furthermore, male and female mH2A-deficient ESCs proliferate normally under pluripotency culture conditions, and respond to several standard differentiation procedures efficiently. Our results show that XCI can readily proceed with substantially reduced total mH2A content.
Collapse
Affiliation(s)
- Borko Tanasijevic
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Theodore P. Rasmussen
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
20
|
Friedman N, Barzily-Rokni M, Isaac S, Eden A. The histone H2A variant macroH2A1 does not localize to the centrosome. PLoS One 2011; 6:e17262. [PMID: 21364955 PMCID: PMC3043097 DOI: 10.1371/journal.pone.0017262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/27/2011] [Indexed: 12/31/2022] Open
Abstract
MacroH2A1 is a histone H2A variant which contains a large non-histone C-terminal region of largely unknown function. Within this region is a macro domain which can bind ADP-ribose and related molecules. Most studies of macroH2A1 focus on the involvement of this variant in transcriptional repression. Studies in mouse embryos and in embryonic stem cells suggested that during early development macroH2A can be found at the centrosome. Centrosomal localization of macroH2A was later reported in somatic cells. Here we provide data showing that macroH2A1 does not localize to the centrosome and that the centrosomal signal observed with antibodies directed against the macroH2A1 non-histone region may be the result of antibody cross-reactivity.
Collapse
Affiliation(s)
- Nathalie Friedman
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Barzily-Rokni
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Isaac
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Eden
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
21
|
Barzily-Rokni M, Friedman N, Ron-Bigger S, Isaac S, Michlin D, Eden A. Synergism between DNA methylation and macroH2A1 occupancy in epigenetic silencing of the tumor suppressor gene p16(CDKN2A). Nucleic Acids Res 2010; 39:1326-35. [PMID: 21030442 PMCID: PMC3045621 DOI: 10.1093/nar/gkq994] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Promoter hypermethylation and heterochromatinization is a frequent event leading to gene inactivation and tumorigenesis. At the molecular level, inactivation of tumor suppressor genes in cancer has many similarities to the inactive X chromosome in female cells and is defined and maintained by DNA methylation and characteristic histone modifications. In addition, the inactive-X is marked by the histone macroH2A, a variant of H2A with a large non-histone region of unknown function. Studying tumor suppressor genes (TSGs) silenced in cancer cell lines, we find that when active, these promoters are associated with H2A.Z but become enriched for macroH2A1 once silenced. Knockdown of macroH2A1 was not sufficient for reactivation of silenced genes. However, when combined with DNA demethylation, macroH2A1 deficiency significantly enhanced reactivation of the tumor suppressor genes p16, MLH1 and Timp3 and inhibited cell proliferation. Our findings link macroH2A1 to heterochromatin of epigenetically silenced cancer genes and indicate synergism between macroH2A1 and DNA methylation in maintenance of the silenced state.
Collapse
Affiliation(s)
- Michal Barzily-Rokni
- Department of Cell & Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Sugimura K, Fukushima Y, Ishida M, Ito S, Nakamura M, Mori Y, Okumura K. Cell cycle-dependent accumulation of histone H3.3 and euchromatic histone modifications in pericentromeric heterochromatin in response to a decrease in DNA methylation levels. Exp Cell Res 2010; 316:2731-46. [PMID: 20599948 DOI: 10.1016/j.yexcr.2010.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 06/21/2010] [Accepted: 06/21/2010] [Indexed: 01/08/2023]
Abstract
In mammals, DNA methylation is an important epigenetic mark that is associated with gene silencing, particularly in constitutive heterochromatin. However, the effect of DNA methylation on other epigenetic properties of chromatin is controversial. In this study, we show that inhibition of DNA methylation in mouse fibroblast cells affects histone modification and the subnuclear localization of histone H3.3 in a cell cycle-dependent manner. Using a DNA methyltransferase (Dnmt) inhibitor 5-aza-2'-deoxycytidine (5-aza-dC), we found that reduced levels of DNA methylation were associated with the activation of transcription from centromeric and pericentromeric satellite repeats. The de-repressed pericentromeric chromatin was enriched in euchromatic histone modifications such as acetylation of histone H4, and di- and tri-methylation of lysine 4 on histone H3. Spatio-temporal analysis showed that the accumulation of these euchromatic histone modifications occurred during the second S phase following 5-aza-dC treatment, corresponding precisely with a shift in replication timing of the pericentromeric satellite repeats from middle/late S phase to early S phase. Moreover, we found that histone H3.3 was deposited on the pericentromeric heterochromatin prior to the accumulation of the euchromatic histone modifications. These results suggest that DNA CpG methylation is essential for the proper organization of pericentromeric heterochromatin in differentiated mouse cells.
Collapse
Affiliation(s)
- Kazuto Sugimura
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Chang CC, Gao S, Sung LY, Corry GN, Ma Y, Nagy ZP, Tian XC, Rasmussen TP. Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer. Cell Reprogram 2010; 12:43-53. [PMID: 20132012 DOI: 10.1089/cell.2009.0043] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oocytes contain a maternal store of the histone variant MacroH2A, which is eliminated from zygotes shortly after fertilization. Preimplantation embryos then execute three cell divisions without MacroH2A before the onset of embryonic MacroH2A expression at the 16-cell stage. During subsequent development, MacroH2A is expressed in most cells, where it is assembled into facultative heterochromatin. Because differentiated cells contain heterochromatin rich in MacroH2A, we investigated the fate of MacroH2A during somatic cell nuclear transfer (SCNT). The results show that MacroH2A is rapidly eliminated from the chromosomes of transplanted somatic cell nuclei by a process in which MacroH2A is first stripped from chromosomes, and then degraded. Furthermore, MacroH2A is eliminated from transplanted nuclei by a mechanism requiring intact microtubules and nuclear envelope break down. Preimplantation SCNT embryos express endogenous MacroH2A once they reach the morula stage, similar to the timing observed in embryos produced by natural fertilization. We also show that the ability to reprogram somatic cell heterochromatin by SCNT is tied to the developmental stage of recipient cell cytoplasm because enucleated zygotes fail to support depletion of MacroH2A from transplanted somatic nuclei. Together, the results indicate that nuclear reprogramming by SCNT utilizes the same chromatin remodeling mechanisms that act upon the genome immediately after fertilization.
Collapse
Affiliation(s)
- Ching-Chien Chang
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PDS, Shin D, Chi NC, Shin CH, Schlegel A, Halpern M, Stainier DY. Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 2009; 334:213-23. [PMID: 19631206 PMCID: PMC2759669 DOI: 10.1016/j.ydbio.2009.07.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 07/07/2009] [Accepted: 07/15/2009] [Indexed: 02/02/2023]
Abstract
Developmental mechanisms regulating gene expression and the stable acquisition of cell fate direct cytodifferentiation during organogenesis. Moreover, it is likely that such mechanisms could be exploited to repair or regenerate damaged organs. DNA methyltransferases (Dnmts) are enzymes critical for epigenetic regulation, and are used in concert with histone methylation and acetylation to regulate gene expression and maintain genomic integrity and chromosome structure. We carried out two forward genetic screens for regulators of endodermal organ development. In the first, we screened for altered morphology of developing digestive organs, while in the second we screed for the lack of terminally differentiated cell types in the pancreas and liver. From these screens, we identified two mutant alleles of zebrafish dnmt1. Both lesions are predicted to eliminate dnmt1 function; one is a missense mutation in the catalytic domain and the other is a nonsense mutation that eliminates the catalytic domain. In zebrafish dnmt1 mutants, the pancreas and liver form normally, but begin to degenerate after 84 h post fertilization (hpf). Acinar cells are nearly abolished through apoptosis by 100 hpf, though neither DNA replication, nor entry into mitosis is halted in the absence of detectable Dnmt1. However, endocrine cells and ducts are largely spared. Surprisingly, dnmt1 mutants and dnmt1 morpholino-injected larvae show increased capacity for pancreatic beta cell regeneration in an inducible model of pancreatic beta cell ablation. Thus, our data suggest that Dnmt1 is dispensable for pancreatic duct or endocrine cell formation, but not for acinar cell survival. In addition, Dnmt1 may influence the differentiation of pancreatic beta cell progenitors or the reprogramming of cells toward the pancreatic beta cell fate.
Collapse
Affiliation(s)
- Ryan M. Anderson
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Justin A. Bosch
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Mary G. Goll
- Department of Embryology, Carnegie Institution for Science 3520 San Martin Drive Baltimore MD 21218, USA
| | - Daniel Hesselson
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - P. Duc Si Dong
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Donghun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Neil C. Chi
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
| | - Chong Hyun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| | - Amnon Schlegel
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
- Department of Medicine, Division of Endocrinology, San Francisco General Hospital, 1001 Potrero Ave, San Francisco, CA 941110
| | - Marnie Halpern
- Department of Embryology, Carnegie Institution for Science 3520 San Martin Drive Baltimore MD 21218, USA
| | - Didier Y.R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Diabetes Center, and Liver Center, University of California, San Francisco, 1550 Fourth Street, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Pogribny IP, Tryndyak VP, Bagnyukova TV, Melnyk S, Montgomery B, Ross SA, Latendresse JR, Rusyn I, Beland FA. Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol 2009; 51:176-86. [PMID: 19450891 PMCID: PMC2773516 DOI: 10.1016/j.jhep.2009.03.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/15/2009] [Accepted: 03/02/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS The importance of epigenetic changes in etiology and pathogenesis of disease has been increasingly recognized. However, the role of epigenetic alterations in the genesis of hepatic steatosis and cause of individual susceptibilities to this pathological state are largely unknown. METHODS Male inbred C57BL/6J and DBA/2J mice were fed a lipogenic methyl-deficient diet (MDD) that causes liver injury similar to human non-alcoholic steatohepatitis (NASH) for 6, 12, or 18 weeks, and the status of global and repetitive elements cytosine methylation, histone modifications, and expression of proteins responsible for those epigenetic modifications in livers was determined. RESULTS The development of hepatic steatosis in inbred C57BL/6J and DBA/2J mice was accompanied by prominent epigenetic abnormalities. This was evidenced by pronounced loss of genomic and repetitive sequences cytosine methylation, especially at major and minor satellites, accompanied by increased levels of repeat-associated transcripts, aberrant histone modifications, and alterations in expression of the maintenance DNA methyltransferase 1 (DNMT1) and de novo DNMT3A proteins in the livers of both mouse strains. However, the DBA/2J mice, which were characterized by an initially lower degree of methylation of repetitive elements and lower extent of histone H3 lysine 9 (H3K9) and H3 lysine 27 (H3K27) trimethylation in the normal livers, as compared to those in the C57BL/6J mice, developed more prominent NASH-specific pathomorphological changes. CONCLUSIONS These results mechanistically link epigenetic alterations to the pathogenesis of hepatic steatosis and strongly suggest that differences in the cellular epigenetic status may be a predetermining factor to individual susceptibilities to hepatic steatosis.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The genomes of many animals, plants and fungi are tagged by methylation of DNA cytosine. To understand the biological significance of this epigenetic mark it is essential to know where in the genome it is located. New techniques are making it easier to map DNA methylation patterns on a large scale and the results have already provided surprises. In particular, the conventional view that DNA methylation functions predominantly to irreversibly silence transcription is being challenged. Not only is promoter methylation often highly dynamic during development, but many organisms also seem to target DNA methylation specifically to the bodies of active genes.
Collapse
|
27
|
Bönisch C, Nieratschker SM, Orfanos NK, Hake SB. Chromatin proteomics and epigenetic regulatory circuits. Expert Rev Proteomics 2008; 5:105-19. [PMID: 18282127 DOI: 10.1586/14789450.5.1.105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Many phenotypic changes of eukaryotic cells due to changes in gene expression depend on alterations in chromatin structure. Processes involved in the alteration of chromatin are diverse and include post-translational modifications of histone proteins, incorporation of specific histone variants, methylation of DNA and ATP-dependent chromatin remodeling. Interconnected with these processes are the localization of chromatin domains within the nuclear architecture and the appearance of various classes of noncoding regulatory RNAs. Recent experiments underscore the role of these processes in influencing diverse biological functions. However, the evidence to date implies the importance of an interplay of all these chromatin-changing functions, generating an epigenetic regulatory circuit that is still not well understood.
Collapse
Affiliation(s)
- Clemens Bönisch
- Adolf-Butenandt-Institute & Center for Integrated Protein Science Munich (CIPSM), Department of Molecular Biology, Ludwig-Maximilians University, Schillerstr. 44, 80336 Munich, Germany.
| | | | | | | |
Collapse
|
28
|
Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, Gao B, Wang W, Gu L, Meng J, Wang J, Feng X, Li Y, Yao X, Zhu J. A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 2008; 13:7296-304. [PMID: 18094410 DOI: 10.1158/1078-0432.ccr-07-0861] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE This study aims to provide a better set of DNA methylation markers in urine sediments for sensitive and specific detection of bladder cancer. EXPERIMENTAL DESIGN Fifty-nine tumor-associated genes were profiled in three bladder cancer cell lines, a small cohort of cancer biopsies and urine sediments by methylation-specific PCR. Twenty-one candidate genes were then profiled in urine sediments from 132 bladder cancer patients (8 cases for stage 0a; 68 cases for stage I; 50 cases for stage II; 4 cases for stages III; and 2 cases for stage IV), 23 age-matched patients with noncancerous urinary lesions, 6 neurologic diseases, and 7 healthy volunteers. RESULTS Despite six incidences of four genes reported in 3 of 23 noncancerous urinary lesion patients analyzed, cancer-specific hypermethylation in urine sediments were reported for 15 genes (P < 0.05). Methylation assessment of an 11-gene set (SALL3, CFTR, ABCC6, HPR1, RASSF1A, MT1A, RUNX3, ITGA4, BCL2, ALX4, MYOD1, DRM, CDH13, BMP3B, CCNA1, RPRM, MINT1, and BRCA1) confirmed the existing diagnosis of 121 among 132 bladder cancer cases (sensitivity, 91.7%) with 87% accuracy. Significantly, more than 75% of stage 0a and 88% of stage I disease were detected, indicating its value in the early diagnosis of bladder cancer. Interestingly, the cluster of reported methylation markers used in the U.S. bladder cancers is distinctly different from that identified in this study, suggesting a possible epigenetic disparity between the American and Chinese cases. CONCLUSIONS Methylation profiling of an 11-gene set in urine sediments provides a sensitive and specific detection of bladder cancer.
Collapse
Affiliation(s)
- Jian Yu
- Cancer Genetics and Gene Therapy Program, The State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Latham T, Gilbert N, Ramsahoye B. DNA methylation in mouse embryonic stem cells and development. Cell Tissue Res 2007; 331:31-55. [PMID: 18060563 DOI: 10.1007/s00441-007-0537-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/17/2007] [Indexed: 01/01/2023]
Abstract
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.
Collapse
Affiliation(s)
- Tom Latham
- Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
30
|
Dai B, Rasmussen TP. Global Epiproteomic Signatures Distinguish Embryonic Stem Cells from Differentiated Cells. Stem Cells 2007; 25:2567-74. [PMID: 17641388 DOI: 10.1634/stemcells.2007-0131] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Complex organisms contain a variety of distinct cell types but only a single genome. Therefore, cellular identity must be specified by the developmentally regulated expression of a subset of genes from an otherwise static genome. In mammals, genomic DNA is modified by cytosine methylation, resulting in a pattern that is distinctive for each cell type (the epigenome). Because nucleosomal histones are subject to a wide variety of post-translational modifications (PTMs), we reasoned that an analogous "epiproteome" might exist that could also be correlated with cellular identity. Here, we show that the quantitative evaluation of nucleosome PTMs yields epiproteomic signatures that are useful for the investigation of stem cell differentiation, chromatin function, cellular identity, and epigenetic responses to pharmacologic agents. We have developed a novel enzyme-linked immunosorbent assay-based method for the quantitative evaluation of the steady-state levels of PTMs and histone variants in preparations of native intact nucleosomes. We show that epiproteomic responses to the histone deacetylase inhibitor trichostatin A trigger changes in histone methylation as well as acetylation, and that the epiproteomic responses differ between mouse embryonic stem cells and mouse embryonic fibroblasts (MEFs). ESCs subjected to retinoic acid-induced differentiation contain reconfigured nucleosomes that include increased content of the histone variant macroH2A and other changes. Furthermore, ESCs can be distinguished from embryonal carcinoma cells and MEFs based purely on their epiproteomic signatures. These results indicate that epiproteomic nucleosomal signatures are useful for the investigation of stem cell identity and differentiation, nuclear reprogramming, epigenetic regulation, chromatin dynamics, and assays for compounds with epigenetic activities. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Bo Dai
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | | |
Collapse
|
31
|
Gilbert N, Thomson I, Boyle S, Allan J, Ramsahoye B, Bickmore WA. DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J Cell Biol 2007; 177:401-11. [PMID: 17485486 PMCID: PMC2064831 DOI: 10.1083/jcb.200607133] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 04/04/2007] [Indexed: 12/13/2022] Open
Abstract
DNA methylation has been implicated in chromatin condensation and nuclear organization, especially at sites of constitutive heterochromatin. How this is mediated has not been clear. In this study, using mutant mouse embryonic stem cells completely lacking in DNA methylation, we show that DNA methylation affects nuclear organization and nucleosome structure but not chromatin compaction. In the absence of DNA methylation, there is increased nuclear clustering of pericentric heterochromatin and extensive changes in primary chromatin structure. Global levels of histone H3 methylation and acetylation are altered, and there is a decrease in the mobility of linker histones. However, the compaction of both bulk chromatin and heterochromatin, as assayed by nuclease digestion and sucrose gradient sedimentation, is unaltered by the loss of DNA methylation. This study shows how the complete loss of a major epigenetic mark can have an impact on unexpected levels of chromatin structure and nuclear organization and provides evidence for a novel link between DNA methylation and linker histones in the regulation of chromatin structure.
Collapse
Affiliation(s)
- Nick Gilbert
- Medical Research Council Human Genetics Unit, Edinburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|
32
|
Smallwood A, Estève PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 2007; 21:1169-78. [PMID: 17470536 PMCID: PMC1865489 DOI: 10.1101/gad.1536807] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian euchromatic gene silencing results from the combined repressive effects of histone and DNA methyltransferases. Little is known of the mechanism by which these enzymes cooperate to induce silencing. Here we show that mammalian HP1 family members mediate communication between histone and DNA methyltransferases. In vitro, methylation of histone 3 Lys 9 by G9a creates a binding platform for HP1alpha, beta, and gamma. DNMT1 interacts with HP1 resulting in increased DNA methylation on DNA and chromatin templates in vitro. The functional and physical interaction can be recapitulated in vivo. Binding of GAL4-HP1 to a reporter construct is sufficient to induce repression and DNA methylation in DNMT1 wild-type but not DNMT1-null cells. Additionally, silencing of the Survivin gene coincides with recruitment of G9a and HP1 in DNMT1 wild-type but not null cells. We conclude that direct interactions between HP1 and DNMT1 mediate silencing of euchromatic genes.
Collapse
Affiliation(s)
- Andrea Smallwood
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | - Michael Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
- Corresponding author.E-MAIL ; FAX (310) 206-9598
| |
Collapse
|
33
|
Abstract
At certain evolutionary junctures, two or more mutations participating in the build-up of a new complex function may be required to become available simultaneously in the same individuals. How could this happen in higher organisms whose populations are small compared to those of microbes, and in which chances of combined nearly simultaneous highly specific favorable mutations are correspondingly low? The question can in principle be answered for regulatory evolution, one of the basic processes of evolutionary change. A combined resetting of transcription rates in several genes could occur in the same individual. It is proposed that, in eukaryotes, changes in epigenetic trends and epigenetically transforming encounters between alternative chromatin structures could arise frequently enough so as to render probable particular conjunctions of changed transcription rates. Such conjunctions could involve mutational changes with low specificity requirements in gene-associated regions of non-protein-coding sequences. The effects of such mutations, notably when they determine the use of histone variants and covalent modifications of histones, can be among those that migrate along chromatin. Changes in chromatin structure are often cellularly inheritable over at least a limited number of generations of cells, and of individuals when the germ line is involved. SINEs and LINEs, which have been considered "junk DNA", are among the repeat sequences that would appear liable to have teleregulatory effects on the function of a nearby promoter, through changes in their numbers and distribution. There may also be present preexisting unstably inheritable epigenetic trends leading to cellular variegation, trends endemic in a cell population based on DNA sequences previously established in the neighborhood. Either way, epigenetically conditioned teleregulatory trends may display only limited penetrance. The imposition at a distance of new chromatin structures with regulatory impact can occur in cis as well as in trans, and is examined as intrachromosomally spreading teleregulation and interchromosomal "gene kissing". The chances for two or more particular epigenetically determined regulatory trends to occur together in a cell are increased thanks to the proposed low specificity requirements for most of the pertinent sequence changes in intergenic and intronic DNA or in the distribution of middle repetitive sequences that have teleregulatory impact. Inheritable epigenetic changes ("epimutations") with effects at a distance would then perdure over the number of generations required for "assimilation" of the several regulatory novelties through the occurrence and selection, gene by gene, of specific classical mutations. These mutations would have effects similar to the epigenetic effects, yet would provide stability and penetrance. The described epigenetic/genetic partnership may well at times have opened the way toward certain complex new functions. Thus, the presence of "junk DNA", through co-determining the (higher or lower) order and the variants of chromatin structure with regulatory effects at a distance, might make an important contribution to the evolution of complex organisms.
Collapse
Affiliation(s)
- Emile Zuckerkandl
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
34
|
Damelin M, Bestor TH. Biological functions of DNA methyltransferase 1 require its methyltransferase activity. Mol Cell Biol 2007; 27:3891-9. [PMID: 17371843 PMCID: PMC1900033 DOI: 10.1128/mcb.00036-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methyltransferase 1 (DNMT1) has been reported to interact with a wide variety of factors and to contain intrinsic transcriptional repressor activity. When a conservative point mutation was introduced at the key catalytic residue, mutant DNMT1 failed to rescue any of the phenotypes of Dnmt1-null embryonic stem (ES) cells, which indicated that the biological functions of DNMT1 are exerted through the methylation of DNA. ES cells that expressed the mutant protein did not survive differentiation. Intracisternal A-particle family retrotransposons were no longer methylated and were transcribed at high levels. The proper localization of DNMT1 depended on normal genomic methylation, and we discuss the implications of this finding for epigenetic dysregulation in cancer.
Collapse
Affiliation(s)
- Marc Damelin
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
35
|
LI S, LIU H. Functions of histone H2A variants. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00385.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Acta Rev Cancer 2006; 1775:138-62. [PMID: 17045745 DOI: 10.1016/j.bbcan.2006.08.007] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/24/2006] [Accepted: 08/27/2006] [Indexed: 12/14/2022]
Abstract
Changes in human DNA methylation patterns are an important feature of cancer development and progression and a potential role in other conditions such as atherosclerosis and autoimmune diseases (e.g., multiple sclerosis and lupus) is being recognised. The cancer genome is frequently characterised by hypermethylation of specific genes concurrently with an overall decrease in the level of 5 methyl cytosine. This hypomethylation of the genome largely affects the intergenic and intronic regions of the DNA, particularly repeat sequences and transposable elements, and is believed to result in chromosomal instability and increased mutation events. This review examines our understanding of the patterns of cancer-associated hypomethylation, and how recent advances in understanding of chromatin biology may help elucidate the mechanisms underlying repeat sequence demethylation. It also considers how global demethylation of repeat sequences including transposable elements and the site-specific hypomethylation of certain genes might contribute to the deleterious effects that ultimately result in the initiation and progression of cancer and other diseases. The use of hypomethylation of interspersed repeat sequences and genes as potential biomarkers in the early detection of tumors and their prognostic use in monitoring disease progression are also examined.
Collapse
Affiliation(s)
- Ann S Wilson
- Preventative Health National Research Flagship, North Ryde, NSW, Australia
| | | | | |
Collapse
|
37
|
Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ. The X and Y chromosomes assemble into H2A.Z-containing [corrected] facultative heterochromatin [corrected] following meiosis. Mol Cell Biol 2006; 26:5394-405. [PMID: 16809775 PMCID: PMC1592715 DOI: 10.1128/mcb.00519-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Spermatogenesis is a complex sequential process that converts mitotically dividing spermatogonia stem cells into differentiated haploid spermatozoa. Not surprisingly, this process involves dramatic nuclear and chromatin restructuring events, but the nature of these changes are poorly understood. Here, we linked the appearance and nuclear localization of the essential histone variant H2A.Z with key steps during mouse spermatogenesis. H2A.Z cannot be detected during the early stages of spermatogenesis, when the bulk of X-linked genes are transcribed, but its expression begins to increase at pachytene, when meiotic sex chromosome inactivation (MSCI) occurs, peaking at the round spermatid stage. Strikingly, when H2A.Z is present, there is a dynamic nuclear relocalization of heterochromatic marks (HP1beta and H3 di- and tri-methyl K9), which become concentrated at chromocenters and the inactive XY body, implying that H2A.Z may substitute for the function of these marks in euchromatin. We also show that the X and the Y chromosome are assembled into facultative heterochromatic structures postmeiotically that are enriched with H2A.Z, thereby replacing macroH2A. This indicates that XY silencing continues following MSCI. These results provide new insights into the large-scale changes in the composition and organization of chromatin associated with spermatogenesis and argue that H2A.Z has a unique role in maintaining sex chromosomes in a repressed state.
Collapse
Affiliation(s)
- Ian K Greaves
- The John Curtin School of Medical Research, The Australian National University, P.O. Box 334, Canberra, Australian Capital Territory, 2601 Australia.
| | | | | | | | | |
Collapse
|
38
|
Tsumura A, Hayakawa T, Kumaki Y, Takebayashi SI, Sakaue M, Matsuoka C, Shimotohno K, Ishikawa F, Li E, Ueda HR, Nakayama JI, Okano M. Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 2006; 11:805-14. [PMID: 16824199 DOI: 10.1111/j.1365-2443.2006.00984.x] [Citation(s) in RCA: 419] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previous studies using Dnmt1(-/-) or Dnmt3a(-/-)Dnmt3b(-/-) ES cells, however, have shown that undifferentiated embryonic stem (ES) cells can tolerate hypomethylation for their proliferation. In an attempt to investigate the effects of the complete loss of CpG DNA methyltransferase function, we established mouse ES cells lacking all three of these enzymes by gene targeting. Despite the absence of CpG methylation, as demonstrated by genome-wide methylation analysis, these triple knockout (TKO) ES cells grew robustly and maintained their undifferentiated characteristics. TKO ES cells retained pericentromeric heterochromatin domains marked with methylation at Lys9 of histone H3 and heterochromatin protein-1, and maintained their normal chromosome numbers. Our results indicate that ES cells can maintain stem cell properties and chromosomal stability in the absence of CpG methylation and CpG DNA methyltransferases.
Collapse
Affiliation(s)
- Akiko Tsumura
- Laboratory for Mammalian Epigenetic Studies, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsuzaki K, Deng G, Tanaka H, Kakar S, Miura S, Kim YS. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res 2006; 11:8564-9. [PMID: 16361538 DOI: 10.1158/1078-0432.ccr-05-0859] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The relationship between global hypomethylation, chromosomal instability (CIN), and microsatellite instability (MSI) remains unclear in colorectal cancer. The aim of this study was to investigate the relationship between global methylation status, loss of heterozygosity (LOH), and MSI in sporadic colorectal cancer. EXPERIMENTAL DESIGN We determined global methylation levels in 80 sporadic colorectal cancers, 51 adjacent normal tissues, and 20 normal tissues using the long interspersed nucleotide elements-combined bisulfite restriction analysis method. We also analyzed 80 colorectal cancers for MSI status and LOH at chromosomes 5q21, 8p12-22, 17p13, and 18q21. RESULTS We identified 14 cases of MSI (17.5%) and 58 cases of LOH (72.5%). LOH was observed more frequently in microsatellite stable (MSS) cancers than in MSI cancers at all loci. Colorectal cancers showed significantly lower global methylation levels than did normal tissues (41.0+/-9.7% versus 54.3+/-6.5%; P<0.001). MSS cancers showed significantly lower global methylation levels when compared with MSI cancers (39.5+/-9.4% versus 48.2+/-8.2%; P=0.003). Tumors with global hypomethylation (with <or=40% of methylation levels) had a significantly increased number of chromosomal loci with LOH than did tumors without global hypomethylation (1.9 versus 0.9; P<0.001); 11 tumors (13.9%) lacked both MSI and LOH. This subgroup had significantly higher global methylation levels (46.8+/-8.7%) than did MSS cancers with LOH (38.0+/-9.0%; P=0.006). CONCLUSIONS These data showed a significant association between global hypomethylation and chromosomal instability in sporadic colorectal cancer. This suggests that global hypomethylation plays an important role in inducing genomic instability in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Koji Matsuzaki
- Department of Medicine, Gastrointestinal Research Laboratory, Veteran Affairs Medical Center, Medicine and Anatomic Pathology, University of California San Francisco, San Francisco, California 94121, USA
| | | | | | | | | | | |
Collapse
|
40
|
Choo JH, Kim JD, Chung JH, Stubbs L, Kim J. Allele-specific deposition of macroH2A1 in imprinting control regions. Hum Mol Genet 2006; 15:717-24. [PMID: 16421169 DOI: 10.1093/hmg/ddi485] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the current study, we analyzed the deposition patterns of macroH2A1 at a number of different genomic loci located in X chromosome and autosomes. MacroH2A1 is preferentially deposited at methylated CpG-rich regions located close to promoters. The macroH2A1 deposition patterns at the methylated CpG islands of several imprinted domains, including the imprinting control regions (ICRs) of Xist, Peg3, H19/Igf2, Gtl2/Dlk1 and Gnas domains, show consistent allele-specificity towards inactive, methylated alleles. The macroH2A1 deposition levels at the ICRs and other differentially methylated regions of these domains are also either higher or comparable to those observed at the inactive X chromosome of female mammals. Overall, our results indicate that besides DNA methylation macroH2A1 is another epigenetic component in the chromatin of ICRs displaying differential association with two parental alleles.
Collapse
Affiliation(s)
- Jung Ha Choo
- Department of Biological Sciences, Center for BioModular Multi-scale Systems, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
41
|
Pinto R, Ivaldi C, Reyes M, Doyen C, Mietton F, Mongelard F, Alvarez M, Molina A, Dimitrov S, Krauskopf M, Vera MI, Bouvet P. Seasonal environmental changes regulate the expression of the histone variant macroH2A in an eurythermal fish. FEBS Lett 2005; 579:5553-8. [PMID: 16213499 DOI: 10.1016/j.febslet.2005.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 09/01/2005] [Accepted: 09/13/2005] [Indexed: 11/24/2022]
Abstract
Adaptation to cold and warm conditions requires dramatic change in gene expression. The acclimatization process of the common carp Cyprinus carpio L. in its natural habitat has been used to study how organisms respond to natural environmental changes. At the cellular level, adaptation to cold condition is accompanied by a dramatic alteration in nucleolar structure and a down regulation of the expression of ribosomal genes. We show that the enrichment of condensed chromatin in winter adapted cells is not correlated with an increase of the heterochromatin marker trimethyl and monomethyl K20H4. However, the expression of the tri methyl K4 H3 and of the variant histone macroH2A is significantly increased during the winter season together with a hypermethylation of CpG residues. Taking into account the properties of macroH2A toward chromatin structure and dynamics and its role in gene repression our data suggest that the increased expression of macroH2A and the hypermethylation of DNA which occurs upon winter-acclimatization plays a major role for the reorganization of chromatin structure and the regulation of gene expression during the physiological adaptation to a colder environment.
Collapse
Affiliation(s)
- Rodrigo Pinto
- Millennium Institute for Fundamental and Applied Biology and Biological Sciences Department, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chang CC, Ma Y, Jacobs S, Tian XC, Yang X, Rasmussen TP. A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol 2005; 278:367-80. [PMID: 15680357 DOI: 10.1016/j.ydbio.2004.11.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 11/01/2004] [Accepted: 11/11/2004] [Indexed: 01/15/2023]
Abstract
MacroH2A histones are variants of canonical histone H2A that are conserved among vertebrates. Previous studies have implicated macroH2As in epigenetic gene-silencing events including X chromosome inactivation. Here we show that macroH2A is present in developing and mature mouse oocytes. MacroH2A is localized to chromatin of germinal vesicles (GV) in both late growth stage (lg-GV) and fully grown (fg-GV) stage oocytes. In addition, macroH2A is associated with the chromosomes of mature oocytes, and abundant macroH2A is present in the first polar body. However, maternal macroH2A is lost from zygotes generated by normal fertilization by the late 2 pronuclei (2PN) stage. Normal embryos at 2-, 4-, and 8-cell stages lack macroH2A except in residual polar bodies. MacroH2A protein expression reappears in embryos after the 8-cell stage and persists in morulae and blastocysts, where nuclear macroH2A is present in both the trophectodermal and inner cell mass cells. We followed the loss of macroH2A from pronuclei in parthenogenetic embryos generated by oocyte activation. Abundant macroH2A is present upon the metaphase II plate and persists through parthenogenetic anaphase, but macroH2A is progressively lost during pronuclear decondensation prior to synkaryogamy. Examination of embryos generated by intracytoplasmic sperm injection (ICSI) revealed that macroH2A is associated exclusively with female pronuclei prior to loss in late pronucleus stage embryos. These results outline a surprising finding that a maternal store of macroH2A is removed from the maternal genome prior to synkaryogamy, resulting in embryos that execute three to four mitotic divisions in the absence of macroH2A prior to the onset of embryonic macroH2A expression.
Collapse
Affiliation(s)
- Ching-Chien Chang
- Center for Regenerative Biology, University of Connecticut, 1392 Storrs Road, Storrs, CT 06269-4243, USA
| | | | | | | | | | | |
Collapse
|