1
|
Liu J, Lu F, Chen Y, Plow E, Qin J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J Biol Chem 2022; 298:101710. [PMID: 35150743 PMCID: PMC8828381 DOI: 10.1016/j.jbc.2022.101710] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is broadly accepted that SARS-CoV-2 utilizes its spike protein to recognize the extracellular domain of angiotensin-converting enzyme 2 (ACE2) to enter cells for viral infection. However, other mechanisms of SARS-CoV-2 cell entry may occur. We show quantitatively that the SARS-CoV-2 spike protein also binds to the extracellular domain of broadly expressed integrin α5β1 with an affinity comparable to that of SARS-CoV-2 binding to ACE2. More importantly, we provide direct evidence that such binding promotes the internalization of SARS-CoV-2 into non-ACE2 cells in a manner critically dependent upon the activation of the integrin. Our data demonstrate an alternative pathway for the cell entry of SARS-CoV-2, suggesting that upon initial ACE2-mediated invasion of the virus in the respiratory system, which is known to trigger an immune response and secretion of cytokines to activate integrin, the integrin-mediated cell invasion of SARS-CoV-2 into the respiratory system and other organs becomes effective, thereby promoting further infection and progression of COVID-19.
Collapse
Affiliation(s)
- Jiamnin Liu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fan Lu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Edward Plow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Selivanova EK, Gaynullina DK, Tarasova OS. Thyroxine Induces Acute Relaxation of Rat Skeletal Muscle Arteries via Integrin αvβ3, ERK1/2 and Integrin-Linked Kinase. Front Physiol 2021; 12:726354. [PMID: 34594239 PMCID: PMC8477044 DOI: 10.3389/fphys.2021.726354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Aim: Hyperthyroidism is associated with a decreased peripheral vascular resistance, which could be caused by the vasodilator genomic or non-genomic effects of thyroid hormones (TH). Non-genomic, or acute, effects develop within several minutes and involve a wide tissue-specific spectrum of molecular pathways poorly studied in vasculature. We aimed to investigate the mechanisms of acute effects of TH on rat skeletal muscle arteries. Methods: Sural arteries from male Wistar rats were used for isometric force recording (wire myography) and phosphorylated protein content measurement (Western blotting). Results: Both triiodothyronine (T3) and thyroxine (T4) reduced contractile response of sural arteries to α1-adrenoceptor agonist methoxamine. The effect of T4 was more prominent than T3 and not affected by iopanoic acid, an inhibitor of deiodinase 2. Endothelium denudation abolished the effect of T3, but not T4. Integrin αvβ3 inhibitor tetrac abolished the effect of T4 in endothelium-denuded arteries. T4 weakened methoxamine-induced elevation of phospho-MLC2 (Ser19) content in arterial samples. The effect of T4 in endothelium-denuded arteries was abolished by inhibiting ERK1/2 activation with U0126 as well as by ILK inhibitor Cpd22 but persisted in the presence of Src- or Rho-kinase inhibitors (PP2 and Y27632, respectively). Conclusion: Acute non-genomic relaxation of sural arteries induced by T3 is endothelium-dependent and that induced by T4 is endothelium-independent. The effect of T4 on α1-adrenergic contraction is stronger compared to T3 and involves the suppression of extracellular matrix signaling via integrin αvβ3, ERK1/2 and ILK with subsequent decrease of MLC2 (Ser19) phosphorylation.
Collapse
Affiliation(s)
- Ekaterina K Selivanova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dina K Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Olga S Tarasova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Chellaiah MA. L-Plastin Phosphorylation: Possible Regulation by a TNFR1 Signaling Cascade in Osteoclasts. Cells 2021; 10:2432. [PMID: 34572081 PMCID: PMC8464874 DOI: 10.3390/cells10092432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) signaling regulates phosphorylation of L-plastin, which is involved in forming the nascent sealing zone, a precursor zone for the matured sealing ring. This study aimed to illustrate the molecular mechanisms of L-plastin phosphorylation and the subsequent formation of the nascent sealing zone in osteoclasts treated with TNF-α. Here, we report that anti-TNF-receptor 1, inhibitors of signaling proteins (Src, PI3-K, Rho, and Rho-kinase), and siRNA of TRAF-6 attenuated the phosphorylation of LPL and filamentous actin content significantly in the presence of TNF-α. An inhibitor of integrin αvβ3, PKC, or PKA did not inhibit TNF-α-induced L-plastin phosphorylation. Inhibitors of Src and PI3-K and not Rho or Rho-kinase reduced tyrosine phosphorylation of TRAF-6, suggesting that Src and PI3-K regulate TRAF-6 phosphorylation, and Rho and Rho-kinase are downstream of TRAF-6 regulation. Osteoclasts expressing constitutively active or kinase-defective Src proteins were used to determine the role of Src on L-plastin phosphorylation; similarly, the effect of Rho was confirmed by transducing TAT-fused constitutively active (V14) or dominant-negative (N19) Rho proteins into osteoclasts. Pull-down analysis with glutathione S-transferase-fused SH2 and SH3 domains of Src and PI3-K demonstrated coprecipitation of L-plastin and TRAF-6 with the SH3 and SH2 domains of the PI3-K and Src proteins. However, the actual order of the interaction of proteins requires further elucidation; a comprehensive screening should corroborate the initial findings of protein interactions via the SH2/SH3 domains. Ultimately, inhibition of the interaction of proteins with SH2/SH3 could reduce L-plastin phosphorylation and affect NSZ formation and bone resorption in conditions that display osteoclast activation and bone loss.
Collapse
Affiliation(s)
- Meenakshi A Chellaiah
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Hussein NJ, Mbimba T, Al-Adlaan AA, Ansari MY, Jaber FA, McDermott S, Kasumov T, Safadi FF. A novel regulatory role of TRAPPC9 in L-plastin-mediated osteoclast actin ring formation. J Cell Biochem 2019; 121:284-298. [PMID: 31453638 DOI: 10.1002/jcb.29168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
Trafficking protein particle complex 9 (TRAPPC9) is a major subunit of the TRAPPII complex. TRAPPC9 has been reported to bind nuclear factor κB kinase subunit β (IKKβ) and NF-kB-inducing kinase (NIK) where it plays a role in the canonical and noncanonical of nuclear factor-κB (NF-kB) signaling pathways, receptively. The role of TRAPPC9 in protein trafficking and cytoskeleton organization in osteoclast (OC) has not been studied yet. In this study, we examined the mRNA expression of TRAPPC9 during OC differentiation. Next, we examined the colocalization of TRAPPC9 with cathepsin-K, known to mediate OC resorption suggesting that TRAPPC9 mediates the trafficking pathway within OC. To identify TRAPPC9 protein partners important for OC-mediated cytoskeleton re-organization, we conducted immunoprecipitation of TRAPPC9 in mature OCs followed by mass spectrometry analysis. Our data showed that TRAPPC9 binds various protein partners. One protein with high recovery rate is L-plastin (LPL). LPL localizes at the podosomes and reported to play a crucial role in actin aggregation thereby actin ring formation and OC function. Although the role of LPL in OC-mediated bone resorption has not fully reported in detail. Here, first, we confirmed the binding of LPL to TRAPPC9 and, then, we investigated the potential regulatory role of TRAPPC9 in LPL-mediated OC cytoskeleton reorganization. We assessed the localization of TRAPPC9 and LPL in OC and found that TRAPPC9 is colocalized with LPL at the periphery of OC. Next, we determined the effect of TRAPPC9 overexpression on LPL recruitment to the actin ring using a viral system. Interestingly, our data showed that TRAPPC9 overexpression promotes the recruitment of LPL to the actin ring when compared with control cultures. In addition, we observed that TRAPPC9 overexpression reorganizes actin clusters/aggregates and regulates vinculin recruitment into the OC periphery to initiate podosome formation.
Collapse
Affiliation(s)
- Nazar J Hussein
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Thomas Mbimba
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Asaad A Al-Adlaan
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Fatima A Jaber
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Biology, King Abdulaziz University, Jeddah, KSA.,Department of Biology, University of Jeddah, Jeddah, KSA
| | - Scott McDermott
- Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA
| | - Takhar Kasumov
- Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA
| | - Fayez F Safadi
- School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Orthopaedic Surgery, SUMMA Heath System, Akron, Ohio, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.,Rebecca D. Considine Research Institute, Akron Children Hospital, Akron, Ohio
| |
Collapse
|
5
|
Kim JM, Lee K, Jeong D. Selective regulation of osteoclast adhesion and spreading by PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling. BMB Rep 2018; 51:230-235. [PMID: 29301608 PMCID: PMC5988577 DOI: 10.5483/bmbrep.2018.51.5.198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 01/16/2023] Open
Abstract
Bone resorption by multinucleated osteoclasts is a multistep process involving adhesion to the bone matrix, migration to resorption sites, and formation of sealing zones and ruffled borders. Macrophage colony-stimulating factor (M-CSF) and osteopontin (OPN) have been shown to be involved in the bone resorption process by respective activation of integrin αvβ3 via “inside-out” and “outside-in” signaling. In this study, we investigated the link between signal modulators known to M-CSF- and OPN-induced osteoclast adhesion and spreading. M-CSF- and OPN-induced osteoclast adhesion was achieved via activation of stepwise signals, including integrin αvβ3, PLCγ, PKCδ, and Rac1. Osteoclast spreading induced by M-CSF and OPN was shown to be controlled via sequential activation, consistent with the osteoclast adhesion processes. In contrast to osteoclast adhesion, osteoclast spreading induced by M-CSF and OPN was blocked via activation of PLCγ/PKCα/RhoA signaling. The combined results indicate that osteoclast adhesion and spreading are selectively regulated via PLCγ/PKCα-PKCδ/RhoA-Rac1 signaling.
Collapse
Affiliation(s)
- Jin-Man Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415; Asan Medical Center, Asan Institute for Life Sciences, Seoul 26493, Korea
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu 42415, Korea
| |
Collapse
|
6
|
Symonds JM, Ohm AM, Tan AC, Reyland ME. PKCδ regulates integrin αVβ3 expression and transformed growth of K-ras dependent lung cancer cells. Oncotarget 2017; 7:17905-19. [PMID: 26918447 PMCID: PMC4951259 DOI: 10.18632/oncotarget.7560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that Protein Kinase C delta (PKCδ) functions as a tumor promoter in non-small cell lung cancer (NSCLC), specifically in the context of K-ras addiction. Here we define a novel PKCδ -> integrin αVβ3->Extracellular signal-Regulated Kinase (ERK) pathway that regulates the transformed growth of K-ras dependent NSCLC cells. To explore how PKCδ regulates tumorigenesis, we performed mRNA expression analysis in four KRAS mutant NSCLC cell lines that stably express scrambled shRNA or a PKCδ targeted shRNA. Analysis of PKCδ-dependent mRNA expression identified 3183 regulated genes, 210 of which were specifically regulated in K-ras dependent cells. Genes that regulate extracellular matrix and focal adhesion pathways were most highly represented in this later group. In particular, expression of the integrin pair, αVβ3, was specifically reduced in K-ras dependent cells with depletion of PKCδ, and correlated with reduced ERK activation and reduced transformed growth as assayed by clonogenic survival. Re-expression of PKCδ restored ITGAV and ITGB3 mRNA expression, ERK activation and transformed growth, and this could be blocked by pretreatment with a αVβ3 function-blocking antibody, demonstrating a requirement for integrin αVβ3 downstream of PKCδ. Similarly, expression of integrin αV restored ERK activation and transformed growth in PKCδ depleted cells, and this could also be inhibited by pretreatment with PD98059. Our studies demonstrate an essential role for αVβ3 and ERK signalingdownstream of PKCδ in regulating the survival of K-ras dependent NSCLC cells, and identify PKCδ as a novel therapeutic target for the subset of NSCLC patients with K-ras dependent tumors.
Collapse
Affiliation(s)
- Jennifer M Symonds
- Program in Cancer Biology, The Graduate School, Aurora, CO, USA.,Matrix and Morphogenesis Section, NIDCR, NIH, Bethesda, MD, USA
| | - Angela M Ohm
- The Department of Craniofacial Biology, School of Dental Medicine, Aurora, CO, USA
| | - Aik-Choon Tan
- The Department of Medical Oncology, School of Medicine University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mary E Reyland
- The Department of Craniofacial Biology, School of Dental Medicine, Aurora, CO, USA
| |
Collapse
|
7
|
Kim JM, Kim MY, Lee K, Jeong D. Distinctive and selective route of PI3K/PKCα-PKCδ/RhoA-Rac1 signaling in osteoclastic cell migration. Mol Cell Endocrinol 2016; 437:261-267. [PMID: 27576187 DOI: 10.1016/j.mce.2016.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/17/2016] [Accepted: 08/26/2016] [Indexed: 01/15/2023]
Abstract
Cell migration during specialized stages of osteoclast precursors, mononuclear preosteoclasts, and multinucleated mature osteoclasts remain uncertain. M-CSF- and osteopontin-induced osteoclastic cell migration was inhibited by function-blocking monoclonal antibodies specific to the integrin αv and β3 subunits, suggesting that integrin αvβ3 mediates migratory signaling induced by M-CSF and osteopontin. M-CSF and osteopontin stimulation was shown to regulate two branched signaling processes, PI3K/PKCα/RhoA axis and PI3K/PKCδ/Rac1 axis. Interestingly, inactivation of RhoA or Rac1 blocked preosteoclast and mature osteoclast migration but not osteoclast precursor migration in a transwell-based cell migration assay. Moreover, the inhibitory effect on preosteoclast and mature osteoclast migration induced by Rac1 inactivation was more effective than that by RhoA inactivation. Collectively, our findings suggest that osteoclast precursor migration depends on PI3K/PKCα-PKCδ signaling mediated via integrin αvβ3 bypassing RhoA and Rac1, whereas preosteoclast and mature osteoclast migration relies on PI3K/PKCα-PKCδ/RhoA-Rac1 axis signaling mediated via integrin αvβ3 with increased dependency on PKCδ/Rac1 signaling route as differentiation progresses.
Collapse
Affiliation(s)
- Jin-Man Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea
| | - Mi Yeong Kim
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea
| | - Kyunghee Lee
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea.
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Bone Metabolism and Control, Yeungnam University College of Medicine, Daegu, 42415, South Korea.
| |
Collapse
|
8
|
MiR-142-3p is a RANKL-dependent inducer of cell death in osteoclasts. Sci Rep 2016; 6:24980. [PMID: 27113904 PMCID: PMC4844978 DOI: 10.1038/srep24980] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/07/2016] [Indexed: 01/23/2023] Open
Abstract
MicroRNA are small, non-coding, single-stranded RNAs that are estimated to regulate ~60% of the human genome. MiRNA profiling of monocyte-to-osteoclast differentiation identified miR-142-3p as a miRNA that is significantly, differentially expressed throughout osteoclastogenesis. Enforced expression of miR-142-3p via transient transfection with miR-142-3p mimic inhibited cell-to-cell contact and fusion, decreased protein kinase C alpha expression, and ultimately reduced cell viability. miR-142-3p was also identified as significantly differentially expressed during monocyte-to-macrophage differentiation and overexpression of miR-142-3p prevented their conversion to osteoclasts. Furthermore, the inhibitory effect of miR-142-3p on osteoclastogenesis extended to the conversion of a third osteoclast precursor cell type- dendritic cells. These results demonstrate miR-142-3p to be a negative regulator of osteoclastogenesis from the 3 main precursor cell types: monocytes, macrophages and dendritic cells. Importantly, decreased survival was dependent upon both miR-142-3p expression and RANK-signaling, with no harmful effects detected in the absence of this combination. As such, miR-142-3p represents a novel target for the selective removal of osteoclasts by targeting of osteoclastogenic pathways.
Collapse
|
9
|
Page JM, Merkel AR, Ruppender NS, Guo R, Dadwal UC, Cannonier S, Basu S, Guelcher SA, Sterling JA. Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype through integrin β3 and TGF-β receptor type II. Biomaterials 2015; 64:33-44. [PMID: 26115412 DOI: 10.1016/j.biomaterials.2015.06.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023]
Abstract
Cancer patients frequently develop skeletal metastases that significantly impact quality of life. Since bone metastases remain incurable, a clearer understanding of molecular mechanisms regulating skeletal metastases is required to develop new therapeutics that block establishment of tumors in bone. While many studies have suggested that the microenvironment contributes to bone metastases, the factors mediating tumors to progress from a quiescent to a bone-destructive state remain unclear. In this study, we hypothesized that the "soil" of the bone microenvironment, specifically the rigid mineralized extracellular matrix, stimulates the transition of the tumor cells to a bone-destructive phenotype. To test this hypothesis, we synthesized 2D polyurethane (PUR) films with elastic moduli ranging from the basement membrane (70 MPa) to cortical bone (3800 MPa) and measured expression of genes associated with mechanotransduction and bone metastases. We found that expression of Integrin β3 (Iβ3), as well as tumor-produced factors associated with bone destruction (Gli2 and parathyroid hormone related protein (PTHrP)), significantly increased with matrix rigidity, and that blocking Iβ3 reduced Gli2 and PTHrP expression. To identify the mechanism by which Iβ3 regulates Gli2 and PTHrP (both are also known to be regulated by TGF-β), we performed Förster resonance energy transfer (FRET) and immunoprecipitation, which indicated that Iβ3 co-localized with TGF-β Receptor Type II (TGF-β RII) on rigid but not compliant films. Finally, transplantation of tumor cells expressing Iβ3 shRNA into the tibiae of athymic nude mice significantly reduced PTHrP and Gli2 expression, as well as bone destruction, suggesting a crucial role for tumor-produced Iβ3 in disease progression. This study demonstrates that the rigid mineralized bone matrix can alter gene expression and bone destruction in an Iβ3/TGF-β-dependent manner, and suggests that Iβ3 inhibitors are a potential therapeutic approach for blocking tumor transition to a bone destructive phenotype.
Collapse
Affiliation(s)
- Jonathan M Page
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Alyssa R Merkel
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nazanin S Ruppender
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ruijing Guo
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ushashi C Dadwal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Shellese Cannonier
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Scott A Guelcher
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Julie A Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System, Nashville, TN, 37212, USA.,Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
10
|
Huang MT, Chen ST, Wu HY, Chen YJ, Chou TY, Hsieh SL. DcR3 suppresses influenza virus-induced macrophage activation and attenuates pulmonary inflammation and lethality. J Mol Med (Berl) 2015; 93:1131-43. [PMID: 25940317 DOI: 10.1007/s00109-015-1291-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/19/2015] [Accepted: 04/24/2015] [Indexed: 12/28/2022]
Abstract
UNLABELLED Influenza A virus (IAV) infects macrophages and stimulates innate immunity receptors and sensors to produce proinflammatory cytokines and chemokines, which are responsible for IAV-induced pulmonary inflammation and injury. Decoy receptor 3 (DcR3) is a soluble protein belonging to the tumor necrosis factor receptor superfamily (TNFRSF), and is able to skew macrophage differentiation into an M2 phenotype. We demonstrated that DcR3 attenuated IAV-induced secretion of proinflammatory cytokines and chemokine from macrophages, and mitigated pulmonary infiltration and reduce lethality. Proteome-wide phosphoproteomic mapping revealed that DcR3 not only activated STK10, a negative regulator of cell migration, but also inactivated PKC-α, which are crucial for the activation of ERK and JNK in human macrophages. Furthermore, less pulmonary infiltration with lower levels of proinflammatory cytokines and chemokine in bronchoalveolar lavage fluid (BALF) were observed in DcR3-transgenic mice. Moreover, recombinant DcR3.Fc and heparan sulfate proteoglycan binding domain of DcR3.Fc (HBD.Fc) fusion proteins attenuated weight loss and protected mice from IAV-induced lethality. Thus, DcR3-mediated protection is not only via suppression of proinflammatory cytokine and chemokine release, but also via activation of STK10 to inhibit cell infiltration. DcR3 fusion proteins may become therapeutic agents to protect host from IAV-induced lethality in the future. KEY MESSAGE • DcR3 suppresses IAV-induced cytokine secretion.• DcR3 inhibits IAV-induced JNK and ERK activation in human macrophages.• DcR3 downregulates TLR3 and 7 expressions in human macrophages.• DcR3 protects mice from IAV-induced lethality.
Collapse
Affiliation(s)
- Ming-Ting Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Szu-Ting Chen
- Department of Microbiology and Immunology, School of Medicine, Taipei Medical University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei, 115, Taiwan.
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Carduner L, Picot CR, Leroy-Dudal J, Blay L, Kellouche S, Carreiras F. Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp Cell Res 2013; 320:329-42. [PMID: 24291221 DOI: 10.1016/j.yexcr.2013.11.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 11/11/2013] [Accepted: 11/14/2013] [Indexed: 11/24/2022]
Abstract
Ovarian cancer is the most lethal gynecologic cancer mainly due to spheroids organization of cancer cells that disseminate within the peritoneal cavity. We have investigated the molecular mechanisms by which ovarian cancer spheroids resist anoikis, choosing as models the 2 well-characterized human ovarian cancer cell lines IGROV1 and SKOV3. These cell lines have the propensity to float as clusters, and were isolated from tumor tissue and ascites, respectively. To form spheroids, IGROV1 and SKOV3 ovarian adenocarcinoma cells were maintained under anchorage-independent culture conditions, in which both lines survive at least a week. A short apoptotic period prior to a survival signaling commitment was observed for IGROV1 cells whereas SKOV3 cells entered G0/G1 phase of the cell cycle. This difference in behavior was due to different signals. With regard to SKOV3 cells, activation of p38 and an increase in p130/Rb occurred once anchorage-independent culture was established. Analyses of the survival signaling pathway switched on by IGROV1 cells showed that activation of ERK1/2 was required to evade apoptosis, an effect partly dependent on PKC activation and αv integrins. αv-integrin expression is essential for survival through activation of ERK1/2 phosphorylation. The above data indicate that ovarian cancer cells can resist anoikis in the spheroid state by arrest in the cell cycle or through activation of αv-integrin-ERK-mediated survival signals. Such signaling might result in the selection of resistant cells within disseminating spheroids, favoring further relapse in ovarian cancers.
Collapse
Affiliation(s)
- Ludovic Carduner
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Cédric R Picot
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France.
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Lyvia Blay
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Sabrina Kellouche
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Institut des Matériaux, Université de Cergy-Pontoise, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise Cedex, France
| |
Collapse
|
12
|
Evensen NA, Kuscu C, Nguyen HL, Zarrabi K, Dufour A, Kadam P, Hu YJ, Pulkoski-Gross A, Bahou WF, Zucker S, Cao J. Unraveling the role of KIAA1199, a novel endoplasmic reticulum protein, in cancer cell migration. J Natl Cancer Inst 2013; 105:1402-16. [PMID: 23990668 DOI: 10.1093/jnci/djt224] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cell migration is a critical determinant of cancer metastasis, and a better understanding of the genes involved will lead to the identification of novel targets aimed at preventing cancer dissemination. KIAA1199 has been shown to be upregulated in human cancers, yet its role in cancer progression was hitherto unknown. METHODS Clinical relevance was assessed by examining KIAA1199 expression in human cancer specimens. In vitro and in vivo studies were employed to determine the function of KIAA1199 in cancer progression. Cellular localization of KIAA1199 was microscopically determined. SNAP-tag pull-down assays were used to identify binding partner(s) of KIAA1199. Calcium levels were evaluated using spectrofluorometric and fluorescence resonance energy transfer analyses. Signaling pathways were dissected by Western blotting. Student t test was used to assess differences. All statistical tests were two-sided. RESULTS KIAA1199 was upregulated in invasive breast cancer specimens and inversely associated with patient survival rate. Silencing of KIAA1199 in MDA-MB-435 cancer cells resulted in a mesenchymal-to-epithelial transition that reduced cell migratory ability in vitro (75% reduction; P < .001) and decreased metastasis in vivo (80% reduction; P < .001). Gain-of-function assays further demonstrated the role of KIAA1199 in cell migration. KIAA1199-enhanced cell migration required endoplasmic reticulum (ER) localization, where it forms a stable complex with the chaperone binding immunoglobulin protein (BiP). A novel ER-retention motif within KIAA1199 that is required for its ER localization, BiP interaction, and enhanced cell migration was identified. Mechanistically, KIAA1199 was found to mediate ER calcium leakage, and the resultant increase in cytosolic calcium ultimately led to protein kinase C alpha activation and cell migration. CONCLUSIONS KIAA1199 serves as a novel cell migration-promoting gene and plays a critical role in maintaining cancer mesenchymal status.
Collapse
Affiliation(s)
- Nikki A Evensen
- Affiliations of authors: Department of Medicine/Cancer Prevention (NAE, CK, H-LN, KZ, AD, AP-G, JC), Department of Pathology (YH, JC), Department of Medicine/Hematology & Oncology (WFB, SZ), Stony Brook University, Stony Brook, NY; Department of Research, Veterans Affair Medical Center, Northport, NY (H-LN, PK, SZ); Centre for Blood Research and Departments of Biochemistry and Molecular Biology and Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada (AD)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
RAF inhibition overcomes resistance to TRAIL-induced apoptosis in melanoma cells. J Invest Dermatol 2013; 134:430-440. [PMID: 23955071 DOI: 10.1038/jid.2013.347] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/14/2013] [Accepted: 05/26/2013] [Indexed: 12/29/2022]
Abstract
Mutated BRAF represents a critical oncogene in melanoma, and selective inhibitors have been approved for melanoma therapy. However, the molecular consequences of RAF inhibition in melanoma cells remained largely elusive. Here, we investigated the effects of the pan-RAF inhibitor L-779,450, which inhibited cell proliferation both in BRAF-mutated and wild-type melanoma cell lines. It furthermore enhanced apoptosis in combination with the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and overcame TRAIL resistance in melanoma cells. Enhanced apoptosis coincided with activation of mitochondrial pathways, seen by loss of mitochondrial membrane potential and release of cytochrome c, Smac (second mitochondria-derived activator of caspases), and apoptosis-inducing factor (AIF). Subsequently, caspase-9 and -3 were activated. Apoptosis induction by L-779,450/TRAIL was prevented by Bcl-2 overexpression and was dependent on Bax. Thus, activation of Bax by L-779,450 alone was demonstrated by Bax conformational changes, whereas Bak was not activated. Furthermore, the BH3-only protein Bim was upregulated in response to L-779,450. The significant roles of Smac, Bax, and Bim in this setting were proven by small interfering RNA (siRNA)-mediated knockdown experiments. L-779,450 also resulted in morphological changes indicating autophagy confirmed by the autophagy marker light chain 3-II (LC3-II). The pro-apoptotic effects of L-779,450 may explain the antitumor effects of RAF inhibition and may be considered when evaluating RAF inhibitors for melanoma therapy.
Collapse
|
14
|
Impact of docosahexaenoic acid on gene expression during osteoclastogenesis in vitro--a comprehensive analysis. Nutrients 2013; 5:3151-62. [PMID: 23945674 PMCID: PMC3775247 DOI: 10.3390/nu5083151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/09/2013] [Accepted: 08/01/2013] [Indexed: 01/13/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs), especially n-3 polyunsaturated fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are known to protect against inflammation-induced bone loss in chronic inflammatory diseases, such as rheumatoid arthritis, periodontitis and osteoporosis. We previously reported that DHA, not EPA, inhibited osteoclastogenesis induced by the receptor activator of nuclear factor-κB ligand (sRANKL) in vitro. In this study, we performed gene expression analysis using microarrays to identify genes affected by the DHA treatment during osteoclastogenesis. DHA strongly inhibited osteoclastogenesis at the late stage. Among the genes upregulated by the sRANKL treatment, 4779 genes were downregulated by DHA and upregulated by the EPA treatment. Gene ontology analysis identified sets of genes related to cell motility, cell adhesion, cell-cell signaling and cell morphogenesis. Quantitative PCR analysis confirmed that DC-STAMP, an essential gene for the cell fusion process in osteoclastogenesis, and other osteoclast-related genes, such as Siglec-15, Tspan7 and Mst1r, were inhibited by DHA.
Collapse
|
15
|
Khor EC, Abel T, Tickner J, Chim SM, Wang C, Cheng T, Ng B, Ng PY, Teguh DA, Kenny J, Yang X, Chen H, Nakayama KI, Nakayama K, Pavlos N, Zheng MH, Xu J. Loss of protein kinase C-δ protects against LPS-induced osteolysis owing to an intrinsic defect in osteoclastic bone resorption. PLoS One 2013; 8:e70815. [PMID: 23951014 PMCID: PMC3738588 DOI: 10.1371/journal.pone.0070815] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Bone remodeling is intrinsically regulated by cell signaling molecules. The Protein Kinase C (PKC) family of serine/threonine kinases is involved in multiple signaling pathways including cell proliferation, differentiation, apoptosis and osteoclast biology. However, the precise involvement of individual PKC isoforms in the regulation of osteoclast formation and bone homeostasis remains unclear. Here, we identify PKC-δ as the major PKC isoform expressed among all PKCs in osteoclasts; including classical PKCs (-α, -β and -γ), novel PKCs (-δ, -ε, -η and -θ) and atypical PKCs (-ι/λ and -ζ). Interestingly, pharmacological inhibition and genetic ablation of PKC-δ impairs osteoclastic bone resorption in vitro. Moreover, disruption of PKC-δ activity protects against LPS-induced osteolysis in mice, with osteoclasts accumulating on the bone surface failing to resorb bone. Treatment with the PKC-δ inhibitor Rottlerin, blocks LPS-induced bone resorption in mice. Consistently, PKC-δ deficient mice exhibit increased trabeculae bone containing residual cartilage matrix, indicative of an osteoclast-rich osteopetrosis phenotype. Cultured ex vivo osteoclasts derived from PKC-δ null mice exhibit decreased CTX-1 levels and MARKS phosphorylation, with enhanced formation rates. This is accompanied by elevated gene expression levels of cathepsin K and PKC -α, -γ and -ε, as well as altered signaling of pERK and pcSrc416/527 upon RANKL-induction, possibly to compensate for the defects in bone resorption. Collectively, our data indicate that PKC-δ is an intrinsic regulator of osteoclast formation and bone resorption and thus is a potential therapeutic target for pathological osteolysis.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Tamara Abel
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Nedlands, Western Australia, Australia
| | - Jennifer Tickner
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cathy Wang
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Taksum Cheng
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Benjamin Ng
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Pei Ying Ng
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Dian Astari Teguh
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Jacob Kenny
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
| | - Xiaohong Yang
- Guangzhou Institute of Traumatic Surgery, the Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou, China
| | - Honghui Chen
- Guangzhou Institute of Traumatic Surgery, the Fourth Affiliated Hospital of Medical College, Jinan University, Guangzhou, China
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiko Nakayama
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Nathan Pavlos
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ming H. Zheng
- Centre for Orthopaedic Research, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
- * E-mail: (JX); (MHZ)
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia
- * E-mail: (JX); (MHZ)
| |
Collapse
|
16
|
Neeli I, Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol 2013; 4:38. [PMID: 23430963 PMCID: PMC3576869 DOI: 10.3389/fimmu.2013.00038] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/31/2013] [Indexed: 11/29/2022] Open
Abstract
In response to inflammation, neutrophils deiminate histones and externalize chromatin. Neutrophil extracellular traps (NETs) are an innate immune defense mechanism, yet NETs also may aggravate chronic inflammatory and autoimmune disorders. Activation of peptidylarginine deiminase 4 (PAD4) is associated with NET release (NETosis) but the precise mechanisms of PAD4 regulation are unknown. We observed that, in human neutrophils, calcium ionophore induced histone deimination, whereas phorbol myristate acetate (PMA), an activator of protein kinase C (PKC), suppressed ionophore-induced deimination. Conversely, low doses of chelerythrine and sanguinarine, two inhibitors of PKC, reversed PMA inhibition and enhanced ionophore-stimulated deimination. In addition, a peptide inhibitor of PKCα superinduced ionophore activation of PAD4, thus identifying PKCα as the PMA-induced inhibitor of PAD4. At higher doses, chelerythrine, sanguinarine, and structurally unrelated PKC inhibitors blocked histone deimination, suggesting that a different PKC isoform activates histone deimination. We identify PKCζ as activator of PAD4 because a specific peptide inhibitor of this PKC isoform suppressed histone deimination. Confocal microscopy confirmed that, in the presence of PMA, NETosis proceeds without detectable histone deimination, and that ionophore cooperates with PMA to induce more extensive NET release. Broad inhibition of PKC by chelerythrine or specific inhibition of PKCζ suppressed NETosis. Our observations thus reveal an intricate antagonism between PKC isoforms in the regulation of histone deimination, identify a dominant role for PKCα in the repression of histone deimination, and assign essential functions to PKCζ in the activation of PAD4 and the execution of NETosis. The precise balance between opposing PKC isoforms in the regulation of NETosis affirms the idea that NET release underlies specific and vitally important evolutionary selection pressures.
Collapse
Affiliation(s)
- Indira Neeli
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | | |
Collapse
|
17
|
Vartanian AA. RETRACTED ARTICLE: Signaling pathways in tumor vasculogenic mimicry. BIOCHEMISTRY (MOSCOW) 2012; 77:1044-55. [DOI: 10.1134/s000629791209012x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Smith SD, Enge M, Bao W, Thullberg M, Costa TDF, Olofsson H, Gashi B, Selivanova G, Strömblad S. Protein kinase Cα (PKCα) regulates p53 localization and melanoma cell survival downstream of integrin αv in three-dimensional collagen and in vivo. J Biol Chem 2012; 287:29336-47. [PMID: 22773839 DOI: 10.1074/jbc.m112.341917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase C α (PKCα) is overexpressed in numerous types of cancer. Importantly, PKCα has been linked to metastasis of malignant melanoma in patients. However, it has been unclear how PKCα may be regulated and how it exerts its role in melanoma. Here, we identified a role for PKCα in melanoma cell survival in a three-dimensional collagen model mimicking the in vivo pathophysiology of the dermis. A pathway was identified that involved integrin αv-mediated up-regulation of PKCα and PKCα-dependent regulation of p53 localization, which was connected to melanoma cell survival. Melanoma survival and growth in three-dimensional microenvironments requires the expression of integrin αv, which acts to suppress p53 activity. Interestingly, microarray analysis revealed that PKCα was up-regulated by integrin αv in a three-dimensional microenvironment-dependent manner. Integrin αv was observed to promote a relocalization of endogenous p53 from the nucleus to the cytoplasm upon growth in three-dimensional collagen as well as in vivo, whereas stable knockdown of PKCα inhibited the integrin αv-mediated relocalization of p53. Importantly, knockdown of PKCα also promoted apoptosis in three-dimensional collagen and in vivo, resulting in reduced tumor growth. This indicates that PKCα constitutes a crucial component of the integrin αv-mediated pathway(s) that promote p53 relocalization and melanoma survival.
Collapse
Affiliation(s)
- Stephen D Smith
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Huddinge SE-141 83, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The potential of laminin-2-biomimetic short peptide to promote cell adhesion, spreading and migration by inducing membrane recruitment and phosphorylation of PKCδ. Biomaterials 2012; 33:3967-79. [DOI: 10.1016/j.biomaterials.2012.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022]
|
20
|
Melendez RI, McGinty JF, Kalivas PW, Becker HC. Brain region-specific gene expression changes after chronic intermittent ethanol exposure and early withdrawal in C57BL/6J mice. Addict Biol 2012; 17:351-64. [PMID: 21812870 DOI: 10.1111/j.1369-1600.2011.00357.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neuroadaptations that participate in the ontogeny of alcohol dependence are likely a result of altered gene expression in various brain regions. The present study investigated brain region-specific changes in the pattern and magnitude of gene expression immediately following chronic intermittent ethanol (CIE) exposure and 8 hours following final ethanol exposure [i.e. early withdrawal (EWD)]. High-density oligonucleotide microarrays (Affymetrix 430A 2.0, Affymetrix, Santa Clara, CA, USA) and bioinformatics analysis were used to characterize gene expression and function in the prefrontal cortex (PFC), hippocampus (HPC) and nucleus accumbens (NAc) of C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA). Gene expression levels were determined using gene chip robust multi-array average followed by statistical analysis of microarrays and validated by quantitative real-time reverse transcription polymerase chain reaction and Western blot analysis. Results indicated that immediately following CIE exposure, changes in gene expression were strikingly greater in the PFC (284 genes) compared with the HPC (16 genes) and NAc (32 genes). Bioinformatics analysis revealed that most of the transcriptionally responsive genes in the PFC were involved in Ras/MAPK signaling, notch signaling or ubiquitination. In contrast, during EWD, changes in gene expression were greatest in the HPC (139 genes) compared with the PFC (four genes) and NAc (eight genes). The most transcriptionally responsive genes in the HPC were involved in mRNA processing or actin dynamics. Of the few genes detected in the NAc, the most representatives were involved in circadian rhythms. Overall, these findings indicate that brain region-specific and time-dependent neuroadaptive alterations in gene expression play an integral role in the development of alcohol dependence and withdrawal.
Collapse
Affiliation(s)
- Roberto I Melendez
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
21
|
Vartanian A, Stepanova E, Grigorieva I, Solomko E, Belkin V, Baryshnikov A, Lichinitser M. Melanoma vasculogenic mimicry capillary-like structure formation depends on integrin and calcium signaling. Microcirculation 2011; 18:390-9. [PMID: 21438962 DOI: 10.1111/j.1549-8719.2011.00102.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We recently demonstrated that the formation of CLSs in vitro, which are thought to be a reconstitution of VM, is controlled by VEGFA. CLS formation also requires the extracellular matrix signals, presumably transduced by integrins. Both pathways are affected by Ca(2+). Therefore, we directly tested the roles of Ca(2+) and integrin in melanoma VM. METHODS The investigation was performed by immunocytochemical, histochemical, and 3D co-culture assays. We have also used an in vivo animal model. RESULTS The extracellular and intracellular Ca(2+) chelators, EGTA and BAPTA-AM, prevented CLS formation on Matrigel, caused actin rearrangement, and completely destroyed the preformed CLS. Addition of colcemid or cytochalasin D prevented the CLS formation and destroyed the preformed CLS network. Herein, we also show that blocking antibodies to ανβ3 and ανβ5 integrins disrupted the CLS network. Control blocking antibody to β1 integrin had no effect. In vivo experiments indicated that Ca(2+) chelation dramatically reduced the signs of VM in melanoma tumors grafted in mice. CONCLUSIONS Our results indicate that the formation of CLS is tightly regulated by extracellular and intracellular Ca(2+) levels; ανβ3 and ανβ5 integrins are primarily responsible for CLS formation, whereas β1 integrin does not participate in CLS formation.
Collapse
Affiliation(s)
- Amalia Vartanian
- NN Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
22
|
IGF2 derived from SH-SY5Y neuroblastoma cells induces the osteoclastogenesis of human monocytic precursors. Exp Cell Res 2011; 317:2147-58. [DOI: 10.1016/j.yexcr.2011.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 05/03/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022]
|
23
|
Reactive oxygen species-mediated PKC and integrin signaling promotes tumor progression of human hepatoma HepG2. Clin Exp Metastasis 2011; 28:851-63. [DOI: 10.1007/s10585-011-9416-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/28/2011] [Indexed: 11/27/2022]
|
24
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
25
|
Mouguelar VS, Cabada MO, Coux G. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes. Reproduction 2011; 141:581-93. [DOI: 10.1530/rep-10-0411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integrins are cell adhesion molecules that are thought to be involved in sperm–oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported byXenopus laevisstudies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibianBufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest thatB. arenarumfertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors inB. arenarumoocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
Collapse
|
26
|
Costunolide stimulates the function of osteoblastic MC3T3-E1 cells. Int Immunopharmacol 2011; 11:712-8. [PMID: 21296696 DOI: 10.1016/j.intimp.2011.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/22/2022]
Abstract
The effect of costunolide on the function of osteoblastic MC3T3-E1 cells was studied. Costunolide significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells (P<0.05). The effect of costunolide in increasing cell growth was completely prevented by the presence of ICI182780, LY294002, PD98059, rotlerin, or glibenclamide, suggesting that the effect of costunolide might be partly mediated from estrogen receptor (ER), PI3K, ERK, protein kinase C (PKC) and mitochondrial ATP-sensitive K(+) channel. The effect of costunolide in increasing ALP activity was prevented by the presence of ICI182780, PD98059, SB203580, or rotrelin, suggesting that the effect of costunolide on ALP activity might be mediated from ER, ERK, p38, and PKC. The effect of costunolide in increasing collagen content was prevented by the presence of LY294002, PD98059, SB203580, SP600125, or rotrelin, suggesting that the effect of costunolide on collagen synthesis might be mediated from PI3K, ERK, p38, JNK, and PKC. Moreover, cotreatment of ICI182780 or LY294002 inhibited costunolide-mediated upregulation of mineralization, suggesting that the induction of mineralization by costunolide is associated with increased activation of ER and PI3K. Our data indicate that the enhancement of osteoblast function by costunolide may result in the prevention for osteoporosis.
Collapse
|
27
|
Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 2011; 48:54-65. [PMID: 20850578 PMCID: PMC3010439 DOI: 10.1016/j.bone.2010.09.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/04/2010] [Indexed: 01/24/2023]
Abstract
Integrins on both tumor cells and the supporting host stromal cells in bone (osteoclasts, new blood vessels, inflammatory cells, platelets and bone marrow stromal cells) play key roles in enhancing bone metastasis. Tumor cells localize to specific tissues through integrin-mediated contacts with extracellular matrix and stromal cells. Integrin expression and signaling are perturbed in cancer cells, allowing them to "escape" from cell-cell and cell-matrix tethers, invade, migrate and colonize within new tissues and matrices. Integrin signaling through αvβ3 and VLA-4 on tumor cells can promote tumor metastasis to and proliferation in the bone microenvironment. Osteoclast (OC) mediated bone resorption is a critical component of bone metastasis and can promote tumor growth in bone and αvβ3 integrins are critical to OC function and development. Tumors in the bone microenvironment can recruit new blood vessel formation, platelets, pro-tumor immune cells and bone marrow stromal cells that promote tumor growth and invasion in bone. Integrins and their ligands play critical roles in platelet aggregation (αvβ3 and αIIbβ3), hematopoietic cell mobilization (VLA-4 and osteopontin), neoangiogenesis (αvβ3, αvβ5, α6β4, and β1 integrin) and stromal function (osteopontin and VLA-4). Integrins are involved in the pathogenesis of bone metastasis at many levels and further study to define integrin dysregulation by cancer will yield new therapeutic targets for the prevention and treatment of bone metastasis.
Collapse
Affiliation(s)
- Jochen G. Schneider
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Germany, and Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Sarah H. Amend
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| | - Katherine N. Weilbaecher
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
- Corresponding author: Katherine Weilbaecher, Department of Medicine and Cell Biology and Physiology, Division of Oncology, Washington University, School of Medicine, 660 S. Euclid Ave, PO Box 8069, St. Louis, MO, 63110, USA
| |
Collapse
|
28
|
Amin AH, Abd Elmageed ZY, Partyka M, Matrougui K. Mechanisms of myogenic tone of coronary arteriole: Role of down stream signaling of the EGFR tyrosine kinase. Microvasc Res 2010; 81:135-42. [PMID: 21067705 DOI: 10.1016/j.mvr.2010.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE we previously showed that epidermal growth factor receptor tyrosine kinase (EGFRtk) is essential in the development of myogenic tone. GRB2-SOS, protein kinase B (Akt), Janus kinase (JAK), and Signal Transducer and Activator of Transcription 3 (STAT3) are activated by stretch. Thus, we hypothesized that GRB2-SOS, Akt, JAK and STAT3 are downstream signaling of the EGFR and play role in myogenic tone. EXPERIMENTAL APPROACH myogenic tone was determined in freshly isolated coronary arterioles from C57/BL6 mice with and without inhibitors. Pressurized coronary arterioles under 25 and 75mm Hg were subjected to Western blot analysis to determine signaling phosphorylation. Smooth muscle cells (SMC) stimulated with EGF were used to determine the interaction between signaling. KEY RESULTS coronary arteriole myogenic tone was significantly reduced under EGFRtk, GRB2-SOS, JAK, and STAT3 inhibition (53.6 ± 2 vs. 83.4 ± 1.3; 82.8 ± 1; 83.6 ± 1; 86.1 ± 1% of passive diameter at 75mm Hg, p<0.05, respectively). However, Akt inhibition had no effect on coronary arteriole myogenic tone. Western blot analysis showed increased EGFRtk, STAT3, JAK, and Akt phosphorylation at 75mm Hg, which was significantly inhibited under EGFRtk inhibition. Interestingly, immunoprecipitation/Western blot analysis showed two intracellular complexes (ERK1/2-JAK-STAT3) involved in myogenic tone and (Akt-JAK-STAT3) not involved in myogenic tone. CONCLUSION AND IMPLICATIONS these findings demonstrate that ERK1/2-JAK-STAT3 complex and GRB2-SOS, down stream signaling of the EGFRtk, are critical in the development of myogenic tone, thereby highlighting these signaling events as potential therapeutic targets in cardiovascular disease states associated with altered myogenic tone.
Collapse
Affiliation(s)
- Ali H Amin
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
29
|
Debata PR, Ranasinghe B, Berliner A, Curcio GM, Tantry SJ, Ponimaskin E, Banerjee P. Erk1/2-dependent phosphorylation of PKCalpha at threonine 638 in hippocampal 5-HT(1A) receptor-mediated signaling. Biochem Biophys Res Commun 2010; 397:401-6. [PMID: 20513439 DOI: 10.1016/j.bbrc.2010.05.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Stimulation of the serotonin 1A receptor (5-HT(1A)-R) causes activation of extracellular signal-regulated protein kinase (Erk) and protein kinase C alpha (PKCalpha) in both hippocampal HN2-5 cells and cultured hippocampal slices from postnatal day-15 (P15) mice. Our earlier studies demonstrated that PKCalpha is co-immunoprecipitated with Erk and the phosphorylation of PKCalpha in this Erk-PKCalpha complex is dependent on the Erk pathway. Furthermore, the T(638) residue, which must be phosphorylated for the complete activation of PKCalpha, is within an authentic Erk consensus domain (S/TP), and the PKCalpha protein also contains two docking sites for Erk such as KRGRIYL and KRGIIYRDLKL. Using Föster Resonance Energy Transfer (FRET) we have confirmed an association between Erk and PKCalpha. Employing PKCalpha and Erk mutants we next demonstrated that Erk causes direct phosphorylation and activation of PKCalpha. By mutating the phosphoinositide-dependent kinase-1 (PDK-1)-promoted phosphorylation site (S(497)) and the kinase site (K(368)) in PKCalpha, we observed that both of these autophosphorylation-deficient mutants are phosphorylated at T(638) in an Erk-dependent manner. To confirm that Erk indeed catalyzes phosphorylation of PKCalpha at T(638), we used a mutant Erk construct in which a relatively large amino acid residue in the ATP binding site (Q(103)) had been replaced with glycine, enabling this mutant to utilize a bulky analog of ATP, cyclopentyl ATP. An in vitro kinase assay using this mutant Erk protein, radiolabeled cyclopentyl ATP, and a synthetic oligopeptide containing the S/TP site of PKCalpha demonstrated phosphorylation of the peptide by Erk1/2. These results confirm the novel possibility that PKCalpha is a direct substrate of Erk1/2 in neuronal cells and help link two important signaling molecules that regulate maturation and protection of hippocampal neurons as well as many other cell types.
Collapse
Affiliation(s)
- Priya Ranjan Debata
- Department of Chemistry and the CSI/IBR Center for Developmental Neuroscience, The College of Staten Island (CUNY), Staten Island, NY 10314, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Walker AJ, Lacchini AH, Sealey KL, Mackintosh D, Davies AJ. Spreading by snail (Lymnaea stagnalis) defence cells is regulated through integrated PKC, FAK and Src signalling. Cell Tissue Res 2010; 341:131-45. [PMID: 20512591 DOI: 10.1007/s00441-010-0986-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 04/21/2010] [Indexed: 12/25/2022]
Abstract
Cell adhesion and spreading are vital to immune function. In molluscs, haemocytes (circulating phagocytes) are sentinels and effectors of the internal defence system; however, molecular mechanisms that regulate integrin-mediated spreading by haemocytes have not been characterised in detail. Visualisation of Lymnaea stagnalis haemocytes by scanning electron microscopy revealed membrane ruffling, formation of lamellipodia and extensive filopodia during early stages of cell adhesion and spreading. These events correlated with increased phosphorylation (activation) of protein kinase C (PKC) and focal adhesion kinase (FAK), sustained for 60 min. Treatment of haemocytes with the PKC inhibitors GF109203X or Gö 6976, or the Src/tyrosine kinase inhibitors SrcI or herbimycin A, attenuated haemocyte spread by 64, 46, 32 and 35%, respectively (P <or= 0.001); PKC or Src inhibition also prevented focal adhesion formation. Western blotting demonstrated that during spreading and adhesion these inhibitors also impaired PKC and FAK activation, with Gö 6976 or SrcI inhibiting FAK phosphorylation by at least 70% (P <or= 0.001), and herbimycin A or SrcI inhibiting PKC phosphorylation by at least 46% (P <or= 0.01). Confocal microscopy revealed phosphorylated PKC colocalised with focal adhesion sites, particularly during early phases of adhesion and spreading. Finally, fibronectin promoted PKC and FAK phosphorylation in suspended haemocytes demonstrating that activation can occur independent of cell adhesion. These novel data are consistent with PKC and FAK/Src playing an integrated role in integrin activation and integrin-mediated spreading by L. stagnalis haemocytes. We propose a model in which integrin engagement mediates association of PKC with FAK/Src complexes to promote focal adhesion assembly during immune recognition by these cells.
Collapse
Affiliation(s)
- Anthony J Walker
- School of Life Sciences, Kingston University, Kingston upon Thames, Surrey, UK.
| | | | | | | | | |
Collapse
|
31
|
Hsu YL, Hung JY, Ko YC, Hung CH, Huang MS, Kuo PL. Phospholipase D signaling pathway is involved in lung cancer-derived IL-8 increased osteoclastogenesis. Carcinogenesis 2010; 31:587-96. [PMID: 20106902 DOI: 10.1093/carcin/bgq030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bone is a frequent target of lung cancer metastasis, which is associated with significant morbidity and a dismal prognosis. This study analyzed the soluble factors secreted by lung cancer cells, which are responsible for increasing osteoclast differentiation. Addition of recombinant human interleukin-8 (rhIL-8), present in large amounts in A549-conditioned medium (CM) and NCI-H460-CM, mimicked the inductive effect of A549-CM and NCI-H460-CM on osteoclastogenesis. In contrast, depletion of interleukin-8 (IL-8) from A549-CM and NCI-H460-CM decreased the osteoclastogenesis-inductive properties of A549-CM and NCI-H460-CM. Induction of osteoclast differentiation by lung cancer-derived-CM and rhIL-8 was associated with increased phospholipase D (PLD) activation, and the activations of protein kinase C (PKC) alpha/betaII, extracellular signal-regulated kinase (ERK) 1/2 and AKT/the mammalian target of rapamycin (mTOR). Blocking PLD by a specific inhibitor significantly decreased osteoclast formation by inhibiting PKCs activation and subsequently attenuating the phosphorylation of ERK1/2. PLD inhibitor also completely decreased AKT and mTOR phosphorylation, whereas phosphatidylinositol-3-kinase (PI3K) inhibitor only partially decreased mTOR phosphorylation, suggesting that mTOR activation by PLD is through both PI3K/AKT-dependent and PI3K/AKT-independent manner. In addition, blocking AKT and ERK1/2 by a specific inhibitor also suppressed lung cancer-derived-CM and rhIL-8-induced osteoclast differentiation. Moreover, treatment of peripheral blood mononuclear cells with sera from invasive lung cancer patients increased the formation of osteoclasts. Our study suggests that IL-8 or IL-8-mediated PLD/PKC/ERK1/2 or PLD/AKT signaling is an attractive therapeutic target for osteolytic bone metastases in lung cancer patients.
Collapse
Affiliation(s)
- Ya-Ling Hsu
- Graduate Institute of Medicine, Schoolof Medicine, College of Medicine, Kaohsiung Medical University, 807 Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
32
|
Tiedemann K, Hussein O, Sadvakassova G, Guo Y, Siegel PM, Komarova SV. Breast cancer-derived factors stimulate osteoclastogenesis through the Ca2+/protein kinase C and transforming growth factor-beta/MAPK signaling pathways. J Biol Chem 2009; 284:33662-70. [PMID: 19801662 DOI: 10.1074/jbc.m109.010785] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Breast cancer commonly metastasizes to bone where its growth depends on the action of bone-resorbing osteoclasts. We have previously shown that breast cancer cells secrete factors able to directly stimulate osteoclastogenesis from receptor activator of nuclear factor kappaB ligand (RANKL)-primed precursors and that transforming growth factor-beta (TGFbeta) plays a permissive role in this process. Now, we evaluate the signaling events triggered in osteoclast precursors by soluble factors produced by MDA-MB-231 human breast carcinoma cells. In mouse bone marrow cultures and RAW 264.7 murine monocytic cells, MDA-MB-231-derived factors increased osteoclast number, size, and nucleation. These factors failed to induce Smad2 phosphorylation, and short interfering RNAs against Smad4 did not affect their ability to induce osteoclastogenesis. In contrast, MDA-MB-231 factors induced phosphorylation of p38 and ERK1/2, and pharmacological inhibitors against p38 (SB203580) and MEK1/2 (PD98059) impeded the osteoclastogenic effects of cancer-derived factors. Neutralizing antibodies against TGFbeta attenuated p38 activation, whereas activation of ERK1/2 was shortened in duration, but not decreased in amplitude. ERK1/2 phosphorylation induced by cancer-derived factors was blocked by MEK1/2 inhibitor, but not by Ras (manumycin A) or Raf (GW5074) inhibitors. Inhibition of protein kinase Calpha using Gö6976 prevented both ERK1/2 phosphorylation and osteoclast formation in response to MDA-MB-231-derived factors. Using microspectrofluorimetry of fura-2-AM-loaded osteoclast precursors, we have found that cancer-derived factors, similar to RANKL, induced sustained oscillations in cytosolic free calcium. The calcium chelator BAPTA prevented calcium elevations and osteoclast formation in response to MDA-MB-231-derived factors. Thus, we have shown that breast cancer-derived factors induce osteoclastogenesis through the activation of calcium/protein kinase Calpha and TGFbeta-dependent ERK1/2 and p38 signaling pathways.
Collapse
Affiliation(s)
- Kerstin Tiedemann
- Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Mauney J, Gillen K, Volloch V. Progression of human bone marrow stromal cells into both osteogenic and adipogenic lineages is differentially regulated by structural conformation of collagen I matrix via distinct signaling pathways. Matrix Biol 2009; 28:239-50. [PMID: 19375503 PMCID: PMC6817339 DOI: 10.1016/j.matbio.2009.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 02/17/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
Adult human bone marrow stromal cells (BMSCs) containing or consisting of mesenchymal stem cells (MSCs) are an important source in tissue homeostasis and repair. Although many processes involved in their differentiation into diverse lineages have been deciphered, substantial inroads remain to be gained to synthesize a complete regulatory picture. The present study suggests that structural conformation of extracellular collagen I, the major organic matrix component in musculoskeletal tissues, plays, along with differentiation stimuli, a decisive role in the selection of differentiation lineage. It introduces a novel concept which proposes that structural transition of collagen I matrix regulates cell differentiation through distinct signaling pathways specific for the structural state of the matrix. Thus, on native collagen I matrix inefficient adipogenesis is p38-independent, whereas on its denatured counterpart, an efficient adipogenesis is primarily regulated by p38 kinase. Inversely, osteogenic differentiation occurs efficiently on native, but not on denatured collagen I matrix, with a low commencement threshold on the former and a substantially higher one on the latter. Osteogenesis on collagen I matrices in both structural conformations is fully dependent on ERK. However, whereas on native collagen I matrix osteogenic differentiation is Hsp90-dependent, on denatured collagen I matrix it is Hsp90-independent. The matrix conformation-mediated regulation appears to be one of the mechanisms determining differentiation lineage of BMSCs. It allows a novel interpretation of the bone remodeling cycle, explains the marked physiological aging-related adipogenic shift in musculoskeletal tissues, and can be a principal contributor to adipogenic shift seen in a number of clinical disorders.
Collapse
|
34
|
Summers SM, Hayashi Y, Nguyen SV, Nguyen TM, Purdy RE. Hindlimb unweighting induces changes in the p38MAPK contractile pathway of the rat abdominal aorta. J Appl Physiol (1985) 2009; 107:121-7. [PMID: 19443747 DOI: 10.1152/japplphysiol.00210.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hindlimb unweighting (HLU) of rats is a model used to mimic the cephalic fluid shift potentially involved in the orthostatic intolerance experienced by astronauts. Certain arteries in these rats exhibit a decreased contractile response to adrenergic agonists. It was shown previously that this may be caused by changes in thick filament regulation (Summers et al., Vascul Pharmacol 48: 208-214, 2008). In the present study, it was hypothesized that HLU also modifies thin filament regulation by effects on p38(MAPK) and ERK. Abdominal aorta rings from 20-day HLU rats and untreated controls were subjected to phenylephrine and phorbol 12,13-dibutyrate (PDBU) concentration response curves in the presence and absence of two inhibitors: the p38(MAPK) inhibitor SB-203580 and the MEK inhibitor U-0126. SB-203580 decreased control sensitivity to both agonists, but HLU sensitivity was not significantly affected. U-0126, which blocks enzymes immediately upstream of ERK, affected sensitivity to both agonists equally between control and HLU. Western blot analysis revealed no change in total levels of p38(MAPK) and its downstream target heat shock protein 27 but did reveal a decrease in phosphorylated levels of both after stimulation with PDBU and phenylephrine after HLU treatment. Neither total ERK nor phosphorylated levels after stimulation were affected by HLU. Total levels of caldesmon, a molecule downstream of both pathways, were decreased, but phosphorylated levels after stimulation were decreased by roughly twice as much. The results of this study demonstrate that HLU downregulates p38(MAPK), but not ERK, signaling. In turn, this may decrease actin availability for contraction.
Collapse
|
35
|
Mauney J, Volloch V. Collagen I matrix contributes to determination of adult human stem cell lineage via differential, structural conformation-specific elicitation of cellular stress response. Matrix Biol 2009; 28:251-62. [PMID: 19375506 DOI: 10.1016/j.matbio.2009.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 02/17/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
Abstract
Previously, we reported that the conformational transition of collagen I matrix plays, along with differentiation stimuli, a regulatory role in determination of differentiation lineage of bone marrow stromal sells via distinct signaling pathways specific for the structural state of the matrix. The present study addresses mechanisms underlying differential structural conformation-specific effects of collagen matrices on differentiation into diverse lineages. The results obtained suggest that the pivotal player in the observed matrix conformation-mediated regulation is a differential cellular stress response elicited by the exposure to native but not to denatured collagen I matrix. The stress causing such a response appears to be generated by matrix contraction and mediated by Alpha2Beta1 integrins engaged on native but not on denatured collagen I matrix. The principal facet of the observed phenomenon is not the nature of a stress but general stress response: when cells on denatured collagen I matrix are subjected to thermal stress, osteogenic pathway shifts to that seen on native collagen I matrix. Importantly, cellular stress response might be commonly involved in determination of differentiation lineage. Indeed, distinct components of cellular stress response machinery appear to regulate differentiation into diverse lineages. Thus, augmentation of Hsp90 levels enables the operation of efficient Alpha1Beta1/Alpha2Beta1 integrin-driven ERK activation pathways hence facilitating osteogenesis and suppressing adipogenesis, whereas myogenesis of satellite stem cells appears to be promoted by native collagen I matrix-elicited activation and nuclear translocation of another stress response component, Beta-catenin, shown to be essential for skeletal myogenesis, and chondrogenesis may involve stress-mediated elevation of yet another stress response constituent, Hsp70, shown to be an interactive partner of the chondrogenic transcription factor SOX9. The proposed concept of the integral role of cellular stress response in tissue generation and maintenance suggests new therapeutic approaches and indicates novel tissue engineering strategies.
Collapse
|
36
|
Kuriyama S, Mayor R. A role for Syndecan-4 in neural induction involving ERK- and PKC-dependent pathways. Development 2009; 136:575-84. [PMID: 19144724 DOI: 10.1242/dev.027334] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Syndecan-4 (Syn4) is a heparan sulphate proteoglycan that is able to bind to some growth factors, including FGF, and can control cell migration. Here we describe a new role for Syn4 in neural induction in Xenopus. Syn4 is expressed in dorsal ectoderm and becomes restricted to the neural plate. Knockdown with antisense morpholino oligonucleotides reveals that Syn4 is required for the expression of neural markers in the neural plate and in neuralised animal caps. Injection of Syn4 mRNA induces the cell-autonomous expression of neural, but not mesodermal, markers. We show that two parallel pathways are involved in the neuralising activity of Syn4: FGF/ERK, which is sensitive to dominant-negative FGF receptor and to the inhibitors SU5402 and U0126, and a PKC pathway, which is dependent on the intracellular domain of Syn4. Neural induction by Syn4 through the PKC pathway requires inhibition of PKCdelta and activation of PKCalpha. We show that PKCalpha inhibits Rac GTPase and that c-Jun is a target of Rac. These findings might account for previous reports implicating PKC in neural induction and allow us to propose a link between FGF and PKC signalling pathways during neural induction.
Collapse
Affiliation(s)
- Sei Kuriyama
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
37
|
Miraoui H, Oudina K, Petite H, Tanimoto Y, Moriyama K, Marie PJ. Fibroblast growth factor receptor 2 promotes osteogenic differentiation in mesenchymal cells via ERK1/2 and protein kinase C signaling. J Biol Chem 2008; 284:4897-904. [PMID: 19117954 DOI: 10.1074/jbc.m805432200] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are able to differentiate into several lineages including osteoblasts. The signaling mechanisms involved in the osteogenic differentiation of MSCs are however not fully understood. We investigated the role of fibroblast growth factor receptor 2 (FGFR2) in osteoblast committment and differentiation of murine mesenchymal C3H10T1/2 cells stably transfected with wild type (WT) or activated FGFR2 due to Apert S252W genetic mutation (MT). WT FGFR2 slightly increased, whereas MT FGFR2 strongly increased, FGFR2 tyrosine phosphorylation, indicating activation of the receptor. WT and MT FGFR2 increased C3H10T1/2 cell proliferation but not survival. Both WT and MT FGFR2 increased early and late osteoblast gene expression and matrix mineralization. Forced expression of WT and MT FGFR2 also increased osteoblast gene expression in MC3T3-E1 calvaria osteoblasts. In both cell types, MT FGFR2 was more effective than WT FGFR2. In contrast, WT and MT FGFR2 decreased adipocyte differentiation of C3H10T1/2 cells. WT and MT FGFR2 induced ERK1/2 but not JNK or PI3K/AKT phosphorylation. MT, but not WT, also increased protein kinase C (PKC) activity. Pharmacological inhibition of ERK1/2 prevented cell proliferation induced by WT and MT FGFR2. Using dominant-negative ERK and PKCalpha vectors, we demonstrated that WT and MT FGFR2 promoted osteoblast gene expression through ERK1/2 and PKCalpha signaling, respectively. This study identifies FGFR2 as a novel regulatory molecule that promotes osteogenic differentiation in murine MSCs. The promoting effect of WT and MT FGFR2 is mediated by ERK1/2 and PKCalpha pathways that play essential and distinct roles in FGFR2-induced osteogenic differentiation of mesenchymal cells.
Collapse
|
38
|
Armstrong S, Pereverzev A, Dixon SJ, Sims SM. Activation of P2X7 receptors causes isoform-specific translocation of protein kinase C in osteoclasts. J Cell Sci 2008; 122:136-44. [PMID: 19066285 DOI: 10.1242/jcs.031534] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nucleotides, released in response to mechanical or inflammatory stimuli, signal through P2 nucleotide receptors in many cell types. Osteoclasts express P2X7 receptors (encoded by P2rx7) - Ca(2+)-permeable channels that are activated by high concentrations of extracellular ATP. Genetic disruption of P2rx7 leads to increased resorption and reduced skeletal response to mechanical stimuli. To investigate whether P2X7 receptors couple to activation of protein kinase C (PKC), RAW 264.7 cells were differentiated into multinucleated osteoclast-like cells and live-cell confocal imaging was used to localize enhanced green fluorescent protein (EGFP)-tagged PKC. Benzoylbenzoyl-ATP (BzATP; a P2X7 agonist) induced transient translocation of PKCalpha to the basolateral membrane. UTP or ATP (10 microM), which activate P2 receptors other than P2X7, failed to induce translocation. Moreover, BzATP failed to induce PKC translocation in osteoclasts derived from the bone marrow of P2rx7(-/-) mice, demonstrating specificity for P2X7. BzATP induced a transient rise of cytosolic Ca(2+), and removal of extracellular Ca(2+) abolished the translocation of PKCalpha that was induced by BzATP (but not by phorbol ester). We examined the isoform specificity of this response, and observed translocation of the Ca(2+)-dependent isoforms PKCalpha and PKCbetaI, but not the Ca(2+)-independent isoform PKCdelta. Thus, activation of P2X7 receptors specifically induces Ca(2+)-dependent translocation of PKC to the basolateral membrane domain of osteoclasts, an aspect of spatiotemporal signaling not previously recognized.
Collapse
Affiliation(s)
- Souzan Armstrong
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | |
Collapse
|
39
|
Block MR, Badowski C, Millon-Fremillon A, Bouvard D, Bouin AP, Faurobert E, Gerber-Scokaert D, Planus E, Albiges-Rizo C. Podosome-type adhesions and focal adhesions, so alike yet so different. Eur J Cell Biol 2008; 87:491-506. [PMID: 18417250 DOI: 10.1016/j.ejcb.2008.02.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 12/20/2022] Open
Abstract
Cell-matrix adhesions are essential for cell migration, tissue organization and differentiation, therefore playing central roles in embryonic development, remodeling and homeostasis of tissues and organs. Matrix adhesion-dependent signals cooperate with other pathways to regulate biological functions such as cell survival, cell proliferation, wound healing, and tumorigenesis. Cell migration and invasion are integrated processes requiring the continuous, coordinated assembly and disassembly of integrin-mediated adhesions. An understanding of how integrins regulate cell migration and invasiveness through the dynamic regulation of adhesions is fundamental to both physiological and pathological situations. A variety of cell-matrix adhesions has been identified, namely, focal complexes, focal adhesions, fibrillar adhesions, podosomes, and invadopodia (podosome-type adhesions). These adhesion sites contain integrin clusters able to develop specialized structures, which are different in their architecture and dynamics although they share almost the same proteins. Here we compare recent advances and developments in the elucidation of the organization and dynamics of focal adhesions and podosome-type adhesions, in order to understand how such subcellular sites - though closely related in their composition - can be structurally and functionally different. The underlying question is how their respective physiological or pathological roles are related to their distinct organization.
Collapse
Affiliation(s)
- Marc R Block
- Université Joseph Fourier, Institut Albert Bonniot, Equipe DySAD, Grenoble cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 2008; 27:303-14. [DOI: 10.1007/s10555-008-9112-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Pereverzev A, Komarova SV, Korcok J, Armstrong S, Tremblay GB, Dixon SJ, Sims SM. Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone 2008; 42:150-61. [PMID: 17964236 DOI: 10.1016/j.bone.2007.08.044] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/24/2007] [Accepted: 08/31/2007] [Indexed: 11/22/2022]
Abstract
Systemic acidosis has detrimental effects on the skeleton and local acidosis is associated with bone destruction in inflammatory and neoplastic diseases. However, the mechanisms by which acidosis enhances osteoclastic bone resorption are poorly understood. Our aim was to examine the effects of acid on osteoclast survival and the involvement of cytosolic Ca(2+) in mediating these effects. Osteoclasts were isolated from long bones of newborn rats, and multinucleated osteoclast-like cells were generated from RAW 264.7 cells. Cytosolic free Ca(2+) concentration ([Ca(2+)](i)) was monitored using fura-2. Survival of rat osteoclasts over a period of 18 h was significantly enhanced by acidification of the medium from 40+/-10% at pH 7.6 to 83+/-4% at pH 7.0. Consistent with its effects on survival, acidosis suppressed osteoclast apoptosis at 6 h. We examined the possible involvement of the proton-sensing receptor ovarian cancer G protein-coupled receptor 1 (OGR1) in mediating the effects of acid. Acid-induced rise of [Ca(2+)](i) was inhibited by the OGR1 antagonist Cu(2+) and was suppressed in osteoclast-like cells in which OGR1 transcripts were depleted using RNA interference. These findings support an essential role for OGR1 in acid-induced Ca(2+) signaling in osteoclasts. Addition of Cu(2+) or chelation of cytosolic Ca(2+) with BAPTA abolished the ability of acidification to enhance osteoclast survival. Inhibition of NFAT activation with the cell-permeable peptide 11R-VIVIT did not alter the ability of acid to promote survival; however, it suppressed the increase in survival induced by RANKL. In contrast, inhibition of protein kinase C (PKC) blocked the effect of acid on osteoclast survival. Thus, this study reveals that extracellular acidification enhances osteoclast survival through an NFAT-independent, PKC-dependent pathway. Increased osteoclast survival may contribute to bone loss in systemic and local acidosis.
Collapse
Affiliation(s)
- Alexey Pereverzev
- CIHR Group in Skeletal Development and Remodeling, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | | | | | | | | | |
Collapse
|
42
|
Ciraci E, Barisani D, Parafioriti A, Formisano G, Arancia G, Bottazzo G, Berardi AC. CD34 human hematopoietic progenitor cell line, MUTZ-3, differentiates into functional osteoclasts. Exp Hematol 2007; 35:967-977. [PMID: 17533051 DOI: 10.1016/j.exphem.2007.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 02/28/2007] [Accepted: 03/05/2007] [Indexed: 11/21/2022]
Abstract
OBJECTIVE CD14(+) monocyte cell lines can differentiate into an osteoclast (OC)-like lineage. However, the identification of human cell lines with stem cell characteristics, capable of differentiating into OCs, would provide a tool for the study of the molecular mechanisms regulating their commitment, differentiation, and function. Since the human acute myeloid leukemia cell line MUTZ-3 contains both CD34(+) stem cell and CD14(+) cell populations, we investigated the capacity of the stem/progenitor CD34(+) population to differentiate into functional OCs. MATERIALS AND METHODS Sorted MUTZ-3-CD34(+) and MUTZ-3-CD14(+) cells were cultured in presence of M-CSF, RANK-L, and TNF-alpha to generate OCs. Differentiation was evaluated by TRAP staining and RT-PCR, which assessed the expression of c-fms, RANK, MMP-9, CATK, TRAP, and CTR in -CD34(+)OC and -CD14(+)OC cells. Resorption pit formation was also evaluated. CD34, CD14, M-CSF-R, RANK, and CTR expression was assessed by FACS analysis. RESULTS MUTZ-3-CD34(+) differentiated into OCs, displaying the full range of differentiation markers; MMP-9, CATK, TRAP, and RANK mRNA were detected from day 3 of culture, whereas CTR from day 12. Stimulated MUTZ-3-CD34(+) generated functional osteoclasts that formed extensive resorption lacunae on both mineralized surface and bone slices. Surprisingly, in both sorted populations we identified a population M-CSF-R(+)/RANK(+) that at the same time co-expressed CD14 and CD34. CONCLUSIONS These findings demonstrate that MUTZ-3 cells constitute an invaluable model to study the expression pattern in different developmental stages of commitment and differentiation. Importantly, the data indicate that the CD14(+)CD34(+)M-CSF-R(+)RANK(+) population represents an intermediate stage of differentiation from CD34 precursors and monocytes to osteoclast.
Collapse
Affiliation(s)
- Elisa Ciraci
- Laboratory of Stem Cells, IRCCS-Pediatric Hospital of Bambino Gesù, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Ozaki M, Ogita H, Takai Y. Involvement of integrin-induced activation of protein kinase C in the formation of adherens junctions. Genes Cells 2007; 12:651-62. [PMID: 17535255 DOI: 10.1111/j.1365-2443.2007.01083.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In epithelial cells, tight junctions (TJs) and adherens junctions (AJs) form junctional complexes. At AJs, cadherins and nectins are the major cell-cell adhesion molecules. Nectins first form cell-cell adhesions and then recruit cadherins to the nectin-based cell-cell adhesion sites to form AJs in coordination with the activation of integrin alpha(v)beta(3), followed by the formation of TJs. We previously demonstrated that when MDCK cells precultured at a low Ca(2+) concentration were treated with the protein kinase C (PKC) activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA), incomplete AJs and a TJ-like structure were achieved. However, it remains unknown how PKC is activated and how it regulates the formation of cell-cell junctions. When MDCK cells precultured at a low Ca(2+) concentration were treated with TPA, incomplete AJs were formed without the activation of integrin alpha(v)beta(3). Treatment of cells with TPA also enhanced the phosphorylation of FAK, which transmits the outside-in signal of integrin and plays a role in the nectin-induced formation of AJs. In addition, inhibition of PKC suppressed the formation of AJs. These results indicate that the activation of PKC functions downstream of integrin alpha(v)beta(3) and upstream of FAK, and is important for the nectin-induced formation of AJs.
Collapse
Affiliation(s)
- Misa Ozaki
- The Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
44
|
Han NLR, Wen J, Lin Q, Tan PL, Liou YC, Sheu FS. Proteomics analysis of the expression of neurogranin in murine neuroblastoma (Neuro-2a) cells reveals its involvement for cell differentiation. Int J Biol Sci 2007; 3:263-73. [PMID: 17505539 PMCID: PMC1865092 DOI: 10.7150/ijbs.3.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 04/17/2007] [Indexed: 11/05/2022] Open
Abstract
Neurogranin (Ng) is a neural-specific, calmodulin (CaM)-binding protein that is phosphorylated by protein kinase C (PKC). Although its biochemical property has been well characterized, the physiological function of Ng needs to be elucidated. In the present study, we performed proteomics analysis of the induced compositional changes due to the expression of Ng in murine neuroblastoma (Neuro-2a) cells using isotope coded affinity tags (ICAT) combined with 2-dimensional liquid chromatography/tandem mass spectrometry (2D-LC/MS/MS). We found that 40% of identified proteins were down-regulated and most of these proteins are microtubule components and associated proteins that mediated neurite outgrowth. Western blot experiments confirmed the expression of α-tubulin and microtubule- associated protein 1B (MAP 1B) was dramatically reduced in Neuro-2a-Ng cells compared to control. Cell morphology of Neuro-2a-Ng showed far less neurites than the control. Serum deprivation induced the extension of only one or two long neurites per cell in Neuro-2a-Ng, contrasting to the extension of multiple neurites per control cell. Ng may be linked to neurite formation by affecting expression of several microtubule related proteins. Furthermore, the PKC activator (PMA) induced an enhanced ERK1/2 activity in the cells that expressed Ng. The mutation of Ng at S36A caused sustained increase of ERK1/2 activity, whereas the ERK1/2 activity in mutation at I33Q showed no difference compared to wild type Ng, suggesting the phosphorylation of Ng but not the CaM /Ng interaction plays an important role in ERK activation. Ng may be involved in neuronal growth and differentiation via PKC and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Nian-Lin Reena Han
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | | | | | | | | |
Collapse
|
45
|
Millar TM, Phan V, Tibbles LA. ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic Biol Med 2007; 42:1165-77. [PMID: 17382198 DOI: 10.1016/j.freeradbiomed.2007.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 01/04/2007] [Accepted: 01/08/2007] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS)-induced injury has been shown to occur during the reperfusion phase of ischemia-reperfusion and ROS are known to induce signaling events. We hypothesized that oxygen sensing in endothelial cells is also dependent on internal redox changes during hypoxia and that endothelial cells respond to changing oxygen environments via signaling, switching to an inflammatory phenotype. Endothelial cells exposed to relative hypoxia or the mitochondrial inhibitors rotenone, antimycin A, or FCCP show loss of mitochondrial membrane potential. During hypoxia, an increase in cytoplasmic ROS and glutathione S-transferase activity occurred, suggesting changes in intracellular redox state, mimicked with rotenone or FCCP but inhibited by antimycin A. Phosphorylation of stress-responsive mitogen-activated protein kinases occurred in hypoxia and was rapid and prolonged. Phosphorylation was inhibited by vitamin C, N-acetyl cysteine, or antimycin A. Chelation of intracellular calcium inhibits phosphorylation but the mitochondrial transition pore inhibitor cyclosporin A had no effect. Reoxygenation caused a further round of signaling, which was rapid but transient. Functionally, adhesion of neutrophils after hypoxia-reoxygenation under flow is ROS, P-selectin, and MAPK dependent. Therefore, changes in cellular signaling and phenotype are abrogated by ROS scavengers and suggest their use as therapeutic agents in ischemia-reperfusion.
Collapse
Affiliation(s)
- Timothy M Millar
- Institute of Infection, Immunity and Inflammation, Health Sciences Center, University of Calgary, Calgary, AB, Canada T2N 4N1.
| | | | | |
Collapse
|
46
|
Corbin JA, Evans JH, Landgraf KE, Falke JJ. Mechanism of specific membrane targeting by C2 domains: localized pools of target lipids enhance Ca2+ affinity. Biochemistry 2007; 46:4322-36. [PMID: 17367165 PMCID: PMC2896972 DOI: 10.1021/bi062140c] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The C2 domain is a ubiquitous, conserved protein signaling motif widely found in eukaryotic signaling proteins. Although considerable functional diversity exists, most C2 domains are activated by Ca2+ binding and then dock to a specific cellular membrane. The C2 domains of protein kinase Calpha (PKCalpha) and cytosolic phospholipase A2alpha (cPLA2alpha), for example, are known to dock to different membrane surfaces during an intracellular Ca2+ signal. Ca2+ activation targets the PKCalpha C2 domain to the plasma membrane and the cPLA2alpha C2 domain to the internal membranes, with no detectable spatial overlap. It is crucial to determine how such targeting specificity is achieved at physiological bulk Ca2+ concentrations that during a typical signaling event rarely exceed 1 muM. For the isolated PKCalpha C2 domain in the presence of physiological Ca2+ levels, the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) are together sufficient to recruit the PKCalpha C2 domain to a lipid mixture mimicking the plasma membrane inner leaflet. For the cPLA2alpha C2 domain, the target lipid phosphatidylcholine (PC) appears to be sufficient to drive membrane targeting to an internal membrane mimic at physiological Ca2+ levels, although the results do not rule out a second, unknown target molecule. Stopped-flow kinetic studies provide additional information about the fundamental molecular events that occur during Ca2+-activated membrane docking. In principle, C2 domain-directed intracellular targeting, which requires coincidence detection of multiple signals (Ca2+ and one or more target lipids), can exhibit two different mechanisms: messenger-activated target affinity (MATA) and target-activated messenger affinity (TAMA). The C2 domains studied here both utilize the TAMA mechanism, in which the C2 domain Ca2+ affinity is too low to be activated by physiological Ca2+ signals in most regions of the cell. Only when the C2 domain nears its target membrane, which provides a high local concentration of target lipid, is the effective Ca2+ affinity increased by the coupled binding equilibrium to a level that enables substantial Ca2+ activation and target docking. Overall, the findings emphasize the importance of using physiological ligand concentrations in targeting studies because super-physiological concentrations can drive docking interactions even when an important targeting molecule is missing.
Collapse
Affiliation(s)
| | | | | | - Joseph J. Falke
- To whom correspondence should be addressed. Tel: 303-492-3597. Fax: 303-492-5894.
| |
Collapse
|
47
|
Abstract
Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial-mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFbeta and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Department of Medical Technology, Tzu Chi University, No. 701, Chung Yang Rd, Sec 3, Hualien 970, Taiwan.
| |
Collapse
|
48
|
Mauney JR, Kirker-Head C, Abrahamson L, Gronowicz G, Volloch V, Kaplan DL. Matrix-mediated retention of in vitro osteogenic differentiation potential and in vivo bone-forming capacity by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion. J Biomed Mater Res A 2007; 79:464-75. [PMID: 16752403 DOI: 10.1002/jbm.a.30876] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells (MSCs) represent an attractive cell source for tissue engineering applications, since they are readily isolated from adult bone marrow and have the ability to differentiate along multiple mesenchymal lineages, including osteogenic. Currently, utilization of MSCs for bone tissue engineering is limited because of the attenuation of their osteogenic differentiation potential and in vivo bone-forming capacity following ex vivo expansion on conventional tissue culture plastic (TCP). Previously, we demonstrated that a denatured type I collagen (DC) matrix promotes the maintenance of MSC in vitro osteogenic differentiation potential during ex vivo expansion in contrast to TCP. In this study, we further demonstrate that the maintenance of MSC osteogenic differentiation potential is primarily due to the ability of DC matrix to influence the retention of early passage osteogenic functions in late passage (LP) cells during ex vivo expansion, in contrast to solely enhancing attenuated LP cellular functions during osteogenic differentiation. Serum-associated factors played a significant role in influencing the retention of MSC osteogenic differentiation potential during expansion on the DC matrix. Significantly, the results show that although LP cells expanded ex vivo on TCP highly attentuate their in vivo bone-forming capacity, the expansion of MSCs on DC matrix preserves this ability as determined by histological, histomorphometric, and bone mineral density evaluations of MSC-seeded hydroxyapatite/tricalcium phosphate scaffolds following an 8-week implantation period within a heterotopic muscle pouch model. These findings provide further insight into the importance of matrix-mediated effects on MSC function and selective factors important in this process.
Collapse
Affiliation(s)
- Joshua R Mauney
- Department of Biomedical Engineering and Chemical, Bioengineering and Biotechnology Center, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, USA
| | | | | | | | | | | |
Collapse
|
49
|
Schindler EM, Baumgartner M, Gribben EM, Li L, Efimova T. The role of proline-rich protein tyrosine kinase 2 in differentiation-dependent signaling in human epidermal keratinocytes. J Invest Dermatol 2007; 127:1094-106. [PMID: 17205062 DOI: 10.1038/sj.jid.5700662] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-receptor tyrosine kinase proline-rich protein tyrosine kinase 2 (Pyk2) functions as an integrator of multiple signaling pathways involved in the regulation of fundamental cellular processes. Pyk2 expression, regulation, and functions in skin have not been examined. Here we investigated the expression and subcellular localization of Pyk2 in human epidermis and in primary human keratinocytes, and studied the mechanisms of Pyk2 activation by differentiation-inducing stimuli, and the role of Pyk2 as a regulator of keratinocyte differentiation. We demonstrate that Pyk2 is abundantly expressed in skin keratinocytes. Notably, the endogenous Pyk2 protein is predominantly localized in keratinocyte nuclei throughout all layers of healthy human epidermis, and in cultured human keratinocytes. Pyk2 is activated by treatment with keratinocyte-differentiating agents, 12-O-tetradecanoylphorbol-13-acetate and calcium via a mechanism that requires intracellular calcium release and functional protein kinase C (PKC) and Src activities. Particularly, differentiation-promoting PKC delta and PKC eta elicit Pyk2 activation. Our data show that Pyk2 increases promoter activity and endogenous protein levels of involucrin, a marker of keratinocyte terminal differentiation. This regulation is associated with increased expression of Fra-1 and JunD, activator protein-1 transcription factors known to be required for involucrin expression. Altogether, these results provide insights into Pyk2 signaling in epidermis and reveal a novel role for Pyk2 in regulation of keratinocyte differentiation.
Collapse
Affiliation(s)
- Eva M Schindler
- Division of Dermatology, Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
50
|
Molecular modeling of the thyroid hormone interactions with alpha v beta 3 integrin. Steroids 2006; 72:165-70. [PMID: 17166537 DOI: 10.1016/j.steroids.2006.11.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 10/31/2006] [Accepted: 11/03/2006] [Indexed: 11/20/2022]
Abstract
A cell surface receptor for thyroid hormone has recently been identified on the extracellular domain of integrin alphavbeta3. In a variety of human and animal cell lines this hormone receptor mediates activation by thyroid hormone of the cellular mitogen-activated protein kinase (MAPK) signal transduction cascade. An arginine-glycine-aspartate (RGD) recognition site on the heterodimeric integrin is essential to the binding of a variety of extracellular matrix proteins. Recent competition data reveal that RGD peptides block hormone-binding by the integrin and consequent MAPK activation, suggesting that the hormone interaction site is located at or near the RGD recognition site on integrin alphavbeta3. A deaminated thyroid hormone (l-thyroxine, T4) analogue, tetraiodothyroacetic acid (tetrac, T4ac), inhibits binding of T4 and 3,5,3'-triiodo-l-thyronine (T3) to alphavbeta3, but does not activate MAPK. Structural data show that the RGD cyclic peptide binds at the interface of the propeller of the alphav and the B domains on the integrin head [Xiong JP, Stehle T, Zhang R, Joachimiack A, Frech M, Goodman SL, et al. Crystal structure of the extracellular segment of integrin alphavbeta3 in complexing with an Arg-Gly-Asp ligand. Science 2002;296:151-5]. To model potential interactions of thyroid hormone analogues with integrin, we mapped T4 and T4ac to the binding site of the RGD peptide. Modeling studies indicate that there is sufficient space in the cavity for the thyroid hormone to bind. Since the hormone is smaller in overall length than the RGD peptide, the hormone does not interact with the Arg recognition site in the propeller domain from alphav. In this model, most of the hormone interactions are with betaA domain of the integrin. Mutagenic studies can be carried out to validate the role of these residues in directing hormone interactions.
Collapse
|