1
|
Park J, Choi H, Shim K. Inhibition of GSK3β Promotes Proliferation and Suppresses Apoptosis of Porcine Muscle Satellite Cells. Animals (Basel) 2022; 12:ani12233328. [PMID: 36496849 PMCID: PMC9738253 DOI: 10.3390/ani12233328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
As the global population increases, interest in cultured meat (a new research field) is gradually increasing. The main raw material for the production of cultured meat is muscle stem cells called satellite cells isolated from livestock. However, how to mass proliferate and maintain satellite cells in vitro without genetic manipulation remains unclear. In the present study, we isolated and purified porcine muscle satellite cells (PMSCs) from the femur of a 1-day-old piglet and cultured PMSCs by treating them with an inhibitor (XAV939, Tankyrase (TNKS) inhibitor) or an activator (CHIR99021, glycogen synthase kinase 3 beta (GSK3β) inhibitor) of Wnt signaling. The CHIR group treated with 3 μM CHIR99021 showed a significantly increased proliferation rate of PMSCs compared to the SC group (control), whereas the XAV group treated with 1 μM XAV939 showed a significantly decreased proliferation rate of PMSCs. CHIR99021 also inhibited the differentiation of PMSCs by reducing the expression of MyoD while maintaining the expression of Pax7 and suppressed apoptosis by regulating the expression of apoptosis-related proteins and genes. RNA sequencing was performed to obtain gene expression profiles following inhibition or activation of the Wnt signaling pathway and various signaling mechanisms related to the maintenance of satellite cells were identified. Our results suggest that inhibition of GSK3β could dramatically improve the maintenance and mass proliferation ability of PMSCs in vitro by regulating the expression of myogenic markers and the cell cycle.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- 3D Tissue Culture Research Center, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunwoo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kwanseob Shim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Correspondence: ; Tel.: +82-063-270-2609
| |
Collapse
|
2
|
Li S, Liu D, Fu Y, Zhang C, Tong H, Li S, Yan Y. Podocan Promotes Differentiation of Bovine Skeletal Muscle Satellite Cells by Regulating the Wnt4-β-Catenin Signaling Pathway. Front Physiol 2019; 10:1010. [PMID: 31447699 PMCID: PMC6692459 DOI: 10.3389/fphys.2019.01010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023] Open
Abstract
Background Small leucine-rich repeat proteins (SLRPs) are highly effective and selective modulators of cell proliferation and differentiation. Podocan is a newly discovered member of the SLRP family. Its potential roles in the differentiation of bovine muscle-derived satellite cells (MDSCs) and its underlying functional mechanism remain unclear. Our study aimed to characterize the function of the podocan gene in the differentiation of bovine MDSCs and to clarify the molecular mechanism by which podocan functions in order to contribute to a better understanding of the molecular mechanism by which extracellular matrix promotes bovine MDSC differentiation and provide a theoretical basis for the improvement of beef quality. Methods Bovine MDSCs were transfected with vectors to overexpress or inhibit podocan, and podocan protein was added to differentiation culture medium. qRT-PCR, western blotting, and immunofluorescence were performed to investigate the effects of podocan on MDSC differentiation. Confocal microscopy and western blotting were used to assess the nuclear translocation and expression of β-catenin. An inhibitor and activator of β-catenin were used to assess the effects of the Wnt/β-catenin signaling pathway on MDSC differentiation. We inhibited β-catenin while overexpressing podocan in MDSCs. Then, we performed mass spectrometry to identify which proteins interact with podocan to regulate the Wnt/β-catenin signaling pathway. Finally, we confirmed the relationship between podocan and Wnt4 by co-immunoprecipitation and western blotting. Results Podocan protein expression increased significantly during bovine MDSC differentiation. Differentiation of bovine MDSC was promoted and suppressed by podocan overexpression or inhibition, respectively. Podocan was also shown to modulate the Wnt/β-catenin signaling pathway. Treatment of bovine MDSCs with β-catenin inhibitor and activator showed that the Wnt/β-catenin pathway is involved in bovine MDSC differentiation. Furthermore, the effect of podocan on bovine MDSC differentiation was suppressed when this pathway was inhibited. We also found that podocan interacts with Wnt4. When Wnt4 was inhibited, podocan-induced promotion of bovine MDSC differentiation was attenuated through Wnt/β-catenin signaling. Conclusion Podocan regulates Wnt/β-catenin through Wnt4 to promote bovine MDSC differentiation.
Collapse
Affiliation(s)
- Shuang Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Dan Liu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Yuying Fu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Chunyu Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Huili Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Shufeng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| | - Yunqin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Zecchini S, Giovarelli M, Perrotta C, Morisi F, Touvier T, Di Renzo I, Moscheni C, Bassi MT, Cervia D, Sandri M, Clementi E, De Palma C. Autophagy controls neonatal myogenesis by regulating the GH-IGF1 system through a NFE2L2- and DDIT3-mediated mechanism. Autophagy 2018; 15:58-77. [PMID: 30081710 DOI: 10.1080/15548627.2018.1507439] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is emerging as an important process in adult muscle stem cells functions: it regulates metabolic reprogramming during activation from a quiescent state, maintains stemness and prevents senescence. We now show that autophagy is specifically required for neonatal myogenesis and muscle development. Specific deletion of Atg7 in PAX7+ (paired box 7) precursors led in mice to a dwarf phenotype, with an effect restricted to the neonatal phase of muscle development. Atg7 knockdown suppressed neonatal satellite cell (nSC) proliferation and differentiation, downregulating the GH-IGF1 functions. When we disrupted autophagy, NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) accumulated in muscle and nSCs and negatively modulated DDIT3/CHOP (DNA-damage inducible transcript 3) expression. Lower levels of DDIT3 were responsible for reduced GHR expression leading to impaired local production of IGF1. Our results conclusively identify a novel autophagy-dependent pathway that regulates nSC behavior and indicate that autophagy is required for skeletal muscle development in the neonatal phase. Abbreviations: AKT/protein kinase B: Thymoma viral proto-oncogene; ASCs: adult stem cells; ATF4: activating transcription factor 4; ATG7: autophagy related 7; BAT: brown adipose tissue; BMP: bone morphogenetic protein; CEBPB: CCAAT/enhancer binding protein (C/EBP), beta; CSA: cross sectional area; CTNNB1: catenin (cadherin associated protein), beta 1; DDIT3: DNA-damage inducible transcript 3; DM: differentiation medium; E: embryonic stage; EIF2AK3/PERK; EIF4EBP1: eukaryotic translation initiation factor 2 alpha kinase 3; eukaryotic translation initiation factor 4E binding protein 1; ER: endoplasmic reticulum; FGF21: fibroblast growth factor 21; GH: growth hormone; GHR: growth hormone receptor; HSCs: hematopoietic stem cells; IGF1: insulin-like growth factor 1; ITGAM: integrin alpha M; KEAP1: kelch-like ECH-associated protein 1; LY6A/Sca-1; MAP1LC3: lymphocyte antigen 6 complex, locus A; microtubule-associated protein 1 light chain 3; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK3/ERK1: mitogen-activated protein kinase 3; miRNAs: microRNAs; MSCs: mesenchymal stem cells; MTOR: mechanistic target of rapamycin kinase; mtUPR: mitochondrial unfolded protein response; MYF5: myogenic factor 5; MYH: myosin, heavy polypeptide; MYOD1: myogenic differentiation 1; MYOG: myogenin; NFE2L2: nuclear factor, erythroid derived 2, like 2; nSC: neonatal satellite cells; NSCs: neuronal stem cells; P: postnatal day; PAX7: paired box 7; PECAM1: platelet/endothelial cell adhesion molecule 1; PPARG: peroxisome proliferator activated receptor gamma; PTPRC: protein tyrosine phosphatase, receptor type, C; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SCs: adult satellite cells; SQSTM1: sequestosome 1; STAT5: signal transducer and activator of transcription 5; TGFB1: transforming growth factor beta 1; WAT: white adipose tissue; WT: wild type.
Collapse
Affiliation(s)
- Silvia Zecchini
- a Unit of Clinical Pharmacology , University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco , Milano , Italy
| | - Matteo Giovarelli
- b Department of Biomedical and Clinical Sciences "Luigi Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Cristiana Perrotta
- b Department of Biomedical and Clinical Sciences "Luigi Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Federica Morisi
- c Division of Genetics and Cell Biology , IRCCS Ospedale San Raffaele , Milano , Italy
| | - Thierry Touvier
- d Biology of Myelin Unit, Division of Genetics and Cell Biology , IRCCS Ospedale San Raffaele , Milano , Italy
| | - Ilaria Di Renzo
- b Department of Biomedical and Clinical Sciences "Luigi Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Claudia Moscheni
- b Department of Biomedical and Clinical Sciences "Luigi Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Maria Teresa Bassi
- e Laboratory of Molecular Biology , IRCCS Eugenio Medea , Bosisio Parini , Italy
| | - Davide Cervia
- f Department for Innovation in Biological, Agro-food and Forest systems , Università degli Studi della Tuscia , Viterbo , Italy
| | - Marco Sandri
- g Department of Biomedical Science , University of Padova , Padova , Italy.,h Laboratory of Molecular Biology , Venetian Institute of Molecular Medicine , Padova , Italy
| | - Emilio Clementi
- e Laboratory of Molecular Biology , IRCCS Eugenio Medea , Bosisio Parini , Italy.,i Department of Biomedical and Clinical Sciences "Luigi Sacco" , Università degli Studi di Milano , Milano , Italy
| | - Clara De Palma
- a Unit of Clinical Pharmacology , University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco , Milano , Italy.,b Department of Biomedical and Clinical Sciences "Luigi Sacco" , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
4
|
Kinoshita H, Miyakoshi N, Kasukawa Y, Sakai S, Shiraishi A, Segawa T, Ohuchi K, Fujii M, Sato C, Shimada Y. Effects of eldecalcitol on bone and skeletal muscles in glucocorticoid-treated rats. J Bone Miner Metab 2016; 34:171-8. [PMID: 25944421 DOI: 10.1007/s00774-015-0664-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/20/2015] [Indexed: 11/26/2022]
Abstract
Glucocorticoids cause secondary osteoporosis and myopathy, characterized by type II muscle fiber atrophy. We examined whether a new vitamin D3 analogue, eldecalcitol, could inhibit glucocorticoid-induced osteopenia or myopathy in rats, and also determined the effects of prednisolone (PSL) and/or eldecalcitol on muscle-related gene expression. Six-month-old female Wistar rats were randomized into four groups: PSL group (10 mg/kg PSL); E group (0.05 µg/kg eldecalcitol); PSL + E group; and control group. PSL, eldecalcitol, and vehicles were administered daily for 2 or 4 weeks. Right calf muscle strength, muscle fatigue, cross-sectional areas (CSAs) of left tibialis anterior muscle fibers, and bone mineral density (BMD) were measured following administration. Pax7, MyoD, and myogenin mRNA levels in gastrocnemius muscles were also determined. Muscle strength was significantly higher in the PSL + E group than in the PSL group (p < 0.05) after 4 weeks, but not after 2 weeks. No significant difference in muscle fatigue was seen between groups at 2 or 4 weeks. CSAs of type II muscle fibers were significantly larger in the E group and the PSL + E group than in the PSL group at 4 weeks (p = 0.0093, p = 0.0443, respectively). Eldecalcitol treatment for 4 weeks maintained the same BMD as the PSL + E group. After 2 weeks, but not 4 weeks, eldecalcitol treatment significantly increased Pax7 and myogenin mRNA expression in gastrocnemius muscle, and PSL also stimulated myogenin expression. Eldecalcitol appears to increase muscle volume and to protect against femur BMD loss in PSL-administered rats, and it may also stimulate myoblast differentiation into early myotubes.
Collapse
Affiliation(s)
- Hayato Kinoshita
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Naohisa Miyakoshi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.
| | - Yuji Kasukawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sadaoki Sakai
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba, Shizuoka, 412-8513, Japan
| | - Ayako Shiraishi
- Medical Plan Management Department, Chugai Pharmaceutical Co., Ltd., 1-1 Nihonbashi-Muromachi 2-Chome, Chuo-ku, Tokyo, 103-8324, Japan
| | - Toyohito Segawa
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kentaro Ohuchi
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Masashi Fujii
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Chie Sato
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yoichi Shimada
- Department of Orthopedic Surgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| |
Collapse
|
5
|
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015; 72:1663-77. [PMID: 25572293 PMCID: PMC4412728 DOI: 10.1007/s00018-014-1819-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Muscle stem cell (satellite cell) activation post muscle injury is a transient and critical step in muscle regeneration. It is regulated by physiological cues, signaling molecules, and epigenetic regulatory factors. The mechanisms that coherently turn on the complex activation process shortly after trauma are just beginning to be illuminated. In this review, we will discuss the current knowledge of satellite cell activation regulation.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
6
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
7
|
Dubinska-Magiera M, Zaremba-Czogalla M, Rzepecki R. Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease. Cell Mol Life Sci 2012; 70:2713-41. [PMID: 23138638 PMCID: PMC3708280 DOI: 10.1007/s00018-012-1190-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 09/28/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022]
Abstract
The aim of this review article is to evaluate the current knowledge on associations between muscle formation and regeneration and components of the nuclear lamina. Lamins and their partners have become particularly intriguing objects of scientific interest since it has been observed that mutations in genes coding for these proteins lead to a wide range of diseases called laminopathies. For over the last 10 years, various laboratories worldwide have tried to explain the pathogenesis of these rare disorders. Analyses of the distinct aspects of laminopathies resulted in formulation of different hypotheses regarding the mechanisms of the development of these diseases. In the light of recent discoveries, A-type lamins—the main building blocks of the nuclear lamina—together with other key elements, such as emerin, LAP2α and nesprins, seem to be of great importance in the modulation of various signaling pathways responsible for cellular differentiation and proliferation.
Collapse
Affiliation(s)
- Magda Dubinska-Magiera
- Department of Animal Developmental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335, Wroclaw, Poland
| | | | | |
Collapse
|
8
|
Abstract
Satellite cells represent the primary population of stem cells resident in skeletal muscle. These adult muscle stem cells facilitate the postnatal growth, remodeling, and regeneration of skeletal muscle. Given the remarkable regenerative potential of satellite cells, there is great promise for treatment of muscle pathologies such as the muscular dystrophies with this cell population. Various protocols have been developed which allow for isolation, enrichment, and expansion of satellite cell derived muscle stem cells. However, isolated satellite cells have yet to translate into effective modalities for therapeutic intervention. Broadening our understanding of satellite cells and their niche requirements should improve our in vivo and ex vivo manipulation of these cells to expedite their use for regeneration of diseased muscle. This review explores the fates of satellite cells as determined by their molecular signatures, ontogeny, and niche dependent programming.
Collapse
Affiliation(s)
- Arif Aziz
- Sprott Center for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, Canada K1H 8L6
| | | | | |
Collapse
|
9
|
Olguín HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 2012; 16:1013-25. [PMID: 21615681 PMCID: PMC4365881 DOI: 10.1111/j.1582-4934.2011.01348.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Post-natal growth and regeneration of skeletal muscle is highly dependent on a population of resident myogenic precursors known as satellite cells. Transcription factors from the Pax gene family, Pax3 and Pax7, are critical for satellite cell biogenesis, survival and potentially self-renewal; however, the underlying molecular mechanisms remain unsolved. This is particularly true in the case of Pax7, which appears to regulate myogenesis at multiple levels. Accordingly, recent data have highlighted the importance of a functional relationship between Pax7 and the MyoD family of muscle regulatory transcription factors during normal muscle formation and disease. Here we will critically review key findings suggesting that Pax7 may play a dual role by promoting resident muscle progenitors to commit to the skeletal muscle lineage while preventing terminal differentiation, thus keeping muscle progenitors poised to differentiate upon environmental cues. In addition, potential regulatory mechanisms for the control of Pax7 activity will be proposed.
Collapse
Affiliation(s)
- Hugo C Olguín
- Departamento Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | |
Collapse
|
10
|
Nitric oxide in myogenesis and therapeutic muscle repair. Mol Neurobiol 2012; 46:682-92. [PMID: 22821188 DOI: 10.1007/s12035-012-8311-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/12/2012] [Indexed: 12/20/2022]
Abstract
Nitric oxide is a short-lived intracellular and intercellular messenger. The first realisation that nitric oxide is important in physiology occurred in 1987 when its identity with the endothelium-derived relaxing factor was discovered. Subsequent studies have shown that nitric oxide possesses a number of physiological functions that are essential not only to vascular homeostasis but also to neurotransmission, such as in the processes of learning and memory and endocrine gland regulation, as well as inflammation and immune responses. The discovery in 1995 that a splice variant of the neuronal nitric oxide synthase is localised at the sarcolemma via the dystrophin-glycoprotein complex and of its displacement in Duchenne muscular dystrophy has stimulated a host of studies exploring the role of nitric oxide in skeletal muscle physiology. Recently, nitric oxide has emerged as a relevant messenger also of myogenesis that it regulates at several key steps, especially when the process is stimulated for muscle repair following acute and chronic muscle injuries. Here, we will review briefly the mechanisms and functions of nitric oxide in skeletal muscle and discuss its role in myogenesis, with specific attention to the promising nitric oxide-based approaches now being explored at the pre-clinical and clinical level for the therapy of muscular dystrophy.
Collapse
|
11
|
Gurung R, Parnaik VK. Cyclin D3 promotes myogenic differentiation and Pax7 transcription. J Cell Biochem 2012; 113:209-19. [PMID: 21898542 DOI: 10.1002/jcb.23346] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Differentiation of skeletal muscle myoblasts involves activation of muscle-specific markers such as MyoD, Myf5, MRF4, and myogenin, followed by exit from the cell cycle, expression of structural proteins, and fusion into multinucleated myotubes. Cyclin D3 is upregulated during muscle differentiation, and expression of cyclin D3 in proliferating myoblasts causes early activation of myogenesis. In this study, we have identified the genes activated by cyclin D3 expression in C2C12 myoblasts and differentiated cells by real-time PCR analysis. Cyclin D3 expression induced faster differentiation kinetics and increase in levels of myogenic genes such as MyoD, Myf5, and myogenin at an early stage during the differentiation process, although long-term myogenic differentiation was not affected. Transcript levels of the transcription factor Pax7 that is expressed in muscle progenitors were enhanced by cyclin D3 expression in myoblasts. Components of a histone methyltransferase complex recruited by Pax7 to myogenic gene promoters were also regulated by cyclin D3. Further, the Pax7 promoter was upregulated in myoblasts expressing cyclin D3. Myoblasts that expressed cyclin D3 showed moderately higher levels of the cyclin-dependent kinase inhibitor p21 and were stalled in G2/M phase of the cell cycle. Our findings suggest that cyclin D3 primes myoblasts for differentiation by enhancing muscle specific gene expression and cell cycle exit.
Collapse
Affiliation(s)
- Ritika Gurung
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
12
|
Wu H, Lu Y, Barik A, Joseph A, Taketo MM, Xiong WC, Mei L. β-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 2012; 139:2392-404. [PMID: 22627288 DOI: 10.1242/dev.080705] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuromuscular junction (NMJ) formation requires proper interaction between motoneurons and muscle cells. β-Catenin is required in muscle cells for NMJ formation. To understand underlying mechanisms, we investigated the effect of β-catenin gain of function (GOF) on NMJ development. In HSA-β-cat(flox(ex3)/+) mice, which express stable β-catenin specifically in muscles, motor nerve terminals became extensively defasciculated and arborized. Ectopic muscles were observed in the diaphragm and were innervated by ectopic phrenic nerve branches. Moreover, extensive outgrowth and branching of spinal axons were evident in the GOF mice. These results indicate that increased β-catenin in muscles alters presynaptic differentiation. Postsynaptically, AChR clusters in HSA-β-cat(flox(ex3)/+) diaphragms were distributed in a wider region, suggesting that muscle β-catenin GOF disrupted the signal that restricts AChR clustering to the middle region of muscle fibers. Expression of stable β-catenin in motoneurons, however, had no effect on NMJ formation. These observations provide additional genetic evidence that pre- and postsynaptic development of the NMJ requires an intricate balance of β-catenin activity in muscles.
Collapse
Affiliation(s)
- Haitao Wu
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Buono R, Vantaggiato C, Pisa V, Azzoni E, Bassi MT, Brunelli S, Sciorati C, Clementi E. Nitric oxide sustains long-term skeletal muscle regeneration by regulating fate of satellite cells via signaling pathways requiring Vangl2 and cyclic GMP. Stem Cells 2012; 30:197-209. [PMID: 22084027 PMCID: PMC3378700 DOI: 10.1002/stem.783] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Satellite cells are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of adult skeletal muscle; in this process, they self-renew through the return to quiescence of the cycling progeny. This mechanism, while efficient in physiological conditions does not prevent exhaustion of satellite cells in pathologies such as muscular dystrophy where numerous rounds of damage occur. Here, we describe a key role of nitric oxide, an important signaling molecule in adult skeletal muscle, on satellite cells maintenance, studied ex vivo on isolated myofibers and in vivo using the α-sarcoglycan null mouse model of dystrophy and a cardiotoxin-induced model of repetitive damage. Nitric oxide stimulated satellite cells proliferation in a pathway dependent on cGMP generation. Furthermore, it increased the number of Pax7+/Myf5− cells in a cGMP-independent pathway requiring enhanced expression of Vangl2, a member of the planar cell polarity pathway involved in the Wnt noncanonical pathway. The enhanced self-renewal ability of satellite cells induced by nitric oxide is sufficient to delay the reduction of the satellite cell pool during repetitive acute and chronic damages, favoring muscle regeneration; in the α-sarcoglycan null dystrophic mouse, it also slowed disease progression persistently. These results identify nitric oxide as a key messenger in satellite cells maintenance, expand the significance of the Vangl2-dependent Wnt noncanonical pathway in myogenesis, and indicate novel strategies to optimize nitric oxide-based therapies for muscular dystrophy. Stem Cells 2012; 30:197–209.
Collapse
Affiliation(s)
- Roberta Buono
- Division of Regenerative Medicine, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Belyea B, Kephart JG, Blum J, Kirsch DG, Linardic CM. Embryonic signaling pathways and rhabdomyosarcoma: contributions to cancer development and opportunities for therapeutic targeting. Sarcoma 2012; 2012:406239. [PMID: 22619564 PMCID: PMC3350847 DOI: 10.1155/2012/406239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence, accounting for approximately 7% of childhood cancers. Current therapies include nonspecific cytotoxic chemotherapy regimens, radiation therapy, and surgery; however, these multimodality strategies are unsuccessful in the majority of patients with high-risk disease. It is generally believed that these tumors represent arrested or aberrant skeletal muscle development, and, accordingly, developmental signaling pathways critical to myogenesis such as Notch, WNT, and Hedgehog may represent new therapeutic targets. In this paper, we summarize the current preclinical studies linking these embryonic pathways to rhabdomyosarcoma tumorigenesis and provide support for the investigation of targeted therapies in this embryonic cancer.
Collapse
Affiliation(s)
- Brian Belyea
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA
| | - Julie Grondin Kephart
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jordan Blum
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - David G. Kirsch
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Corinne M. Linardic
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
15
|
Parker MH, Loretz C, Tyler AE, Snider L, Storb R, Tapscott SJ. Inhibition of CD26/DPP-IV enhances donor muscle cell engraftment and stimulates sustained donor cell proliferation. Skelet Muscle 2012; 2:4. [PMID: 22340947 PMCID: PMC3299591 DOI: 10.1186/2044-5040-2-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/16/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Transplantation of myogenic stem cells possesses great potential for long-term repair of dystrophic muscle. In murine-to-murine transplantation experiments, CXCR4 expression marks a population of adult murine satellite cells with robust engraftment potential in mdx mice, and CXCR4-positive murine muscle-derived SP cells home more effectively to dystrophic muscle after intra-arterial delivery in mdx5cv mice. Together, these data suggest that CXCR4 plays an important role in donor cell engraftment. Therefore, we sought to translate these results to a clinically relevant canine-to-canine allogeneic transplant model for Duchenne muscular dystrophy (DMD) and determine if CXCR4 is important for donor cell engraftment. METHODS In this study, we used a canine-to-murine xenotransplantation model to quantitatively compare canine muscle cell engraftment, and test the most effective cell population and modulating factor in a canine model of DMD using allogeneic transplantation experiments. RESULTS We show that CXCR4 expressing cells are important for donor muscle cell engraftment, yet FACS sorted CXCR4-positive cells display decreased engraftment efficiency. However, diprotin A, a positive modulator of CXCR4-SDF-1 binding, significantly enhanced engraftment and stimulated sustained proliferation of donor cells in vivo. Furthermore, the canine-to-murine xenotransplantation model accurately predicted results in canine-to-canine muscle cell transplantation. CONCLUSIONS Therefore, these results establish the efficacy of diprotin A in stimulating muscle cell engraftment, and highlight the pre-clinical utility of a xenotransplantation model in assessing the relative efficacy of muscle stem cell populations.
Collapse
Affiliation(s)
- Maura H Parker
- Program in Transplantation Biology, Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Mailstop D1-100, Seattle, WA, 98109-1024, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Hu L, Yang X, Yuan D, Zeng F, Zhang X. GhHmgB3 deficiency deregulates proliferation and differentiation of cells during somatic embryogenesis in cotton. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:1038-1048. [PMID: 21554528 DOI: 10.1111/j.1467-7652.2011.00617.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The proteins of high-mobility group box (HmgB) family were involved in the regulation of transcription and other DNA-dependent processes. To investigate the function of HmgB proteins during cotton somatic embryogenesis (SE), four Gossypium hirsutum HmgB genes were characterized. The gene GhHmgB3 preferentially expressed in embryonic tissues and was studied in detail. RNA interference and over-expression was used to regulate the expression of GhHmgB3 during cotton SE by transforming both hypocotyl and embryogenic calli (ECs) via Agrobacterium tumefaciens. The GhHmgB3-deficient somatic cells of hypocotyls dedifferentiated more vigorously than the control cells, but they failed to differentiate to ECs. In another case, the proliferation and differentiation of GhHmgB3-deficient ECs were significantly improved, but failed to form plantlets. Over-expression of GhHmgB3 had no significant differences in callus initiation and differentiation compared with the control cell lines. The different expression genes between the control and GhHmgB3-deficient ECs were identified by Solexa sequencing technology. The bioinformatics analysis and experimental verification revealed series of abnormal mechanism associated with β-catenin signalling. These results in response to the down-regulation of GhHmgB3 revealed series of β-catenin-related mechanisms might be responsible for the deregulation of proliferation and differentiation of cells in cotton SE.
Collapse
Affiliation(s)
- Lisong Hu
- National Key Laboratory of Crop Genetic Improvement, National Plant Gene Center (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, China
| | | | | | | | | |
Collapse
|
17
|
Friedrichs M, Wirsdöerfer F, Flohé SB, Schneider S, Wuelling M, Vortkamp A. BMP signaling balances proliferation and differentiation of muscle satellite cell descendants. BMC Cell Biol 2011; 12:26. [PMID: 21645366 PMCID: PMC3149017 DOI: 10.1186/1471-2121-12-26] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/06/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The capacity of muscle to grow or to regenerate after damage is provided by adult stem cells, so called satellite cells, which are located under the basement lamina of each myofiber. Upon activation satellite cells enter the cell cycle, proliferate and differentiate into myoblasts, which fuse to injured myofibers or form new fibers. These processes are tightly controlled by many growth factors. RESULTS Here we investigate the role of bone morphogenetic proteins (BMPs) during satellite cell differentiation. Unlike the myogenic C2C12 cell line, primary satellite cells do not differentiate into osteoblasts upon BMP signaling. Instead BMP signaling inhibits myogenic differentiation of primary satellite cells ex vivo. In contrast, inhibition of BMP signaling results in cell cycle exit, followed by enhanced myoblast differentiation and myotube formation. Using an in vivo trauma model we demonstrate that satellite cells respond to BMP signals during the regeneration process. Interestingly, we found the BMP inhibitor Chordin upregulated in primary satellite cell cultures and in regenerating muscles. In both systems Chordin expression follows that of Myogenin, a marker for cells committed to differentiation. CONCLUSION Our data indicate that BMP signaling plays a critical role in balancing proliferation and differentiation of activated satellite cells and their descendants. Initially, BMP signals maintain satellite cells descendants in a proliferating state thereby expanding cell numbers. After cells are committed to differentiate they upregulate the expression of the BMP inhibitor Chordin thereby supporting terminal differentiation and myotube formation in a negative feedback mechanism.
Collapse
Affiliation(s)
- Melanie Friedrichs
- Center for Medical Biotechnology, Faculty of Biology, Department of Developmental Biology, University of Duisburg-Essen, D-45117 Essen, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Fitzsimons RB. Retinal vascular disease and the pathogenesis of facioscapulohumeral muscular dystrophy. A signalling message from Wnt? Neuromuscul Disord 2011; 21:263-71. [PMID: 21377364 DOI: 10.1016/j.nmd.2011.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral retinal vascular abnormality which accompanies FSHD belongs morphologically and clinically to a class of developmental 'retinal hypovasculopathies' caused by abnormalities of 'Wnt' signalling, which controls retinal angiogenesis. Wnt signalling is also fundamental to myogenesis. This paper integrates modern concepts of myogenic cell signalling and of transcription factor expression and control with data from the classic early ophthalmic and myology embryology literature. Together, they support an hypothesis that abnormalities of Wnt signalling, which activates myogenic programs and transcription factors in myoblasts and satellite cells, leads to defective muscle regeneration in FSHD. The selective vulnerability of different FSHD muscles (notably facial muscle, from the second branchial arch) might reflect patterns of transcription factor redundancies. This hypothesis has implications for FSHD research through study of transcription factors patterning in normal human muscles, and for autologous cell transplantation.
Collapse
|
19
|
Han XH, Jin YR, Seto M, Yoon JK. A WNT/beta-catenin signaling activator, R-spondin, plays positive regulatory roles during skeletal myogenesis. J Biol Chem 2011; 286:10649-59. [PMID: 21252233 PMCID: PMC3060516 DOI: 10.1074/jbc.m110.169391] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 01/14/2011] [Indexed: 11/06/2022] Open
Abstract
R-spondins (RSPOs) are a recently characterized family of secreted proteins that activate WNT/β-catenin signaling. In this study, we investigated the potential roles of the RSPO proteins during myogenic differentiation. Overexpression of the Rspo1 gene or administration of recombinant RSPO2 protein enhanced mRNA and protein expression of a basic helix-loop-helix (bHLH) class myogenic determination factor, MYF5, in both C2C12 myoblasts and primary satellite cells, whereas MYOD or PAX7 expression was not affected. RSPOs also promoted myogenic differentiation and induced hypertrophic myotube formation in C2C12 cells. In addition, Rspo2 and Rspo3 gene knockdown by RNA interference significantly compromised MYF5 expression, myogenic differentiation, and myotube formation. Furthermore, Myf5 expression was reduced in the developing limbs of mouse embryos lacking the Rspo2 gene. Finally, we demonstrated that blocking of WNT/β-catenin signaling by DKK1 or a dominant-negative form of TCF4 reversed MYF5 expression, myogenic differentiation, and hypertrophic myotube formation induced by RSPO2, indicating that RSPO2 exerts its activity through the WNT/β-catenin signaling pathway. Our results provide strong evidence that RSPOs are key positive regulators of skeletal myogenesis acting through the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiang Hua Han
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
| | - Yong-Ri Jin
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
| | - Marianne Seto
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
- Graduate School of Biomedical Sciences, University of Maine, Orono, Maine 04469
| | - Jeong Kyo Yoon
- From the Center of Biomedical Research Excellence in Stem Cell Biology and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074 and
| |
Collapse
|
20
|
Bernardi H, Gay S, Fedon Y, Vernus B, Bonnieu A, Bacou F. Wnt4 activates the canonical β-catenin pathway and regulates negatively myostatin: functional implication in myogenesis. Am J Physiol Cell Physiol 2011; 300:C1122-38. [PMID: 21248078 DOI: 10.1152/ajpcell.00214.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Expression of Wnt proteins is known to be important for developmental processes such as embryonic pattern formation and determination of cell fate. Previous studies have shown that Wn4 was involved in the myogenic fate of somites, in the myogenic proliferation, and differentiation of skeletal muscle. However, the function of this factor in adult muscle homeostasis remains not well understood. Here, we focus on the roles of Wnt4 during C2C12 myoblasts and satellite cells differentiation. We analyzed its myogenic activity, its mechanism of action, and its interaction with the anti-myogenic factor myostatin during differentiation. Established expression profiles indicate clearly that both types of cells express a few Wnts, and among these, only Wnt4 was not or barely detected during proliferation and was strongly induced during differentiation. As attested by myogenic factors expression pattern analysis and fusion index determination, overexpression of Wnt4 protein caused a strong increase in satellite cells and C2C12 myoblast differentiation leading to hypertrophic myotubes. By contrast, exposure of satellite and C2C12 cells to small interfering RNA against Wnt4 strongly diminished this process, confirming the myogenic activity of Wnt4. Moreover, we reported that Wnt4, which is usually described as a noncanonical Wnt, activates the canonical β-catenin pathway during myogenic differentiation in both cell types and that this factor regulates negatively the expression of myostatin and the regulating pathways associated with myostatin. Interestingly, we found that recombinant myostatin was sufficient to antagonize the differentiation-promoting activities of Wnt4. Reciprocally, we also found that the genetic deletion of myostatin renders the satellite cells refractory to the hypertrophic effect of Wnt4. These results suggest that the Wnt4-induced decrease of myostatin plays a functional role during hypertrophy. We propose that Wnt4 protein may be a key factor that regulates the extent of differentiation in satellite and C2C12 cells.
Collapse
Affiliation(s)
- Henri Bernardi
- Laboratoire de Génomique Fonctionnelle et Myogenèse, UMR866 Laboratoire Dynamique Musculaire et Métabolisme, INRA, 2 place Viala, Montpellier Cedex, France.
| | | | | | | | | | | |
Collapse
|
21
|
Brzoska E, Ciemerych MA, Przewozniak M, Zimowska M. Regulation of Muscle Stem Cells Activation. STEM CELL REGULATORS 2011; 87:239-76. [DOI: 10.1016/b978-0-12-386015-6.00031-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Abstract
Muscle development, growth, and regeneration take place throughout vertebrate life. In amniotes, myogenesis takes place in four successive, temporally distinct, although overlapping phases. Understanding how embryonic, fetal, neonatal, and adult muscle are formed from muscle progenitors and committed myoblasts is an area of active research. In this review we examine recent expression, genetic loss-of-function, and genetic lineage studies that have been conducted in the mouse, with a particular focus on limb myogenesis. We synthesize these studies to present a current model of how embryonic, fetal, neonatal, and adult muscle are formed in the limb.
Collapse
Affiliation(s)
- Malea Murphy
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
23
|
Abstract
The fate of stem cell is regulated by cues received from the surrounding area. Recently, the concept of "stem cell zone"--rather than a predefined niche--introduced the notion of dynamic and permanent interactions between stem cells and their microenvironment. In adult skeletal muscle, satellite cells are considered as the main stem cells responsible for muscle repair and maintenance. They are localized close to vessels regardless their state of activation and differentiation. Moreover, the number of satellite cells is positively correlated to the capillarization of the myofiber. Angiogenesis has been known for a long time to be essential for muscle repair. However, relationships between vessel cells and satellite/myogenic cells that govern myogenic cell expansion, myogenesis, and angiogenesis have been only recently investigated. In this chapter, we discuss the possible existence of a vascular amplifying/differentiating niche, in an attempt to reconciliate several recent observations showing that satellite/myogenic cells interact with various cell types during the time course of muscle regeneration. Indeed, endothelial cells (ECs) stimulate myogenic cell growth and, inversely, differentiating myogenic cells promote angiogenesis. However, stromal cells may also provide some proliferating or differentiating cues to satellite/myogenic cells in this vascular area. Although some molecular effectors have been identified, including growth factors and cytokines, molecular regulations that occur within this vascular amplifying/differentiating niche requires further investigation. At the end of muscle repair, maturation of newly formed vessels takes place. In this context, we discuss the potential quiescence niche of satellite cells and the specific role of periendothelial cells. Indeed, periendothelial cells promote the return to quiescence of a subset of satellite/myogenic cells and maintain their quiescence (through Angiopoietin-1/Tie-2 signaling). We ask to what extent the environment may control the fate choice of satellite/myogenic cells and we also question the "hypoxic niche" in skeletal muscle, such a quiescence niche having being observed in the bone marrow.
Collapse
|
24
|
Laminopathies: the molecular background of the disease and the prospects for its treatment. Cell Mol Biol Lett 2010; 16:114-48. [PMID: 21225470 PMCID: PMC6275778 DOI: 10.2478/s11658-010-0038-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023] Open
Abstract
Laminopathies are rare human degenerative disorders with a wide spectrum of clinical phenotypes, associated with defects in the main protein components of the nuclear envelope, mostly in the lamins. They include systemic disorders and tissue-restricted diseases. Scientists have been trying to explain the pathogenesis of laminopathies and find an efficient method for treatment for many years. In this review, we discuss the current state of knowledge about laminopathies, the molecular mechanisms behind the development of particular phenotypes, and the prospects for stem cell and/or gene therapy treatments.
Collapse
|
25
|
Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez VE, Valente S, Mai A, Forcales SV, Sartorelli V, Puri PL. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 2010; 7:455-69. [PMID: 20887952 PMCID: PMC2951277 DOI: 10.1016/j.stem.2010.08.013] [Citation(s) in RCA: 315] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 05/26/2010] [Accepted: 07/28/2010] [Indexed: 12/14/2022]
Abstract
How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.
Collapse
Affiliation(s)
- Daniela Palacios
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Chiara Mozzetta
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Silvia Consalvi
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Giuseppina Caretti
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892-8022, USA
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | - Valentina Saccone
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| | - Valentina Proserpio
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892-8022, USA
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan, Italy
| | | | - Sergio Valente
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Chemistry and Drug Technologies, University La Sapienza, Italy
| | - Antonello Mai
- Institute Pasteur-Fondazione Cenci Bolognetti, Department of Chemistry and Drug Technologies, University La Sapienza, Italy
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, National Institutes of Health, Bethesda, MD 20892-8022, USA
| | - Pier Lorenzo Puri
- Dulbecco Telethon Institute (DTI), IRCCS Fondazione Santa Lucia and European Brain Research Institute
- Sanford-Burnham Institute for Medical Research, La Jolla, USA
| |
Collapse
|
26
|
Hirschy A, Croquelois A, Perriard E, Schoenauer R, Agarkova I, Hoerstrup SP, Taketo MM, Pedrazzini T, Perriard JC, Ehler E. Stabilised beta-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death. Basic Res Cardiol 2010; 105:597-608. [PMID: 20376467 DOI: 10.1007/s00395-010-0101-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 12/22/2022]
Abstract
Beta-catenin is a component of the intercalated disc in cardiomyocytes, but can also be involved in signalling and activation of gene transcription. We wanted to determine how long-term changes in beta-catenin expression levels would affect mature cardiomyocytes. Conditional transgenic mice that either lacked beta-catenin or that expressed a non-degradable form of beta-catenin in the adult ventricle were created. While mice lacking beta-catenin in the ventricle do not have an overt phenotype, mice expressing a non-degradable form develop dilated cardiomyopathy and do not survive beyond 5 months. A detailed analysis could reveal that this phenotype is correlated with a distinct localisation of beta-catenin in adult cardiomyocytes, which cannot be detected in the nucleus, no matter how much protein is present. Our report is the first study that addresses long-term effects of either the absence of beta-catenin or its stabilisation on ventricular cardiomyocytes and it suggests that beta-catenin's role in the nucleus may be of little significance in the healthy adult heart.
Collapse
Affiliation(s)
- Alain Hirschy
- Institute of Cell Biology, ETH Zurich-Hönggerberg, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abou-Khalil R, Partridge T, Chazaud B. [How muscle environmental cells induce stem cells quiescence]. Med Sci (Paris) 2010; 26:589-91. [PMID: 20619159 DOI: 10.1051/medsci/2010266-7589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Abou-Khalil R, Partridge T, Chazaud B. [How muscle environmental cells induce stem cells quiescence]. Med Sci (Paris) 2010; 26:454-6. [PMID: 20510137 DOI: 10.1051/medsci/2010265454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Bmp signaling at the tips of skeletal muscles regulates the number of fetal muscle progenitors and satellite cells during development. Dev Cell 2010; 18:643-54. [PMID: 20412778 DOI: 10.1016/j.devcel.2010.02.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/17/2009] [Accepted: 02/01/2010] [Indexed: 11/23/2022]
Abstract
Muscle progenitors, labeled by the transcription factor Pax7, are responsible for muscle growth during development. The signals that regulate the muscle progenitor number during myogenesis are unknown. We show, through in vivo analysis, that Bmp signaling is involved in regulating fetal skeletal muscle growth. Ectopic activation of Bmp signaling in chick limbs increases the number of fetal muscle progenitors and fibers, while blocking Bmp signaling reduces their numbers, ultimately leading to small muscles. The Bmp effect that we observed during fetal myogenesis is diametrically opposed to that previously observed during embryonic myogenesis and that deduced from in vitro work. We also show that Bmp signaling regulates the number of satellite cells during development. Finally, we demonstrate that Bmp signaling is active in a subpopulation of fetal progenitors and satellite cells at the extremities of muscles. Overall, our results show that Bmp signaling plays differential roles in embryonic and fetal myogenesis.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Skeletal muscle development serves as a paradigm for cell lineage specification and cell differentiation. Adult skeletal muscle has high regenerative capacity, with satellite cells the primary source of this capability. The present review describes recent findings on developmental and adult myogenesis with emphasis on emerging distinctions between various muscle groups and stages of myogenesis. RECENT FINDINGS Muscle progenitors of the body are derived from multipotent cells of the dermomyotome and express the transcription factors Pax3 and Pax7. These cells self-renew or induce expression of myogenic regulatory factors (MRFs) and differentiate. The roles of Pax3, Pax7 and specific myogenic regulatory factor progenitor populations in trunk and limb myogenesis have been identified through cell ablation in the mouse. Various head muscles and associated satellite cells have differing developmental origins, and rely on distinct combinations of transcriptional regulators, than trunk and limb muscles. Several genetic and sorting protocols demonstrate that satellite cells are heterogeneous with some possessing stem cell properties; the relative roles of lineage and niche in these properties are being explored. Although cellular mechanisms of developmental, postnatal and adult regenerative myogenesis are thought to be similar, recent studies reveal distinct genetic requirements for embryonic, fetal, postnatal and adult regenerative myogenesis. SUMMARY Genetic determinants of formation or repair of various muscles during different stages of myogenesis are unexpectedly diverse. Future studies should illuminate these differences, as well as mechanisms that underlie stem cell properties of satellite cells.
Collapse
Affiliation(s)
- Jong-Sun Kang
- Samsung Biomedical Research Institute, SungKyunKwan University School of Medicine, Suwon 440-746, South Korea
| | - Robert S. Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
31
|
Abstract
At the cellular level, the biological processes of cell proliferation, growth arrest, differentiation and apoptosis are all tightly coupled to appropriate alterations in metabolic status. In the case of cell proliferation, this requires redirecting metabolic pathways to provide the fuel and basic components for new cells. Ultimately, the successful co-ordination of cell-specific biology with cellular metabolism underscores multicellular processes as diverse as embryonic development, adult tissue remodelling and cancer cell biology. The Wnt signalling network has been implicated in all of these areas. While each of the Wnt-dependent signalling pathways are being individually delineated in a range of experimental systems, our understanding of how they integrate and regulate cellular metabolism is still in its infancy. In the present review we reassess the roles of Wnt signalling in functionally linking cellular metabolism to tissue development and function.
Collapse
Affiliation(s)
- Jaswinder K Sethi
- Department of Clinical Biochemistry, University of Cambridge Metabolic Research Laboratories, Level 4, Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB20QQ, U.K.
| | | |
Collapse
|
32
|
Wheeler MA, Warley A, Roberts RG, Ehler E, Ellis JA. Identification of an emerin-beta-catenin complex in the heart important for intercalated disc architecture and beta-catenin localisation. Cell Mol Life Sci 2010; 67:781-96. [PMID: 19997769 PMCID: PMC11115513 DOI: 10.1007/s00018-009-0219-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/29/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
Abstract
How mutations in the protein emerin lead to the cardiomyopathy associated with X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) is unclear. We identified emerin at the adherens junction of the intercalated disc, where it co-localised with the catenin family of proteins. Emerin bound to wild type beta-catenin both in vivo and in vitro. Mutating the GSK3beta phosphorylation sites on beta-catenin abolished this binding. Wild type but not mutant forms of emerin associated with X-EDMD were able to reduce beta-catenin protein levels. Cardiomyocytes from emerin-null mice hearts exhibited erroneous beta-catenin distribution and intercalated disc architecture. Treatment of wild type cardiomyocytes with phenylephrine, which inactivates GSK3beta, redistributed emerin and beta-catenin. Emerin was identified as a direct target of GSK3beta activity since exogenous expression of GSK3beta reduced emerin levels at the nuclear envelope. We propose that perturbation to or total loss of the emerin-beta-catenin complex compromises both intercalated disc function and beta-catenin signalling in cardiomyocytes.
Collapse
Affiliation(s)
- Matthew A Wheeler
- The Randall Division of Cell and Molecular Biophysics, King's College London, New Hunts House, Guy's Campus, London, SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
33
|
Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 2010; 6:117-29. [PMID: 20144785 PMCID: PMC2846417 DOI: 10.1016/j.stem.2009.12.015] [Citation(s) in RCA: 236] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 10/28/2009] [Accepted: 12/18/2009] [Indexed: 11/28/2022]
Abstract
Satellite cells are skeletal muscle stem cells capable of self-renewal and differentiation after transplantation, but whether they contribute to endogenous muscle fiber repair has been unclear. The transcription factor Pax7 marks satellite cells and is critical for establishing the adult satellite cell pool. By using a lineage tracing approach, we show that after injury, quiescent adult Pax7(+) cells enter the cell cycle; a subpopulation returns to quiescence to replenish the satellite cell compartment, while others contribute to muscle fiber formation. We demonstrate that Sprouty1 (Spry1), a receptor tyrosine kinase signaling inhibitor, is expressed in quiescent Pax7(+) satellite cells in uninjured muscle, downregulated in proliferating myogenic cells after injury, and reinduced as Pax7(+) cells re-enter quiescence. We show that Spry1 is required for the return to quiescence and homeostasis of the satellite cell pool during repair. Our results therefore define a role for Spry1 in adult muscle stem cell biology and tissue repair.
Collapse
Affiliation(s)
- Kelly L. Shea
- Massachusetts General Hospital, Center of Regenerative Medicine,
Harvard University, Boston, MA, 02114, USA
| | - Wanyi Xiang
- Massachusetts General Hospital, Center of Regenerative Medicine,
Harvard University, Boston, MA, 02114, USA
- Department of Orthopedic Surgery, Massachusetts General Hospital,
Boston, MA 02114, USA
| | - Vincent S. LaPorta
- Massachusetts General Hospital, Center of Regenerative Medicine,
Harvard University, Boston, MA, 02114, USA
| | - Jonathan D. Licht
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive
Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
60611, USA
| | - Charles Keller
- Department of Cellular & Structural Biology, The University
of Texas Health Science Center, San Antonio, TX 78229, USA
| | - M. Albert Basson
- Department of Craniofacial Development, King's College
London, Guy's Campus, London, SE1 9RT, UK
| | - Andrew S. Brack
- Massachusetts General Hospital, Center of Regenerative Medicine,
Harvard University, Boston, MA, 02114, USA
| |
Collapse
|
34
|
Effect of the g.–723G→T Polymorphism in the Bovine Myogenic Factor 5 (Myf5) Gene Promoter Region on Gene Transcript Level in the Longissimus Dorsi Muscle and on Meat Traits of Polish Holstein-Friesian Cattle. Biochem Genet 2010; 48:450-64. [DOI: 10.1007/s10528-009-9328-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 11/05/2009] [Indexed: 10/19/2022]
|
35
|
The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 2010; 340:330-43. [PMID: 20079729 DOI: 10.1016/j.ydbio.2010.01.006] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 01/26/2023]
Abstract
Satellite cells are myogenic progenitors that reside on the myofiber surface and support skeletal muscle repair. We used mice in which satellite cells were detected by GFP expression driven by nestin gene regulatory elements to define age-related changes in both numbers of satellite cells that occupy hindlimb myofibers and their individual performance. We demonstrate a reduction in satellite cells per myofiber with age that is more prominent in females compared to males. Satellite cell loss also persists with age in myostatin-null mice regardless of increased muscle mass. Immunofluorescent analysis of isolated myofibers from nestin-GFP/Myf5(nLacZ/+) mice reveals a decline with age in the number of satellite cells that express detectable levels of betagal. Nestin-GFP expression typically diminishes in primary cultures of satellite cells as myogenic progeny proliferate and differentiate, but GFP subsequently reappears in the Pax7(+) reserve population. Clonal analysis of sorted GFP(+) satellite cells from hindlimb muscles shows heterogeneity in the extent of cell density and myotube formation among colonies. Reserve cells emerge primarily within high-density colonies, and the number of clones that produce reserve cells is reduced with age. Thus, satellite cell depletion with age could be attributed to a reduced capacity to generate a reserve population.
Collapse
|
36
|
Shefer G, Benayahu D. SVEP1 is a Novel Marker of Activated Pre-determined Skeletal Muscle Satellite Cells. Stem Cell Rev Rep 2010; 6:42-9. [DOI: 10.1007/s12015-009-9106-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Relaix F, Marcelle C. Muscle stem cells. Curr Opin Cell Biol 2009; 21:748-53. [PMID: 19932015 DOI: 10.1016/j.ceb.2009.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 09/14/2009] [Accepted: 10/06/2009] [Indexed: 12/26/2022]
Abstract
Despite being mainly composed of highly differentiated contractile fibers, the adult skeletal muscle possesses the remarkable ability to regenerate, following injury. The cells that are responsible for this capacity are the satellite cells, a small population of adult stem cells positioned under the basal lamina of muscle fibers and that can give rise to both differentiated myogenic cells while maintaining a stem cell pool by a self-renewal mechanism. We will discuss here recent publications on the developmental origin of muscle stem cells, on the signaling pathways that affect their proliferation and differentiation, with reference to works on skeletal muscle formation in the embryo as well as the adult, using the mouse and chick as reference models.
Collapse
Affiliation(s)
- Frédéric Relaix
- UMR-S 787, INSERM, UPMC-Paris VI, Institute of Myology, Faculty of Medecine Pitié-Salpétrière 105 bd de l'Hôpital, 75634, Paris Cedex 13, France
| | | |
Collapse
|
38
|
Ono Y, Gnocchi VF, Zammit PS, Nagatomi R. Presenilin-1 acts via Id1 to regulate the function of muscle satellite cells in a gamma-secretase-independent manner. J Cell Sci 2009; 122:4427-38. [PMID: 19920078 DOI: 10.1242/jcs.049742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Muscle satellite cells are the resident stem cells of adult skeletal muscle. Here, we have examined the role of the multifunctional protein presenilin-1 (PS1) in satellite cell function. PS1 acts as a crucial component of the gamma-secretase complex, which is required to cleave single-pass transmembrane proteins such as Notch and amyloid-beta precursor protein. PS1, however, also functions through gamma-secretase-independent pathways. Activation of satellite cells was accompanied by induction of PS1, with PS1 knockdown enhancing their myogenic differentiation, but reducing their self-renewal. Transfection with siRNA against PS1 led to accelerated myogenic differentiation during muscle regeneration in vivo. Conversely, constitutive expression of PS1 resulted in the suppression of myogenic differentiation and promotion of the self-renewal phenotype. Importantly, we found that PS1 also acts independently of its role in gamma-secretase activity in controlling myogenesis, which is mediated in part by Id1 (inhibitor of DNA binding 1), a negative regulator of the myogenic regulatory factor MyoD. PS1 can control Id1, which affects satellite cell fate by regulating the transcriptional activity of MyoD. Taken together, our observations show that PS1 is a key player in the choice of satellite cell fate, acting through both gamma-secretase-dependent and gamma-secretase-independent mechanisms.
Collapse
Affiliation(s)
- Yusuke Ono
- King's College London, Randall Division of Cell and Molecular Biophysics, Guy's Campus, London, UK.
| | | | | | | |
Collapse
|
39
|
Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B. Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 2009; 5:298-309. [PMID: 19733541 DOI: 10.1016/j.stem.2009.06.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 05/05/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022]
Abstract
Mechanisms governing muscle satellite cell withdrawal from cell cycle to enter into quiescence remain poorly understood. We studied the role of angiopoietin 1 (Ang1) and its receptor Tie-2 in the regulation of myogenic precursor cell (mpc) fate. In human and mouse, Tie-2 was preferentially expressed by quiescent satellite cells in vivo and reserve cells (RCs) in vitro. Ang1/Tie-2 signaling, through ERK1/2 pathway, decreased mpc proliferation and differentiation, increased the number of cells in G0, increased expression of RC-associated markers (p130, Pax7, Myf-5, M-cadherin), and downregulated expression of differentiation-associated markers. Silencing Tie-2 had opposite effects. Cells located in the satellite cell neighborhood (smooth muscle cells, fibroblasts) upregulated RC-associated markers by secreting Ang1 in vitro. In vivo, Tie-2 blockade and Ang1 overexpression increased the number of cycling and quiescent satellite cells, respectively. We propose that Ang1/Tie-2 signaling regulates mpc self-renewal by controlling the return to quiescence of a subset of satellite cells.
Collapse
|
40
|
Abstract
Tissue and organ regeneration proceed in a coordinated manner to restore proper function after trauma. Vertebrate skeletal muscle has a remarkable ability to regenerate after repeated and complete destruction of the tissue, yet limited information is available on how muscle stem and progenitor cells, and other nonmuscle cells, reestablish homeostasis after the regenerative process. The genetic pathways that regulate the establishment of skeletal muscle in the embryo have been studied extensively, and many of the genes that govern muscle stem cell maintenance and commitment are redeployed during adult homeostasis and regeneration. Therefore, correlates can be made between embryonic muscle development and postnatal regeneration. However, there are some important distinctions between prenatal development and regeneration - in the context of the cells, niche, anatomy and the regulatory genes employed. The similarities and distinctions between these two scenarios are the focus of this review.
Collapse
Affiliation(s)
- S Tajbakhsh
- Stem Cells & Development, Department of Developmental Biology, Pasteur Institute, CNRS URA, Paris, France.
| |
Collapse
|
41
|
Otto A, Collins-Hooper H, Patel K. The origin, molecular regulation and therapeutic potential of myogenic stem cell populations. J Anat 2009; 215:477-97. [PMID: 19702867 DOI: 10.1111/j.1469-7580.2009.01138.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Satellite cells, originating in the embryonic dermamyotome, reside beneath the myofibre of mature adult skeletal muscle and constitute the tissue-specific stem cell population. Recent advances following the identification of markers for these cells (including Pax7, Myf5, c-Met and CD34) (CD, cluster of differentiation; c-Met, mesenchymal epithelial transition factor) have led to a greater understanding of the role played by satellite cells in the regeneration of new skeletal muscle during growth and following injury. In response to muscle damage, satellite cells harbour the ability both to form myogenic precursors and to self-renew to repopulate the stem cell niche following myofibre damage. More recently, other stem cell populations including bone marrow stem cells, skeletal muscle side population cells and mesoangioblasts have also been shown to have myogenic potential in culture, and to be able to form skeletal muscle myofibres in vivo and engraft into the satellite cell niche. These cell types, along with satellite cells, have shown potential when used as a therapy for skeletal muscle wasting disorders where the intrinsic stem cell population is genetically unable to repair non-functioning muscle tissue. Accurate understanding of the mechanisms controlling satellite cell lineage progression and self-renewal as well as the recruitment of other stem cell types towards the myogenic lineage is crucial if we are to exploit the power of these cells in combating myopathic conditions. Here we highlight the origin, molecular regulation and therapeutic potential of all the major cell types capable of undergoing myogenic differentiation and discuss their potential therapeutic application.
Collapse
Affiliation(s)
- A Otto
- School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights Campus, Reading, Berkshire, UK
| | | | | |
Collapse
|
42
|
Brack AS, Murphy-Seiler F, Hanifi J, Deka J, Eyckerman S, Keller C, Aguet M, Rando TA. BCL9 is an essential component of canonical Wnt signaling that mediates the differentiation of myogenic progenitors during muscle regeneration. Dev Biol 2009; 335:93-105. [PMID: 19699733 DOI: 10.1016/j.ydbio.2009.08.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/05/2009] [Accepted: 08/17/2009] [Indexed: 11/17/2022]
Abstract
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Collapse
Affiliation(s)
- Andrew S Brack
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305-5235, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Savage J, Conley AJ, Blais A, Skerjanc IS. SOX15 and SOX7 Differentially Regulate the Myogenic Program in P19 Cells. Stem Cells 2009; 27:1231-43. [DOI: 10.1002/stem.57] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Carraro L, Ferraresso S, Cardazzo B, Romualdi C, Montesissa C, Gottardo F, Patarnello T, Castagnaro M, Bargelloni L. Expression profiling of skeletal muscle in young bulls treated with steroidal growth promoters. Physiol Genomics 2009; 38:138-48. [PMID: 19383624 DOI: 10.1152/physiolgenomics.00014.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dexamethasone (Dex), alone or in association with estrogens, is often illegally administered per os at very low dosage as a growth promoter in beef cattle, with effects that are opposite to the muscle wasting and atrophy induced by repeated administration at therapeutic dosages. In vitro and in vivo studies have investigated the catabolic effects of Dex at therapeutic doses on skeletal muscle, demonstrating an increase in the expression of GDF8 (myostatin) gene, a well-known negative regulator of skeletal muscle mass, in a dose-dependent way. This suggested a direct role of myostatin in Dex-induced muscle wasting. In the present study, an oligonucleotide microarray platform was used to compare expression profiles of beef cattle muscle in animals treated with either Dex or Dex plus 17-beta estradiol (Estr) administered at subtherapeutic dosage, against untreated controls. Data analysis demonstrates that the expression profiles were strongly affected by Dex treatment with hundreds of genes upregulated with relevant fold-change, whereas seven genes were downregulated including the myostatin gene. On the contrary, the number of differentially regulated genes was lower in response to the addition of Estr to the Dex treatment. Differentially regulated genes were analyzed to describe the effects of these treatments on muscle physiology, highlighting the importance of specific pathways (e.g., Wnt or cytokine signaling) and cellular processes (e.g., cell shape and motility). Finally, the observed differences in the expression profile will allow the development of indirect bio-markers to detect illegal Dex treatments in beef cattle using quantitative RT-PCR.
Collapse
Affiliation(s)
- L Carraro
- Department of Public Health, Comparative Pathology, and Veterinary Hygiene, University of Padova, Legnaro (PD), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes Dev 2009; 23:997-1013. [PMID: 19346403 DOI: 10.1101/gad.1769009] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vertebrate muscle arises sequentially from embryonic, fetal, and adult myoblasts. Although functionally distinct, it is unclear whether these myoblast classes develop from common or different progenitors. Pax3 and Pax7 are expressed by somitic myogenic progenitors and are critical myogenic determinants. To test the developmental origin of embryonic and fetal myogenic cells in the limb, we genetically labeled and ablated Pax3(+) and Pax7(+) cells. Pax3(+)Pax7(-) cells contribute to muscle and endothelium, establish and are required for embryonic myogenesis, and give rise to Pax7(+) cells. Subsequently, Pax7(+) cells give rise to and are required for fetal myogenesis. Thus, Pax3(+) and Pax7(+) cells contribute differentially to embryonic and fetal limb myogenesis. To investigate whether embryonic and fetal limb myogenic cells have different genetic requirements we conditionally inactivated or activated beta-catenin, an important regulator of myogenesis, in Pax3- or Pax7-derived cells. beta-Catenin is necessary within the somite for dermomyotome and myotome formation and delamination of limb myogenic progenitors. In the limb, beta-catenin is not required for embryonic myoblast specification or myofiber differentiation but is critical for determining fetal progenitor number and myofiber number and type. Together, these studies demonstrate that limb embryonic and fetal myogenic cells develop from distinct, but related progenitors and have different cell-autonomous requirements for beta-catenin.
Collapse
Affiliation(s)
- David A Hutcheson
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | |
Collapse
|
46
|
Day K, Paterson B, Yablonka-Reuveni Z. A distinct profile of myogenic regulatory factor detection within Pax7+ cells at S phase supports a unique role of Myf5 during posthatch chicken myogenesis. Dev Dyn 2009; 238:1001-9. [PMID: 19301399 PMCID: PMC2799193 DOI: 10.1002/dvdy.21903] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Satellite cells are skeletal muscle stem cells that provide myogenic progeny for myofiber growth and repair. Temporal expression of muscle regulatory factors (MRFs) and the paired box transcription factor Pax7 defines characteristic phases of proliferation (Pax7(+)/MyoD(+)/myogenin(-)) and differentiation (Pax7(-)/MyoD(+)/myogenin(+)) during myogenesis of satellite cells. Here, using bromodeoxyuridine (BrdU) labeling and triple immunodetection, we analyzed expression patterns of Pax7 and the MRFs MyoD, Myf5, or myogenin within S phase myoblasts prepared from posthatch chicken muscle. Essentially, all BrdU incorporation was restricted to Pax7(+) cells, of which the majority also expressed MyoD. The presence of a minor BrdU(+)/Pax7(+)/myogenin(+) population in proliferation stage cultures suggests that myogenin up-regulation is alone insufficient for terminal differentiation. Myf5 was detected strictly within Pax7(+) cells and decreased during S phase while MyoD presence persisted in cycling cells. This study provides novel data in support of a unique role for Myf5 during posthatch myogenesis.
Collapse
Affiliation(s)
- Kenneth Day
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, 98195
| | - Bruce Paterson
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA, 98195
| |
Collapse
|
47
|
Brauner I, Spicer DB, Krull CE, Venuti JM. Identification of responsive cells in the developing somite supports a role for β-catenin-dependent Wnt signaling in maintaining the DML myogenic progenitor pool. Dev Dyn 2009; 239:222-36. [DOI: 10.1002/dvdy.22098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
Does satellite cell dysfunction contribute to disease progression in Emery–Dreifuss muscular dystrophy? Biochem Soc Trans 2008; 36:1344-9. [DOI: 10.1042/bst0361344] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Muscular dystrophies comprise at least 34 conditions, characterized by progressive skeletal muscle weakness and degeneration. The loci affected include mutations in both muscle-specific genes and genes that are more widely expressed such as LMNA and EMD, responsible for EDMD (Emery–Dreifuss muscular dystrophy). LMNA encodes A-type lamins, whereas EMD encodes emerin, both located in the nuclear envelope. Mutation or loss of A-type lamins or emerin in the terminally differentiated myonuclei of muscle fibres results in muscle damage. Importantly, since LMNA and EMD are also expressed by the resident skeletal muscle stem cells, the satellite cells, the mutations that cause muscle damage may also directly compromise the regenerative response. Thus EDMD is different from dystrophic conditions such as Duchenne muscular dystrophy, where the mutated gene is only expressed in the muscle fibres. In this brief review, we examine the evidence that myoblasts carrying EDMD-causing mutations are compromised, and discuss the possibility that such dysfunction results in reduced efficiency of muscle regeneration, so actively contributes to disease progression.
Collapse
|
49
|
Zammit PS. All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 2008; 121:2975-82. [DOI: 10.1242/jcs.019661] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle is an accessible adult stem-cell model in which differentiated myofibres are maintained and repaired by a self-renewing stem-cell compartment. These resident stem cells, which are known as satellite cells, lie on the surface of the muscle fibre, between the plasmalemma and overlying basal lamina. Although they are normally mitotically quiescent in adult muscle, satellite cells can be activated when needed to generate myoblasts, which eventually differentiate to provide new myonuclei for the homeostasis, hypertrophy and repair of muscle fibres, or fuse together to form new myofibres for regeneration. Satellite cells also self-renew in order to maintain a viable stem-cell pool that is able to respond to repeated demand. The study of the control of self-renewal has led to the idea that the satellite-cell pool might be heterogeneous: that is it might contain both self-renewing satellite `stem' cells and myogenic precursors with limited replicative potential in the same anatomical location. The regulatory circuits that control satellite-cell self-renewal are beginning to be deciphered, with Pax7, and Notch and Wnt signalling being clearly implicated. This Commentary seeks to integrate these interesting new findings into the wider context of satellite-cell biology, and to highlight some of the many outstanding questions.
Collapse
Affiliation(s)
- Peter S. Zammit
- King's College London, Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
50
|
Buckingham M, Montarras D. Skeletal muscle stem cells. Curr Opin Genet Dev 2008; 18:330-6. [PMID: 18625314 DOI: 10.1016/j.gde.2008.06.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/06/2008] [Accepted: 06/14/2008] [Indexed: 11/29/2022]
Abstract
In this review we shall discuss recent publications on the heterogeneity of muscle stem cells, signaling pathways that affect their behaviour and regulatory mechanisms that underlie their myogenic fate, with reference to insights provided by work on skeletal muscle formation in the embryo as well as the adult, with the mouse as a model of reference.
Collapse
|