1
|
Amrein Almira A, Chen MW, El Demerdash N, Javdan C, Park D, Lee JK, Martin LJ. Proteasome localization and activity in pig brain and in vivo small molecule screening for activators. Front Cell Neurosci 2024; 18:1353542. [PMID: 38469354 PMCID: PMC10925635 DOI: 10.3389/fncel.2024.1353542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Loss of proteasome function, proteinopathy, and proteotoxicity may cause neurodegeneration across the human lifespan in several forms of brain injury and disease. Drugs that activate brain proteasomes in vivo could thus have a broad therapeutic impact in neurology. Methods Using pigs, a clinically relevant large animal with a functionally compartmental gyrencephalic cerebral cortex, we evaluated the localization and biochemical activity of brain proteasomes and tested the ability of small molecules to activate brain proteasomes. Results By Western blotting, proteasome protein subunit PSMB5 and PSMA3 levels were similar in different pig brain regions. Immunohistochemistry for PSMB5 showed localization in the cytoplasm (diffuse and particulate) and nucleus (cytoplasm < nucleus). Some PSMB5 immunoreactivity was colocalized with mitochondrial (voltage-gated anion channel and cyclophilin D) and cell death (Aven) proteins in the neuronal soma and neuropil in the neocortex of pig and human brains. In the nucleus, PSMB5 immunoreactivity was diffuse, particulate, and clustered, including perinucleolar decorations. By fluorogenic assay, proteasome chymotrypsin-like activities (CTL) in crude tissue soluble fractions were generally similar within eight different pig brain regions. Proteasome CTL activity in the hippocampus was correlated with activity in nasal mucosa biopsies. In pilot analyses of subcellular fractions of pig cerebral cortex, proteasome CTL activity was highest in the cytosol and then ~50% lower in nuclear fractions; ~15-20% of total CTL activity was in pure mitochondrial fractions. With in-gel activity assay, 26S-singly and -doubly capped proteasomes were the dominant forms in the pig cerebral cortex. With a novel in situ histochemical activity assay, MG132-inhibitable proteasome CTL activity was localized to the neuropil, as a mosaic, and to cell bodies, nuclei, and centrosome-like perinuclear satellites. In piglets treated intravenously with pyrazolone derivative and chlorpromazine over 24 h, brain proteasome CTL activity was modestly increased. Discussion This study shows that the proteasome in the pig brain has relative regional uniformity, prominent nuclear and perinuclear presence with catalytic activity, a mitochondrial association with activity, 26S-single cap dominance, and indications from small molecule systemic administration of pyrazolone derivative and chlorpromazine that brain proteasome function appears safely activable.
Collapse
Affiliation(s)
- Adriana Amrein Almira
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - May W. Chen
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cameron Javdan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dongseok Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Sferra A, Fortugno P, Motta M, Aiello C, Petrini S, Ciolfi A, Cipressa F, Moroni I, Leuzzi V, Pieroni L, Marini F, Boespflug Tanguy O, Eymard-Pierre E, Danti FR, Compagnucci C, Zambruno G, Brusco A, Santorelli FM, Chiapparini L, Francalanci P, Loizzo AL, Tartaglia M, Cestra G, Bertini E. Biallelic mutations in RNF220 cause laminopathies featuring leukodystrophy, ataxia and deafness. Brain 2021; 144:3020-3035. [PMID: 33964137 DOI: 10.1093/brain/awab185] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Leukodystrophies are a heterogeneous group of rare inherited disorders that involve preferentially the white matter of the central nervous system (CNS). These conditions are characterized by a primary glial cell and myelin sheath pathology of variable etiology, which causes secondary axonal degeneration, generally emerging with disease progression. Whole exome sequencing performed in 5 large consanguineous nuclear families allowed to identify homozygosity for two recurrent missense variants affecting highly conserved residues of RNF220 as the causative event underlying a novel form of leukodystrophy with ataxia and sensorineural deafness. We report on two homozygous missense variants (p.R363Q and p.R365Q) in the ubiquitin E3 ligase RNF220 as the cause underlying a novel form of leukodystrophy with ataxia and sensorineural deafness having fibrotic cardiomyopathy and hepatopathy as associated features, in seven consanguineous families. Mass spectrometry analysis identified lamin B1 as RNF220 binding protein and co-immunoprecipitation experiments demonstrated reduced binding of both RNF220 mutants to lamin B1. We demonstrate that RNF220 silencing in Drosophila melanogaster specifically affects proper localization of lamin Dm0, the fly lamin B1 orthologue, promotes its aggregation, and causes a neurodegenerative phenotype, strongly supporting the functional link between RNF220 and lamin B1. Finally, we demonstrate that RNF220 plays a crucial role in the maintenance of nuclear morphology: mutations primary skin fibroblasts determine nuclear abnormalities such as blebs, herniations and invaginations, which are typically observed in cells of patients affected by laminopathies. Overall, our data identify RNF220 as a gene implicated in leukodystrophy with ataxia and sensorineural deafness, and document a critical role of RNF220 in the regulation of nuclear lamina. Our findings provide further evidence on the direct link between nuclear lamina dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Antonella Sferra
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Paola Fortugno
- Department of Life, Health and Environmental Sciences University of L'Aquila, 00167 Rome, Italy.,Human Functional Genomics, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Marialetizia Motta
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Chiara Aiello
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Laboratories, Ospedale Pediatrico Bambino Gesù, 00146 Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Francesca Cipressa
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy
| | - Isabella Moroni
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University, 00185 Rome, Italy
| | | | - Federica Marini
- Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Department of Laboratory Diagnostic and Infectious Diseases, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Odile Boespflug Tanguy
- Service de Neurologie Pédiatrique, Centre de reference leucodystrophies et leucoencephalopathies de cause rare (LEUKOFRANCE), APHP Hopital Robert-Debré, 75019 Paris, France.,Université de Paris, NeuroDiderot, UMR 1141 INSERM 75651 Paris, France
| | - Eleonore Eymard-Pierre
- Service de Cytogénétique Médicale CHU de Clermont Ferrand, Hopital ESTAING 63003 CLERMONT FERRAND, France
| | - Federica Rachele Danti
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Claudia Compagnucci
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Giovanna Zambruno
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10124 Turin, Italy
| | | | - Luisa Chiapparini
- Neuroradiology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Paola Francalanci
- Department of Laboratories, Pathology Unit, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy
| | - Anna Livia Loizzo
- DIDASCO Società Cooperativa Sociale- Centro di riabilitazione, 00185 Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Gianluca Cestra
- University of Rome "Sapienza", Department of Biology and Biotechnology, 00185 Rome, Italy.,Santa Lucia IRCCS Foundation, 00179 Rome, Italy.,Institute of Biochemistry and Clinical Biochemistry, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.,Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) 00185 Rome, Italy
| | - Enrico Bertini
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
3
|
Zagirova D, Autenried R, Nelson ME, Rezvani K. Proteasome Complexes and Their Heterogeneity in Colorectal, Breast and Pancreatic Cancers. J Cancer 2021; 12:2472-2487. [PMID: 33854609 PMCID: PMC8040722 DOI: 10.7150/jca.52414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Targeting the ubiquitin-proteasome system (UPS) - in particular, the proteasome complex - has emerged as an attractive novel cancer therapy. While several proteasome inhibitors have been successfully approved by the Food and Drug Administration for the treatment of hematological malignancies, the clinical efficacy of these inhibitors is unexpectedly lower in the treatment of solid tumors due to the functional and structural heterogeneity of proteasomes in solid tumors. There are ongoing trials to examine the effectiveness of compound and novel proteasome inhibitors that can target solid tumors either alone or in combination with conventional chemotherapeutic agents. The modest therapeutic efficacy of proteasome inhibitors such as bortezomib in solid malignancies demands further research to clarify the exact effects of these proteasome inhibitors on different proteasomes present in cancer cells. The structural, cellular localization and functional analysis of the proteasome complexes in solid tumors originated from different tissues provides new insights into the diversity of proteasomes' responses to inhibitors. In this study, we used an optimized iodixanol gradient ultracentrifugation to purify a native form of proteasome complexes with their intact associated protein partners enriched within distinct cellular compartments. It is therefore possible to isolate proteasome subcomplexes with far greater resolution than sucrose or glycerol fractionations. We have identified differences in the catalytic activities, subcellular distribution, and inhibitor sensitivity of cytoplasmic proteasomes isolated from human colon, breast, and pancreatic cancer cell lines. Our developed techniques and generated results will serve as a valuable guideline for investigators developing a new generation of proteasome inhibitors as an effective targeted therapy for solid tumors.
Collapse
Affiliation(s)
- Diana Zagirova
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rebecca Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan E Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
4
|
Mediani L, Guillén-Boixet J, Vinet J, Franzmann TM, Bigi I, Mateju D, Carrà AD, Morelli FF, Tiago T, Poser I, Alberti S, Carra S. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J 2019; 38:e101341. [PMID: 31271238 PMCID: PMC6669919 DOI: 10.15252/embj.2018101341] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/25/2022] Open
Abstract
Nuclear protein aggregation has been linked to genome instability and disease. The main source of aggregation‐prone proteins in cells is defective ribosomal products (DRiPs), which are generated by translating ribosomes in the cytoplasm. Here, we report that DRiPs rapidly diffuse into the nucleus and accumulate in nucleoli and PML bodies, two membraneless organelles formed by liquid–liquid phase separation. We show that nucleoli and PML bodies act as dynamic overflow compartments that recruit protein quality control factors and store DRiPs for later clearance. Whereas nucleoli serve as constitutive overflow compartments, PML bodies are stress‐inducible overflow compartments for DRiPs. If DRiPs are not properly cleared by chaperones and proteasomes due to proteostasis impairment, nucleoli undergo amyloidogenesis and PML bodies solidify. Solid PML bodies immobilize 20S proteasomes and limit the recycling of free ubiquitin. Ubiquitin depletion, in turn, compromises the formation of DNA repair compartments at fragile chromosomal sites, ultimately threatening cell survival.
Collapse
Affiliation(s)
- Laura Mediani
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Jonathan Vinet
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Titus M Franzmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ilaria Bigi
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniel Mateju
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Arianna D Carrà
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federica F Morelli
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tatiana Tiago
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center (BIOTEC), Dresden, Germany
| | - Serena Carra
- Centre for Neuroscience and Nanotechnology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Episkopou H, Diman A, Claude E, Viceconte N, Decottignies A. TSPYL5 Depletion Induces Specific Death of ALT Cells through USP7-Dependent Proteasomal Degradation of POT1. Mol Cell 2019; 75:469-482.e6. [PMID: 31278054 DOI: 10.1016/j.molcel.2019.05.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/05/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023]
Abstract
A significant fraction (∼10%) of cancer cells maintain their telomere length via a telomerase-independent mechanism known as alternative lengthening of telomeres (ALT). There are no known molecular, ALT-specific, therapeutic targets. We have identified TSPYL5 (testis-specific Y-encoded-like protein 5) as a PML body component, co-localizing with ALT telomeres and critical for ALT+ cell viability. TSPYL5 was described as an inhibitor of the USP7 deubiquitinase. We report that TSPYL5 prevents the poly-ubiquitination of POT1-a shelterin component-and protects POT1 from proteasomal degradation exclusively in ALT+ cells. USP7 depletion rescued POT1 poly-ubiquitination and loss, suggesting that the deubiquitinase activates POT1 E3 ubiquitin ligase(s). Similarly, PML depletion suppressed POT1 poly-ubiquitination, suggesting an interplay between USP7 and PML to trigger POT1 degradation in TSPYL5-depleted ALT+ cells. We demonstrate that ALT telomeres need to be protected from POT1 degradation in ALT-associated PML bodies and identify TSPYL5 as an ALT+ cancer-specific therapeutic target.
Collapse
Affiliation(s)
- Harikleia Episkopou
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Aurélie Diman
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Eloïse Claude
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Nikenza Viceconte
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes, de Duve Institute, Faculty of Pharmacy and Biomedical Sciences, Université Catholique de Louvain, Brussels 1200, Belgium.
| |
Collapse
|
6
|
Snigirevskaya ES, Komissarchik YY. Ultrastructural traits of apoptosis. Cell Biol Int 2019; 43:728-738. [DOI: 10.1002/cbin.11148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Ekaterina S. Snigirevskaya
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| | - Yan Y. Komissarchik
- Group of Cell Membrane Ultrastructure, Institute of CytologyRussian Academy of Sciences4 Tikhoretsky Ave 194064 St. Petersburg Russia
| |
Collapse
|
7
|
Gan J, Leestemaker Y, Sapmaz A, Ovaa H. Highlighting the Proteasome: Using Fluorescence to Visualize Proteasome Activity and Distribution. Front Mol Biosci 2019; 6:14. [PMID: 30968028 PMCID: PMC6438883 DOI: 10.3389/fmolb.2019.00014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 11/30/2022] Open
Abstract
Proteasomes are critical proteases in the cell responsible for the turnover of many cytoplasmic and nuclear proteins. They are essential for many cellular processes and various diseases are associated with their malfunctioning. Proteasome activity depends on the nature of the catalytic subunits, as well as the interaction with associated proteasome regulators. Here we describe various fluorescence-based methods to study proteasome function, highlighting the use of activity-based probes to study proteasome localization, dynamics, and activity in living cells.
Collapse
Affiliation(s)
- Jin Gan
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Yves Leestemaker
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Aysegul Sapmaz
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Centre, Leiden, Netherlands
| |
Collapse
|
8
|
Harhouri K, Navarro C, Depetris D, Mattei MG, Nissan X, Cau P, De Sandre-Giovannoli A, Lévy N. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med 2018; 9:1294-1313. [PMID: 28674081 PMCID: PMC5582415 DOI: 10.15252/emmm.201607315] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature and accelerated aging disease caused by a de novo point mutation in LMNA encoding A‐type lamins. Progerin, a truncated and toxic prelamin A issued from aberrant splicing, accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. We show that progerin is sequestered into abnormally shaped promyelocytic nuclear bodies, identified as novel biomarkers in late passage HGPS cell lines. We found that the proteasome inhibitor MG132 induces progerin degradation through macroautophagy and strongly reduces progerin production through downregulation of SRSF‐1 and SRSF‐5 accumulation, controlling prelamin A mRNA aberrant splicing. MG132 treatment improves cellular HGPS phenotypes. MG132 injection in skeletal muscle of LmnaG609G/G609G mice locally reduces SRSF‐1 expression and progerin levels. Altogether, we demonstrate progerin reduction based on MG132 dual action and shed light on a promising class of molecules toward a potential therapy for children with HGPS.
Collapse
Affiliation(s)
- Karim Harhouri
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Claire Navarro
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Danielle Depetris
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Marie-Geneviève Mattei
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France
| | - Xavier Nissan
- CECS, I-STEM, Institut des cellules Souches pour le Traitement et l'Etude des maladies Monogéniques, AFM, Evry, France
| | - Pierre Cau
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France.,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, GMGF (Génétique Médicale et Génomique Fonctionnelle), Marseille, France .,AP-HM, Hôpital la Timone, Département de Génétique Médicale, Marseille, France
| |
Collapse
|
9
|
Sha Z, Schnell HM, Ruoff K, Goldberg A. Rapid induction of p62 and GABARAPL1 upon proteasome inhibition promotes survival before autophagy activation. J Cell Biol 2018. [PMID: 29535191 PMCID: PMC5940303 DOI: 10.1083/jcb.201708168] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cells are thought to adapt to proteasome inhibition by using alternative pathways for degradation such as autophagy. Sha et al. now report that cells rapidly induce GABARAPL1 and p62 upon proteasome inhibition, but this promotes cell survival by sequestering ubiquitinated and sumoylated proteins long before the cells induce other Atg genes and activate autophagy. Proteasome inhibitors are used as research tools and to treat multiple myeloma, and proteasome activity is diminished in several neurodegenerative diseases. We therefore studied how cells compensate for proteasome inhibition. In 4 h, proteasome inhibitor treatment caused dramatic and selective induction of GABARAPL1 (but not other autophagy genes) and p62, which binds ubiquitinated proteins and GABARAPL1 on autophagosomes. Knockdown of p62 or GABARAPL1 reduced cell survival upon proteasome inhibition. p62 induction requires the transcription factor nuclear factor (erythroid-derived 2)-like 1 (Nrf1), which simultaneously induces proteasome genes. After 20-h exposure to proteasome inhibitors, cells activated autophagy and expression of most autophagy genes by an Nrf1-independent mechanism. Although p62 facilitates the association of ubiquitinated proteins with autophagosomes, its knockdown in neuroblastoma cells blocked the buildup of ubiquitin conjugates in perinuclear aggresomes and of sumoylated proteins in nuclear inclusions but did not reduce the degradation of ubiquitinated proteins. Thus, upon proteasome inhibition, cells rapidly induce p62 expression, which enhances survival primarily by sequestering ubiquitinated proteins in inclusions.
Collapse
Affiliation(s)
- Zhe Sha
- Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
10
|
Snigirevskaya ES, Komissarchik YY. Ultrastructural analysis of human leukemia U-937 cells after apoptosis induction: Localization of proteasomes and perichromatin fibers. Acta Histochem 2017; 119:471-480. [PMID: 28545761 DOI: 10.1016/j.acthis.2017.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/27/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
We studied the ultrastructure of human histiocytic lymphoma U-937cells after apoptosis induction with two external agents, hypertonic shock and etoposide. Appearance of aggregates of particles of nuclear origin within the nuclei and cytoplasm of the induced cells was the first and the most prominent morphological sign of apoptosis. These aggregates were not coated by a membrane, had variable shape, density and size. Two types of particles dominated in the aggregates: perichromatin fibers (PFs) and proteasomes (PRs). PFs represent a morphological expression of transcriptional and co-transcriptional processing of pre-mRNA (Biggiogera et al., 2008), PRs are involved in hydrolysis of proteins and nucleoproteins, and participate in regulation of apoptosis (Ciechanover, 1998; Liu et al., 2007). We examined the ultrastructure and localization of PFs and PRs, and confirmed the proteasome nature of the latter by immunoelectron microscopy. We traced the formation and migration of the aggregates along the nucleus and their exit into the cytoplasm across the nuclear pores. Finally, we demonstrated degradation of the aggregates and relocating their content into exosomes at the terminal stages of apoptosis with aid of exosomes. We suggest that proteasomes function as morphologically definite and independent intracellular organelles. Alongside with proteasomes, autophagic vacuoles were revealed in apoptotic cells. Occurrence of autophagic vacuoles in apoptotic cells may suggest that both proteolytic pathways, autophagy and proteasome degradation, are coordinated with each other along the programmed cell death pathway.
Collapse
|
11
|
Sampuda KM, Riley M, Boyd L. Stress induced nuclear granules form in response to accumulation of misfolded proteins in Caenorhabditis elegans. BMC Cell Biol 2017; 18:18. [PMID: 28424053 PMCID: PMC5395811 DOI: 10.1186/s12860-017-0136-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/07/2017] [Indexed: 01/30/2023] Open
Abstract
Background Environmental stress can affect the viability or fecundity of an organism. Environmental stressors may affect the genome or the proteome and can cause cellular distress by contributing to protein damage or misfolding. This study examines the cellular response to environmental stress in the germline of the nematode, C. elegans. Results Salt stress, oxidative stress, and starvation, but not heat shock, induce the relocalization of ubiquitin, proteasome, and the TIAR-2 protein into distinct subnuclear regions referred to as stress induced nuclear granules (SINGs). The SINGs form within 1 h of stress initiation and do not require intertissue signaling. K48-linked polyubiquitin chains but not K63 chains are enriched in SINGs. Worms with a mutation in the conjugating enzyme, ubc-18, do not form SINGs. Additionally, knockdown of ubc-20 and ubc-22 reduces the level of SING formation as does knockdown of the ubiquitin ligase chn-1, a CHIP homolog. The nuclear import machinery is required for SING formation. Stressed embryos containing SINGs fail to hatch and cell division in these embryos is halted. The formation of SINGs can be prevented by pre-exposure to a brief period of heat shock before stress exposure. Heat shock inhibition of SINGs is dependent upon the HSF-1 transcription factor. Conclusions The heat shock results suggest that chaperone expression can prevent SING formation and that the accumulation of damaged or misfolded proteins is a necessary precursor to SING formation. Thus, SINGs may be part of a novel protein quality control system. The data suggest an interesting model where SINGs represent sites of localized protein degradation for nuclear or cytosolic proteins. Thus, the physiological impacts of environmental stress may begin at the cellular level with the formation of stress induced nuclear granules. Electronic supplementary material The online version of this article (doi:10.1186/s12860-017-0136-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine M Sampuda
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA
| | - Mason Riley
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA
| | - Lynn Boyd
- Department of Biology, Middle Tennessee State University, 1301 E. Main Street, Murfreesboro, TN, 37132, USA.
| |
Collapse
|
12
|
Kren NP, Zagon IS, McLaughlin PJ. Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent. Exp Biol Med (Maywood) 2016; 241:273-81. [PMID: 26429201 PMCID: PMC4935446 DOI: 10.1177/1535370215605585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/18/2015] [Indexed: 01/11/2023] Open
Abstract
Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner.
Collapse
Affiliation(s)
- Nancy P Kren
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, PA, USA
| | - Ian S Zagon
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, PA, USA
| | - Patricia J McLaughlin
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, PA, USA
| |
Collapse
|
13
|
Díaz VM, de Herreros AG. F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol 2016; 36:71-9. [DOI: 10.1016/j.semcancer.2015.10.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/01/2015] [Accepted: 10/17/2015] [Indexed: 12/22/2022]
|
14
|
Moshe A, Gorovits R, Liu Y, Czosnek H. Tomato plant cell death induced by inhibition of HSP90 is alleviated by Tomato yellow leaf curl virus infection. MOLECULAR PLANT PATHOLOGY 2016; 17:247-60. [PMID: 25962748 PMCID: PMC6638530 DOI: 10.1111/mpp.12275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
To ensure a successful long-term infection cycle, begomoviruses must restrain their destructive effect on host cells and prevent drastic plant responses, at least in the early stages of infection. The monopartite begomovirus Tomato yellow leaf curl virus (TYLCV) does not induce a hypersensitive response and cell death on whitefly-mediated infection of virus-susceptible tomato plants until diseased tomatoes become senescent. The way in which begomoviruses evade plant defences and interfere with cell death pathways is still poorly understood. We show that the chaperone HSP90 (heat shock protein 90) and its co-chaperone SGT1 (suppressor of the G2 allele of Skp1) are involved in the establishment of TYLCV infection. Inactivation of HSP90, as well as silencing of the Hsp90 and Sgt1 genes, leads to the accumulation of damaged ubiquitinated proteins and to a cell death phenotype. These effects are relieved under TYLCV infection. HSP90-dependent inactivation of 26S proteasome degradation and the transcriptional activation of the heat shock transcription factors HsfA2 and HsfB1 and of the downstream genes Hsp17 and Apx1/2 are suppressed in TYLCV-infected tomatoes. Following suppression of the plant stress response, TYLCV can replicate and accumulate in a permissive environment.
Collapse
Affiliation(s)
- Adi Moshe
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Rena Gorovits
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Henryk Czosnek
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
15
|
N-Myristoylation of the Rpt2 subunit of the yeast 26S proteasome is implicated in the subcellular compartment-specific protein quality control system. J Proteomics 2015; 130:33-41. [PMID: 26344132 DOI: 10.1016/j.jprot.2015.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022]
Abstract
Ubiquitination is the posttranslational modification of a protein by covalent attachment of ubiquitin. Controlled proteolysis via the ubiquitin-proteasome system (\UPS) alleviates cellular stress by clearing misfolded proteins. In budding yeast, UPS within the nucleus degrades the nuclear proteins as well as proteins imported from the cytoplasm. While the predominantly nuclear localization of the yeast proteasome is maintained by the importin-mediated transport, N-myristoylation of the proteasome subunit Rpt2 was indicated to cause dynamic nucleo-cytoplasmic localization of proteasomes. Here, we quantitatively analyzed the ubiquitinated peptides using anti-K-ε-GG antibody in yeast cell lines with or without a mutation in the N-myristoylation site of Rpt2 and detected upregulated ubiquitination of proteins with nucleo-cytoplasmic localizations in the mutant strains. Moreover, both the protein and ubiquitinated peptide levels of two Hsp70 family chaperones involved in the nuclear import of misfolded proteins, Ssa and Sse1, were elevated in the mutant strains, whereas levels of an Hsp70 family chaperone involved in the nuclear export, Ssb, were reduced. Taken together, our results indicate that N-myristoylation of Rpt2 is involved in controlled proteolysis via regulation of the nucleo-cytoplasmic localization of the yeast proteasome.
Collapse
|
16
|
Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation. Proc Natl Acad Sci U S A 2015; 112:E2620-9. [PMID: 25941378 DOI: 10.1073/pnas.1504459112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many protein-misfolding diseases are caused by proteins carrying prion-like domains. These proteins show sequence similarity to yeast prion proteins, which can interconvert between an intrinsically disordered and an aggregated prion state. The natural presence of prions in yeast has provided important insight into disease mechanisms and cellular proteostasis. However, little is known about prions in other organisms, and it is not yet clear whether the findings in yeast can be generalized. Using bioinformatics tools, we show that Dictyostelium discoideum has the highest content of prion-like proteins of all organisms investigated to date, suggesting that its proteome has a high overall aggregation propensity. To study mechanisms regulating these proteins, we analyze the behavior of several well-characterized prion-like proteins, such as an expanded version of human huntingtin exon 1 (Q103) and the prion domain of the yeast prion protein Sup35 (NM), in D. discoideum. We find that these proteins remain soluble and are innocuous to D. discoideum, in contrast to other organisms, where they form cytotoxic cytosolic aggregates. However, when exposed to conditions that compromise molecular chaperones, these proteins aggregate and become cytotoxic. We show that the disaggregase Hsp101, a molecular chaperone of the Hsp100 family, dissolves heat-induced aggregates and promotes thermotolerance. Furthermore, prion-like proteins accumulate in the nucleus, where they are targeted by the ubiquitin-proteasome system. Our data suggest that D. discoideum has undergone specific adaptations that increase the proteostatic capacity of this organism and allow for an efficient regulation of its prion-like proteome.
Collapse
|
17
|
Arnhold F, Gührs KH, von Mikecz A. Amyloid domains in the cell nucleus controlled by nucleoskeletal protein lamin B1 reveal a new pathway of mercury neurotoxicity. PeerJ 2015; 3:e754. [PMID: 25699204 PMCID: PMC4327309 DOI: 10.7717/peerj.754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/19/2015] [Indexed: 01/17/2023] Open
Abstract
Mercury (Hg) is a bioaccumulating trace metal that globally circulates the atmosphere and waters in its elemental, inorganic and organic chemical forms. While Hg represents a notorious neurotoxicant, the underlying cellular pathways are insufficiently understood. We identify amyloid protein aggregation in the cell nucleus as a novel pathway of Hg-bio-interactions. By mass spectrometry of purified protein aggregates, a subset of spliceosomal components and nucleoskeletal protein lamin B1 were detected as constituent parts of an Hg-induced nuclear aggregome network. The aggregome network was located by confocal imaging of amyloid-specific antibodies and dyes to amyloid cores within splicing-speckles that additionally recruit components of the ubiquitin-proteasome system. Hg significantly enhances global proteasomal activity in the nucleus, suggesting that formation of amyloid speckles plays a role in maintenance of protein homeostasis. RNAi knock down showed that lamin B1 for its part regulates amyloid speckle formation and thus likewise participates in nuclear protein homeostasis. As the Hg-induced cascade of interactions between the nucleoskeleton and protein homeostasis reduces neuronal signalling, amyloid fibrillation in the cell nucleus is introduced as a feature of Hg-neurotoxicity that opens new avenues of future research. Similar to protein aggregation events in the cytoplasm that are controlled by the cytoskeleton, amyloid fibrillation of nuclear proteins may be driven by the nucleoskeleton.
Collapse
Affiliation(s)
- Florian Arnhold
- IUF-Leibniz Research Institute for Environmental Medicine at Heinrich-Heine-University Duesseldorf , Duesseldorf , Germany
| | - Karl-Heinz Gührs
- CF Proteomics, FLI-Leibniz-Institute for Age Research, Fritz-Lipman-Institute e.V. , Jena , Germany
| | - Anna von Mikecz
- IUF-Leibniz Research Institute for Environmental Medicine at Heinrich-Heine-University Duesseldorf , Duesseldorf , Germany
| |
Collapse
|
18
|
The amazing ubiquitin-proteasome system: structural components and implication in aging. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 314:171-237. [PMID: 25619718 DOI: 10.1016/bs.ircmb.2014.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteome quality control (PQC) is critical for the maintenance of cellular functionality and it is assured by the curating activity of the proteostasis network (PN). PN is constituted of several complex protein machines that under conditions of proteome instability aim to, firstly identify, and then, either rescue or degrade nonnative polypeptides. Central to the PN functionality is the ubiquitin-proteasome system (UPS) which is composed from the ubiquitin-conjugating enzymes and the proteasome; the latter is a sophisticated multi-subunit molecular machine that functions in a bimodal way as it degrades both short-lived ubiquitinated normal proteins and nonfunctional polypeptides. UPS is also involved in PQC of the nucleus, the endoplasmic reticulum and the mitochondria and it also interacts with the other main cellular degradation axis, namely the autophagy-lysosome system. UPS functionality is optimum in the young organism but it is gradually compromised during aging resulting in increasing proteotoxic stress; these effects correlate not only with aging but also with most age-related diseases. Herein, we present a synopsis of the UPS components and of their functional alterations during cellular senescence or in vivo aging. We propose that mild UPS activation in the young organism will, likely, promote antiaging effects and/or suppress age-related diseases.
Collapse
|
19
|
Han H, Wei W, Duan W, Guo Y, Li Y, Wang J, Bi Y, Li C. Autophagy-linked FYVE protein (Alfy) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). In Vitro Cell Dev Biol Anim 2014; 51:249-63. [PMID: 25385288 DOI: 10.1007/s11626-014-9832-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
Abstract
Autophagy-linked FYVE (Alfy) is a protein implicated in the selective degradation of aggregated proteins. In our present study, we found that Alfy was recruited into the aggregated G93A-SOD1 in transgenic mice with amyotrophic lateral sclerosis (ALS). We demonstrated that Alfy overexpression could decrease the expression of mutant proteins via the autophagosome-lysosome pathway, and thereby, the toxicity of mutant proteins was reduced. The clearance of the mutant proteins in NSC34 cells was significantly inhibited in an Alfy knockdown cellular model. We therefore deduced that Alfy translocalization likely is involved in the pathogenesis of ALS. Alfy may be developed into a useful target for ALS therapy.
Collapse
Affiliation(s)
- Huihui Han
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Westman BJ, Lamond AI. A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus 2014. [DOI: 10.4161/nucl.14437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
22
|
Palanca A, Casafont I, Berciano MT, Lafarga M. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci 2014; 71:1961-75. [PMID: 24061536 PMCID: PMC11113442 DOI: 10.1007/s00018-013-1474-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/24/2022]
Abstract
Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.
Collapse
Affiliation(s)
- Ana Palanca
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Iñigo Casafont
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - María T. Berciano
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria-IFIMAV, Avd. Cardenal Herrera Oria s/n, 39011 Santander, Spain
| |
Collapse
|
23
|
Loukil A, Zonca M, Rebouissou C, Baldin V, Coux O, Biard-Piechaczyk M, Blanchard JM, Peter M. High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J Cell Sci 2014; 127:2145-50. [PMID: 24634511 DOI: 10.1242/jcs.139188] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis relies on the ubiquitin-proteasome system (UPS). Using high-resolution microscopic imaging, we find that cyclin A2 persists beyond metaphase. Indeed, we identify a novel cyclin-A2-containing compartment that forms dynamic foci. Förster (or fluorescence) resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) analyses show that cyclin A2 ubiquitylation takes place predominantly in these foci before spreading throughout the cell. Moreover, inhibition of autophagy in proliferating cells induces the stabilisation of a subset of cyclin A2, whereas induction of autophagy accelerates the degradation of cyclin A2, thus showing that autophagy is a novel regulator of cyclin A2 degradation.
Collapse
Affiliation(s)
- Abdelhalim Loukil
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| | - Manuela Zonca
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| | - Cosette Rebouissou
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biochimie Macromoléculaire, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| | - Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| | - Jean-Marie Blanchard
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| | - Marion Peter
- Institut de Génétique Moléculaire de Montpellier, CNRS, Université Montpellier 2, Université Montpellier 1, 1919 route de Mende, 34293 Montpellier, France
| |
Collapse
|
24
|
Vlatković N, Boyd MT, Rubbi CP. Nucleolar control of p53: a cellular Achilles' heel and a target for cancer therapy. Cell Mol Life Sci 2014; 71:771-91. [PMID: 23685903 PMCID: PMC11113510 DOI: 10.1007/s00018-013-1361-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/07/2013] [Accepted: 04/30/2013] [Indexed: 02/07/2023]
Abstract
Nucleoli perform a crucial cell function, ribosome biogenesis, and of critical relevance to the subject of this review, they are also extremely sensitive to cellular stresses, which can cause loss of function and/or associated structural disruption. In recent years, we have learned that cells take advantage of this stress sensitivity of nucleoli, using them as stress sensors. One major protein regulated by this role of nucleoli is the tumor suppressor p53, which is activated in response to diverse cellular injuries in order to exert its onco-protective effects. Here we discuss a model of nucleolar regulation of p53, which proposes that key steps in the promotion of p53 degradation by the ubiquitin ligase MDM2 occur in nucleoli, thus providing an explanation for the observed link between nucleolar disruption and p53 stability. We review current evidence for this compartmentalization in p53 homeostasis and highlight current limitations of the model. Interestingly, a number of current chemotherapeutic agents capable of inducing a p53 response are likely to do so by targeting nucleolar functions and these compounds may serve to inform further improved therapeutic targeting of nucleoli.
Collapse
Affiliation(s)
- Nikolina Vlatković
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Mark T. Boyd
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Carlos P. Rubbi
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| |
Collapse
|
25
|
Díaz VM, Viñas-Castells R, García de Herreros A. Regulation of the protein stability of EMT transcription factors. Cell Adh Migr 2014; 8:418-28. [PMID: 25482633 PMCID: PMC4594480 DOI: 10.4161/19336918.2014.969998] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) consists of a rapid change of cell phenotype, characterized by the loss of epithelial characteristics and the acquisition of a more invasive phenotype. Transcription factors regulating EMT (Snail, Twist and Zeb) are extremely labile proteins, rapidly degraded by the proteasome system. In this review we analyze the current mechanisms controlling degradation of EMT transcription factors, focusing on the role of new E3 ubiquitin-ligases involved in EMT. We also summarize the regulation of the stability of these EMT transcription factors, specially observed in different stress conditions, such as hypoxia, chemotherapeutic drugs, oxidative stress or γ-irradiation.
Collapse
Affiliation(s)
- VM Díaz
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Parc de Recerca Biomèdica de Barcelona; Doctor Aiguader; Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona, Spain
- Parc de Recerca Biomèdica de Barcelona; Barcelona, Spain
| | - R Viñas-Castells
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Parc de Recerca Biomèdica de Barcelona; Doctor Aiguader; Barcelona, Spain
| | - A García de Herreros
- Programa de Recerca en Càncer; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM); Parc de Recerca Biomèdica de Barcelona; Doctor Aiguader; Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona, Spain
- Parc de Recerca Biomèdica de Barcelona; Barcelona, Spain
| |
Collapse
|
26
|
Palanca A, Casafont I, Berciano MT, Lafarga M. Reactive nucleolar and Cajal body responses to proteasome inhibition in sensory ganglion neurons. Biochim Biophys Acta Mol Basis Dis 2013; 1842:848-59. [PMID: 24269586 DOI: 10.1016/j.bbadis.2013.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/25/2022]
Abstract
The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
Collapse
Affiliation(s)
- Ana Palanca
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Iñigo Casafont
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - María T Berciano
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander, Spain; "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)", Santander, Spain.
| |
Collapse
|
27
|
Plourde MB, Morchid A, Iranezereza L, Berthoux L. The Bcl-2/Bcl-xL inhibitor BH3I-2′ affects the dynamics and subcellular localization of sumoylated proteins. Int J Biochem Cell Biol 2013; 45:826-35. [DOI: 10.1016/j.biocel.2013.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
|
28
|
Rué L, López-Soop G, Gelpi E, Martínez-Vicente M, Alberch J, Pérez-Navarro E. Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington's disease. Neurobiol Dis 2013; 52:219-28. [PMID: 23295856 DOI: 10.1016/j.nbd.2012.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/12/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022] Open
Abstract
Huntington's disease is characterized by the formation of protein aggregates, which can be degraded by macroautophagy. Here, we studied protein levels and intracellular distribution of p62 and NBR1, two macroautophagy cargo receptors, during disease progression. In R6/1 mice, p62 and NBR1 protein levels were decreased in all brain regions analyzed early in the disease, whereas at late stages they accumulated in the striatum and hippocampus, but not in the cortex. The accumulation of p62, but not NBR1, occurred in neuronal nuclei, where it co-localized with mutant huntingtin inclusions, both in R6/1 and Huntington's disease patients. Moreover, exportin-1 was selectively decreased in old R6/1 mice brain, and could worsen p62 nuclear accumulation. In conclusion, p62 interacts with mutant huntingtin and is retained in the nucleus along the progression of the disease, mostly in striatal and hippocampal neurons. Thus, cytoplasmic NBR1 might be important to maintain basal levels of selective macroautophagy in these neurons.
Collapse
Affiliation(s)
- Laura Rué
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
von Mikecz A, Scharf A. Isochronal visualization of transcription and proteasomal proteolysis in cell culture or in the model organism, Caenorhabditis elegans. Methods Mol Biol 2013; 1042:257-73. [PMID: 23980014 DOI: 10.1007/978-1-62703-526-2_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Investigation of differential gene regulation by protein degradation requires analysis of the spatial and temporal association between proteolysis and transcription. Here, we describe the isochronal visualization of proteasomal proteolysis and transcription in cell culture or in vivo in the model organism Caenorhabditis elegans. This includes localization of proteasome-dependent proteolysis by fluorescent degradation products of model and endogenous substrates of the proteasome in combination with immunolabelling of RNA polymerase II and transcription in situ run-on assays.
Collapse
Affiliation(s)
- Anna von Mikecz
- IUF - Leibniz Research Institute for Environmental Medicine at Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
30
|
Ulbricht T, Alzrigat M, Horch A, Reuter N, von Mikecz A, Steimle V, Schmitt E, Krämer OH, Stamminger T, Hemmerich P. PML promotes MHC class II gene expression by stabilizing the class II transactivator. ACTA ACUST UNITED AC 2012; 199:49-63. [PMID: 23007646 PMCID: PMC3461510 DOI: 10.1083/jcb.201112015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Promyelocytic leukemia (PML) nuclear bodies selectively associate with transcriptionally active genomic regions, including the gene-rich major histocompatibility (MHC) locus. In this paper, we have explored potential links between PML and interferon (IFN)-γ-induced MHC class II expression. IFN-γ induced a substantial increase in the spatial proximity between PML bodies and the MHC class II gene cluster in different human cell types. Knockdown experiments show that PML is required for efficient IFN-γ-induced MHC II gene transcription through regulation of the class II transactivator (CIITA). PML mediates this function through protection of CIITA from proteasomal degradation. We also show that PML isoform II specifically forms a stable complex with CIITA at PML bodies. These observations establish PML as a coregulator of IFN-γ-induced MHC class II expression.
Collapse
Affiliation(s)
- Tobias Ulbricht
- Leibniz Institute for Age Research, Fritz-Lipmann Institute, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Laço MN, Cortes L, Travis SM, Paulson HL, Rego AC. Valosin-containing protein (VCP/p97) is an activator of wild-type ataxin-3. PLoS One 2012; 7:e43563. [PMID: 22970133 PMCID: PMC3435318 DOI: 10.1371/journal.pone.0043563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 07/26/2012] [Indexed: 01/11/2023] Open
Abstract
Alterations in the ubiquitin-proteasome system (UPS) have been reported in several neurodegenerative disorders characterized by protein misfolding and aggregation, including the polylgutamine diseases. Machado-Joseph disease (MJD) or Spinocerebellar Ataxia type 3 is caused by a polyglutamine-encoding CAG expansion in the ATXN3 gene, which encodes a 42 kDa deubiquitinating enzyme (DUB), ataxin-3. We investigated ataxin-3 deubiquitinating activity and the functional relevance of ataxin-3 interactions with two proteins previously described to interact with ataxin-3, hHR23A and valosin-containing protein (VCP/p97). We confirmed ataxin-3 affinity for both hHR23A and VCP/p97. hHR23A and ataxin-3 were shown to co-localize in discrete nuclear foci, while VCP/p97 was primarily cytoplasmic. hHR23A and VCP/p97 recombinant proteins were added, separately or together, to normal and expanded ataxin-3 in in vitro deubiquitination assays to evaluate their influence on ataxin-3 activity. VCP/p97 was shown to be an activator specifically of wild-type ataxin-3, exhibiting no effect on expanded ataxin-3, In contrast, we observed no significant alterations in ataxin-3 enzyme kinetics or substrate preference in the presence of hHR23A alone or in combination with VCP. Based on our results we propose a model where ataxin-3 normally functions with its interactors to specify the cellular fate of ubiquitinated proteins.
Collapse
Affiliation(s)
- Mário N. Laço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luisa Cortes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Sue M. Travis
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Henry L. Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (HLP); (ACR)
| | - A. Cristina Rego
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail: (HLP); (ACR)
| |
Collapse
|
32
|
Stępiński D. Immunofluorescent localization of ubiquitin and proteasomes in nucleolar vacuoles of soybean root meristematic cells. Eur J Histochem 2012; 56:e13. [PMID: 22688294 PMCID: PMC3428962 DOI: 10.4081/ejh.2012.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 01/01/2023] Open
Abstract
In this study, using the immunofluorescent method, the immunopositive signals to ubiquitin and proteasomes in nucleoli of root meristematic cells of soybean seedlings have been observed. In fact, those signals were present exclusively in nucleolar vacuoles. No signals were observed in the nucleolar territory out of the nucleolar vacuoles or in the nucleoli without vacuoles. The ubiquitin-proteasome system (UPS) may act within the nucleoli of plants with high metabolic activities and may provide an additional level of regulation of intracellular proteolysis via compartment-specific activities of their components. It is suggested that the presence of the UPS solely in vacuolated nucleoli serves as a mechanism that enhances the speed of ribosome subunit production in very actively transcribing nucleoli. On the other hand, nucleolar vacuoles in a cell/nucleus could play additional roles associated with temporary sequestration or storage of some cellular factors, including components of the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- D Stępiński
- Department of Cytophysiology, University of Łódź, Poland.
| |
Collapse
|
33
|
McKerlie M, Lin S, Zhu XD. ATM regulates proteasome-dependent subnuclear localization of TRF1, which is important for telomere maintenance. Nucleic Acids Res 2012; 40:3975-89. [PMID: 22266654 PMCID: PMC3351164 DOI: 10.1093/nar/gks035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ataxia telangiectasia mutated (ATM), a PI-3 kinase essential for maintaining genomic stability, has been shown to regulate TRF1, a negative mediator of telomerase-dependent telomere extension. However, little is known about ATM-mediated TRF1 phosphorylation site(s) in vivo. Here, we report that ATM phosphorylates S367 of TRF1 and that this phosphorylation renders TRF1 free of chromatin. We show that phosphorylated (pS367)TRF1 forms distinct non-telomeric subnuclear foci and that these foci occur predominantly in S and G2 phases, implying that their formation is cell cycle regulated. We show that phosphorylated (pS367)TRF1-containing foci are sensitive to proteasome inhibition. We find that a phosphomimic mutation of S367D abrogates TRF1 binding to telomeric DNA and renders TRF1 susceptible to protein degradation. In addition, we demonstrate that overexpressed TRF1-S367D accumulates in the subnuclear domains containing phosphorylated (pS367)TRF1 and that these subnuclear domains overlap with nuclear proteasome centers. Taken together, these results suggest that phosphorylated (pS367)TRF1-containing foci may represent nuclear sites for TRF1 proteolysis. Furthermore, we show that TRF1 carrying the S367D mutation is unable to inhibit telomerase-dependent telomere lengthening or to suppress the formation of telomere doublets and telomere loss in TRF1-depleted cells, suggesting that S367 phosphorylation by ATM is important for the regulation of telomere length and stability.
Collapse
Affiliation(s)
- Megan McKerlie
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S4K1, Canada
| | | | | |
Collapse
|
34
|
Pasten C, Ortiz-Pineda PA, García-Arrarás JE. Ubiquitin-proteasome system components are upregulated during intestinal regeneration. Genesis 2012; 50:350-65. [PMID: 21913312 DOI: 10.1002/dvg.20803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 08/12/2011] [Accepted: 09/06/2011] [Indexed: 11/06/2022]
Abstract
The ubiquitin proteasome system (UPS) is the main proteolytic system of cells. Recent evidence suggests that the UPS plays a regulatory role in regeneration processes. Here, we explore the possibility that the UPS is involved during intestinal regeneration of the sea cucumber Holothuria glaberrima. These organisms can regenerate most of their digestive tract following a process of evisceration. Initially, we identified components of H. glaberrima UPS, including sequences for Rpn10, β3, and ubiquitin-RPL40. Predicted proteins from the mRNA sequences showed high degree of conservation that ranged from 60% (Rpn10) to 98% (Ub-RPL40). Microarrays and RT-PCR experiments showed that these genes were upregulated during intestinal regeneration. In addition, we demonstrated expression of alpha 20S proteasome subunits and ubiquitinated proteins during intestinal regeneration and detected them in the epithelium and connective tissue of the regenerating intestine. Finally, the intestinal regeneration was altered in animals treated with MG132, a proteasome inhibitor. These findings support our contention that proteasomes are playing an important role during intestinal regeneration.
Collapse
Affiliation(s)
- Consuelo Pasten
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00931
| | | | | |
Collapse
|
35
|
Abstract
Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed.
Collapse
Affiliation(s)
- Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, Tromsø, Norway.
| | | |
Collapse
|
36
|
Cardoso J, Lima CDP, Leal T, Gradia DF, Fragoso SP, Goldenberg S, De Sá RG, Krieger MA. Analysis of proteasomal proteolysis during the in vitro metacyclogenesis of Trypanosoma cruzi. PLoS One 2011; 6:e21027. [PMID: 21698116 PMCID: PMC3117861 DOI: 10.1371/journal.pone.0021027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 05/18/2011] [Indexed: 12/15/2022] Open
Abstract
Proteasomes are large protein complexes, whose main function is to degrade unnecessary or damaged proteins. The inhibition of proteasome activity in Trypanosoma cruzi blocks parasite replication and cellular differentiation. We demonstrate that proteasome-dependent proteolysis occurs during the cellular differentiation of T. cruzi from replicative non-infectious epimastigotes to non-replicative and infectious trypomastigotes (metacyclogenesis). No peaks of ubiquitin-mediated degradation were observed and the profile of ubiquitinated conjugates was similar at all stages of differentiation. However, an analysis of carbonylated proteins showed significant variation in oxidized protein levels at the various stages of differentiation and the proteasome inhibition also increased oxidized protein levels. Our data suggest that different proteasome complexes coexist during metacyclogenesis. The 20S proteasome may be free or linked to regulatory particles (PA700, PA26 and PA200), at specific cell sites and the coordinated action of these complexes would make it possible for proteolysis of ubiquitin-tagged proteins and oxidized proteins, to coexist in the cell.
Collapse
Affiliation(s)
| | | | - Tiago Leal
- Universidade Federal de Ouro Preto/UFOP, Ouro Preto, Minas Gerais, Brazil
| | | | | | | | | | - Marco A. Krieger
- Instituto Carlos Chagas/FIOCRUZ, Curitiba, Parana, Brazil
- * E-mail:
| |
Collapse
|
37
|
Ramadan K, Meerang M. Degradation-linked ubiquitin signal and proteasome are integral components of DNA double strand break repair: New perspectives for anti-cancer therapy. FEBS Lett 2011; 585:2868-75. [PMID: 21536036 DOI: 10.1016/j.febslet.2011.04.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/26/2022]
Abstract
Damaged DNA leads to genomic instability that causes many diseases such as cancer. Cells evolved the DNA damage response (DDR), which recognizes and efficiently repairs damaged DNA through the action of highly coordinated signalling mechanisms. Recently, a non-degradation-linked Lys(K)63-ubiquitin signal emerged as a signalling pathway essential for orchestration of the DDR after DNA double strand breaks (DSBs). How the ubiquitin-dependent proteasomal degradation system (UPS) coordinates DDR after DSBs is still poorly understood. Here, we review the evidence, suggesting the involvement of the degradation-linked K48-ubiquitin signal and the proteasome at the sites of DSBs. Based on this we propose the UPS as a central element in the orchestration of the DDR at the sites of DSBs. The suggested model is also discussed in the context of anti-cancer therapy.
Collapse
Affiliation(s)
- Kristijan Ramadan
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Winterthurerstrasse 260, Zürich CH-8057, Switzerland.
| | | |
Collapse
|
38
|
Latonen L. Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in proteotoxic stress. Bioessays 2011; 33:386-95. [DOI: 10.1002/bies.201100008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Scharf A, Grozdanov PN, Veith R, Kubitscheck U, Meier UT, von Mikecz A. Distant positioning of proteasomal proteolysis relative to actively transcribed genes. Nucleic Acids Res 2011; 39:4612-27. [PMID: 21306993 PMCID: PMC3113580 DOI: 10.1093/nar/gkr069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
While it is widely acknowledged that the ubiquitin–proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.
Collapse
Affiliation(s)
- Andrea Scharf
- IUF - Leibniz Research Institute for Environmental Medicine at Heinrich-Heine University Duesseldorf, D-40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Barygina VV, Aref’eva AS, Zatsepina OV. The role of mercury in the processes of vital activity of the human and mammalian organisms. RUSS J GEN CHEM+ 2011. [DOI: 10.1134/s1070363210130037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Westman BJ, Lamond AI. A role for SUMOylation in snoRNP biogenesis revealed by quantitative proteomics. Nucleus 2011; 2:30-7. [PMID: 21647297 PMCID: PMC3104807 DOI: 10.4161/nucl.2.1.14437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 12/08/2010] [Accepted: 12/09/2010] [Indexed: 12/30/2022] Open
Abstract
A role for SUMOylation in the biogenesis and/or function of Box C/D snoRNPs has been reported, mediated via SUMO2 conjugation to the core snoRNP protein, Nop58. A quantitative proteomics screen, based on SILAC (stable-isotope labeling by amino acids in cell culture) and mass spectrometry using extracts prepared from cultured mammalian cells expressing either 6His-SUMO1 or -SUMO2, revealed that the snoRNP-related proteins Nop58, Nhp2, DKC1 and NOLC1 are amongst the main SUMO-modified proteins in the nucleolus. SUMOylation of Nhp2 and endogenous Nop58 was confirmed using a combination of in vitro and cell-based assays and the modified lysines identified by site-directed mutagenesis. SUMOylation of Nop58 was found to be important for high-affinity Box C/D snoRNA binding and the localization of newly transcribed snoRNAs to the nucleolus. Here, these findings are reviewed and a model for understanding Nop58 SUMOylation in the context of Box C/D snoRNP biogenesis is presented. Given the essential role of snoRNPs in the modification of pre-ribosomal RNA, this work suggests that SUMO, snoRNPs and ribosome assembly, and thus cellular translation, growth and proliferation, may be linked via novel mechanisms which warrant further investigation.
Collapse
Affiliation(s)
- Belinda J Westman
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK
| | | |
Collapse
|
42
|
Geoffroy MC, Jaffray EG, Walker KJ, Hay RT. Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 2010; 21:4227-39. [PMID: 20943951 PMCID: PMC2993750 DOI: 10.1091/mbc.e10-05-0449] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin ligase, RNF4, in response to arsenic. We show that arsenic induces rapid reorganization of the cell nucleus by SUMO modification of nuclear body associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML. In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | |
Collapse
|
43
|
Abstract
Orphan nuclear bodies are defined as nonchromatin nuclear compartments that have been less well studied compared with other well-characterized structures in the nucleus. Nuclear bodies have traditionally been thought of as uniform distinct entities depending on the protein "markers" they contain. However, it is becoming increasingly apparent that nuclear bodies enriched in different sets of transcriptional regulators share a link to the ubiquitin-proteasome and SUMO-conjugation pathways. An emerging concept is that some orphan nuclear bodies might act as sites of protein modification by SUMO and/or proteasomal degradation of ubiquitin-tagged proteins. By defining a specialized environment for protein modification and degradation, orphan nuclear bodies may increase the capacity of cells to survive under varying environmental conditions.
Collapse
Affiliation(s)
- Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | | | | |
Collapse
|
44
|
Shcherbik N, Pestov DG. Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory. Genes Cancer 2010; 1:681-689. [PMID: 21113400 PMCID: PMC2991155 DOI: 10.1177/1947601910381382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis of new ribosomes is an essential process upregulated during cell growth and proliferation. Here, we review our current understanding of the role that ubiquitin and ubiquitin-like proteins (UBLs) play in ribosome biogenesis, with a focus on mammalian cells. One important function of the nuclear ubiquitin-proteasome system is to control the supply of ribosomal proteins for the assembly of new ribosomal subunits in the nucleolus. Mutations in ribosomal proteins or ribosome assembly factors, stress, and many anticancer drugs have been shown to disrupt normal ribosome biogenesis, triggering a p53-dependent response. We discuss how p53 can be activated by the aberrant ribosome formation, centering on the current models of the interaction between ribosomal proteins released from the nucleolus and the ubiquitin ligase Mdm2. Recent studies also revealed multiple ubiquitin- and UBL-conjugated forms of nucleolar proteins with largely unknown functions, indicating that many new details about the role of these modifications in the nucleolus await to be discovered.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084
| | | |
Collapse
|
45
|
Filimonenko M, Isakson P, Finley KD, Anderson M, Melia TJ, Jeong H, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stenmark H, Simonsen A, Yamamoto A. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010; 38:265-79. [PMID: 20417604 PMCID: PMC2867245 DOI: 10.1016/j.molcel.2010.04.007] [Citation(s) in RCA: 344] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 11/06/2009] [Accepted: 04/02/2010] [Indexed: 11/29/2022]
Abstract
There is growing evidence that macroautophagic cargo is not limited to bulk cytosol in response to starvation and can occur selectively for substrates, including aggregated proteins. It remains unclear, however, whether starvation-induced and selective macroautophagy share identical adaptor molecules to capture their cargo. Here, we report that Alfy, a phosphatidylinositol 3-phosphate-binding protein, is central to the selective elimination of aggregated proteins. We report that the loss of Alfy inhibits the clearance of inclusions, with little to no effect on the starvation response. Alfy is recruited to intracellular inclusions and scaffolds a complex between p62(SQSTM1)-positive proteins and the autophagic effectors Atg5, Atg12, Atg16L, and LC3. Alfy overexpression leads to elimination of aggregates in an Atg5-dependent manner and, likewise, to protection in a neuronal and Drosophila model of polyglutamine toxicity. We propose that Alfy plays a key role in selective macroautophagy by bridging cargo to the molecular machinery that builds autophagosomes.
Collapse
Affiliation(s)
- Maria Filimonenko
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Pauline Isakson
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Kim D. Finley
- Department of Biology, San Diego State University, 10010 San Diego, CA 92182
| | - Monique Anderson
- Department of Neurology, Columbia University, College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
| | | | - Hyun Jeong
- Department of Neurology, MIND, Harvard Medical School and Mass General Hospital,114 16 Street, Charlestown, MA 02129
| | - Bryan J. Bartlett
- Department of Biology, San Diego State University, 10010 San Diego, CA 92182
| | - Katherine M. Myers
- Department of Neurology, Columbia University, College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
| | - Hanne C.G. Birkeland
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Trond Lamark
- Biochemistry Department, Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Dimitri Krainc
- Department of Neurology, MIND, Harvard Medical School and Mass General Hospital,114 16 Street, Charlestown, MA 02129
| | - Andreas Brech
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Anne Simonsen
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Ai Yamamoto
- Department of Neurology, Columbia University, College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, 630 West 168 Street, New York, NY 10032
| |
Collapse
|
46
|
Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 2010; 584:2635-45. [DOI: 10.1016/j.febslet.2010.04.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/12/2022]
|
47
|
Sharma P, Murillas R, Zhang H, Kuehn MR. N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies. J Cell Sci 2010; 123:1227-34. [PMID: 20233849 DOI: 10.1242/jcs.060160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A number of proteins can be conjugated with both ubiquitin and the small ubiquitin-related modifier (SUMO), with crosstalk between these two post-translational modifications serving to regulate protein function and stability. We previously identified N4BP1 as a substrate for monoubiquitylation by the E3 ubiquitin ligase Nedd4. Here, we describe Nedd4-mediated polyubiquitylation and proteasomal degradation of N4BP1. In addition, we show that N4BP1 can be conjugated with SUMO1 and that this abrogates N4BP1 ubiquitylation. Consistent with this, endogenous N4BP1 is stabilized in primary embryonic fibroblasts from mutants of the desumoylating enzyme SENP1, which show increased steady-state sumoylation levels. We have localized endogenous N4BP1 predominantly to the nucleolus in primary cells. However, a small fraction is found at promyelocytic leukemia (PML) nuclear bodies (NBs). In cells deficient for SENP1 or in wild-type cells treated with the proteasome inhibitor MG132, there is considerable accumulation of N4BP1 at PML NBs. These findings suggest a dynamic interaction between subnuclear compartments, and a role for post-translational modification by ubiquitin and SUMO in the regulation of nucleolar protein turnover.
Collapse
Affiliation(s)
- Prashant Sharma
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, NCI-Frederick, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|
48
|
Cisterna B, Biggiogera M. Ribosome biogenesis: from structure to dynamics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 284:67-111. [PMID: 20875629 DOI: 10.1016/s1937-6448(10)84002-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter we describe the status of the research concerning the nucleolus, the major nuclear body. The nucleolus has been recognized as a dynamic organelle with many more functions than one could imagine. In fact, in addition to its fundamental role in the biogenesis of preribosomes, the nucleolus takes part in many other cellular processes and functions, such as the cell-cycle control and the p53 pathway: the direct or indirect involvement of the nucleolus in these various processes makes it sensitive to their alteration. Moreover, it is worth noting that the different nucleolar factors participating to independent mechanisms show different dynamics of association/disassociation with the nucleolar body.
Collapse
Affiliation(s)
- Barbara Cisterna
- Laboratory of Cell Biology and Neurobiology, Department of Animal Biology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
49
|
Pankiv S, Lamark T, Bruun JA, Øvervatn A, Bjørkøy G, Johansen T. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 2009; 285:5941-53. [PMID: 20018885 DOI: 10.1074/jbc.m109.039925] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.
Collapse
Affiliation(s)
- Serhiy Pankiv
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
50
|
Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 2009; 5:e1000619. [PMID: 19816571 PMCID: PMC2752995 DOI: 10.1371/journal.ppat.1000619] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42°C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection. Protein quality control is a protective cellular mechanism by which damaged proteins are refolded or degraded so that they cannot interfere with essential cellular processes. In the event that protein quality control machinery cannot refold or degrade damaged proteins, sequestration of misfolded protein is an alternative protective mechanism for reducing the toxic effects of misfolded protein. Several neurological diseases result from the accumulation of toxic misfolded proteins that cannot be efficiently refolded or degraded. In neurons from patients afflicted with Huntington's disease, misfolded huntingtin protein is sequestered in large aggregates in the nucleus called inclusion bodies. Inclusion bodies also contain protein quality control machinery including molecular chaperones, the proteasome and ubiquitin. Here we report that analogous structures called Virus-Induced Chaperone-Enriched (VICE) domains form in the nucleus of cells infected with Herpes Simplex Virus type 1 (HSV-1). VICE domains contain misfolded protein, chaperones and protein degradation activity. VICE domain formation is efficient in infected cells taxed with high levels of viral protein production. We hypothesize that misfolded proteins that arise in HSV-1-infected cells are sequestered in VICE domains to promote remodeling of misfolded proteins.
Collapse
|