1
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2025; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
2
|
Franco-Obregón A, Tai YK. Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches? Cells 2024; 13:1273. [PMID: 39120305 PMCID: PMC11311832 DOI: 10.3390/cells13151273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024] Open
Abstract
Transient receptor potential (TRP) channels are broadly implicated in the developmental programs of most tissues. Amongst these tissues, skeletal muscle and adipose are noteworthy for being essential in establishing systemic metabolic balance. TRP channels respond to environmental stimuli by supplying intracellular calcium that instigates enzymatic cascades of developmental consequence and often impinge on mitochondrial function and biogenesis. Critically, aminoglycoside antibiotics (AGAs) have been shown to block the capacity of TRP channels to conduct calcium entry into the cell in response to a wide range of developmental stimuli of a biophysical nature, including mechanical, electromagnetic, thermal, and chemical. Paradoxically, in vitro paradigms commonly used to understand organismal muscle and adipose development may have been led astray by the conventional use of streptomycin, an AGA, to help prevent bacterial contamination. Accordingly, streptomycin has been shown to disrupt both in vitro and in vivo myogenesis, as well as the phenotypic switch of white adipose into beige thermogenic status. In vivo, streptomycin has been shown to disrupt TRP-mediated calcium-dependent exercise adaptations of importance to systemic metabolism. Alternatively, streptomycin has also been used to curb detrimental levels of calcium leakage into dystrophic skeletal muscle through aberrantly gated TRPC1 channels that have been shown to be involved in the etiology of X-linked muscular dystrophies. TRP channels susceptible to AGA antagonism are critically involved in modulating the development of muscle and adipose tissues that, if administered to behaving animals, may translate to systemwide metabolic disruption. Regenerative medicine and clinical communities need to be made aware of this caveat of AGA usage and seek viable alternatives, to prevent contamination or infection in in vitro and in vivo paradigms, respectively.
Collapse
Affiliation(s)
- Alfredo Franco-Obregón
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zürich, 8057 Zürich, Switzerland
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yee Kit Tai
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- BICEPS Lab (Biolonic Currents Electromagnetic Pulsing Systems), National University of Singapore, Singapore 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
3
|
Bustad E, Mudrock E, Nilles EM, Mcquate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. Front Pharmacol 2024; 15:1363545. [PMID: 38515847 PMCID: PMC10955247 DOI: 10.3389/fphar.2024.1363545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction: Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug-drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. Methods: To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae via microscopy. We used PEPITA and confocal microscopy to characterize in vivo the consequences of drug-drug interactions on ototoxic drug uptake and cellular damage of zebrafish lateral line hair cells. Results and discussion: By applying PEPITA to measure ototoxic drug interaction outcomes, we discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
Affiliation(s)
- Ethan Bustad
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Emma Mudrock
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Elizabeth M. Nilles
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Andrea Mcquate
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Monica Bergado
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alden Gu
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Louie Galitan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Natalie Gleason
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Henry C. Ou
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Pediatrics, Seattle Children’s Hospital, Seattle, WA, United States
| | - David W. Raible
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA, United States
- Department of Biological Structure, University of Washington, Seattle, WA, United States
- VM Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - Rafael E. Hernandez
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Bustad E, Mudrock E, Nilles EM, McQuate A, Bergado M, Gu A, Galitan L, Gleason N, Ou HC, Raible DW, Hernandez RE, Ma S. In vivo screening for toxicity-modulating drug interactions identifies antagonism that protects against ototoxicity in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566159. [PMID: 37986751 PMCID: PMC10659329 DOI: 10.1101/2023.11.08.566159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ototoxicity is a debilitating side effect of over 150 medications with diverse mechanisms of action, many of which could be taken concurrently to treat multiple conditions. Approaches for preclinical evaluation of drug interactions that might impact ototoxicity would facilitate design of safer multi-drug regimens and mitigate unsafe polypharmacy by flagging combinations that potentially cause adverse interactions for monitoring. They may also identify protective agents that antagonize ototoxic injury. To address this need, we have developed a novel workflow that we call Parallelized Evaluation of Protection and Injury for Toxicity Assessment (PEPITA), which empowers high-throughput, semi-automated quantification of ototoxicity and otoprotection in zebrafish larvae. By applying PEPITA to characterize ototoxic drug interaction outcomes, we have discovered antagonistic interactions between macrolide and aminoglycoside antibiotics that confer protection against aminoglycoside-induced damage to lateral line hair cells in zebrafish larvae. Co-administration of either azithromycin or erythromycin in zebrafish protected against damage from a broad panel of aminoglycosides, at least in part via inhibiting drug uptake into hair cells via a mechanism independent from hair cell mechanotransduction. Conversely, combining macrolides with aminoglycosides in bacterial inhibition assays does not show antagonism of antimicrobial efficacy. The proof-of-concept otoprotective antagonism suggests that combinatorial interventions can potentially be developed to protect against other forms of toxicity without hindering on-target drug efficacy.
Collapse
|
5
|
Janky K, Steyger PS. Mechanisms and Impact of Aminoglycoside-Induced Vestibular Deficits. Am J Audiol 2023; 32:746-760. [PMID: 37319406 PMCID: PMC10721243 DOI: 10.1044/2023_aja-22-00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/26/2023] [Accepted: 03/06/2023] [Indexed: 06/17/2023] Open
Abstract
PURPOSE Acquired vestibulotoxicity from hospital-prescribed medications such as aminoglycoside antibiotics affects as many as 40,000 people each year in North America. However, there are no current federally approved drugs to prevent or treat the debilitating and permanent loss of vestibular function caused by bactericidal aminoglycoside antibiotics. This review will cover our current understanding of the impact of, and mechanisms underlying, aminoglycoside-induced vestibulotoxicity and highlight the gaps in our knowledge that remain. CONCLUSIONS Aminoglycoside-induced vestibular deficits have long-term impacts on patients across the lifespan. Additionally, the prevalence of aminoglycoside-induced vestibulotoxicity appears to be greater than cochleotoxicity. Thus, monitoring for vestibulotoxicity should be independent of auditory monitoring and encompass patients of all ages from young children to older adults before, during, and after aminoglycoside therapy.
Collapse
Affiliation(s)
- Kristen Janky
- Department of Audiology, Boys Town National Research Hospital, Omaha, NE
| | - Peter S. Steyger
- Bellucci Translational Hearing Center, Creighton University, Omaha, NE
| |
Collapse
|
6
|
Kempfle JS, Jung DH. Experimental drugs for the prevention or treatment of sensorineural hearing loss. Expert Opin Investig Drugs 2023; 32:643-654. [PMID: 37598357 DOI: 10.1080/13543784.2023.2242253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Sensorineural hearing loss results in irreversible loss of inner ear hair cells and spiral ganglion neurons. Reduced sound detection and speech discrimination can span all ages, and sensorineural hearing rehabilitation is limited to amplification with hearing aids or cochlear implants. Recent insights into experimental drug treatments for inner ear regeneration and otoprotection have paved the way for clinical trials in order to restore a more physiological hearing experience. Paired with the development of innovative minimally invasive approaches for drug delivery to the inner ear, new, emerging treatments for hearing protection and restoration are within reach. AREAS COVERED This expert opinion provides an overview of the latest experimental drug therapies to protect from and to restore sensorineural hearing loss. EXPERT OPINION The degree and type of cellular damage to the cochlea, the responsiveness of remaining, endogenous cells to regenerative treatments, and the duration of drug availability within cochlear fluids will determine the success of hearing protection or restoration.
Collapse
Affiliation(s)
- Judith S Kempfle
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, UMass Memorial Medical Center, Worcester, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - David H Jung
- Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Otolaryngology, Head & Neck Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
8
|
Liu J, Li X, Xu N, Han H, Li X. Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 2022; 25:27. [PMID: 36561615 PMCID: PMC9748662 DOI: 10.3892/etm.2022.11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl- and K+ ion channels and the associated ion transporters.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Xu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China,Correspondence to: Professor Xiangling Li, Department of Nephrology, Affiliated Hospital of Weifang Medical University, 2428 Yu He Road, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
9
|
Dash S, Zuo J, Steyger PS. Local Delivery of Therapeutics to the Cochlea Using Nanoparticles and Other Biomaterials. Pharmaceuticals (Basel) 2022; 15:1115. [PMID: 36145336 PMCID: PMC9504900 DOI: 10.3390/ph15091115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
Hearing loss negatively impacts the well-being of millions of people worldwide. Systemic delivery of ototherapeutics has limited efficacy due to severe systemic side effects and the presence of the blood-labyrinth barrier that selectively limits or enables transfer of molecules between plasma and inner ear tissues and fluids. Local drug delivery into the middle and inner ear would be preferable for many newly emerging classes of drugs. Although the cochlea is a challenging target for drug delivery, recent technologies could provide a safe and efficacious delivery of ototherapeutics. Local drug delivery routes include topical delivery via the external auditory meatus, retroauricular, transtympanic, and intracochlear delivery. Many new drug delivery systems specifically for the inner ear are under development or undergoing clinical studies. Future studies into these systems may provide a means for extended delivery of drugs to preserve or restore hearing in patients with hearing disorders. This review outlines the anatomy of the (inner) ear, describes the various local delivery systems and routes, and various quantification methodologies to determine the pharmacokinetics of the drugs in the inner ear.
Collapse
Affiliation(s)
| | | | - Peter S. Steyger
- Translational Hearing Center, Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
10
|
Kim J, Hemachandran S, Cheng AG, Ricci AJ. Identifying targets to prevent aminoglycoside ototoxicity. Mol Cell Neurosci 2022; 120:103722. [PMID: 35341941 PMCID: PMC9177639 DOI: 10.1016/j.mcn.2022.103722] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022] Open
Abstract
Aminoglycosides are potent antibiotics that are commonly prescribed worldwide. Their use carries significant risks of ototoxicity by directly causing inner ear hair cell degeneration. Despite their ototoxic side effects, there are currently no approved antidotes. Here we review recent advances in our understanding of aminoglycoside ototoxicity, mechanisms of drug transport, and promising sites for intervention to prevent ototoxicity.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sriram Hemachandran
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anthony J Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Dhar G, Paikra SK, Mishra M. Aminoglycoside treatment alters hearing-related genes and depicts behavioral defects in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21871. [PMID: 35150449 DOI: 10.1002/arch.21871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The hearing organ of Drosophila is present within the second segment of antennae. The hearing organ of Drosophila (Johnston's organ [JO]) shares much structural, developmental, and functional similarity with the vertebrate hearing organ (Organ of Corti). JO is evolving as a potential model system to examine the hearing-associated defects in vertebrates. In the vertebrates, aminoglycosides like gentamicin, kanamycin, and neomycin have been known to cause defects in the hearing organ. However, a complete mechanism of toxicity is not known. Taking the evolutionary conservation into account the current study aims to test various concentrations of aminoglycoside on the model organism, Drosophila melanogaster. The current study uses the oral route to check the toxicity of various aminoglycosides at different concentrations (50, 100, 150, 200, and 250 μg ml- 1 ). In Drosophila, many foreign particles enter the body through the gut via food. The aminoglycoside treated third instar larvae show defective crawling and sound avoidance behavior. The adult flies release lower amounts of acetylcholine esterase and higher amounts of reactive oxygen species than control untreated animals, accompanied by defective climbing and aggressive behavior. All these behavioral defects are further confirmed by the altered expression level of hearing genes such as nompC, inactive, nanchung, pyrexia. All the behavioral and genetic defects are reported as a readout of aminoglycoside toxicity.
Collapse
Affiliation(s)
- Gyanaseni Dhar
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Sanjeev K Paikra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, Rourkela, Odisha, India
- Centre for Nanomaterials, National Institute of technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
12
|
Ishii M, Ishiyama G, Ishiyama A, Kato Y, Mochizuki F, Ito Y. Relationship Between the Onset of Ménière's Disease and Sympathetic Hyperactivity. Front Neurol 2022; 13:804777. [PMID: 35370896 PMCID: PMC8970286 DOI: 10.3389/fneur.2022.804777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Objective The pathogenesis of Ménière's disease is still largely unknown; however, it is known to be strongly associated with stress. Excessive stress can cause hyperactivity of the sympathetic autonomic nervous system. With the aim of understanding changes in sympathetic hyperactivity before and after Ménière's disease, we compared autonomic nervous function in patients in a stable phase of Ménière's disease and that in healthy adults. We also gathered data over about 10 years on autonomic nervous function immediately before a Ménière's attack. Study Design Prospective study. Patients Autonomic nervous function was analyzed in 129 patients in a stable phase of Ménière's disease 31 healthy adult volunteers. In nine patients, autonomic nervous function was also measured immediately before and after treatment of a vertigo attack. Main Outcome Measure Power spectrum analysis of heart rate variability (HRV) of EEG/ECG and an infrared electronic pupillometer were used. Sympathetic and parasympathetic nervous function was measured. Results There were no statistically significant differences in autonomic nervous function determined by HRV and electronic pupillometry between patients in a stable phase of Ménière's disease and healthy adults. Sympathetic function as measured by electronic pupillometry parameters VD and T5 showed no difference between the affected and unaffected sides in the baseline data measured in the stable phase (VD: affected side is 31.02 ± 6.16 mm/sec, unaffected side is 29.25 ± 5.73 mm/sec; T5: affected side is 3.37 ± 0.43 msec, unaffected side is 3.25 ± 0.39 msec). In contrast, all nine patients whose HRV data had been obtained just before an attack showed marked suppression of the parasympathetic nervous system and activation of the sympathetic nervous system. Electronic pupillometry also revealed an overactivation of the sympathetic nervous system on the affected side, just before the attacks. Analysis of sequential changes after the onset of an attack revealed that overactivation on the affected side was reduced after treatment, and no difference between affected and unaffected sides was observed 3 days after treatment. Conclusion Detailed analysis of autonomic nervous function showed that immediately before an attack of Ménière's disease, the sympathetic nervous system on the affected side was strongly overactivated.
Collapse
Affiliation(s)
- Masanori Ishii
- Department of Otorhinolaryngology, Japan Community Health Care Organization (JCHO) Tokyo Shinjuku Medical Center, Tokyo, Japan
- Department of Otorhinolaryngology and Head & Neck Surgery, The Jikei University School of Medicine, Tokyo, Japan
- *Correspondence: Masanori Ishii
| | - Gail Ishiyama
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Akira Ishiyama
- Department of Head & Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Yujin Kato
- Department of Otorhinolaryngology and Head & Neck Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Fumihiro Mochizuki
- Department of Otorhinolaryngology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Yusuke Ito
- Department of Otorhinolaryngology, St. Marianna University School of Medicine, Kanagawa, Japan
| |
Collapse
|
13
|
In vivo real-time imaging reveals megalin as the aminoglycoside gentamicin transporter into cochlea whose inhibition is otoprotective. Proc Natl Acad Sci U S A 2022; 119:2117946119. [PMID: 35197290 PMCID: PMC8892513 DOI: 10.1073/pnas.2117946119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/01/2023] Open
Abstract
Aminoglycosides (AGs) are commonly used antibiotics that cause deafness through the irreversible loss of cochlear sensory hair cells (HCs). How AGs enter the cochlea and then target HCs remains unresolved. Here, we performed time-lapse multicellular imaging of cochlea in live adult hearing mice via a chemo-mechanical cochleostomy. The in vivo tracking revealed that systemically administered Texas Red-labeled gentamicin (GTTR) enters the cochlea via the stria vascularis and then HCs selectively. GTTR uptake into HCs was completely abolished in transmembrane channel-like protein 1 (TMC1) knockout mice, indicating mechanotransducer channel-dependent AG uptake. Blockage of megalin, the candidate AG transporter in the stria vascularis, by binding competitor cilastatin prevented GTTR accumulation in HCs. Furthermore, cilastatin treatment markedly reduced AG-induced HC degeneration and hearing loss in vivo. Together, our in vivo real-time tracking of megalin-dependent AG transport across the blood-labyrinth barrier identifies new therapeutic targets for preventing AG-induced ototoxicity.
Collapse
|
14
|
Baradaran-Heravi A, Bauer CC, Pickles IB, Hosseini-Farahabadi S, Balgi AD, Choi K, Linley DM, Beech DJ, Roberge M, Bon RS. Nonselective TRPC channel inhibition and suppression of aminoglycoside-induced premature termination codon readthrough by the small molecule AC1903. J Biol Chem 2022; 298:101546. [PMID: 34999117 PMCID: PMC8808171 DOI: 10.1016/j.jbc.2021.101546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/28/2022] Open
Abstract
Nonsense mutations, which occur in ∼11% of patients with genetic disorders, introduce premature termination codons (PTCs) that lead to truncated proteins and promote nonsense-mediated mRNA decay. Aminoglycosides such as G418 permit PTC readthrough and so may be used to address this problem. However, their effects are variable between patients, making clinical use of aminoglycosides challenging. In this study, we tested whether TRPC nonselective cation channels contribute to the variable PTC readthrough effect of aminoglycosides by controlling their cellular uptake. Indeed, a recently reported selective TRPC5 inhibitor, AC1903, consistently suppressed G418 uptake and G418-induced PTC readthrough in the DMS-114 cancer cell line and junctional epidermolysis bullosa (JEB) patient-derived keratinocytes. Interestingly, the effect of AC1903 in DMS-114 cells was mimicked by nonselective TRPC inhibitors, but not by well-characterized inhibitors of TRPC1/4/5 (Pico145, GFB-8438) or TRPC3/6/7 (SAR7334), suggesting that AC1903 may work through additional or undefined targets. Indeed, in our experiments, AC1903 inhibited multiple TRPC channels including TRPC3, TRPC4, TRPC5, TRPC6, TRPC4-C1, and TRPC5-C1, as well as endogenous TRPC1:C4 channels in A498 renal cancer cells, all with low micromolar IC50 values (1.8-18 μM). We also show that AC1903 inhibited TRPV4 channels, but had weak or no effects on TRPV1 and no effect on the nonselective cation channel PIEZO1. Our study reveals that AC1903 has previously unrecognized targets, which need to be considered when interpreting results from experiments with this compound. In addition, our data strengthen the hypothesis that nonselective calcium channels are involved in aminoglycoside uptake.
Collapse
Affiliation(s)
- Alireza Baradaran-Heravi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Isabelle B Pickles
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; School of Chemistry, University of Leeds, Leeds, UK
| | - Sara Hosseini-Farahabadi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kunho Choi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Deborah M Linley
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - David J Beech
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
15
|
Abstract
Ototoxicity refers to damage to the inner ear that leads to functional hearing loss or vestibular disorders by selected pharmacotherapeutics as well as a variety of environmental exposures (eg, lead, cadmium, solvents). This article reviews the fundamental mechanisms underlying ototoxicity by clinically relevant, hospital-prescribed medications (ie, aminoglycoside antibiotics or cisplatin, as illustrative examples). Also reviewed are current strategies to prevent prescribed medication-induced ototoxicity, with several clinical or candidate interventional strategies being discussed.
Collapse
Affiliation(s)
- Peter S Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
16
|
Koç Ş. A possible follow-up method for diabetic heart failure patients. Int J Clin Pract 2021; 75:e14794. [PMID: 34482595 DOI: 10.1111/ijcp.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Plasma osmolarity is maintained through various mechanisms. The osmolarity of the aqueous humor around the crystalline lens is correlated with plasma osmolarity. A vacuole can be formed in the lens upon changes in osmolarity. The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new in the treatment of heart failure. They can cause osmotic diuresis but do not affect plasma osmolarity. OBJECTIVE It is unclear if the presence or absence of lens vacuole changes can monitor diabetic heart failure and SGLT2i treatment efficacy. METHODS Web of Science, PubMed and Scopus databases were searched for relevant articles about osmolarity, diabetes, transient receptor potential vanilloid channel, diabetic heart failure, lens vacuoles up to May 2021. MAIN MESSAGE The effect of SGLT2i on osmosis underlies its benefit to heart failure, but this in turn affects many other mechanisms. Failure to experience osmolarity changes will reduce the negative changes in terms of heart failure affected by osmolarity. A practical observable method is needed. CONCLUSIONS There is a possibility of using lens vacuoles in the follow-up of diabetic heart failure patients.
Collapse
Affiliation(s)
- Şahbender Koç
- University of Health Sciences, Keçiören Education and Training Hospital, Ankara, Turkey
| |
Collapse
|
17
|
Steyger PS. Mechanisms of Aminoglycoside- and Cisplatin-Induced Ototoxicity. Am J Audiol 2021; 30:887-900. [PMID: 34415784 PMCID: PMC9126111 DOI: 10.1044/2021_aja-21-00006] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose This review article summarizes our current understanding of the mechanisms underlying acquired hearing loss from hospital-prescribed medications that affects as many as 1 million people each year in Western Europe and North America. Yet, there are currently no federally approved drugs to prevent or treat the debilitating and permanent hearing loss caused by the life-saving platinum-based anticancer drugs or the bactericidal aminoglycoside antibiotics. Hearing loss has long-term impacts on quality-of-life measures, especially in young children and older adults. This review article also highlights some of the current knowledge gaps regarding iatrogenic causes of hearing loss. Conclusion Further research is urgently needed to further refine clinical practice and better ameliorate iatrogenic drug-induced hearing loss.
Collapse
Affiliation(s)
- Peter S. Steyger
- Translational Hearing Center, Creighton University, Omaha, NE
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, OR
| |
Collapse
|
18
|
Dong M, Rodriguez AV, Blankenship CA, McPhail G, Vinks AA, Hunter LL. Pharmacokinetic modelling to predict risk of ototoxicity with intravenous tobramycin treatment in cystic fibrosis. J Antimicrob Chemother 2021; 76:2923-2931. [PMID: 34379758 PMCID: PMC8677449 DOI: 10.1093/jac/dkab288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Further optimization of therapeutic drug monitoring (TDM) for aminoglycosides (AGs) is urgently needed, especially in special populations such as those with cystic fibrosis (CF), >50% of whom develop ototoxicity if treated with multiple courses of IV AGs. This study aimed to empirically test a pharmacokinetic (PK) model using Bayesian estimation of drug exposure in the deeper body tissues to determine feasibility for prediction of ototoxicity. MATERIALS AND METHODS IV doses (n = 3645) of tobramycin and vancomycin were documented with precise timing from 38 patients with CF (aged 8-21 years), including total doses given and total exposure (cumulative AUC). Concentration results were obtained at 3 and 10 h for the central (C1) compartment. These variables were used in Bayesian estimation to predict trough levels in the secondary tissue compartments (C2 trough) and maximum concentrations (C2max). The C1 and C2 measures were then correlated with hearing levels in the extended high-frequency range. RESULTS Patients with more severe hearing loss were older and had a higher number of tobramycin C2max concentrations >2 mg/L than patients with normal or lesser degrees of hearing loss. These two factors together significantly predicted average high-frequency hearing level (r = 0.618, P < 0.001). Traditional metrics such as C1 trough concentrations were not predictive. The relative risk for hearing loss was 5.8 times greater with six or more tobramycin courses that exceeded C2max concentrations of 3 mg/L or higher, with sensitivity of 83% and specificity of 86%. CONCLUSIONS Advanced PK model-informed analysis predicted ototoxicity risk in patients with CF treated with tobramycin and demonstrated high test prediction.
Collapse
Affiliation(s)
- Min Dong
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Anna V Rodriguez
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Chelsea A Blankenship
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Gary McPhail
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Lisa L Hunter
- Communication Sciences Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Otolaryngology, University of Cincinnati Academic Medical Center, Cincinnati, OH, USA
| |
Collapse
|
19
|
García-Rodríguez C, Bravo-Tobar ID, Duarte Y, Barrio LC, Sáez JC. Contribution of non-selective membrane channels and receptors in epilepsy. Pharmacol Ther 2021; 231:107980. [PMID: 34481811 DOI: 10.1016/j.pharmthera.2021.107980] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
Abstract
Overcoming refractory epilepsy's resistance to the combination of antiepileptic drugs (AED), mitigating side effects, and preventing sudden unexpected death in epilepsy are critical goals for therapy of this disorder. Current therapeutic strategies are based primarily on neurocentric mechanisms, overlooking the participation of astrocytes and microglia in the pathophysiology of epilepsy. This review is focused on a set of non-selective membrane channels (permeable to ions and small molecules), including channels and ionotropic receptors of neurons, astrocytes, and microglia, such as: the hemichannels formed by Cx43 and Panx1; the purinergic P2X7 receptors; the transient receptor potential vanilloid (TRPV1 and TRPV4) channels; calcium homeostasis modulators (CALHMs); transient receptor potential canonical (TRPC) channels; transient receptor potential melastatin (TRPM) channels; voltage-dependent anion channels (VDACs) and volume-regulated anion channels (VRACs), which all have in common being activated by epileptic activity and the capacity to exacerbate seizure intensity. Specifically, we highlight evidence for the activation of these channels/receptors during epilepsy including neuroinflammation and oxidative stress, discuss signaling pathways and feedback mechanisms, and propose the functions of each of them in acute and chronic epilepsy. Studying the role of these non-selective membrane channels in epilepsy and identifying appropriate blockers for one or more of them could provide complementary therapies to better alleviate the disease.
Collapse
Affiliation(s)
- Claudia García-Rodríguez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| | - Iván D Bravo-Tobar
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Luis C Barrio
- Hospital Ramon y Cajal-IRYCIS, Centro de Tecnología Biomédica de la Universidad Politécnica, Madrid, Spain
| | - Juan C Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Chile.
| |
Collapse
|
20
|
Darlow CA, da Costa RMA, Ellis S, Franceschi F, Sharland M, Piddock L, Das S, Hope W. Potential Antibiotics for the Treatment of Neonatal Sepsis Caused by Multidrug-Resistant Bacteria. Paediatr Drugs 2021; 23:465-484. [PMID: 34435316 PMCID: PMC8418595 DOI: 10.1007/s40272-021-00465-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Neonatal sepsis causes up to an estimated 680,000 deaths annually worldwide, predominantly in low- and middle-income countries (LMICs). A significant and growing proportion of bacteria causing neonatal sepsis are resistant to multiple antibiotics, including the World Health Organization-recommended empiric neonatal sepsis regimen of ampicillin/gentamicin. The Global Antibiotic Research and Development Partnership is aiming to develop alternative empiric antibiotic regimens that fulfil several criteria: (1) affordable in LMIC settings; (2) activity against neonatal bacterial pathogens, including extended-spectrum β-lactamase producers, gentamicin-resistant Gram-negative bacteria, and methicillin-resistant Staphylococcus aureus (MRSA); (3) a licence for neonatal use or extensive experience of use in neonates; and (4) minimal toxicities. In this review, we identify five antibiotics that fulfil these criteria: amikacin, tobramycin, fosfomycin, flomoxef, and cefepime. We describe the available characteristics of each in terms of mechanism of action, resistance mechanisms, clinical pharmacokinetics, pharmacodynamics, and toxicity profile. We also identify some knowledge gaps: (1) the neonatal pharmacokinetics of cefepime is reliant on relatively small and limited datasets, and the pharmacokinetics of flomoxef are also reliant on data from a limited demographic range and (2) for all reviewed agents, the pharmacodynamic index and target has not been definitively established for both bactericidal effect and emergence of resistance, with many assumed to have an identical index/target to similar class molecules. These five agents have the potential to be used in novel combination empiric regimens for neonatal sepsis. However, the data gaps need addressing by pharmacokinetic trials and pharmacodynamic characterisation.
Collapse
Affiliation(s)
- Christopher A Darlow
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | | | - Sally Ellis
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | - Mike Sharland
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| | - Laura Piddock
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
- Antimicrobials Research Group, Institute for Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Shampa Das
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - William Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool Health Partners, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
21
|
Coffin AB, Boney R, Hill J, Tian C, Steyger PS. Detecting Novel Ototoxins and Potentiation of Ototoxicity by Disease Settings. Front Neurol 2021; 12:725566. [PMID: 34489859 PMCID: PMC8418111 DOI: 10.3389/fneur.2021.725566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Over 100 drugs and chemicals are associated with permanent hearing loss, tinnitus, and vestibular deficits, collectively known as ototoxicity. The ototoxic potential of drugs is rarely assessed in pre-clinical drug development or during clinical trials, so this debilitating side-effect is often discovered as patients begin to report hearing loss. Furthermore, drug-induced ototoxicity in adults, and particularly in elderly patients, may go unrecognized due to hearing loss from a variety of etiologies because of a lack of baseline assessments immediately prior to novel therapeutic treatment. During the current pandemic, there is an intense effort to identify new drugs or repurpose FDA-approved drugs to treat COVID-19. Several potential COVID-19 therapeutics are known ototoxins, including chloroquine (CQ) and lopinavir-ritonavir, demonstrating the necessity to identify ototoxic potential in existing and novel medicines. Furthermore, several factors are emerging as potentiators of ototoxicity, such as inflammation (a hallmark of COVID-19), genetic polymorphisms, and ototoxic synergy with co-therapeutics, increasing the necessity to evaluate a drug's potential to induce ototoxicity under varying conditions. Here, we review the potential of COVID-19 therapies to induce ototoxicity and factors that may compound their ototoxic effects. We then discuss two models for rapidly detecting the potential for ototoxicity: mammalian auditory cell lines and the larval zebrafish lateral line. These models offer considerable value for pre-clinical drug development, including development of COVID-19 therapies. Finally, we show the validity of in silico screening for ototoxic potential using a computational model that compares structural similarity of compounds of interest with a database of known ototoxins and non-ototoxins. Preclinical screening at in silico, in vitro, and in vivo levels can provide an earlier indication of the potential for ototoxicity and identify the subset of candidate therapeutics for treating COVID-19 that need to be monitored for ototoxicity as for other widely-used clinical therapeutics, like aminoglycosides and cisplatin.
Collapse
Affiliation(s)
| | | | - Jordan Hill
- Washington State University Vancouver, Vancouver, WA, United States
| | - Cong Tian
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Peter S. Steyger
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
- National Center for Rehabilitative Auditory Research, Portland, OR, United States
| |
Collapse
|
22
|
Zavala-Guevara IP, Ortega-Romero MS, Narváez-Morales J, Jacobo-Estrada TL, Lee WK, Arreola-Mendoza L, Thévenod F, Barbier OC. Increased Endocytosis of Cadmium-Metallothionein through the 24p3 Receptor in an In Vivo Model with Reduced Proximal Tubular Activity. Int J Mol Sci 2021; 22:7262. [PMID: 34298880 PMCID: PMC8303618 DOI: 10.3390/ijms22147262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The proximal tubule (PT) is the major target of cadmium (Cd2+) nephrotoxicity. Current dogma postulates that Cd2+ complexed to metallothionein (MT) (CdMT) is taken up through receptor-mediated endocytosis (RME) via the PT receptor megalin:cubilin, which is the predominant pathway for reuptake of filtered proteins in the kidney. Nevertheless, there is evidence that the distal parts of the nephron are also sensitive to damage induced by Cd2+. In rodent kidneys, another receptor for protein endocytosis, the 24p3 receptor (24p3R), is exclusively expressed in the apical membranes of distal tubules (DT) and collecting ducts (CD). Cell culture studies have demonstrated that RME and toxicity of CdMT and other (metal ion)-protein complexes in DT and CD cells is mediated by 24p3R. In this study, we evaluated the uptake of labeled CdMT complex through 24p3R after acute kidney injury (AKI) induced by gentamicin (GM) administration that disrupts PT function. Subcutaneous administration of GM at 10 mg/kg/day for seven days did not alter the structural and functional integrity of the kidney's filtration barrier. However, because of PT injury, the concentration of the renal biomarker Kim-1 increased. When CdMT complex coupled to FITC was administered intravenously, both uptake of the CdMT complex and 24p3R expression in DT increased and also colocalized after PT injury induced by GM. Although megalin decreased in PT after GM administration, urinary protein excretion was not changed, which suggests that the increased levels of 24p3R in the distal nephron could be acting as a compensatory mechanism for protein uptake. Altogether, these results suggest that PT damage increases the uptake of the CdMT complex through 24p3R in DT (and possibly CD) and compensate for protein losses associated with AKI.
Collapse
Affiliation(s)
- Itzel Pamela Zavala-Guevara
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Manolo Sibael Ortega-Romero
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| | - Tania Libertad Jacobo-Estrada
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Wing-Kee Lee
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Laura Arreola-Mendoza
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, México CP 07340, Mexico;
| | - Frank Thévenod
- Department of Physiology, Pathophysiology and Toxicology and ZBAF (Center for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, 58448 Witten, Germany; (W.-K.L.); (F.T.)
| | - Olivier Christophe Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, México CP 07360, Mexico; (I.P.Z.-G.); (M.S.O.-R.); (J.N.-M.)
| |
Collapse
|
23
|
Ghosh S, Stansak K, Walters BJ. Cannabinoid Signaling in Auditory Function and Development. Front Mol Neurosci 2021; 14:678510. [PMID: 34079440 PMCID: PMC8165240 DOI: 10.3389/fnmol.2021.678510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Plants of the genus Cannabis have been used by humans for millennia for a variety of purposes. Perhaps most notable is the use of certain Cannabis strains for their psychoactive effects. More recently, several biologically active molecules within the plants of these Cannabis strains, called phytocannabinoids or simply cannabinoids, have been identified. Furthermore, within human cells, endogenous cannabinoids, or endocannabinoids, as well as the receptors and secondary messengers that give rise to their neuromodulatory effects, have also been characterized. This endocannabinoid system (ECS) is composed of two primary ligands-anandamide and 2-arachidonyl glycerol; two primary receptors-cannabinoid receptors 1 and 2; and several enzymes involved in biosynthesis and degradation of endocannabinoid ligands including diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL). Here we briefly summarize cannabinoid signaling and review what has been discerned to date with regard to cannabinoid signaling in the auditory system and its roles in normal physiological function as well as pathological conditions. While much has been uncovered regarding cannabinoid signaling in the central nervous system, less attention has been paid to the auditory system specifically. Still, evidence is emerging to suggest that cannabinoid signaling is critical for the development, maturation, function, and survival of cochlear hair cells (HCs) and spiral ganglion neurons (SGNs). Furthermore, cannabinoid signaling can have profound effects on synaptic connectivity in CNS structures related to auditory processing. While clinical cases demonstrate that endogenous and exogenous cannabinoids impact auditory function, this review highlights several areas, such as SGN development, where more research is warranted.
Collapse
Affiliation(s)
- Sumana Ghosh
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kendra Stansak
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bradley J Walters
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
24
|
Chai Y, He W, Yang W, Hetrick AP, Gonzalez JG, Sargsyan L, Wu H, Jung TTK, Li H. Intratympanic Lipopolysaccharide Elevates Systemic Fluorescent Gentamicin Uptake in the Cochlea. Laryngoscope 2021; 131:E2573-E2582. [PMID: 33956344 PMCID: PMC8453712 DOI: 10.1002/lary.29610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Objectives/Hypothesis Lipopolysaccharide (LPS), a key component of bacterial endotoxins, activates macrophages and triggers the release of inflammatory cytokines in mammalian tissues. Recent studies have shown that intratympanic injection of LPS simulates acute otitis media (AOM) and results in morphological and functional changes in the inner ear. Here we established an AOM mouse model with LPS to investigate the uptake of ototoxic gentamicin in the inner ear, and elucidated the underlying mechanism by focusing on cochlear inflammation as a result of AOM. Study Design Preclinical rodent animal model. Methods Fluorescently tagged gentamicin (GTTR) was systemically administered to mice with AOM. Iba1‐positive macrophage morphology and inner ear cytokine profile were evaluated by immunofluorescence technique and a mouse cytokine array kit, respectively. Results We observed characteristic symptoms of AOM in the LPS‐treated ears with elevated hearing thresholds indicating a conductive hearing loss. More importantly, the LPS‐induced AOM activated cochlear inflammatory responses, manifested by macrophage infiltration, particularly in the organ of Corti and the spiral ligament, in addition to the up‐regulation of proinflammatory cytokines. Meanwhile, GTTR uptake in the stria vascularis and sensory hair cells from all the LPS‐treated ears was significantly enhanced at 24, 48, and 72‐hour post‐treatment, as the most prominent enhancement was observed in the 48‐hour group. Conclusion In summary, this study suggests that the pathological cochlea is more susceptible to ototoxic drugs, including aminoglycosides, and justified the clinical concern of aminoglycoside ototoxicity in the AOM treatment. Laryngoscope, 131:E2573–E2582, 2021
Collapse
Affiliation(s)
- Yongchuan Chai
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiwei He
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiqiang Yang
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Alisa P Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Jessica G Gonzalez
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Timothy T K Jung
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| |
Collapse
|
25
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FA, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740 DOI: 10.12688/f1000research.51640.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 04/04/2024] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C. Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Matthew K. O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A.W. Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A. Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
26
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FAW, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740.2 DOI: 10.12688/f1000research.51640.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Stephanie A Harris
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Matthew K O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A W Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
27
|
Qian X, He Z, Wang Y, Chen B, Hetrick A, Dai C, Chi F, Li H, Ren D. Hair cell uptake of gentamicin in the developing mouse utricle. J Cell Physiol 2020; 236:5235-5252. [PMID: 33368220 DOI: 10.1002/jcp.30228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Intratympanic injection of gentamicin has proven to be an effective therapy for intractable vestibular dysfunction. However, most studies to date have focused on the cochlea, so little is known about the distribution and uptake of gentamicin by the counterpart of the auditory system, specifically vestibular hair cells (HCs). Here, with a combination of in vivo and in vitro approaches, we used a gentamicin-Texas Red (GTTR) conjugate to investigate the mechanisms of gentamicin vestibulotoxicity in the developing mammalian utricular HCs. In vivo, GTTR fluorescence was concentrated in the apical cytoplasm and the cellular membrane of neonatal utricular HCs, but scarce in the nucleus of HCs and supporting cells. Quantitative analysis showed the GTTR uptake by striolar HCs was significantly higher than that in the extrastriola. In addition, the GTTR fluorescence intensity in the striola was increased gradually from 1 to 8 days, peaking at 8-9 days postnatally. In vitro, utricle explants were incubated with GTTR and candidate uptake conduits, including mechanotransduction (MET) channels and endocytosis in the HC, were inhibited separately. GTTR uptake by HCs could be inhibited by quinine, a blocker of MET channels, under both normal and stressed conditions. Meanwhile, endocytic inhibition only reduced GTTR uptake in the CoCl2 hypoxia model. In sum, the maturation of MET channels mediated uptake of GTTR into vestibular HCs. Under stressed conditions, MET channels play a pronounced role, manifested by channel-dependent stress enhanced GTTR permeation, while endocytosis participates in GTTR entry in a more selective manner.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Ziyu He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Alisa Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA
| | - Chunfu Dai
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, USA.,Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, China
| |
Collapse
|
28
|
|
29
|
Zhang X, Mao Z, Huang Y, Zhang Z, Yao J. Gap junctions amplify TRPV4 activation-initiated cell injury via modification of intracellular Ca 2+ and Ca 2+-dependent regulation of TXNIP. Channels (Austin) 2020; 14:246-256. [PMID: 32752916 PMCID: PMC7515575 DOI: 10.1080/19336950.2020.1803552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The elevated intracellular Ca2+ and oxidative stress are well-reported mechanisms behind renal tubular epithelial injury initiated by various insults. Given that TRPV4 and connexin43 (Cx43) channels are activated by a wide range of stimuli and regulate both intracellular Ca2+ and redox status, we speculated an involvement of these channels in renal tubular cell injury. Here, we tested this possibility and explored the potential underlying mechanisms. Our results demonstrated that exposure of renal tubular epithelial cells to aminoglycoside G418 led to cell death, which was attenuated by both TRPV4 and gap junction (Gj) inhibitor. Activation of TRPV4 caused cell damage, which was associated with an early increase in Cx43 expression and function. Inhibition of Cx43 with chemical inhibitor or siRNA largely prevented TRPV4 activation-induced cell damage. Further analysis revealed that TRPV4 agonists elicited a rise in intracellular Ca2+ and caused a Ca2+-dependent elevation in TXNIP (a negative regulator of the antioxidant thioredoxin). In the presence of Gj inhibitor, however, these effects of TRPV4 were largely prevented. The depletion of intracellular Ca2+ with Ca2+ chelator BAPTA-AM or downregulation of TXNIP with siRNA significantly alleviated TRPV4 activation-initiated cell injury. Collectively, our results point to a critical involvement of TRPV4/Cx43 channel interaction in renal tubular cell injury through mechanisms involving a synergetic induction of intracellular Ca2+ and oxidative stress. Channel interactions could be an important mechanism underlying cell injury. Targeting channels could have therapeutic potential for the treatment of acute tubular cell injury.
Collapse
Affiliation(s)
- Xiling Zhang
- Department of Urology, The Fourth Affiliated Hospital of China Medical University , Shenyang, China.,Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Yanru Huang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Zhen Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi , Chuo, Japan
| |
Collapse
|
30
|
Morán-Zendejas R, Delgado-Ramírez M, Xu J, Valdés-Abadía B, Aréchiga-Figueroa IA, Cui M, Rodríguez-Menchaca AA. In vitro and in silico characterization of the inhibition of Kir4.1 channels by aminoglycoside antibiotics. Br J Pharmacol 2020; 177:4548-4560. [PMID: 32726456 DOI: 10.1111/bph.15214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/11/2020] [Accepted: 07/15/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Aminoglycoside antibiotics are positively charged molecules that are known to inhibit several ion channels. In this study, we have shown that aminoglycosides also inhibit the activity of Kir4.1 channels. Aminoglycosides inhibit Kir4.1 channels by a pore-blocking mechanism, plugging the central vestibule of the channel. EXPERIMENTAL APPROACH Patch-clamp recordings were made in HEK-293 cells transiently expressing Kir4.1 channels to analyse the effects of gentamicin, neomycin and kanamycin. In silico modelling followed by mutagenesis were realized to identify the residues critical for aminoglycosides binding to Kir4.1. KEY RESULTS Aminoglycoside antibiotics block Kir4.1 channels in a concentration- and voltage-dependent manner, getting access to the protein from the intracellular side of the plasma membrane. Aminoglycosides block Ki4.1 with a rank order of potency as follows: gentamicin ˃ neomycin ˃ kanamycin. The residues T128 and principally E158, facing the central cavity of Kir4.1, are important structural determinants for aminoglycosides binding to the channel, as determined by our in silico modelling and confirmed by mutagenesis experiments. CONCLUSION AND IMPLICATIONS Kir4.1 channels are also target of aminoglycoside antibiotics, which could affect potassium transport in several tissues.
Collapse
Affiliation(s)
- Rita Morán-Zendejas
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China.,Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Belkis Valdés-Abadía
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| |
Collapse
|
31
|
Hudson AM, Lockard GM, Namjoshi OA, Wilson JW, Kindt KS, Blough BE, Coffin AB. Berbamine Analogs Exhibit Differential Protective Effects From Aminoglycoside-Induced Hair Cell Death. Front Cell Neurosci 2020; 14:234. [PMID: 32848624 PMCID: PMC7403526 DOI: 10.3389/fncel.2020.00234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Hearing loss is the third most common chronic health condition in the United States and largely results from damage to sensory hair cells. Major causes of hair cell damage include aging, noise exposure, and medications such as aminoglycoside antibiotics. Due to their potent antibacterial properties and low cost, aminoglycosides are often used for the treatment of gram-negative bacterial infections, surpassing expensive antibiotics with fewer harmful side effects. However, their use is coupled with permanent hearing loss in over 20% of patients requiring these life-sustaining antibiotics. There are currently no FDA-approved drugs that prevent hearing loss from aminoglycosides. A previous study by our group identified the plant alkaloid berbamine as a strong protectant of zebrafish lateral line hair cells from aminoglycoside damage. This effect is likely due to a block of the mechanotransduction channel, thereby reducing aminoglycoside entry into hair cells. The present study builds on this previous work, investigating 16 synthetic berbamine analogs to determine the core structure underlying their protective mechanisms. We demonstrate that nearly all of these berbamine analogs robustly protect lateral line hair cells from ototoxic damage, with ED50 values nearing 20 nM for the most potent analogs. Of the 16 analogs tested, nine strongly protected hair cells from both neomycin and gentamicin damage, while one conferred strong protection only from gentamicin. These data are consistent with prior research demonstrating that different aminoglycosides activate somewhat distinct mechanisms of damage. Regardless of the mechanism, protection required the entire berbamine scaffold. Phenolic alkylation or acylation with lipophilic groups appeared to improve protection compared to berbamine, implying that these structures may be responsible for mitigating damage. While the majority of analogs confer protection by blocking aminoglycoside uptake, 18% of our analogs also confer protection via an uptake-independent mechanism; these analogs exhibited protection when delivered after aminoglycoside removal. Based on our studies, berbamine analogs represent a promising tool to further understand the pathology of aminoglycoside-induced hearing loss and can serve as lead compounds to develop otoprotective drugs.
Collapse
Affiliation(s)
- Alexandria M Hudson
- Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States
| | - Gavin M Lockard
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| | - Ojas A Namjoshi
- RTI International, Research Triangle Park, NC, United States
| | - Joseph W Wilson
- RTI International, Research Triangle Park, NC, United States
| | - Katie S Kindt
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Bruce E Blough
- RTI International, Research Triangle Park, NC, United States
| | - Allison B Coffin
- Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States.,College of Arts and Sciences, Washington State University, Vancouver, WA, United States
| |
Collapse
|
32
|
Galeev A, Suwandi A, Bakker H, Oktiviyari A, Routier FH, Krone L, Hensel M, Grassl GA. Proteoglycan-Dependent Endo-Lysosomal Fusion Affects Intracellular Survival of Salmonella Typhimurium in Epithelial Cells. Front Immunol 2020; 11:731. [PMID: 32411142 PMCID: PMC7201003 DOI: 10.3389/fimmu.2020.00731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/31/2020] [Indexed: 11/28/2022] Open
Abstract
Proteoglycans (PGs) are glycoconjugates which are predominately expressed on cell surfaces and consist of glycosaminoglycans (GAGs) linked to a core protein. An initial step of GAGs assembly is governed by the β-D-xylosyltransferase enzymes encoded in mammals by the XylT1/XylT2 genes. PGs are essential for the interaction of a cell with other cells as well as with the extracellular matrix. A number of studies highlighted a role of PGs in bacterial adhesion, invasion, and immune response. In this work, we investigated a role of PGs in Salmonella enterica serovar Typhimurium (S. Typhimurium) infection of epithelial cells. Gentamicin protection and chloroquine resistance assays were applied to assess invasion and replication of S. Typhimurium in wild-type and xylosyltransferase-deficient (ΔXylT2) Chinese hamster ovary (CHO) cells lacking PGs. We found that S. Typhimurium adheres to and invades CHO WT and CHO ΔXylT2 cells at comparable levels. However, 24 h after infection, proteoglycan-deficient CHO ΔXylT2 cells are significantly less colonized by S. Typhimurium compared to CHO WT cells. This proteoglycan-dependent phenotype could be rescued by addition of PGs to the cell culture medium, as well as by complementation of the XylT2 gene. Chloroquine resistance assay and immunostaining revealed that in the absence of PGs, significantly less bacteria are associated with Salmonella-containing vacuoles (SCVs) due to a re-distribution of endocytosed gentamicin. Inhibition of endo-lysosomal fusion by a specific inhibitor of phosphatidylinositol phosphate kinase PIKfyve significantly increased S. Typhimurium burden in CHO ΔXylT2 cells demonstrating an important role of PGs for PIKfyve dependent vesicle fusion which is modulated by Salmonella to establish infection. Overall, our results demonstrate that PGs influence survival of intracellular Salmonella in epithelial cells via modulation of PIKfyve-dependent endo-lysosomal fusion.
Collapse
Affiliation(s)
- Alibek Galeev
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Ade Oktiviyari
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| | - Françoise H Routier
- Institute of Clinical Biochemistry, Hannover Medical School, Hanover, Germany
| | - Lena Krone
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, University of Osnabrück, Osnabrück, Germany
| | - Guntram A Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hanover, Germany
| |
Collapse
|
33
|
Gao S, Cheng C, Wang M, Jiang P, Zhang L, Wang Y, Wu H, Zeng X, Wang H, Gao X, Ma Y, Chai R. Blebbistatin Inhibits Neomycin-Induced Apoptosis in Hair Cell-Like HEI-OC-1 Cells and in Cochlear Hair Cells. Front Cell Neurosci 2020; 13:590. [PMID: 32116554 PMCID: PMC7025583 DOI: 10.3389/fncel.2019.00590] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022] Open
Abstract
Aging, noise, and ototoxic drug-induced hair cell (HC) loss are the major causes of sensorineural hearing loss. Aminoglycoside antibiotics are commonly used in the clinic, but these often have ototoxic side effects due to the accumulation of oxygen-free radicals and the subsequent induction of HC apoptosis. Blebbistatin is a myosin II inhibitor that regulates microtubule assembly and myosin–actin interactions, and most research has focused on its ability to modulate cardiac or urinary bladder contractility. By regulating the cytoskeletal structure and reducing the accumulation of reactive oxygen species (ROS), blebbistatin can prevent apoptosis in many different types of cells. However, there are no reports on the effect of blebbistatin in HC apoptosis. In this study, we found that the presence of blebbistatin significantly inhibited neomycin-induced apoptosis in HC-like HEI-OC-1 cells. We also found that blebbistatin treatment significantly increased the mitochondrial membrane potential (MMP), decreased ROS accumulation, and inhibited pro-apoptotic gene expression in both HC-like HEI-OC-1 cells and explant-cultured cochlear HCs after neomycin exposure. Meanwhile, blebbistatin can protect the synaptic connections between HCs and cochlear spiral ganglion neurons. This study showed that blebbistatin could maintain mitochondrial function and reduce the ROS level and thus could maintain the viability of HCs after neomycin exposure and the neural function in the inner ear, suggesting that blebbistatin has potential clinic application in protecting against ototoxic drug-induced HC loss.
Collapse
Affiliation(s)
- Song Gao
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, XiangYa School of Medicine, Central South University, Changsha, China
| | - Pei Jiang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Liyan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ya Wang
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Huihui Wu
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Xuanfu Zeng
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| | - Yongming Ma
- Department of Otolaryngology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China.,Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| |
Collapse
|
34
|
Wang S, Geng Q, Huo L, Ma Y, Gao Y, Zhang W, Zhang H, Lv P, Jia Z. Transient Receptor Potential Cation Channel Subfamily Vanilloid 4 and 3 in the Inner Ear Protect Hearing in Mice. Front Mol Neurosci 2019; 12:296. [PMID: 31866822 PMCID: PMC6904345 DOI: 10.3389/fnmol.2019.00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
The transient receptor potential cation channel, vanilloid type (TRPV) 3, is a member of the TRPV subfamily that is expressed predominantly in the skin, hair follicles, and gastrointestinal tract. It is also distributed in the organ of Corti of the inner ear and colocalizes with TRPV1 or TRPV4, but its role in auditory function is unknown. In the present study, we demonstrate that TRPV3 is expressed in inner hair cells (HCs) but mainly in cochlear outer HCs in mice, with expression limited to the cytoplasm and not detected in stereocilia. We compared the number of HCs as well as distortion product otoacoustic emissions (DPOAE) and auditory brainstem response (ABR) thresholds between TRPV3 knockout (V3KO) and wild-type (V3WT) mice and found that although most mutants (72.3%) had normal hearing, a significant proportion (27.7%) showed impaired hearing associated with loss of cochlear HCs. Compensatory upregulation of TRPV4 in HCs prevented HC damage and kanamycin-induced hearing loss and preserved normal auditory function in most of these mice. Thus, TRPV4 and TRPV3 in cochlear HCs protect hearing in mice; moreover, the results suggest some functional redundancy in the functions of TRPV family members. Our findings provide novel insight into the molecular basis of auditory function in mammals that can be applied to the development of strategies to mitigate hearing loss.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Qiaowei Geng
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Lifang Huo
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yirui Ma
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Yiting Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| |
Collapse
|
35
|
Zhang Y, Li W, He Z, Wang Y, Shao B, Cheng C, Zhang S, Tang M, Qian X, Kong W, Wang H, Chai R, Gao X. Pre-treatment With Fasudil Prevents Neomycin-Induced Hair Cell Damage by Reducing the Accumulation of Reactive Oxygen Species. Front Mol Neurosci 2019; 12:264. [PMID: 31780893 PMCID: PMC6851027 DOI: 10.3389/fnmol.2019.00264] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ototoxic drug-induced hair cell (HC) damage is one of the main causes of sensorineural hearing loss, which is one of the most common sensory disorders in humans. Aminoglycoside antibiotics are common ototoxic drugs, and these can cause the accumulation of intracellular oxygen free radicals and lead to apoptosis in HCs. Fasudil is a Rho kinase inhibitor and vasodilator that has been widely used in the clinic and has been shown to have neuroprotective effects. However, the possible application of fasudil in protecting against aminoglycoside-induced HC loss and hearing loss has not been investigated. In this study, we investigated the ability of fasudil to protect against neomycin-induced HC loss both in vitro and in vivo. We found that fasudil significantly reduced the HC loss in cochlear whole-organ explant cultures and reduced the cell death of auditory HEI-OC1 cells after neomycin exposure in vitro. Moreover, we found that fasudil significantly prevented the HC loss and hearing loss of mice in the in vivo neomycin damage model. Furthermore, we found that fasudil could significantly inhibit the Rho signaling pathway in the auditory HEI-OC1 cells after neomycin exposure, thus further reducing the neomycin-induced accumulation of reactive oxygen species and subsequent apoptosis in HEI-OC1 cells. This study suggests that fasudil might contribute to the increased viability of HCs after neomycin exposure by inhibition of the Rho signaling pathway and suggests a new therapeutic target for the prevention of aminoglycoside-induced HC loss and hearing loss.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Wei Li
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuhong He
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunfeng Wang
- Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, Fudan University, Shanghai, China
- Shanghai Fenyang Vision & Audition Center, Shanghai, China
| | - Buwei Shao
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Cheng Cheng
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Mingliang Tang
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiaoyun Qian
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
- Key Laboratory of Hearing Medicine of NHFPC, State Key Laboratory of Medical Neurobiology, ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Shanghai Engineering Research Centre of Cochlear Implant, Fudan University, Shanghai, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
36
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
37
|
Jiang M, Li H, Johnson A, Karasawa T, Zhang Y, Meier WB, Taghizadeh F, Kachelmeier A, Steyger PS. Inflammation up-regulates cochlear expression of TRPV1 to potentiate drug-induced hearing loss. SCIENCE ADVANCES 2019; 5:eaaw1836. [PMID: 31328162 PMCID: PMC6636990 DOI: 10.1126/sciadv.aaw1836] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/13/2019] [Indexed: 05/26/2023]
Abstract
Aminoglycoside antibiotics are essential for treating life-threatening bacterial infections, despite the risk of lifelong hearing loss. Infections induce inflammation and up-regulate expression of candidate aminoglycoside-permeant cation channels, including transient receptor potential vanilloid-1 (TRPV1). Heterologous expression of TRPV1 facilitated cellular uptake of (fluorescently tagged) gentamicin that was enhanced by agonists, and diminished by antagonists, of TRPV1. Cochlear TRPV1 was immunolocalized near the apical membranes of sensory hair cells, adjacent supporting cells, and marginal cells in the stria vascularis. Exposure to immunostimulatory lipopolysaccharides, to simulate of bacterial infections, increased cochlear expression of TRPV1 and hair cell uptake of gentamicin. Lipopolysaccharide exposure exacerbated aminoglycoside-induced auditory threshold shifts and loss of cochlear hair cells in wild-type, but not in heterozygous Trpv1+/- or Trpv1 knockout, mice. Thus, TRPV1 facilitates cochlear uptake of aminoglycosides, and bacteriogenic stimulation upregulates TRPV1 expression to exacerbate cochleotoxicity. Furthermore, loss-of-function polymorphisms in Trpv1 can protect against immunogenic exacerbation of aminoglycoside-induced cochleotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Anastasiya Johnson
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yuan Zhang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - William B. Meier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S. Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
38
|
Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y. Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 2019; 10:497. [PMID: 31235786 PMCID: PMC6591233 DOI: 10.1038/s41419-019-1708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The transient receptor potential ion-channel superfamily consists of nonselective cation channels located mostly on the plasma membranes of numerous animal cell types, which are closely related to sensory information transmission (e.g., vision, pain, and temperature perception), as well as regulation of intracellular Ca2+ balance and physiological activities of growth and development. Transient receptor potential ion channel subfamily V (TRPV) is one of the largest and most diverse subfamilies, including TRPV1-TRPV6 involved in the regulation of a variety of cellular functions. TRPV4 can be activated by various physical and chemical stimuli, such as heat, mechanical force, and phorbol ester derivatives participating in the maintenance of normal cellular functions. In recent years, the roles of TRPV4 in cell proliferation, differentiation, apoptosis, and migration have been extensively studied. Its abnormal expression has also been closely related to the onset and progression of multiple tumors, so TRPV4 may be a target for cancer diagnosis and treatment. In this review, we focused on the latest studies concerning the role of TRPV4 in tumorigenesis and the therapeutic potential. As evidenced by the effects on cancerogenesis, TRPV4 is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| |
Collapse
|
39
|
Konrad-Martin D, Poling GL, Garinis AC, Ortiz CE, Hopper J, Bennett KO, Dille MF. Applying U.S. national guidelines for ototoxicity monitoring in adult patients: perspectives on patient populations, service gaps, barriers and solutions. Int J Audiol 2018; 57:S3-S18. [PMID: 29157038 PMCID: PMC6450095 DOI: 10.1080/14992027.2017.1398421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To promote establishment of effective ototoxicity monitoring programs (OMPs), this report reviews the U.S. national audiology guidelines in relation to "real world" OMP application. Background is provided on the mechanisms, risks and clinical presentation of hearing loss associated with major classes of ototoxic medications. DESIGN This is a non-systematic review using PubMed, national and international agency websites, personal communications between ototoxicity experts, and results of unpublished research. Examples are provided of OMPs in various healthcare settings within the U.S. civilian sector, Department of Defense (DoD), and Department of Veterans Affairs (VA). STUDY SAMPLE The five OMPs compared in this report represent a convenience sample of the programs with which the authors are affiliated. Their opinions were elicited via two semi-structured teleconferences on barriers and facilitators of OMP, followed by a self-administered questionnaire on OMP characteristics and practices, with responses synthesized herein. Preliminary results are provided from an ongoing VA clinical trial at one of these OMP sites. Participants were 40 VA patients who received cisplatin chemotherapy in 2014-2017. The study arms contrast access to care for OMP delivered on the treatment unit versus usual care as provided in the audiology clinic. RESULTS Protocols of the OMPs examined varied, reflecting their diverse settings. Service delivery concerns included baseline tests missed or completed after the initial treatment, and monitoring tests done infrequently or only after cessation of treatment. Perceived barriers involved logistics related to accessing and testing patients, such as a lack of processes to help patients enter programs, patients' time and scheduling constraints, and inconvenient audiology clinic locations. Use of abbreviated or screening methods facilitated monitoring. CONCLUSIONS The most effective OMPs integrated audiological management into care pathways of the clinical specialties that prescribe ototoxic medications. More OMP guidance is needed to inform evaluation schedules, outcome reporting, and determination of actionable ototoxic changes. Guidance is also lacking on the use of hearing conservation approaches suitable for the mass testing needed to support large-scale OMP efforts. Guideline adherence might improve with formal endorsement from organizations governing the medical specialty stakeholders in OMP such as oncologists, pulmonologists, infectious disease specialists, ototolaryngologists and pharmacists.
Collapse
Affiliation(s)
- Dawn Konrad-Martin
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Gayla L. Poling
- Mayo Clinic, Department of Otorhinolaryngology, Division of Audiology, Rochester, MN
| | - Angela C. Garinis
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Candice E. Ortiz
- Walter Reed National Military Medical Center, National Military Audiology and Speech Pathology Center, Bethesda, MD
| | - Jennifer Hopper
- Department of Otolaryngology, Yale University School of Medicine, New Haven, CT
| | - Keri O’Connell Bennett
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| | - Marilyn F. Dille
- VA Portland Health Care System, VA National Center for Rehabilitative Auditory Research, Portland, OR
- Department of Otolaryngology/Head and Neck Surgery, Oregon Health & Science University, Portland, OR
| |
Collapse
|
40
|
Coutinho AGG, Biscaia SMP, Fernandez R, Tararthuch AL. The aminoglycoside antibiotic gentamicin is able to alter metabolic activity and morphology of MDCK-C11 cells: a cell model of intercalated cells. ACTA ACUST UNITED AC 2018; 51:e7417. [PMID: 30156610 PMCID: PMC6110354 DOI: 10.1590/1414-431x20187417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/04/2018] [Indexed: 11/22/2022]
Abstract
It is well known that the aminoglycoside antibiotic gentamicin is capable of causing damage to kidney cells. Given the known involvement of Ca2+ in the nephrotoxic action of gentamicin, the purpose of this study was to establish a relationship between the concentration of intracellular Ca2+ ([Ca2+]i) and cellular cytotoxicity using MDCK-C11 cells, a clone that has several properties that resemble those of intercalated cells of the distal nephron. Changes in [Ca2+]i was determined using fluorescence microscopy. Cell viability was evaluated by the neutral red method, and cell cytotoxicity by the MTT method. The [Ca2+]i gradually increased when cells were exposed to 0.1 mM gentamicin for 10, 20, and 30 min. The presence of extracellular Ca2+ was found to be necessary to stimulate the increase in [Ca2+]i induced by gentamicin, since this stimulus disappeared by using 1.8 mM EGTA (a Ca2+ chelator). Morphological changes were observed with scanning electron microscopy in epithelial cells exposed to the antibiotic. Furthermore, with the MTT method, a decrease in metabolic activity induced by gentamicin was observed, which indicates a cytotoxic effect. In conclusion, gentamicin was able to alter [Ca2+]i, change the morphology of MDCK-C11 cells, and promote cytotoxicity.
Collapse
Affiliation(s)
- A G G Coutinho
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - S M P Biscaia
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - R Fernandez
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - A L Tararthuch
- Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
41
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
42
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
43
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
44
|
Randjelovic P, Veljkovic S, Stojiljkovic N, Sokolovic D, Ilic I. Gentamicin nephrotoxicity in animals: Current knowledge and future perspectives. EXCLI JOURNAL 2017; 16:388-399. [PMID: 28507482 PMCID: PMC5427480 DOI: 10.17179/excli2017-165] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
Due to high relative blood flow the kidney is prone to drug-induced damage. Aminoglycoside type antibiotic gentamicin is one of the leading cause of drug-induced nephrotoxicity. In recent years gentamicin nephrotoxicity is significantly reduced by shifting to once daily dosage as well as by eliminating known risk factors. Application of gentamicin is still related to serious side effects which are reported more often compared to other antibiotics. Because gentamicin is still heavily used and is highly efficient in treating infections, it is important to find mechanisms to reduce its nephrotoxicity. This aim can only be achieved through better understanding of kidney metabolism of gentamicin. This problem has been extensively researched in the last 20 years. The experimental results have provided evidence for almost complete understanding of mechanisms responsible for gentamicin nephrotoxicity. We now have well described morphological, biochemical and functional changes in kidney due to gentamicin application. During the years, this model has become so popular that now it is used as an experimental model for nephrotoxicity per se. This situation can mislead an ordinary reader of scientific literature that we know everything about it and there is nothing new to discover here. But quite opposite is true. The precise and complete mechanism of gentamicin nephrotoxicity is still point of speculation and an unfinished story. With emerge of new and versatile technics in biomedicine we have an opportunity to reexamine old beliefs and discover new facts. This review focuses on current knowledge in this area and gives some future perspectives.
Collapse
Affiliation(s)
- Pavle Randjelovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Slavimir Veljkovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Nenad Stojiljkovic
- University of Niš, Faculty of Medicine, Department of Physiology, Niš, Serbia
| | - Dušan Sokolovic
- University of Niš, Faculty of Medicine, Department of Biochemistry, Niš, Serbia
| | - Ivan Ilic
- University of Niš, Faculty of Medicine, Institute of Pathology, Niš, Serbia
| |
Collapse
|
45
|
O’Sullivan ME, Perez A, Lin R, Sajjadi A, Ricci AJ, Cheng AG. Towards the Prevention of Aminoglycoside-Related Hearing Loss. Front Cell Neurosci 2017; 11:325. [PMID: 29093664 PMCID: PMC5651232 DOI: 10.3389/fncel.2017.00325] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/30/2017] [Indexed: 01/08/2023] Open
Abstract
Aminoglycosides are potent antibiotics deployed worldwide despite their known side-effect of sensorineural hearing loss. The main etiology of this sensory deficit is death of inner ear sensory hair cells selectively triggered by aminoglycosides. For decades, research has sought to unravel the molecular events mediating sensory cell demise, emphasizing the roles of reactive oxygen species and their potentials as therapeutic targets. Studies in recent years have revealed candidate transport pathways including the mechanotransducer channel for drug entry into sensory cells. Once inside sensory cells, intracellular targets of aminoglycosides, such as the mitochondrial ribosomes, are beginning to be elucidated. Based on these results, less ototoxic aminoglycoside analogs are being generated and may serve as alternate antimicrobial agents. In this article, we review the latest findings on mechanisms of aminoglycoside entry into hair cells, their intracellular actions and potential therapeutic targets for preventing aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Mary E. O’Sullivan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Adela Perez
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Randy Lin
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Autefeh Sajjadi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Anthony J. Ricci Alan G. Cheng
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- *Correspondence: Anthony J. Ricci Alan G. Cheng
| |
Collapse
|
46
|
Hailey DW, Esterberg R, Linbo TH, Rubel EW, Raible DW. Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells. J Clin Invest 2016; 127:472-486. [PMID: 27991862 DOI: 10.1172/jci85052] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
Aminoglycosides (AGs) are broad-spectrum antibiotics that are associated with kidney damage, balance disorders, and permanent hearing loss. This damage occurs primarily by killing of proximal tubule kidney cells and mechanosensory hair cells, though the mechanisms underlying cell death are not clear. Imaging molecules of interest in living cells can elucidate how molecules enter cells, traverse intracellular compartments, and interact with sites of activity. Here, we have imaged fluorescently labeled AGs in live zebrafish mechanosensory hair cells. We determined that AGs enter hair cells via both nonendocytic and endocytic pathways. Both routes deliver AGs from the extracellular space to lysosomes, and structural differences between AGs alter the efficiency of this delivery. AGs with slower delivery to lysosomes were immediately toxic to hair cells, and impeding lysosome delivery increased AG-induced death. Therefore, pro-death cascades induced at early time points of AG exposure do not appear to derive from the lysosome. Our findings help clarify how AGs induce hair cell death and reveal properties that predict toxicity. Establishing signatures for AG toxicity may enable more efficient evaluation of AG treatment paradigms and structural modifications to reduce hair cell damage. Further, this work demonstrates how following fluorescently labeled drugs at high resolution in living cells can reveal important details about how drugs of interest behave.
Collapse
|
47
|
Koo JW, Quintanilla-Dieck L, Jiang M, Liu J, Urdang ZD, Allensworth JJ, Cross CP, Li H, Steyger PS. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity. Sci Transl Med 2016. [PMID: 26223301 DOI: 10.1126/scitranslmed.aac5546] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ototoxic aminoglycoside antibiotics are essential to treat severe bacterial infections, particularly in neonatal intensive care units. Using a bacterial lipopolysaccharide (LPS) experimental model of sepsis, we tested whether LPS-mediated inflammation potentiates cochlear uptake of aminoglycosides and permanent hearing loss in mice. Using confocal microscopy and enzyme-linked immunosorbent assays, we found that low-dose LPS (endotoxemia) greatly increased cochlear concentrations of aminoglycosides and resulted in vasodilation of cochlear capillaries without inducing paracellular flux across the blood-labyrinth barrier (BLB) or elevating serum concentrations of the drug. Additionally, endotoxemia increased expression of both serum and cochlear inflammatory markers. These LPS-induced changes, classically mediated by Toll-like receptor 4 (TLR4), were attenuated in TLR4-hyporesponsive mice. Multiday dosing with aminoglycosides during chronic endotoxemia induced greater hearing threshold shifts and sensory cell loss compared to mice without endotoxemia. Thus, endotoxemia-mediated inflammation enhanced aminoglycoside trafficking across the BLB and potentiated aminoglycoside-induced ototoxicity. These data indicate that patients with severe infections are at greater risk of aminoglycoside-induced hearing loss than previously recognized.
Collapse
Affiliation(s)
- Ja-Won Koo
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 173-82 Kumiro, Bundang-gu, Seongnam 463-707, Republic of Korea
| | - Lourdes Quintanilla-Dieck
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jianping Liu
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA. Department of Otology and Skull Base Surgery, Eye Ear Nose and Throat Hospital, Fudan University, Shanghai 200031, China
| | - Zachary D Urdang
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Jordan J Allensworth
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Campbell P Cross
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Hongzhe Li
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | - Peter S Steyger
- Oregon Hearing Research Center, Department of Otolaryngology, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
48
|
Elbaz M, Ahirwar D, Xiaoli Z, Zhou X, Lustberg M, Nasser MW, Shilo K, Ganju RK. TRPV2 is a novel biomarker and therapeutic target in triple negative breast cancer. Oncotarget 2016; 9:33459-33470. [PMID: 30323891 DOI: 10.18632/oncotarget.9663] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential vanilloid type-2 (TRPV2) is an ion channel that is triggered by agonists like cannabidiol (CBD). Triple negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Chemotherapy is still the first line for the treatment of TNBC patients; however, TNBC usually gains rapid resistance and unresponsiveness to chemotherapeutic drugs. In this study, we found that TRPV2 protein is highly up-regulated in TNBC tissues compared to normal breast tissues. We also observed that TNBC and estrogen receptor alpha negative (ERβ-) patients with higher TRPV2 expression have significantly higher recurrence free survival compared to patients with lower TRPV2 expression especially those who were treated with chemotherapy. In addition, we showed that TRPV2 overexpression or activation by CBD significantly increased doxorubicin (DOX) uptake and apoptosis in TNBC cells. The induction of DOX uptake was abrogated by TRPV2 blocking or downregulation. In vivo mouse model studies showed that the TNBC tumors derived from CBD+DOX treated mice have significantly reduced weight and increased apoptosis compared to those treated with CBD or DOX alone. Overall, our studies for the first time revealed that TRPV2 might be a good prognostic marker for TNBC and ERβ- breast cancer patient especially for those who are treated with chemotherapy. In addition, TRPV2 activation could be a novel therapeutic strategy to enhance the uptake and efficacy of chemotherapy in TNBC patients.
Collapse
Affiliation(s)
- Mohamad Elbaz
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA.,Department of Pharmacology, Pharmacy School, Helwan University, Helwan, Egypt
| | - Dinesh Ahirwar
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Zhang Xiaoli
- Center for Biostatistics, Ohio State University (OSU), Columbus, OH, USA
| | - Xinyu Zhou
- Department of surgery, Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH, USA
| | - Maryam Lustberg
- Department of Internal Medicine, Ohio State University (OSU), Columbus, OH, USA
| | - Mohd W Nasser
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Konstantin Shilo
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, Wexner Medical Center, Ohio State University (OSU), Columbus, OH, USA.,The Comprehensive Cancer Center, Ohio State University (OSU), Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
49
|
Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 2016; 338:52-63. [PMID: 26802581 DOI: 10.1016/j.heares.2016.01.010] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically, the BLB is comprised of endothelial cells (ECs) in the strial microvasculature, elaborated tight and adherens junctions, pericytes (PCs), basement membrane (BM), and perivascular resident macrophage-like melanocytes (PVM/Ms), which together form a complex "cochlear-vascular unit" in the stria vascularis. Physical interactions between the ECs, PCs, and PVM/Ms, as well as signaling between the cells, is critical for controlling vascular permeability and providing a proper environment for hearing function. Breakdown of normal interactions between components of the BLB is seen in a wide range of pathological conditions, including genetic defects and conditions engendered by inflammation, loud sound trauma, and ageing. In this review, we will discuss prevailing views of the structure and function of the strial cochlear-vascular unit (also referred to as the "intrastrial fluid-blood barrier"). We will also discuss the disrupted homeostasis seen in a variety of hearing disorders. Therapeutic targeting of the strial barrier may offer opportunities for improvement of hearing health and amelioration of auditory disorders. This article is part of a Special Issue entitled <Annual Reviews 2016>.
Collapse
|
50
|
Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? J Bioenerg Biomembr 2016; 48:1-12. [PMID: 26728159 DOI: 10.1007/s10863-015-9634-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Collapse
Affiliation(s)
- L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil.
| | - R X Faria
- Laboratory of Cellular Communication, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| |
Collapse
|