1
|
Lin S, Wang L, Han C, Dai Y, Li C, Liu Y, Zhang B, Huang N, Zhang A, Zhang T, Wang Y, Xie J, Tang H, Cheng Y, Yao H, Lou M, Xue L, Wu ZB. Targeting HTR2B suppresses nonfunctioning pituitary adenoma growth and sensitizes cabergoline treatment via inhibiting Gαq/PLC/PKCγ/STAT3 axis. Neuro Oncol 2024; 26:2010-2026. [PMID: 38989697 PMCID: PMC11534325 DOI: 10.1093/neuonc/noae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Managing nonfunctioning pituitary adenomas (NFPAs) is difficult due to limited drug treatments. Cabergoline's (CAB) effectiveness for NFPAs is debated. This study explores the role of HTR2B in NFPAs and its therapeutic potential. METHODS We conducted screening of bulk RNA-sequencing data to analyze HTR2B expression levels in NFPA samples. In vitro and in vivo experiments were performed to evaluate the effects of HTR2B modulation on tumor growth and cell cycle regulation. Mechanistic insights into the HTR2B-mediated signaling pathway were elucidated using pharmacological inhibitors and molecular interaction assays. RESULTS Elevated HTR2B expression was detected in NFPA samples, which was associated with increased tumor survival. Inhibition of HTR2B activity resulted in the suppression of tumor growth through modulation of the G2M cell cycle. The inhibition of HTR2B with PRX-08066 was found to block STAT3 phosphorylation and nuclear translocation by interfering with the Gαq/PLC/PKC pathway. A direct interaction between PKC-γ and STAT3 was critical for STAT3 activation. CAB was shown to activate pSTAT3 via HTR2B, reducing its therapeutic potential. However, the combination of an HTR2B antagonist with CAB significantly inhibited tumor cell proliferation in HTR2B-expressing pituitary tumor cell lines, a xenografted pituitary tumor model, and patient-derived samples. Analysis of patient-derived data indicated that a distinct molecular pattern characterized by upregulated HTR2B/PKC-γ and downregulated BTG2/GADD45A may benefit from combination treatment with CAB and PRX-08066. CONCLUSIONS HTR2B is a potential therapeutic target for NFPAs, and its inhibition could improve CAB efficacy. A dual therapy approach may be beneficial for NFPA patients with high HTR2B expression.
Collapse
Affiliation(s)
- Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangbo Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Changxi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changsheng Li
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Wang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Collins J, Piscopio RA, Reyland ME, Johansen CG, Benninger RKP, Farnsworth NL. Cleavage of protein kinase c δ by caspase-3 mediates proinflammatory cytokine-induced apoptosis in pancreatic islets. J Biol Chem 2024; 300:107611. [PMID: 39074637 PMCID: PMC11381875 DOI: 10.1016/j.jbc.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
In type 1 diabetes (T1D), autoreactive immune cells infiltrate the pancreas and secrete proinflammatory cytokines that initiate cell death in insulin producing islet β-cells. Protein kinase C δ (PKCδ) plays a role in mediating cytokine-induced β-cell death; however, the exact mechanisms are not well understood. To address this, we used an inducible β-cell specific PKCδ KO mouse as well as a small peptide inhibitor of PKCδ. We identified a role for PKCδ in mediating cytokine-induced β-cell death and have shown that inhibiting PKCδ protects pancreatic β-cells from cytokine-induced apoptosis in both mouse and human islets. We determined that cytokines induced nuclear translocation and activity of PKCδ and that caspase-3 cleavage of PKCδ may be required for cytokine-mediated islet apoptosis. Further, cytokine activated PKCδ increases activity both of proapoptotic Bax with acute treatment and C-Jun N-terminal kinase with prolonged treatment. Overall, our results suggest that PKCδ mediates cytokine-induced apoptosis via nuclear translocation, cleavage by caspase-3, and upregulation of proapoptotic signaling in pancreatic β-cells. Combined with the protective effects of PKCδ inhibition with δV1-1, the results of this study will aid in the development of novel therapies to prevent or delay β-cell death and preserve β-cell function in T1D.
Collapse
Affiliation(s)
- Jillian Collins
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Robert A Piscopio
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chelsea G Johansen
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Richard K P Benninger
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| | - Nikki L Farnsworth
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado, USA; Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Banik A, Datta Chaudhuri R, Vashishtha S, Gupta S, Kar A, Bandyopadhyay A, Kundu B, Sarkar S. Deoxyelephantopin-a novel PPARγ agonist regresses pressure overload-induced cardiac fibrosis via IL-6/STAT-3 pathway in crosstalk with PKCδ. Eur J Pharmacol 2023:175841. [PMID: 37329972 DOI: 10.1016/j.ejphar.2023.175841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Pathological cardiac hypertrophy is associated with ventricular fibrosis leading to heart failure. The use of thiazolidinediones as Peroxisome Proliferator-Activated Receptor-gamma (PPARγ)-modulating anti-hypertrophic therapeutics has been restricted due to major side-effects. The present study aims to evaluate the anti-fibrotic potential of a novel PPARγ agonist, deoxyelephantopin (DEP) in cardiac hypertrophy. AngiotensinII treatment in vitro and renal artery ligation in vivo was performed to mimic pressure overload-induced cardiac hypertrophy. Myocardial fibrosis was evaluated by Masson's trichrome staining and hydroxyproline assay. Our results showed that DEP treatment significantly improves the echocardiographic parameters by ameliorating ventricular fibrosis without any bystander damage to other major organs. Following molecular docking, all atomistic molecular dynamics simulation, reverse transcription-polymerase chain reaction and immunoblot analyses, we established DEP as a PPARγ agonist stably interacting with the ligand-binding domain of PPARγ. DEP specifically downregulated the Signal Transducer and Activator of Transcription (STAT)-3-mediated collagen gene expression in a PPARγ-dependent manner, as confirmed by PPARγ silencing and site-directed mutagenesis of DEP-interacting PPARγ residues. Although DEP impaired STAT-3 activation, it did not have any effect on the upstream Interleukin (IL)-6 level implying possible crosstalk of the IL-6/STAT-3 axis with other signaling mediators. Mechanistically, DEP increased the binding of PPARγ with Protein Kinase C-delta (PKCδ) which impeded the membrane translocation and activation of PKCδ, downregulating STAT-3 phosphorylation and resultant fibrosis. This study, therefore, for the first time demonstrates DEP as a novel cardioprotective PPARγ agonist. The therapeutic potential of DEP as an anti-fibrotic remedy can be exploited against hypertrophic heart failure in the future.
Collapse
Affiliation(s)
- Anirban Banik
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Ratul Datta Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Soumyadeep Gupta
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Abhik Kar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
4
|
Chakraborty S, Handrick B, Yu D, Bode KA, Hafner A, Schenz J, Schaack D, Uhle F, Tachibana T, Kamitani S, Vogl T, Kubatzky KF. Gα q modulates the energy metabolism of osteoclasts. Front Cell Infect Microbiol 2023; 12:1016299. [PMID: 36699722 PMCID: PMC9869164 DOI: 10.3389/fcimb.2022.1016299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The bacterial protein toxin Pasteurella multocida toxin (PMT) mediates RANKL-independent osteoclast differentiation. Although these osteoclasts are smaller, their resorptive activity is high which helps in efficient destruction of nasal turbinate bones of pigs. Methods The proteome of bone marrow-derived macrophages differentiated into osteoclasts with either RANKL or PMT was analysed. The results were verified by characterizing the metabolic activity using Seahorse analysis, a protein translation assay, immunoblots, real-time PCR as well as flow cytometry-based monitoring of mitochondrial activity and ROS production. A Gαq overexpression system using ER-Hoxb8 cells was used to identify Gαq-mediated metabolic effects on osteoclast differentiation and function. Results PMT induces the upregulation of metabolic pathways, which included strong glycolytic activity, increased expression of GLUT1 and upregulation of the mTOR pathway. As OxPhos components were expressed more efficiently, cells also displayed increased mitochondrial respiration. The heterotrimeric G protein Gαq plays a central role in this hypermetabolic cell activation as it triggers mitochondrial relocalisation of pSerSTAT3 and an increase in OPA1 expression. This seems to be caused by a direct interaction between STAT3 and OPA1 resulting in enhanced mitochondrial respiration. Overexpression of Gαq mimicked the hypermetabolic phenotype observed for PMT-induced osteoclasts and resulted in higher glycolytic and mitochondrial activity as well as increased bone resorptive activity. In addition, rheumatoid arthritis (RA) patients showed an increase in GNAQ expression, especially in the synovial fluid. Discussion Our study suggests that Gαq plays a key role in PMT-induced osteoclastogenesis. Enhanced expression of GNAQ at the site of inflammation in RA patients indicates its pathophysiological relevance in the context of inflammatory bone disorders.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Bianca Handrick
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Dayoung Yu
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Konrad A. Bode
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Anna Hafner
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dominik Schaack
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Taro Tachibana
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Shigeki Kamitani
- Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Chousakos E, Katsoulas N, Kavantzas N, Stratigos A, Lazaris AC. The role of dual-specificity phosphatase 3 in melanocytic oncogenesis. Exp Dermatol 2022; 31:1466-1476. [PMID: 35899430 DOI: 10.1111/exd.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022]
Abstract
Dual-specificity phosphatase 3 (DUSP3), also known as Vaccinia H1-related phosphatase, is a protein tyrosine phosphatase that typically performs its major role in the regulation of multiple cellular functions through the dephosphorylation of its diverse and constantly expanding range of substrates. Many of the substrates described so far as well as alterations in the expression or the activity of DUSP3 itself are associated with the development and progression of various types of neoplasms, indicating that DUSP3 may be an important player in oncogenesis and a promising therapeutic target. This review focuses exclusively on DUSP3's contribution to either benign or malignant melanocytic oncogenesis, as many of the established culprit pathways and mechanisms constitute DUSP3's regulatory targets, attempting to synthesize the current knowledge on the matter. The spectrum of the DUSP3 interactions analyzed in this review covers substrates implicated in cellular growth, cell cycle, proliferation, survival, apoptosis, genomic stability/repair, adhesion and migration of tumor melanocytes. Furthermore, the speculations raised, based on the evidence to date, may be considered a fundament for potential research regarding the oncogenesis, evolution, management and therapeutics of melanocytic tumors.
Collapse
Affiliation(s)
- Emmanouil Chousakos
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Nikolaos Katsoulas
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Nikolaos Kavantzas
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| | - Alexandros Stratigos
- 1st Department of Dermatology-Venereology, "Andreas Syggros" Hospital, Medical School, National and Kapodistrian University of Athens
| | - Andreas C Lazaris
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens
| |
Collapse
|
6
|
Zhou B, Lu Y, Zhao Z, Shi T, Wu H, Chen W, Zhang L, Zhang X. B7-H4 expression is upregulated by PKCδ activation and contributes to PKCδ-induced cell motility in colorectal cancer. Cancer Cell Int 2022; 22:147. [PMID: 35410218 PMCID: PMC8996430 DOI: 10.1186/s12935-022-02567-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/31/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction B7-H4 is overexpressed in colorectal cancer (CRC) and plays an important role in tumor growth and immunosuppression. However, the exact mechanism that regulates B7-H4 expression remains largely unknown. Here, we investigated whether protein kinase C δ (PKCδ) regulates the expression of B7-H4 in CRC. Methods By using immunohistochemical (IHC) and immunofluorescence (IF) staining, we analyzed the expression of B7-H4 and phospho-PKCδ (p-PKCδ) in 225 colorectal tumor samples and determined the clinical significance of the expression patterns. In vitro experiments were performed with the CRC cell lines HCT116 and SW620 to detect the effect of PKCδ activation on B7-H4 expression, and xenograft-bearing mice were treated with rottlerin to monitor the expression of B7-H4 and tumor metastasis. Results The B7-H4 expression level was significantly correlated with the p-PKCδ level (r = 0.378, P < 0.001) in tumor tissues. Coexpression of p-PKCδ and B7-H4 was significantly associated with moderate/poor differentiation (P = 0.024), lymph node metastasis (P = 0.001) and advanced Dukes’ stage (P = 0.002). Western blot analysis showed that Phorbol-12-Myristate-13-Acetate (TPA) increased B7-H4 expression in a concentration-dependent manner and that rottlerin abrogated the TPA-induced increase in B7-H4 expression. The protein levels of B7-H4 and p-STAT3 were significantly reduced by a PKCδ-specific siRNA. Moreover, the STAT3 inhibitor cryptotanshinone significantly decreased the B7-H4 protein level in CRC cells. Knockdown of B7-H4 or PKCδ suppressed cell migration and motility. Rottlerin also inhibited B7-H4 expression and tumor metastasis in vivo. Conclusion The B7-H4 expression level is significantly correlated with the p-PKCδ level and tumor metastasis in CRC samples. B7-H4 expression is upregulated by STAT3 activation via PKCδ and plays roles in PKCδ-induced cancer cell motility and metastasis, suggesting that the PKCδ/STAT3/B7-H4 axis may be a potential therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02567-1.
Collapse
Affiliation(s)
- Bin Zhou
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Youwei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiming Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Hongya Wu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Weichang Chen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China
| | - Liang Zhang
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China. .,College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, Jiangsu, China. .,Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
7
|
Tošić I, Frank DA. STAT3 as a mediator of oncogenic cellular metabolism: Pathogenic and therapeutic implications. Neoplasia 2021; 23:1167-1178. [PMID: 34731785 PMCID: PMC8569436 DOI: 10.1016/j.neo.2021.10.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 02/07/2023] Open
Abstract
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is activated constitutively in a wide array of human cancers. It is an appealing molecular target for novel therapy as it directly regulates expression of genes involved in cell proliferation, survival, angiogenesis, chemoresistance and immune responsiveness. In addition to these well-established oncogenic roles, STAT3 has also been found to mediate a wide array of functions in modulating cellular behavior. The transcriptional function of STAT3 is canonically regulated through tyrosine phosphorylation. However, STAT3 phosphorylated at a single serine residue can allow incorporation of this protein into the inner mitochondrial membrane to support oxidative phosphorylation (OXPHOS) and maximize the utility of glucose sources. Conflictingly, its canonical transcriptional activity suppresses OXPHOS and favors aerobic glycolysis to promote oncogenic behavior. Apart from mediating the energy metabolism and controversial effects on ATP production, STAT3 signaling modulates lipid metabolism of cancer cells. By mediating fatty acid synthesis and beta oxidation, STAT3 promotes employment of available resources and supports survival in the conditions of metabolic stress. Thus, the functions of STAT3 extend beyond regulation of oncogenic genes expression to pleiotropic effects on a spectrum of essential cellular processes. In this review, we dissect the current knowledge on activity and mechanisms of STAT3 involvement in transcriptional regulation, mitochondrial function, energy production and lipid metabolism of malignant cells, and its implications to cancer pathogenesis and therapy.
Collapse
Affiliation(s)
- Isidora Tošić
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Department of Biochemistry, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs: Potential Therapeutic Targets for HPV-Associated Malignancies. Viruses 2020; 12:E977. [PMID: 32899142 PMCID: PMC7552066 DOI: 10.3390/v12090977] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide range of important biological signalling pathways, including cell proliferation, cell survival and the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling to evade the immune system and promote cell proliferation, enabling viral persistence and driving cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these could potentially be used in the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
9
|
Chun KH, Cho SJ, Lee JW, Seo JH, Kim KW, Lee SK. Protein kinase C-δ interacts with and phosphorylates ARD1. J Cell Physiol 2020; 236:379-391. [PMID: 32542692 DOI: 10.1002/jcp.29866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 11/07/2022]
Abstract
Protein kinase C-δ (PKCδ) is a diacylglycerol-dependent, calcium-independent novel PKC isoform that is engaged in various cell signaling pathways, such as cell proliferation, apoptosis, inflammation, and oxidative stress. In this study, we searched for proteins that bind PKCδ using a yeast two-hybrid assay and identified murine arrest-defective 1 (mARD1) as a binding partner. The interaction between PKCδ and mARD1 was confirmed by glutathione S-transferase pull-down and co-immunoprecipitation assays. Furthermore, recombinant PKCδ phosphorylated full-length mARD1 protein. The NetPhos online prediction tool suggested PKCδ phosphorylates Ser80 , Ser108 , and Ser114 residues of mARD1 with the highest probability. Based on these results, we synthesized peptides containing these sites and examined their phosphorylations using recombinant PKCδ. Autoradiography confirmed these sites were efficiently phosphorylated. Consequent mass spectrometry and peptide sequencing in combination with MALDI-TOF MS/MS confirmed that Ser80 and Ser108 were major phosphorylation sites. The alanine mutations of Ser80 and Ser108 abolished the phosphorylation of mARD1 by PKCδ in 293T cells supporting these observations. In addition, kinase assays using various PKC isotypes showed that Ser80 of ARD1 was phosphorylated by PKCβI and PKCζ isotypes with the highest selectivity, while Ser108 and/or Ser114 were phosphorylated by PKCγ with activities comparable to that of the PKCδ isoform. Overall, these results suggest the possibility that PKCδ transduces signals by regulating phosphorylation of ARD1.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung-Ju Cho
- Division of Drug Safety Evaluation, New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Republic of Korea
| | - Ji-Won Lee
- Preclinical Studies, GlycoMimetics Inc., Rockville, Maryland
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Kyu-Won Kim
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Seung-Ki Lee
- Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Protein Kinase C subtype δ interacts with Venezuelan equine encephalitis virus capsid protein and regulates viral RNA binding through modulation of capsid phosphorylation. PLoS Pathog 2020; 16:e1008282. [PMID: 32150585 PMCID: PMC7082041 DOI: 10.1371/journal.ppat.1008282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/19/2020] [Accepted: 12/13/2019] [Indexed: 12/31/2022] Open
Abstract
Protein phosphorylation plays an important role during the life cycle of many viruses. Venezuelan equine encephalitis virus (VEEV) capsid protein has recently been shown to be phosphorylated at four residues. Here those studies are extended to determine the kinase responsible for phosphorylation and the importance of capsid phosphorylation during the viral life cycle. Phosphorylation site prediction software suggests that Protein Kinase C (PKC) is responsible for phosphorylation of VEEV capsid. VEEV capsid co-immunoprecipitated with PKCδ, but not other PKC isoforms and siRNA knockdown of PKCδ caused a decrease in viral replication. Furthermore, knockdown of PKCδ by siRNA decreased capsid phosphorylation. A virus with capsid phosphorylation sites mutated to alanine (VEEV CPD) displayed a lower genomic copy to pfu ratio than the parental virus; suggesting more efficient viral assembly and more infectious particles being released. RNA:capsid binding was significantly increased in the mutant virus, confirming these results. Finally, VEEV CPD is attenuated in a mouse model of infection, with mice showing increased survival and decreased clinical signs as compared to mice infected with the parental virus. Collectively our data support a model in which PKCδ mediated capsid phosphorylation regulates viral RNA binding and assembly, significantly impacting viral pathogenesis.
Collapse
|
11
|
Zeng X, Baba T, Hamanishi J, Matsumura N, Kharma B, Mise Y, Abiko K, Yamaguchi K, Horikawa N, Hunstman DG, Mulati K, Kitamura S, Taki M, Murakami R, Hosoe Y, Mandai M. Phosphorylation of STAT1 serine 727 enhances platinum resistance in uterine serous carcinoma. Int J Cancer 2019; 145:1635-1647. [PMID: 31228268 DOI: 10.1002/ijc.32501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 11/07/2022]
Abstract
Uterine serous carcinoma (USC) is a highly aggressive histological subtype of endometrial cancers harboring highly metastatic and chemoresistant features. Our previous study showed that STAT1 is highly expressed in USC and acts as a key molecule that is positively correlated with tumor progression, but it remains unclear whether STAT1 is relevant to the malicious chemorefractory nature of USC. In the present study, we investigated the regulatory role of STAT1 toward platinum-cytotoxicity in USC. STAT1 suppression sensitized USC cells to increase cisplatin-mediated apoptosis (p < 0.001). Furthermore, phosphorylation of STAT1 was prominently observed on serine-727 (pSTAT1-Ser727), but not on tyrosine-701, in the nucleus of USC cells treated with cisplatin. Mechanistically, the inhibition of pSTAT1-Ser727 by dominant-negative plasmid elevated cisplatin-mediated apoptosis by increasing intracellular accumulation of cisplatin through upregulation of CTR1 expression. TBB has an inhibitory effect on casein kinase 2 (CK2), which phosphorylate STAT1 at serine residues. Sequential treatment with TBB and cisplatin on USC cells greatly reduced nuclear pSTAT1-Ser727, enhanced intracellular accumulation of cisplatin, and subsequently increased apoptosis. Tumor load was significantly reduced by combination therapy of TBB and cisplatin in in vivo xenograft models (p < 0.001). Our results collectively suggest that pSTAT1-Ser727 may play a key role in platinum resistance as well as tumor progression in USC. Thus, targeting the STAT1 pathway via CK2 inhibitor can be a novel method for attenuating the chemorefractory nature of USC.
Collapse
Affiliation(s)
- Xiang Zeng
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Junzo Hamanishi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Budiman Kharma
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuka Mise
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kaoru Abiko
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Yamaguchi
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Horikawa
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - David G Hunstman
- Department of Pathology and Laboratory Medicine, University of British Columbia, British Columbia Cancer Agency, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Kumuluzi Mulati
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sachiko Kitamura
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mana Taki
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryusuke Murakami
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuko Hosoe
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Inhibition of IL-13 and IL-13Rα2 Expression by IL-32θ in Human Monocytic Cells Requires PKCδ and STAT3 Association. Int J Mol Sci 2019; 20:ijms20081949. [PMID: 31010051 PMCID: PMC6514684 DOI: 10.3390/ijms20081949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/06/2019] [Accepted: 04/19/2019] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL)-32θ, a newly identified IL-32 isoform, has been reported to exert pro-inflammatory effects through the association with protein kinase C delta (PKCδ). In this study, we further examined the effects of IL-32θ on IL-13 and IL-13Rα2 expression and the related mechanism in THP-1 cells. Upon stimulating IL-32θ-expressing and non-expressing cells with phorbol 12-myristate 13-acetate (PMA), the previous microarray analysis showed that IL-13Rα2 and IL-13 mRNA expression were significantly decreased by IL-32θ. The protein expression of these factors was also confirmed to be down-regulated. The nuclear translocation of transcription factors STAT3 and STAT6, which are necessary for IL-13Rα2 and IL-13 promoter activities, was suppressed by IL-32θ. Additionally, a direct association was found between IL-32θ, PKCδ, and signal transducer and activator of transcription 3 (STAT3), but not STAT6, revealing that IL-32θ might act mainly through STAT3 and indirectly affect STAT6. Moreover, the interaction of IL-32θ with STAT3 requires PKCδ, since blocking PKCδ activity eliminated the interaction and consequently limited the inhibitory effect of IL-32θ on STAT3 activity. Interfering with STAT3 or STAT6 binding by decoy oligodeoxynucleotides (ODNs) identified that IL-32θ had additive effects with the STAT3 decoy ODN to suppress IL-13 and IL-13Rα2 mRNA expression. Taken together, our data demonstrate the intracellular interaction of IL-32θ, PKCδ, and STAT3 to regulate IL-13 and IL-13Rα2 synthesis, supporting the role of IL-32θ as an inflammatory modulator.
Collapse
|
13
|
Santarelli R, Carillo V, Romeo MA, Gaeta A, Nazzari C, Gonnella R, Granato M, D'Orazi G, Faggioni A, Cirone M. STAT3 phosphorylation affects p53/p21 axis and KSHV lytic cycle activation. Virology 2019; 528:137-143. [PMID: 30616203 DOI: 10.1016/j.virol.2018.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
The Tyr705 STAT3 constitutive activation, besides promoting PEL cell survival, contributes to the maintenance of viral latency. We found indeed that its de-phosphorylation by AG490 induced KSHV lytic cycle. Moreover, Tyr705 STAT3 de-phosphorylation, mediated by the activation of tyrosine phosphatases, together with the increase of Ser727 STAT3 phosphorylation contributed to KSHV lytic cycle induction by TPA. We then observed that p53-p21 axis, essential for the induction of KSHV replication, was activated by the inhibition of Tyr705 and by the increase of Ser727 STAT3 phosphorylation. As a possible link between STAT3, p53-p21 and KSHV lytic cycle, we found that TPA and AG490 reduced the expression of KAP-1, promoting p53 stability, p21 transcription and KSHV lytic cycle activation in PEL cells.
Collapse
Affiliation(s)
- Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Valentina Carillo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Aurelia Gaeta
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Cristina Nazzari
- Department of Molecular Medicine, "Sapienza" University of Rome, Italy
| | - Roberta Gonnella
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Marisa Granato
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Gabriella D'Orazi
- Translational Research Area, Regina Elena National Cancer Institute, Rome, Italy; Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio", 66013 Chieti, Italy
| | - Alberto Faggioni
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy.
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy.
| |
Collapse
|
14
|
Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment. Proc Natl Acad Sci U S A 2018; 115:E9640-E9648. [PMID: 30242135 DOI: 10.1073/pnas.1809695115] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Breast cancer stem cells (BCSCs), which are characterized by a capacity for unlimited self-renewal and for generation of the bulk cancer cell population, play a critical role in cancer relapse and metastasis. Hypoxia is a common feature of the cancer microenvironment that stimulates the specification and maintenance of BCSCs. In this study, we found that hypoxia increased expression of adenosine receptor 2B (A2BR) in human breast cancer cells through the transcriptional activity of hypoxia-inducible factor 1. The binding of adenosine to A2BR promoted BCSC enrichment by activating protein kinase C-δ, which phosphorylated and activated the transcription factor STAT3, leading to increased expression of interleukin 6 and NANOG, two key mediators of the BCSC phenotype. Genetic or pharmacological inhibition of A2BR expression or activity decreased hypoxia- or adenosine-induced BCSC enrichment in vitro, and dramatically impaired tumor initiation and lung metastasis after implantation of MDA-MB-231 human breast cancer cells into the mammary fat pad of immunodeficient mice. These data provide evidence that targeting A2BR might be an effective strategy to eradicate BCSCs.
Collapse
|
15
|
Li X, Ma H, Li L, Chen Y, Sun X, Dong Z, Liu JY, Zhu W, Zhang JT. Novel synthetic bisindolylmaleimide alkaloids inhibit STAT3 activation by binding to the SH2 domain and suppress breast xenograft tumor growth. Oncogene 2018; 37:2469-2480. [PMID: 29456240 PMCID: PMC5934316 DOI: 10.1038/s41388-017-0076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/19/2017] [Indexed: 11/10/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in malignant tumors and plays important roles in multiple aspects of cancer aggressiveness. Thus, targeting STAT3 promises to be an attractive strategy for treatment of advanced metastatic tumors. Bisindolylmaleimide alkaloid (BMA) has been shown to have anti-cancer activities and was thought to suppress tumor cell growth by inhibiting protein kinase C. In this study, we show that a newly synthesized BMA analogue, BMA097, is effective in suppressing tumor cell and xenograft growth and in inducing spontaneous apoptosis. We also provide evidence that BMA097 binds directly to the SH2 domain of STAT3 and inhibits STAT3 phosphorylation and activation, leading to reduced expression of STAT3 downstream target genes. Structure activity relationship analysis revealed that the hydroxymethyl group in the 2,5-dihydropyrrole-2,5-dione prohibits STAT3-inhibitory activity of BMA analogues. Together, we conclude that the synthetic BMA analogues may be developed as anticancer drugs by targeting and binding to the SH2 domain of STAT3 and inhibiting the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Xia Li
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. .,School of Ocean, Shandong University, Weihai, China.
| | - Hongguang Ma
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lin Li
- School of Ocean, Shandong University, Weihai, China
| | - Yifan Chen
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiao Sun
- School of Ocean, Shandong University, Weihai, China
| | - Zizheng Dong
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jing-Yuan Liu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Computer and Information Science, Indiana University-Purdue University, Indianapolis, IN, USA.
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
| | - Jian-Ting Zhang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA. .,IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Docosahexaenoic acid inhibits 12-O-tetradecanoylphorbol-13- acetate-induced fascin-1-dependent breast cancer cell migration by suppressing the PKCδ- and Wnt-1/β-catenin-mediated pathways. Oncotarget 2018; 7:25162-79. [PMID: 27036017 PMCID: PMC5041895 DOI: 10.18632/oncotarget.7301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Fascin-1, an actin-bundling protein, plays an important role in cancer cell migration and invasion; however, the underlying mechanism remains unclear. On the basis of a 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell migration model, it was shown that TPA increased fascin-1 mRNA and protein expression and fascin-1-dependent cell migration. TPA dose- and time-dependently increased PKCδ and STAT3α activation and GSK3β phosphorylation; up-regulated Wnt-1, β-catenin, and STAT3α expression; and increased the nuclear translocation of β-catenin and STAT3α. Rottlerin, a PKCδ inhibitor, abrogated the increases in STAT3α activation and β-catenin and fascin-1 expression. WP1066, a STAT3 inhibitor, suppressed TPA-induced STAT3α DNA binding activity and β-catenin expression. Knockdown of β-catenin attenuated TPA-induced fascin-1 and STAT3α expression as well as cell migration. In addition to MCF-7, migration of Hs578T breast cancer cells was inhibited by silencing fascin-1, β-catenin, and STAT3α expression as well. TPA also induced Wnt-1 expression and secretion, and blocking Wnt-1 signaling abrogated β-catenin induction. DHA pretreatment attenuated TPA-induced cell migration, PKCδ and STAT3α activation, GSK3β phosphorylation, and Wnt-1, β-catenin, STAT3α, and fascin-1 expression. Our results demonstrated that TPA-induced migration is likely associated with the PKCδ and Wnt-1 pathways, which lead to STAT3α activation, GSK3β inactivation, and β-catenin increase and up-regulation of fascin-1 expression. Moreover, the anti-metastatic potential of DHA is partly attributed to its suppression of TPA-activated PKCδ and Wnt-1 signaling.
Collapse
|
17
|
MANF Promotes Differentiation and Migration of Neural Progenitor Cells with Potential Neural Regenerative Effects in Stroke. Mol Ther 2017; 26:238-255. [PMID: 29050872 PMCID: PMC5763030 DOI: 10.1016/j.ymthe.2017.09.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/31/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023] Open
Abstract
Cerebral ischemia activates endogenous reparative processes, such as increased proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) and migration of neural progenitor cells (NPCs) toward the ischemic area. However, this reparative process is limited because most of the NPCs die shortly after injury or are unable to arrive at the infarct boundary. In this study, we demonstrate for the first time that endogenous mesencephalic astrocyte-derived neurotrophic factor (MANF) protects NSCs against oxygen-glucose-deprivation-induced injury and has a crucial role in regulating NPC migration. In NSC cultures, MANF protein administration did not affect growth of cells but triggered neuronal and glial differentiation, followed by activation of STAT3. In SVZ explants, MANF overexpression facilitated cell migration and activated the STAT3 and ERK1/2 pathway. Using a rat model of cortical stroke, intracerebroventricular injections of MANF did not affect cell proliferation in the SVZ, but promoted migration of doublecortin (DCX)+ cells toward the corpus callosum and infarct boundary on day 14 post-stroke. Long-term infusion of MANF into the peri-infarct zone increased the recruitment of DCX+ cells in the infarct area. In conclusion, our data demonstrate a neuroregenerative activity of MANF that facilitates differentiation and migration of NPCs, thereby increasing recruitment of neuroblasts in stroke cortex.
Collapse
|
18
|
Cutillas PR. Targeted In-Depth Quantification of Signaling Using Label-Free Mass Spectrometry. Methods Enzymol 2016; 585:245-268. [PMID: 28109432 DOI: 10.1016/bs.mie.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation encodes information on the activity of kinase-driven signaling pathways that regulate cell biology. This chapter discusses an approach, named TIQUAS (targeted in-depth quantification of signaling), to quantify cell signaling comprehensively and without bias. The workflow-based on mass spectrometry (MS) and computational science-consists of targeting the analysis of phosphopeptides previously identified by shotgun liquid chromatography tandem MS (LC-MS/MS) across the samples that are being compared. TIQUAS therefore takes advantage of concepts derived from both targeted (data-independent) and data-dependent acquisition methods; phosphorylation sites are quantified in all experimental samples regardless of whether or not these phosphopeptides were identified by MS/MS in all runs. As a result, datasets are obtained containing quantitative information on several thousand phosphorylation sites in as many samples and replicates as required in the experimental design, and these rich datasets are devoid of a significant number of missing data points. This chapter discussed the biochemical, analytical, and computational procedures required to apply the approach and for obtaining a biological interpretation of the data in the context of our understanding of cell signaling regulation and kinase-substrate relationships.
Collapse
Affiliation(s)
- P R Cutillas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom.
| |
Collapse
|
19
|
Schwartz AL, Dickerson E, Dagia N, Malgor R, McCall KD. TLR signaling inhibitor, phenylmethimazole, in combination with tamoxifen inhibits human breast cancer cell viability and migration. Oncotarget 2016; 8:113295-113302. [PMID: 29371911 PMCID: PMC5768328 DOI: 10.18632/oncotarget.10358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/28/2016] [Indexed: 12/19/2022] Open
Abstract
Heightened co-expression and dysregulated signaling associated with Toll-like receptor 3 (TLR3) and Wnt5a is an integral component of solid tumors and hematological malignancies. Our previous findings in pancreatic cancer and melanoma suggest that inhibition of these pathways by a TLR3 signaling inhibitor, phenylmethimazole (C10), results in significantly decreased IL-6 levels, STAT3 phosphorylation, minimal cancer cell migration and reduced cancer cell growth in vitro and in vivo. In this study, we extended our earlier observations by performing studies in human breast cancer cells. We found that human MCF-7 breast cancer cells express high basal levels of TLR3 and Wnt5a RNA. C10 treatment resulted in significantly decreased TLR3 and Wnt5a expression levels. This functionally translated into significantly reduced IL-6 levels and STAT3 phosphorylation in vitro. In addition, the inhibition of this signaling cascade by C10 further resulted in decreased cell viability and migration of MCF-7 cells. Strikingly, the combination of C10 and tamoxifen, the standard of care therapy for breast cancer, further decrease cancer cell growth better than either agent alone. These data support the novel finding that inhibition of TLR3 signaling in combination with tamoxifen, may increase the effectiveness of current treatments of breast cancer.
Collapse
Affiliation(s)
| | - Eric Dickerson
- Department of Biomedical Sciences, Appalachian Rural Health Institute, Diabetes Research Center, College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Nilesh Dagia
- Oxygen Healthcare Research Pvt. Ltd, Ahmedabad, Gujarat 382213, India
| | - Ramiro Malgor
- Department of Biomedical Sciences, Appalachian Rural Health Institute, Diabetes Research Center, College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Kelly D McCall
- Department of Specialty Medicine, Appalachian Rural Health Institute, Diabetes Research Center, College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
20
|
Lim S, Lee SY, Seo HH, Ham O, Lee C, Park JH, Lee J, Seung M, Yun I, Han SM, Lee S, Choi E, Hwang KC. Regulation of mitochondrial morphology by positive feedback interaction between PKCδ and Drp1 in vascular smooth muscle cell. J Cell Biochem 2016; 116:648-60. [PMID: 25399916 DOI: 10.1002/jcb.25016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/28/2014] [Indexed: 11/06/2022]
Abstract
Dynamin-related protein-1 (Drp1) plays a critical role in mitochondrial fission which allows cell proliferation and Mdivi-1, a specific small molecule Drp1 inhibitor, is revealed to attenuate proliferation. However, few molecular mechanisms-related to Drp1 under stimulus for restenosis or atherosclerosis have been investigated in vascular smooth muscle cells (vSMCs). Therefore, we hypothesized that Drp1 inhibition can prevent vascular restenosis and investigated its regulatory mechanism. Angiotensin II (Ang II) or hydrogen peroxide (H2 O2 )-induced proliferation and migration in SMCs were attenuated by down-regulation of Drp1 Ser 616 phosphorylation, which was demonstrated by in vitro assays for migration and proliferation. Excessive amounts of ROS production and changes in mitochondrial membrane potential were prevented by Drp1 inhibition under Ang II and H2 O2 . Under the Ang II stimulation, activated Drp1 interacted with PKCδ and then activated MEK1/2-ERK1/2 signaling cascade and MMP2, but not MMP9. Furthermore, in ex vivo aortic ring assay, inhibition of the Drp1 had significant anti-proliferative and -migration effects for vSMCs. A formation of vascular neointima in response to a rat carotid artery balloon injury was prevented by Drp1 inhibition, which shows a beneficial effect of Drp1 regulation in the pathologic vascular condition. Drp1-mediated SMC proliferation and migration can be prevented by mitochondrial division inhibitor (Mdivi-1) in in vitro, ex vivo and in vivo, and these results suggest the possibility that Drp1 can be a new therapeutic target for restenosis or atherosclerosis.
Collapse
Affiliation(s)
- Soyeon Lim
- Severance Integrative Research Institute for Cerebral & Cardiovascular Disease, Yonsei University Health System, Seodaemun-gu, Seoul, 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Webster MR, Kugel CH, Weeraratna AT. The Wnts of change: How Wnts regulate phenotype switching in melanoma. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1856:244-51. [PMID: 26546268 PMCID: PMC4668201 DOI: 10.1016/j.bbcan.2015.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022]
Abstract
The outgrowth of metastatic and therapy-resistant subpopulations in cancer remains a critical barrier for the successful treatment of this disease. In melanoma, invasion and proliferation are uncoupled, such that highly proliferative melanoma cells are less likely to be invasive, and vice versa. The transition between each state is likely a dynamic rather than a static, permanent change. This is referred to as "phenotype switching". Wnt signaling pathways drive phenotypic changes and promote therapy resistance in melanoma, as well as play roles in the modulation of the immune microenvironment. Three Wnt signaling pathways play a role in melanoma progression, canonical (β-catenin dependent), polar cell polarity (PCP), and the Wnt/Ca²⁺ pathway. Here we summarize phenotype plasticity and its role in therapy resistance and immune evasion. Targeting the Wnt signaling pathways may be an effective way to overcome tumor plasticity in melanoma.
Collapse
Affiliation(s)
- Marie R Webster
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Curtis H Kugel
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Kumar R, Sahu SK, Kumar M, Jana K, Gupta P, Gupta UD, Kundu M, Basu J. MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis-infected macrophages by targeting Mcl-1 and STAT3. Cell Microbiol 2015; 18:679-91. [PMID: 26513648 DOI: 10.1111/cmi.12540] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/30/2022]
Abstract
Autophagy plays a crucial role in the control of bacterial burden during Mycobacterium tuberculosis infection. MicroRNAs (miRNAs) are small non-coding RNAs that regulate immune signalling and inflammation in response to challenge by pathogens. Appreciating the potential of host-directed therapies designed to control autophagy during mycobacterial infection, we focused on the role of miRNAs in regulating M. tuberculosis-induced autophagy in macrophages. Here, we demonstrate that M. tuberculosis infection leads to downregulation of miR-17 and concomitant upregulation of its targets Mcl-1 and STAT3, a transcriptional activator of Mcl-1. Forced expression of miR-17 reduces expression of Mcl-1 and STAT3 and also the interaction between Mcl-1 and Beclin-1. This is directly linked to enhanced autophagy, because Mcl-1 overexpression attenuates the effects of miR-17. At the same time, transfection with a kinase-inactive mutant of protein kinase C δ (PKCδ) (an activator of STAT3) augments M. tuberculosis-induced autophagy, and miR-17 overexpression diminishes phosphorylation of PKCδ, suggesting that an miR-17/PKC δ/STAT3 axis regulates autophagy during M. tuberculosis infection.
Collapse
Affiliation(s)
- Ranjeet Kumar
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| | | | - Manish Kumar
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Pushpa Gupta
- National Jalma Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282006, India
| | - Umesh D Gupta
- National Jalma Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, 282006, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, 700009, India
| |
Collapse
|
23
|
Yang X, Friedl A. A positive feedback loop between prolactin and STAT5 promotes angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:265-80. [PMID: 25472543 DOI: 10.1007/978-3-319-12114-7_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The signal transduction events that orchestrate cellular activities required for angiogenesis remain incompletely understood. We and others recently described that proangiogenic mediators such as fibroblast growth factors can activate members of the signal transducers and activators of transcription (STAT) family. STAT5 activation is necessary and sufficient to induce migration, invasion and tube formation of endothelial cells. STAT5 effects on endothelial cells require the secretion of the prolactin (PRL) family member proliferin-1 (PLF1) in mice and PRL in humans. In human endothelial cells, PRL activates the PRL receptor (PRLR) resulting in MAPK and STAT5 activation, thus closing a positive feedback loop. In vivo, endothelial cell-derived PRL is expected to combine with PRL of tumor cell and pituitary origin to raise the concentration of this polypeptide hormone in the tumor microenvironment. Thus, PRL may stimulate tumor angiogenesis via autocrine, paracrine, and endocrine pathways. The disruption of tumor angiogenesis by interfering with PRL signaling may offer an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Xinhai Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 6051 WIMR, MC-2275, 1111 Highland Avenue, 53705, Madison, WI, USA,
| | | |
Collapse
|
24
|
Huang G, Yan H, Ye S, Tong C, Ying QL. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells 2014; 32:1149-60. [PMID: 24302476 DOI: 10.1002/stem.1609] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/16/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022]
Abstract
STAT3 can be transcriptionally activated by phosphorylation of its tyrosine 705 or serine 727 residue. In mouse embryonic stem cells (mESCs), leukemia inhibitory factor (LIF) signaling maintains pluripotency by inducing JAK-mediated phosphorylation of STAT3 Y705 (pY705). However, the function of phosphorylated S727 (pS727) in mESCs remains unclear. In this study, we examined the roles of STAT3 pY705 and pS727 in regulating mESC identities, using a small molecule-based system to post-translationally modulate the quantity of transgenic STAT3 in STAT3(-/-) mESCs. We demonstrated that pY705 is absolutely required for STAT3-mediated mESC self-renewal, while pS727 is dispensable, serving only to promote proliferation and optimal pluripotency. S727 phosphorylation is regulated directly by fibroblast growth factor/Erk signaling and crucial in the transition of mESCs from pluripotency to neuronal commitment. Loss of S727 phosphorylation resulted in significantly reduced neuronal differentiation potential, which could be recovered by a S727 phosphorylation mimic. Moreover, loss of pS727 sufficed LIF to reprogram epiblast stem cells to naïve pluripotency, suggesting a dynamic equilibrium of STAT3 pY705 and pS727 in the control of mESC fate.
Collapse
Affiliation(s)
- Guanyi Huang
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
25
|
IL-32θ downregulates CCL5 expression through its interaction with PKCδ and STAT3. Cell Signal 2014; 26:3007-15. [PMID: 25280942 DOI: 10.1016/j.cellsig.2014.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/15/2014] [Accepted: 09/15/2014] [Indexed: 01/11/2023]
Abstract
Interleukin-32 (IL-32) exists in several isoforms and plays an important role in inflammatory response. Recently, we identified a new isoform, IL-32θ, and performed a microarray analysis to identify IL-32θ-regulated genes in THP-1 myelomonocytic cells. Upon stimulating IL-32θ-expressing THP-1 cells with phorbol myristate acetate (PMA), we found that the CCL5 transcript level was significantly reduced. We confirmed the downregulation of CCL5 protein expression by using an enzyme-linked immunosorbent assay (ELISA). Because STAT3 phosphorylation on Ser727 by PKCδ is reported to suppress CCL5 protein expression, we examined whether IL-32θ-mediated STAT3 Ser727 phosphorylation occurs through an interaction with PKCδ. In this study, we first demonstrate that IL-32θ interacts with PKCδ and STAT3 using co-immunoprecipitation (Co-IP) and pulldown assay. Moreover, STAT3 was rarely phosphorylated on Ser727 in the absence of IL-32θ, leading to the binding of STAT3 to the CCL5 promoter. These results indicate that IL-32θ, through its interaction with PKCδ, downregulates CCL5 expression by mediating the phosphorylation of STAT3 on Ser727 to render it transcriptionally inactive. Therefore, similar to what we have reported for IL-32α and IL-32β, our data from this study suggests that the newly identified IL-32θ isoform also acts as an intracellular modulator of inflammation.
Collapse
|
26
|
Wang H, Li H, Jiang X, Shi W, Shen Z, Li M. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats. Diabetes 2014; 63:1506-18. [PMID: 24379355 DOI: 10.2337/db13-1195] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron overload is frequently observed in type 2 diabetes mellitus (DM2), but the underlying mechanisms remain unclear. We hypothesize that hepcidin may be directly regulated by insulin and play an important role in iron overload in DM2. We therefore examined the hepatic iron content, serum iron parameters, intestinal iron absorption, and liver hepcidin expression in rats treated with streptozotocin (STZ), which was given alone or after insulin resistance induced by a high-fat diet. The direct effect of insulin on hepcidin and its molecular mechanisms were furthermore determined in vitro in HepG2 cells. STZ administration caused a significant reduction in liver hepcidin level and a marked increase in intestinal iron absorption and serum and hepatic iron content. Insulin obviously upregulated hepcidin expression in HepG2 cells and enhanced signal transducer and activator of transcription 3 protein synthesis and DNA binding activity. The effect of insulin on hepcidin disappeared when the signal transducer and activator of transcription 3 pathway was blocked and could be partially inhibited by U0126. In conclusion, the current study suggests that hepcidin can be directly regulated by insulin, and the suppressed liver hepcidin synthesis may be an important reason for the iron overload in DM2.
Collapse
Affiliation(s)
- Heyang Wang
- Military Hygiene Department, Faculty of Naval Medicine, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
27
|
Suman P, Gupta SK. STAT3 and ERK1/2 cross-talk in leukaemia inhibitory factor mediated trophoblastic JEG-3 cell invasion and expression of mucin 1 and Fos. Am J Reprod Immunol 2014; 72:65-74. [PMID: 24716848 DOI: 10.1111/aji.12248] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/09/2014] [Indexed: 01/06/2023] Open
Abstract
PROBLEM The aim of this study was to investigate the relative importance of STAT3 and ERK1/2 activation in leukaemia inhibitory factor (LIF)-mediated invasion of JEG-3 cells. METHOD OF STUDY Matrigel matrix-based invasion assay; Western blot; cDNA microarray; quantitative RT-PCR; gene silencing by siRNA. RESULTS Leukaemia inhibitory factor treatment led to the activation of STAT3 and ERK1/2 signaling pathways which was followed by changes in the expression of several invasion-associated molecules such as mucin1 (MUC1), Fos, Jun, etc. Abrogation of either STAT3 or ERK1/2 signaling reduced (P < 0.05) the LIF-mediated invasion of JEG-3 cells. It was associated with a significant reduction in the expression of both MUC1 and Fos, suggesting a common denominator in LIF-STAT3-ERK1/2 signaling. To this effect, we observed a decrease in LIF-mediated p-STAT3 (Ser727) upon blocking STAT3 or ERK1/2 signaling. CONCLUSIONS ERK1/2 as well as JAK-STAT-mediated STAT3 (Ser727) phosphorylation play an important role in LIF-mediated JEG-3 trophoblastic cell invasion and gene expression.
Collapse
Affiliation(s)
- Pankaj Suman
- Reproductive Cell Biology Laboratory, National Institute of Immunology, New Delhi, India
| | | |
Collapse
|
28
|
Stat3 binds to mtDNA and regulates mitochondrial gene expression in keratinocytes. J Invest Dermatol 2014; 134:1971-1980. [PMID: 24496235 PMCID: PMC4057971 DOI: 10.1038/jid.2014.68] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/26/2013] [Accepted: 11/05/2013] [Indexed: 11/24/2022]
Abstract
The nuclear transcription factor Stat3 has recently been reported to have a localized mitochondrial regulatory function. Current data suggest that mitochondrial Stat3 (mitoStat3) is necessary for maximal mitochondrial activity and for Ras-mediated transformation independent of Stat3 nuclear activity. We have previously shown that Stat3 plays a pivotal role in epithelial carcinogenesis. Therefore, the aim of the current study was to determine the role of mitoStat3 in epidermal keratinocytes. Herein, we show that normal and neoplastic keratinocytes contain a pool of mitoStat3. EGF and TPA induce Stat3 mitochondrial translocation mediated through phosphorylation of Stat3 at Ser727. In addition, we report that mitoStat3 binds mitochondrial DNA (mtDNA) and associates with the mitochondrial transcription factor TFAM. Furthermore, Stat3 ablation resulted in an increase of mitochondrial encoded gene transcripts. An increase in key nuclear-encoded metabolic genes, PGC-1α and NRF-1, was also observed in Stat3 null keratinocytes, however no changes in nuclear-encoded ETC gene transcripts or mtDNA copy number were observed. Collectively, our findings suggest a heretofore-unreported function for mitoStat3 as a potential mitochondrial transcription factor in keratinocytes. This mitoStat3-mtDNA interaction may represent an alternate signaling pathway that could alter mitochondrial function and biogenesis and play a role in tumorigenesis.
Collapse
|
29
|
Biarc J, Chalkley RJ, Burlingame AL, Bradshaw RA. Dissecting the roles of tyrosines 490 and 785 of TrkA protein in the induction of downstream protein phosphorylation using chimeric receptors. J Biol Chem 2013; 288:16606-16618. [PMID: 23589303 DOI: 10.1074/jbc.m113.475285] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Receptor tyrosine kinases generally act by forming phosphotyrosine-docking sites on their own endodomains that propagate signals through cascades of post-translational modifications driven by the binding of adaptor/effector proteins. The pathways that are stimulated in any given receptor tyrosine kinase are a function of the initial docking sites that are activated and the availability of downstream participants. In the case of the Trk receptors, which are activated by nerve growth factor, there are only two established phosphotyrosine-docking sites (Tyr-490 and Tyr-785 on TrkA) that are known to be directly involved in signal transduction. Taking advantage of this limited repertoire of docking sites and the availability of PC12 cell lines stably transfected with chimeric receptors composed of the extracellular domain of the PDGF receptor and the transmembrane and intracellular domains of TrkA, the downstream TrkA-induced phosphoproteome was assessed for the "native" receptor and mutants lacking Tyr-490 or both Tyr-490 and Tyr-785. Basal phosphorylation levels were compared with those formed after 20 min of stimulation with PDGF. Several thousand phosphopeptides were identified after TiO2 enrichment, and many were up- or down-regulated by receptor activation. The modified proteins in the native sample contained many of the well established participants in TrkA signaling. The results from the mutant receptors allowed grouping of these downstream targets by their dependence on the two characterized docking site(s). A clear subset that was not dependent on either Tyr-490 or Tyr-785 emerged, providing direct evidence that there are other sites on TrkA that are involved in downstream signaling.
Collapse
Affiliation(s)
- Jordane Biarc
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Robert J Chalkley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158.
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
| | - Ralph A Bradshaw
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158; Department of Physiology and Biophysics, University of California, Irvine, California 92697
| |
Collapse
|
30
|
Turtoi A, Mottet D, Matheus N, Dumont B, Peixoto P, Hennequière V, Deroanne C, Colige A, De Pauw E, Bellahcène A, Castronovo V. The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells. Angiogenesis 2012; 15:543-54. [PMID: 22584896 DOI: 10.1007/s10456-012-9279-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/02/2012] [Indexed: 02/06/2023]
Abstract
Histone deacetylases (HDACs) are a family of 18 enzymes that deacetylate lysine residues of both histone and nonhistone proteins and to a large extent govern the process of angiogenesis. Previous studies have shown that specific inhibition of HDAC7 blocks angiogenesis both in vitro and in vivo. However, the underlying molecular mechanisms are not fully understood and hence preclude any meaningful development of suitable therapeutic modalities. The goal of the present study was to further the understanding of HDAC7 epigenetic control of angiogenesis in human endothelial cells using the proteomic approach. The underlying problem was approached through siRNA-mediated gene-expression silencing of HDAC7 in human umbilical vein endothelial cells (HUVECs). To this end, HUVEC proteins were extracted and proteomically analyzed. The emphasis was placed on up-regulated proteins, as these may represent potential direct epigenetic targets of HDAC7. Among several proteins, A-kinase anchor protein 12 (AKAP12) was the most reproducibly up-regulated protein following HDAC7 depletion. This overexpression of AKAP12 was responsible for the inhibition of migration and tube formation in HDAC7-depleted HUVEC. Mechanistically, H3 histones associated with AKAP12 promoter were acetylated following the removal of HDAC7, leading to an increase in its mRNA and protein levels. AKAP12 is responsible for protein kinase C mediated phosphorylation of signal transducer and activator of transcription 3 (STAT3). Phosphorylated STAT3 increasingly binds to the chromatin and AKAP12 promoter and is necessary for maintaining the elevated levels of AKAP12 following HDAC7 knockdown. We demonstrated for the first time that AKAP12 tumor/angiogenesis suppressor gene is an epigenetic target of HDAC7, whose elevated levels lead to a negative regulation of HUVEC migration and inhibit formation of tube-like structures.
Collapse
Affiliation(s)
- Andrei Turtoi
- Metastasis Research Laboratory, GIGA-Cancer, University Hospital, University of Liège, Bat. B23, CHU Sart Tilman, 4000, Liège, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Defining a tissue stem cell-driven Runx1/Stat3 signalling axis in epithelial cancer. EMBO J 2012; 31:4124-39. [PMID: 23034403 DOI: 10.1038/emboj.2012.270] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/26/2012] [Indexed: 12/12/2022] Open
Abstract
Cancers and tissue stem cells (SCs) share similar molecular pathways for their self-renewal and differentiation. The race is on to identify unique pathways to specifically target the cancer, while sparing normal SCs. Here, we uncover the transcription factor Runx1/AML1, a known haematopoietic and leukaemia factor, albeit dispensable for normal adult SC homeostasis, as being important for some mouse and human epithelial cancers. We implicate Runx1 as a SC-intrinsic gene in mouse hair follicle and oral epithelia by genetic lineage tracing in adulthood. Runx1-expressing SCs, but not other cells that ectopically upregulate Runx1 by injury and inflammation, are at the skin tumour origin. Runx1 loss impairs tumour initiation and maintenance and the growth of oral, skin, and ovarian epithelial human cancer cells. Runx1 stimulates Stat3 signalling via direct transcriptional repression of SOCS3 and SOCS4 and this is essential for cancer cell growth. Thus, Runx1 is a broader epithelial SC and cancer factor than previously recognized, and qualifies as an attractive potential target for both prevention and therapy of several epithelial cancers.
Collapse
|
32
|
Epstein-Barr virus LMP1 activates EGFR, STAT3, and ERK through effects on PKCdelta. J Virol 2011; 85:4399-408. [PMID: 21307189 DOI: 10.1128/jvi.01703-10] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that infects more than 90% of the world's adult population and is linked to multiple malignancies, including Burkitt lymphoma, Hodgkin disease, and nasopharyngeal carcinoma (NPC). The EBV oncoprotein LMP1 induces transcription of the epidermal growth factor receptor (EGFR), which is expressed at high levels in NPC. EGFR transcription is induced by LMP1 through a p50 NFκB1-Bcl-3 complex, and Bcl-3 is induced by LMP1-mediated activation of STAT3. This study reveals that LMP1, through its carboxyl-terminal activation domain 1 (LMP1-CTAR1), activates both STAT3 and EGFR in a serum-independent manner with constitutive serine phosphorylation of STAT3. Upon treatment with EGF, the LMP1-CTAR1-induced EGFR was additionally phosphorylated and STAT3 became phosphorylated on tyrosine, concomitant with upregulation of a subset of STAT3 target genes. The kinase responsible for LMP1-CTAR1-mediated serine phosphorylation of STAT3 was identified to be PKCδ using specific RNAi, a dominant negative PKCδ, and the PKCδ inhibitor rottlerin. Interestingly, inhibition of PKCδ also inhibited constitutive phosphorylation of EGFR and LMP1-CTAR1-induced phosphorylation of ERK. Inhibition of PKCδ blocked LMP1-CTAR1-mediated transformation of Rat-1 cells, likely through the inhibition of ERK activation. These findings indicate that LMP1 activates multiple distinct signaling pathways and suggest that PKCδ functions as a master regulator of EGFR, STAT3, and ERK activation by LMP1-CTAR1.
Collapse
|
33
|
Abstract
Chronic lymphocytic leukemia (CLL) is a malignancy characterized by clonal expansion of mature B cells that are resistant to apoptosis. This resistance to apoptosis partly results from Mcl-1 expression because high levels of this protein in CLL cells correlate with poor disease prognosis and resistance to chemotherapy. Thus, understanding the mechanism(s) regulating Mcl-1 expression in CLL cells may be useful in the development of new therapies for this incurable disease. In the present study, we show a strong relationship between c-Abl and Mcl-1 expression in CLL cells. We show that treatment of CLL cells with Abl-specific siRNA or with imatinib, to inhibit c-Abl activity, results in the down-regulation of Mcl-1 protein and mRNA. A major regulator of Mcl-1 gene expression is STAT3. Our data show that CLL cells expressing high levels of c-Abl also show elevated levels of phospho-STAT3, and that STAT3 phosphorylation in CLL cells is dependent on c-Abl activity. However, STAT3 phosphorylation by c-Abl requires activation of nuclear factor-κB, secretion of autocrine interleukin-6, and active protein kinase C. Taken together, our data demonstrate the mechanism involved in c-Abl regulation of Mcl-1 expression in CLL cells, and suggest that c-Abl inhibition has therapeutic application in the treatment of this disease.
Collapse
|
34
|
Chaix A, Lopez S, Voisset E, Gros L, Dubreuil P, De Sepulveda P. Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells. J Biol Chem 2010; 286:5956-66. [PMID: 21135090 DOI: 10.1074/jbc.m110.182642] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the c-kit gene occur in the vast majority of mastocytosis. In adult patients as well as in the cell line derived from mast cell neoplasms, the mutations occur almost exclusively at amino acid 816 within the kinase domain of KIT. Among the downstream effectors of KIT signaling, STAT3 and STAT5 have been shown to be critical for cell proliferation elicited by the KIT-Asp(816) mutant protein. However, little is known about the mechanisms of activation of STAT proteins. In this study, we identify and clarify the contribution of various STAT kinases in two widely used neoplastic mast cell lines, P815 and HMC-1. We show that STAT1, -3, and -5 proteins are activated downstream of the KIT-Asp(816) mutant. All three STAT proteins are located in the nucleus and are phosphorylated on serine residues. KIT-Asp(816) mutant can directly phosphorylate STATs on the activation-specific tyrosine residues in vitro. However, within cells, SRC family kinases and JAKs diversely contribute to tyrosine phosphorylation of STAT proteins downstream of the KIT mutant. Using a panel of inhibitors, we provide evidence for the implication or exclusion of serine/threonine kinases as responsible for serine phosphorylation of STAT1, -3, and -5 in the two cell lines. Finally, we show that only STAT5 is transcriptionally active in these cells. This suggests that the contribution of STAT1 and STAT3 downstream of KIT mutant is independent of their transcription factor function.
Collapse
Affiliation(s)
- Amandine Chaix
- INSERM, U891, Centre de Recherche en Cancérologie de Marseille, France
| | | | | | | | | | | |
Collapse
|
35
|
Reznikova TV, Phillips MA, Patterson TJ, Rice RH. Opposing actions of insulin and arsenite converge on PKCdelta to alter keratinocyte proliferative potential and differentiation. Mol Carcinog 2010; 49:398-409. [PMID: 20082316 DOI: 10.1002/mc.20612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When cultured human keratinocytes reach confluence, they undergo a program of changes replicating features of differentiation in vivo, including exit from the proliferative pool, increased cell size, and expression of specialized differentiation marker proteins. Previously, we showed that insulin is required for some of these steps and that arsenite, a human carcinogen in skin and other epithelia, opposes the differentiation process. In present work, we show that insulin signaling, probably through the IGF-I receptor, is required for the increase in cell size accompanying differentiation and that this is opposed by arsenite. We further examine the impact of insulin and arsenite on PKCdelta, a known key regulator of keratinocyte differentiation, and show that insulin increases the amount, tyrosine phosphorylation, and membrane localization of PKCdelta. All these effects are prevented by exposure of cells to arsenite or to inhibitors of downstream effectors of insulin (phosphotidylinositol 3-kinase and mammalian target of rapamycin). Retrovirally mediated expression of activated PKCdelta resulted in increased loss of proliferative potential after confluence and greatly increased formation of cross-linked envelopes, a marker of keratinocyte terminal differentiation. These effects were prevented by removal of insulin, but not by arsenite addition. We further demonstrate a role for src family kinases in regulation of PKCdelta. Finally, inhibiting epidermal growth factor receptor kinase activity diminished the ability of arsenite to prevent cell enlargement and to suppress insulin-dependent PKCdelta amount and tyrosine 311 phosphorylation. Thus suppression of PKCdelta signaling is a critical feature of arsenite action in preventing keratinocyte differentiation and maintaining proliferative capability.
Collapse
Affiliation(s)
- Tatiana V Reznikova
- Department of Environmental Toxicology, University of California, Davis, California 95616-8588, USA
| | | | | | | |
Collapse
|
36
|
Sud N, Black SM. Endothelin-1 impairs nitric oxide signaling in endothelial cells through a protein kinase Cdelta-dependent activation of STAT3 and decreased endothelial nitric oxide synthase expression. DNA Cell Biol 2009; 28:543-53. [PMID: 19754268 DOI: 10.1089/dna.2009.0865] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In an ovine model of persistent pulmonary hypertension of the newborn (PPHN), endothelin-1 (ET-1) expression is increased, while endothelial nitric oxide synthase (eNOS) expression is decreased. However, the molecular mechanisms by which ET-1 attenuates eNOS expression in endothelial cells are not completely understood. Thus, the goal of this study was to determine if the overexpression of ET-1 decreases eNOS expression in pulmonary arterial endothelial cells isolated from fetal lambs. To increase the ET-1 expression, cells were transfected with a plasmid coding for Prepro-ET-1, a precursor of ET-1. After overexpression of Prepro-ET-1, ET-1 levels in the culture medium were significantly increased (control = 805.3 +/- 69.8; Prepro-ET-1 overexpression = 1351 +/- 127.9). eNOS promoter activity, protein levels, and NO generation were all significantly decreased by the overexpression of Prepro-ET-1. The decrease in transcription correlated with increased activity of protein kinase Cdelta (PKCdelta) and STAT3. Further, DNA binding activity of STAT3 was also increased by Prepro-ET-1 overexpression. The increase in STAT3 activity and decrease in eNOS promoter activity were inhibited by the overexpression of dominant negative mutants of PKCdelta or STAT3. Further, a 2 bp mutation in the STAT3 binding site in the eNOS promoter inhibited STAT3 binding and led to enhanced promoter activity in the presence of Prepro-ET-1 overexpression. In conclusion, ET-1 secretion is increased by Prepro-ET-1 overexpression. This results in activation of PKCdelta, which phosphorylates STAT3, increasing its binding to the eNOS promoter. This in turn decreases eNOS promoter activity, protein levels, and NO production. Thus, ET-1 can reduce eNOS expression and NO generation in fetal pulmonary artery endothelial cells through PKCdelta-mediated activation of STAT3.
Collapse
Affiliation(s)
- Neetu Sud
- Program in Pulmonary Vascular Disease, Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
37
|
Lee HK, Jung J, Lee SH, Seo SY, Suh DJ, Park HT. Extracellular Signal-regulated Kinase Activation Is Required for Serine 727 Phosphorylation of STAT3 in Schwann Cells in vitro and in vivo. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:161-8. [PMID: 19885032 DOI: 10.4196/kjpp.2009.13.3.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 05/13/2009] [Accepted: 05/26/2009] [Indexed: 12/31/2022]
Abstract
In the peripheral nerves, injury-induced cytokines and growth factors perform critical functions in the activation of both the MEK/ERK and JAK/STAT3 pathways. In this study, we determined that nerve injury-induced ERK activation was temporally correlated with STAT3 phosphorylation at the serine 727 residue. In cultured Schwann cells, we noted that ERK activation is required for the serine phosphorylation of STAT3 by neuropoietic cytokine interleukin-6 (IL-6). Serine phosphorylated STAT3 by IL-6 was transported into Schwann cell nuclei, thereby indicating that ERK may regulate the transcriptional activity of STAT3 via the induction of serine phosphorylation of STAT3. Neuregulin-1 (NRG) also induced the serine phosphorylation of STAT3 in an ERK-dependent fashion. In contrast with the IL-6 response, serine phosphorylated STAT3 induced by NRG was not detected in the nucleus, thus indicating the non-nuclear function of serine phosphorylated STAT3 in response to NRG. Finally, we determined that the inhibition of ERK prevented injury-induced serine phosphorylation of STAT3 in an ex-vivo explants culture of the sciatic nerves. Collectively, the results of this study show that ERK may be an upstream kinase for the serine phosphorylation of STAT3 induced by multiple stimuli in Schwann cells after peripheral nerve injury.
Collapse
Affiliation(s)
- Hyun Kyoung Lee
- Department of Physiology, Medical Science Research Institute, College of Medicine, Dong-A University, Busan 602-714, Korea
| | | | | | | | | | | |
Collapse
|
38
|
Schwartz AL, Malgor R, Dickerson E, Weeraratna AT, Slominski A, Wortsman J, Harii N, Kohn AD, Moon RT, Schwartz FL, Goetz DJ, Kohn LD, McCall KD. Phenylmethimazole decreases Toll-like receptor 3 and noncanonical Wnt5a expression in pancreatic cancer and melanoma together with tumor cell growth and migration. Clin Cancer Res 2009; 15:4114-22. [PMID: 19470740 DOI: 10.1158/1078-0432.ccr-09-0005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To evaluate whether (a) Wnt5a expression in pancreatic cancer and malignant melanoma cells might be associated with constitutive levels of Toll-like receptor 3 (TLR3) and/or TLR3 signaling; (b) phenylmethimazole (C10), a novel TLR signaling inhibitor, could decrease constitutive Wnt5a and TLR3 levels together with cell growth and migration; and (c) the efficacy of C10 as a potential inhibitor of pancreatic cancer and malignant melanoma cell growth in vivo. EXPERIMENTAL DESIGN We used a variety of molecular biology techniques including but not limited to PCR, Western blotting, and ELISA to evaluate the presence of constitutively activated TLR3/Wnt5a expression and signaling. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based technology and scratch assays were used to evaluate inhibition of cell growth and migration, respectively. TLR3 regulation of cell growth was confirmed using small interfering RNA technology. Nude and severe combined immunodeficient mice were implanted with human pancreatic cancer and/or melanoma cells and the effects of C10 on tumor growth were evaluated. RESULTS We show that constitutive TLR3 expression is associated with constitutive Wnt5a in human pancreatic cancer and malignant melanoma cell lines, that C10 can decrease constitutive TLR3/Wnt5a expression and signaling, suggesting that they are interrelated signal systems, and that C10 inhibits growth and migration in both of these cancer cell lines. We also report that C10 is effective at inhibiting human pancreatic cancer and malignant melanoma tumor growth in vivo in nude or severe combined immunodeficient mice and associate this with inhibition of signal transducers and activators of transcription 3 activation. CONCLUSIONS C10 may have potential therapeutic applicability in pancreatic cancer and malignant melanoma.
Collapse
Affiliation(s)
- Anthony L Schwartz
- Edison Biotechnology Institute, Diabetes Research Center, College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Saleh A, Shan L, Halayko AJ, Kung S, Gounni AS. Critical role for STAT3 in IL-17A-mediated CCL11 expression in human airway smooth muscle cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3357-65. [PMID: 19265112 DOI: 10.4049/jimmunol.0801882] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IL-17A has been shown to be expressed at higher levels in respiratory secretions from asthmatics and to correlate with airway hyperresponsiveness. Although these studies raise the possibility that IL-17A may influence allergic disease, the mechanism remains unknown. We previously demonstrated that IL-17A mediates CC chemokine (CCL11) production from human airway smooth muscle (ASM) cells. In this study, we demonstrate that STAT3 activation is critical in IL-17A-mediated CCL11 expression in ASM cells. IL-17A mediated a rapid phosphorylation of STAT3 but not STAT6 or STAT5 in ASM cells. Interestingly, transient transfection with wild-type or mutated CCL11 promoter constructs showed that IL-17A-mediated CCL11 expression relies on the STAT6 binding site. However, STAT3 but not STAT6 in vivo binding to the CCL11 promoter was detected following IL-17A stimulation of ASM cells. Overexpression of DN STAT3 (STAT3beta) abolishes IL-17A-induced CCL11 promoter activity. This effect was not observed with STAT6 DN or the STAT3 mutant at Ser(727). Interestingly, disruption of STAT3 activity with the SH2 domain binding peptide, but not with control peptide, results in a significant reduction of IL-17A-mediated STAT3 phosphorylation and CCL11 promoter activity. IL-17A-mediated CCL11 promoter activity and mRNA were significantly diminished in STAT3- but not STAT6-silenced ASM cells. Finally, IL-17A-induced STAT3 phosphorylation was sensitive to pharmacological inhibitors of JAK2 and ERK1/2. Taken together, our data provide the first evidence of IL-17A-mediated gene expression via STAT3 in ASM cells. Collectively, our results raise the possibility that the IL-17A/STAT3 signaling pathway may play a crucial role in airway inflammatory responses.
Collapse
Affiliation(s)
- Ali Saleh
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | |
Collapse
|
40
|
Kwon H, Jeong K, Hwang EM, Park JY, Hong SG, Choi WS, Pak Y. Caveolin-2 regulation of STAT3 transcriptional activation in response to insulin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1325-33. [PMID: 19427337 DOI: 10.1016/j.bbamcr.2009.04.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/01/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
The regulatory function of caveolin-2 in signal transducer and activator of transcription 3 (STAT3) signaling by insulin was investigated. Insulin-induced increase in phosphorylation of STAT3 was reduced by caveolin-2 siRNA. Mutagenesis studies identified that phosphorylation of tyrosines 19 and 27 on caveolin-2 is required for the STAT3 activation. Caveolin-2 Y27A mutation decreased insulin-induced phosphorylation of STAT3 interacting with caveolin-2. pY27-Caveolin-2 was required for nuclear translocation of pY705-STAT3 in response to insulin. In contrast, caveolin-2 Y19A mutation influenced neither the phosphorylation of STAT3 nor nuclear translocation of pY705-STAT3. pY19-Caveolin-2, however, was essential for insulin-induced DNA binding of pS727-STAT3 and STAT3-targeted gene induction in the nucleus. Finally, insulin-induced transcriptional activation of STAT3 depended on phosphorylation of both 19 and 27 tyrosines. Together, our data reveal that phosphotyrosine-caveolin-2 is a novel regulator for transcriptional activation of STAT3 in response to insulin.
Collapse
Affiliation(s)
- Hayeong Kwon
- Department of Biochemistry, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Dissanayake SK, Olkhanud PB, O'Connell MP, Carter A, French AD, Camilli TC, Emeche CD, Hewitt KJ, Rosenthal DT, Leotlela PD, Wade MS, Yang SW, Brant L, Nickoloff BJ, Messina JL, Biragyn A, Hoek KS, Taub DD, Longo DL, Sondak VK, Hewitt SM, Weeraratna AT. Wnt5A regulates expression of tumor-associated antigens in melanoma via changes in signal transducers and activators of transcription 3 phosphorylation. Cancer Res 2009; 68:10205-14. [PMID: 19074888 DOI: 10.1158/0008-5472.can-08-2149] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There are currently no effective therapies for metastatic melanoma and targeted immunotherapy results in the remission of only a very small percentage of tumors. In this study, we show that the noncanonical Wnt ligand, Wnt5A, can increase melanoma metastasis in vivo while down-regulating the expression of tumor-associated antigens important in eliciting CTL responses (e.g., MART-1, GP100, and tyrosinase). Melanosomal antigen expression is governed by MITF, PAX3, and SOX10 and is inhibited upon signal transducers and activators of transcription 3 (STAT3) activation, via decreases in PAX3 and subsequently MITF expression. Increasing Wnt5A in Wnt5A-low cells activated STAT3, and STAT3 was decreased upon Wnt5A knockdown. Downstream targets such as PAX3, MITF, and MART-1 were also affected by Wnt5A treatment or knockdown. Staining of a melanoma tissue array also highlighted the inverse relationship between MART-1 and Wnt5A expression. PKC activation by phorbol ester mimicked Wnt5A effects, and Wnt5A treatment in the presence of STAT3 or PKC inhibitors did not lower MART-1 levels. CTL activation studies showed that increases in Wnt5A correspond to decreased CTL activation and vice versa, suggesting that targeting Wnt5A before immunotherapy may lead to the enhancement of current targeted immunotherapy for patients with metastatic melanoma.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Humans
- Lymphocyte Activation
- MART-1 Antigen
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Phosphorylation
- RNA, Small Interfering/genetics
- STAT3 Transcription Factor/metabolism
- T-Lymphocytes/immunology
- Transcription, Genetic
- Transfection
- Wnt Proteins/biosynthesis
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt-5a Protein
Collapse
Affiliation(s)
- Samudra K Dissanayake
- Laboratory of Immunology and the Research Resources Branch, Gerontology Research Center, National Institute on Aging, NIH, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sud N, Kumar S, Wedgwood S, Black SM. Modulation of PKCdelta signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. Am J Physiol Lung Cell Mol Physiol 2008; 296:L519-26. [PMID: 19118090 DOI: 10.1152/ajplung.90534.2008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that the regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells isolated from fetal lamb under static conditions is positively regulated by PKCdelta. In this study, we explore the role of PKCdelta in regulating shear-induced upregulation of eNOS. We found that shear caused a decrease in PKCdelta activation. Modulation of PKCdelta before shear with a dominant negative mutant of PKCdelta (DN PKCdelta) or bryostatin (a known PKCdelta activator) demonstrated that PKCdelta inhibition potentiates the shear-mediated increases in eNOS expression and activity, while PKCdelta activation inhibited these events. To gain insight into the mechanism by which PKCdelta inhibits shear-induced eNOS expression, we examined activation of STAT3, a known target for PKCdelta phosphorylation. We found that shear decreased the phosphorylation of STAT3. Further the transfection of cells with DN PKCdelta reduced, while PKCdelta activation enhanced, STAT3 phosphorylation in the presence of shear. Transfection of cells with a dominant negative mutant of STAT3 enhanced eNOS promoter activity and nitric oxide production in response to shear. Finally, we found that mutating the STAT3 binding site sequence within the eNOS promoter increased promoter activity in response to shear and that this was no longer inhibited by bryostatin. In conclusion, shear decreases PKCdelta activity and, subsequently, reduces STAT3 binding to the eNOS promoter. This signaling pathway plays a previously unidentified role in the regulation of eNOS expression by shear stress.
Collapse
Affiliation(s)
- Neetu Sud
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Leptin, an adipocyte-derived cytokine/hormone, modulates innate and adaptive immunity. Human beta-defensin-2 (hBD-2) produced by epidermal keratinocytes promotes cutaneous antimicrobial defense, inflammation, and wound repair. We examined the in vitro effects of leptin on hBD-2 production in human keratinocytes. hBD-2 secretion and mRNA expression were analyzed by ELISA and RT-PCR, respectively. Although leptin alone was ineffective, it enhanced IL-1beta-induced hBD-2 secretion and mRNA expression in keratinocytes. IL-1beta- and IL-1beta plus leptin-induced hBD-2 production both were suppressed by antisense oligonucleotides against nuclear factor-kappaB (NF-kappaB) p50 and p65; the latter was also suppressed by antisense signal transducer and activator of transcription (STAT)1 and STAT3. IL-1beta enhanced the transcriptional activity of NF-kappaB, whereas leptin enhanced STAT1 and STAT3 activity. The p38 MAPK inhibitor SB202190 suppressed IL-1beta- and IL-1beta plus leptin-induced hBD-2 production, IL-1beta-induced NF-kappaB activity, and leptin-induced STAT1 and STAT3 activity; contrastingly, the Janus kinase (JAK) 2 inhibitor AG490 suppressed IL-1beta plus leptin-induced hBD-2 production and leptin-induced STAT1 and STAT3 activity. IL-1beta induced serine phosphorylation of inhibitory kappaBalpha, STAT1, and STAT3. Leptin induced tyrosine and serine phosphorylation of STAT1 and STAT3, both of which were suppressed by AG490, and serine phosphorylation was also suppressed by SB202190. IL-1beta or leptin individually induced threonine/tyrosine phosphorylation of p38 MAPK, whereas only leptin induced tyrosine phosphorylation of JAK2, suggesting that leptin may enhance hBD-2 production in keratinocytes by activating STAT1 and STAT3 via JAK2 and p38 MAPK in cooperation with NF-kappaB, which is activated by IL-1beta. Leptin may promote cutaneous antimicrobial defense, inflammation, and wound repair via hBD-2.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University School of Medicine, 11-1 Kaga-2 Itabashi-Ku, Tokyo 173-8605, Japan.
| | | |
Collapse
|
44
|
Chang CW, Chou HY, Lin YS, Huang KH, Chang CJ, Hsu TC, Lee SC. Phosphorylation at Ser473 regulates heterochromatin protein 1 binding and corepressor function of TIF1beta/KAP1. BMC Mol Biol 2008; 9:61. [PMID: 18590578 PMCID: PMC2474647 DOI: 10.1186/1471-2199-9-61] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 07/01/2008] [Indexed: 01/06/2023] Open
Abstract
Background As an epigenetic regulator, the transcriptional intermediary factor 1β (TIF1β)/KAP1/TRIM28) has been linked to gene expression and chromatin remodeling at specific loci by association with members of the heterochromatin protein 1 (HP1) family and various other chromatin factors. The interaction between TIF1β and HP1 is crucial for heterochromatin formation and maintenance. The HP1-box, PXVXL, of TIF1β is responsible for its interaction with HP1. However, the underlying mechanism of how the interaction is regulated remains poorly understood. Results This work demonstrates that TIF1β is phosphorylated on Ser473, the alteration of which is dynamically associated with cell cycle progression and functionally linked to transcriptional regulation. Phosphorylation of TIF1β/Ser473 coincides with the induction of cell cycle gene cyclin A2 at the S-phase. Interestingly, chromatin immunoprecipitation demonstrated that the promoter of cyclin A2 gene is occupied by TIF1β and that such occupancy is inversely correlated with Ser473 phosphorylation. Additionally, when HP1β was co-expressed with TIF1β/S473A, but not TIF1β/S473E, the colocalization of TIF1β/S473A and HP1β to the promoters of Cdc2 and Cdc25A was enhanced. Non-phosphorylated TIF1β/Ser473 allowed greater TIF1β association with the regulatory regions and the consequent repression of these genes. Consistent with possible inhibition of TIF1β's corepressor function, the phosphorylation of the Ser473 residue, which is located near the HP1-interacting PXVXL motif, compromised the formation of TIF1β-HP1 complex. Finally, we found that the phosphorylation of TIF1β/Ser473 is mediated by the PKCδ pathway and is closely linked to cell proliferation. Conclusion The modulation of HP1β-TIF1β interaction through the phosphorylation/de-phosphorylation of TIF1β/Ser473 may constitute a molecular switch that regulates the expression of particular genes. Higher levels of phosphorylated TIF1β/Ser473 may be associated with the expression of key regulatory genes for cell cycle progression and the proliferation of cells.
Collapse
Affiliation(s)
- Chiung-Wen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
45
|
v-Src oncogene product increases sphingosine kinase 1 expression through mRNA stabilization: alteration of AU-rich element-binding proteins. Oncogene 2008; 27:6023-33. [PMID: 18574469 DOI: 10.1038/onc.2008.198] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sphingosine kinase 1 (SPHK1) is overexpressed in solid tumors and leukemia. However, the mechanism of SPHK1 overexpression by oncogenes has not been defined. We found that v-Src-transformed NIH3T3 cells showed a high SPHK1 mRNA, SPHK1 protein and SPHK enzyme activity. siRNA of SPHK1 inhibited the growth of v-Src-NIH3T3, suggesting the involvement of SPHK1 in v-Src-induced oncogenesis. v-Src-NIH3T3 showed activations of protein kinase C-alpha, signal transducers and activators of transcription 3 and c-Jun NH(2)-terminal kinase. Their inhibition suppressed SPHK1 expression in v-Src-NIH3T3, whereas their overexpression increased SPHK1 mRNA in NIH3T3. Unexpectedly, the nuclear run-on assay and the promoter analysis using 5'-promoter region of mouse SPHK1 did not show any significant difference between mock- and v-Src-NIH3T3. Furthermore, the half-life of SPHK1 mRNA in mock-NIH3T3 was nearly 15 min, whereas that of v-Src-NIH3T3 was much longer. Examination of two AU-rich region-binding proteins, AUF1 and HuR, that regulate mRNA decay reciprocally, showed decreased total AUF1 protein associated with increased tyrosine-phosphorylated form and increased serine-phosphorylated HuR protein in v-Src-NIH3T3. Modulation of AUF1 and HuR by their overexpression or siRNA revealed that SPHK1 mRNA in v-Src- and mock-NIH3T3 was regulated reciprocally by these factors. Our results showed, for the first time, a novel mechanism of v-Src-induced SPHK1 overexpression.
Collapse
|
46
|
Schüppel M, Kürschner U, Kleuser U, Schäfer-Korting M, Kleuser B. Sphingosine 1-phosphate restrains insulin-mediated keratinocyte proliferation via inhibition of Akt through the S1P2 receptor subtype. J Invest Dermatol 2008; 128:1747-56. [PMID: 18219276 DOI: 10.1038/sj.jid.5701259] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The balance between keratinocyte proliferation and differentiation plays a decisive role for skin formation and development. Among the well-characterized biological mediators, insulin and sphingosine 1-phosphate (S1P) have been identified as major regulators of keratinocyte growth and differentiation. Insulin induces proliferation of keratinocytes, whereas S1P inhibits keratinocyte growth and initiates keratinocyte differentiation. However, it is not clear which S1P receptor subtype and downstream signaling pathways are involved in the antiproliferative action of S1P. In this study, we present evidence that S1P inhibits insulin-mediated keratinocyte growth via the activation of protein kinase C (PKC) followed by a subsequent dephosphorylation of Akt. The inhibition of insulin-mediated Akt activity by S1P is completely abolished in the presence of PKCdelta siRNA indicating that this isozyme is selectively potent at causing dephosphorylation of Akt and modifying keratinocyte proliferation. Further experiments by downregulation of S1P receptor subtypes and the use of specific receptor agonists/antagonists clearly indicated that the S1P(2) receptor is dominantly involved in the S1P-induced dephosphorylation of Akt and keratinocyte growth arrest. This is of great clinical interest, as the immunomodulator FTY720, after being phosphorylated by sphingosine kinase, activates all of the five S1P receptors except S1P(2) and therefore fails to inhibit keratinocyte proliferation.
Collapse
Affiliation(s)
- Melanie Schüppel
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
47
|
Oyasu M, Fujimiya M, Kashiwagi K, Ohmori S, Imaeda H, Saito N. Immunogold electron microscopic demonstration of distinct submembranous localization of the activated gammaPKC depending on the stimulation. J Histochem Cytochem 2007; 56:253-65. [PMID: 18040079 DOI: 10.1369/jhc.7a7291.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examined the precise intracellular translocation of gamma subtype of protein kinase C (gammaPKC) after various extracellular stimuli using confocal laser-scanning fluorescent microscopy (CLSM) and immunogold electron microscopy. By CLSM, treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a slow and irreversible accumulation of green fluorescent protein (GFP)-tagged gammaPKC (gammaPKC-GFP) on the plasma membrane. In contrast, treatment with Ca(2+) ionophore and activation of purinergic or NMDA receptors induced a rapid and transient membrane translocation of gammaPKC-GFP. Although each stimulus resulted in PKC localization at the plasma membrane, electron microscopy revealed that gammaPKC showed a subtle but significantly different localization depending on stimulation. Whereas TPA and UTP induced a sustained localization of gammaPKC-GFP on the plasma membrane, Ca(2+) ionophore and NMDA rapidly translocated gammaPKC-GFP to the plasma membrane and then restricted gammaPKC-GFP in submembranous area (<500 nm from the plasma membrane). These results suggest that Ca(2+) influx alone induced the association of gammaPKC with the plasma membrane for only a moment and then located this enzyme at a proper distance in a touch-and-go manner, whereas diacylglycerol or TPA tightly anchored this enzyme on the plasma membrane. The distinct subcellular targeting of gammaPKC in response to various stimuli suggests a novel mechanism for PKC activation.
Collapse
Affiliation(s)
- Miho Oyasu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Nakagawa J, Nishitai G, Inageda K, Matsuoka M. Phosphorylation of Stats at Ser727 in renal proximal tubular epithelial cells exposed to cadmium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2007; 24:252-259. [PMID: 21783819 DOI: 10.1016/j.etap.2007.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2007] [Revised: 06/02/2007] [Accepted: 06/10/2007] [Indexed: 05/31/2023]
Abstract
The effects of cadmium exposure on serine phosphorylation of signal transducers and activators of transcription (Stats) and an upstream kinase were examined in renal proximal tubular cells. In porcine LLC-PK1 cells treated with cadmium, Stat1 and Stat3 proteins were phosphorylated at Ser727 without changing total Stat protein levels. While phosphorylated forms of the members of mitogen-activated protein kinases (MAPKs) increased in response to cadmium exposure, treatment with a p38 inhibitor, SB203580 reduced Ser727 phosphorylation of Stat1 and Stat3 markedly in LLC-PK1 cells. The expression of human matrix metalloproteinase-3 (MMP-3), a Stats-inducible gene, was found to be up-regulated in human HK-2 cells exposed to cadmium, and suppressed by preincubation with SB203580. These results suggest that cadmium might induce the phosphorylation of Stat1 and Stat3 at Ser727 via the p38 pathway at least in part, and modulate gene expression in these proximal tubular cells.
Collapse
Affiliation(s)
- Junko Nakagawa
- Department of Hygiene and Public Health I, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | |
Collapse
|
49
|
|
50
|
McCall KD, Harii N, Lewis CJ, Malgor R, Kim WB, Saji M, Kohn AD, Moon RT, Kohn LD. High basal levels of functional toll-like receptor 3 (TLR3) and noncanonical Wnt5a are expressed in papillary thyroid cancer and are coordinately decreased by phenylmethimazole together with cell proliferation and migration. Endocrinology 2007; 148:4226-37. [PMID: 17525119 DOI: 10.1210/en.2007-0459] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High basal levels of TLR3 and Wnt5a RNA are present in papillary thyroid carcinoma (PTC) cell lines consistent with their overexpression and colocalization in PTC cells in vivo. This is not the case in thyrocytes from normal tissue and in follicular carcinoma (FC) or anaplastic carcinoma (AC) cells or tissues. The basally expressed TLR3 are functional in PTC cells as evidenced by the ability of double-strand RNA (polyinosine-polycytidylic acid) to significantly increase the activity of transfected NF-kappaB and IFN-beta luciferase reporter genes and the levels of two end products of TLR3 signaling, IFN-beta and CXCL10. Phenylmethimazole (C10), a drug that decreases TLR3 expression and signaling in FRTL-5 thyrocytes, decreases TLR3 levels and signaling in PTC cells in a concentration-dependent manner. C10 also decreased Wnt5a RNA levels coordinate with decreases in TLR3. E-cadherin RNA levels, whose suppression may be associated with high Wnt5a, increased with C10 treatment. C10 simultaneously decreased PTC proliferation and cell migration but had no effect on the growth and migration of FC, AC, or FRTL-5 cells. C10 decreases high basal phosphorylation of Tyr705 and Ser727 on Stat3 in PTC cells and inhibits IL-6-induced Stat3 phosphorylation. IL-6-induced Stat3 phosphorylation is important both in up-regulating Wnt5a levels and in cell growth. In sum, high Wnt5a levels in PTC cells may be related to high TLR3 levels and signaling; and the ability of phenylmethimazole (C10) to decrease growth and migration of PTC cells may be related to its suppressive effect on TLR3 and Wnt5a signaling, particularly Stat3 activation.
Collapse
Affiliation(s)
- Kelly D McCall
- Edison Biotechnology Institute and College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | | | | | | | |
Collapse
|