1
|
Musawi S, Donnio LM, Zhao Z, Magnani C, Rassinoux P, Binda O, Huang J, Jacquier A, Coudert L, Lomonte P, Martinat C, Schaeffer L, Mottet D, Côté J, Mari PO, Giglia-Mari G. Nucleolar reorganization after cellular stress is orchestrated by SMN shuttling between nuclear compartments. Nat Commun 2023; 14:7384. [PMID: 37968267 PMCID: PMC10652021 DOI: 10.1038/s41467-023-42390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Abstract
Spinal muscular atrophy is an autosomal recessive neuromuscular disease caused by mutations in the multifunctional protein Survival of Motor Neuron, or SMN. Within the nucleus, SMN localizes to Cajal bodies, which are associated with nucleoli, nuclear organelles dedicated to the first steps of ribosome biogenesis. The highly organized structure of the nucleolus can be dynamically altered by genotoxic agents. RNAP1, Fibrillarin, and nucleolar DNA are exported to the periphery of the nucleolus after genotoxic stress and, once DNA repair is fully completed, the organization of the nucleolus is restored. We find that SMN is required for the restoration of the nucleolar structure after genotoxic stress. During DNA repair, SMN shuttles from the Cajal bodies to the nucleolus. This shuttling is important for nucleolar homeostasis and relies on the presence of Coilin and the activity of PRMT1.
Collapse
Affiliation(s)
- Shaqraa Musawi
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Lise-Marie Donnio
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France.
| | - Zehui Zhao
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Charlène Magnani
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Phoebe Rassinoux
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Olivier Binda
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Ontario, Canada
| | - Jianbo Huang
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Arnaud Jacquier
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Laurent Coudert
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Patrick Lomonte
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Paris Saclay Université, I-STEM, 91100, Corbeil-Essonnes, France
| | - Laurent Schaeffer
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Denis Mottet
- GIGA-Molecular Biology of Diseases, Gene Expression and Cancer Laboratory, B34 + 1, University of Liege, Avenue de l'Hôpital 1, B-4000, Liège, Belgium
| | - Jocelyn Côté
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Ontario, Canada
| | - Pierre-Olivier Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France
| | - Giuseppina Giglia-Mari
- Pathophysiology and Genetics of Neuron and Muscle (INMG-PGNM), CNRS UMR 5261, INSERM U1315, Université Claude Bernard Lyon 1, 68008, Lyon, France.
| |
Collapse
|
2
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| |
Collapse
|
3
|
Karyka E, Berrueta Ramirez N, Webster CP, Marchi PM, Graves EJ, Godena VK, Marrone L, Bhargava A, Ray S, Ning K, Crane H, Hautbergue GM, El-Khamisy SF, Azzouz M. SMN-deficient cells exhibit increased ribosomal DNA damage. Life Sci Alliance 2022; 5:e202101145. [PMID: 35440492 PMCID: PMC9018017 DOI: 10.26508/lsa.202101145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Spinal muscular atrophy, the leading genetic cause of infant mortality, is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. SMN is a multifunctional protein that is implicated in numerous cytoplasmic and nuclear processes. Recently, increasing attention is being paid to the role of SMN in the maintenance of DNA integrity. DNA damage and genome instability have been linked to a range of neurodegenerative diseases. The ribosomal DNA (rDNA) represents a particularly unstable locus undergoing frequent breakage. Instability in rDNA has been associated with cancer, premature ageing syndromes, and a number of neurodegenerative disorders. Here, we report that SMN-deficient cells exhibit increased rDNA damage leading to impaired ribosomal RNA synthesis and translation. We also unravel an interaction between SMN and RNA polymerase I. Moreover, we uncover an spinal muscular atrophy motor neuron-specific deficiency of DDX21 protein, which is required for resolving R-loops in the nucleolus. Taken together, our findings suggest a new role of SMN in rDNA integrity.
Collapse
Affiliation(s)
- Evangelia Karyka
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Nelly Berrueta Ramirez
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Christopher P Webster
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paolo M Marchi
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Emily J Graves
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Vinay K Godena
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Lara Marrone
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Anushka Bhargava
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Swagat Ray
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- Department of Life Sciences, School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Ke Ning
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Hannah Crane
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
| | - Guillaume M Hautbergue
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Sherif F El-Khamisy
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Department of Molecular Biology and Biotechnology, The Institute of Neuroscience and the Healthy Lifespan Institute, School of Bioscience, Firth Court, University of Sheffield, Sheffield, UK
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Mimoun Azzouz
- The Healthy Lifespan Institute and Neuroscience Institute, Neurodegeneration and Genome Stability Group, University of Sheffield, Sheffield, UK
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Chang WF, Lin TY, Peng M, Chang CC, Xu J, Hsieh-Li HM, Liu JL, Sung LY. SMN Enhances Pluripotent Genes Expression and Facilitates Cell Reprogramming. Stem Cells Dev 2022; 31:696-705. [PMID: 35848514 DOI: 10.1089/scd.2022.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Survival motor neuron (SMN) plays important roles in snRNPs assembly and mRNA splicing. Deficiency of SMN causes spinal muscular atrophy (SMA), a leading genetic disease of childhood mortality. Previous studies have shown that SMN regulates stem cell self-renewal and pluripotency in Drosophila and in mouse, and is abundantly expressed in mouse embryonic stem cells (ESCs). However, whether SMN is required for the establishment of pluripotency is unclear. Herein, we show that SMN is gradually upregulated in pre-implantation mouse embryos and cultured cells undergoing cell reprogramming. Ectopic expression of SMN increased the cell reprogramming efficiency, whereas knockdown of SMN impeded iPSC colony formation. iPSCs could be derived from SMA model mice, but certain impairment in differentiation capacity may present. The ectopic overexpression of SMN in iPSCs can upregulate the expression levels of some pluripotent genes and restore the neuronal differentiation capacity of SMA-iPSCs. Taken together, our findings not only demonstrate the functional relevance of SMN and the establishment of cell pluripotency, but also propose its potential application in facilitating iPSC derivation.
Collapse
Affiliation(s)
- Wei-Fang Chang
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Tzu-Ying Lin
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Min Peng
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Chia-Chun Chang
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan;
| | - Jie Xu
- University of Michigan Medical Center, 166144, Ann Arbor, Michigan, United States;
| | - Hsiu Mei Hsieh-Li
- National Taiwan Normal University, 34879, Department of Life Science, Taipei, Taiwan;
| | - Ji-Long Liu
- ShanghaiTech University, 387433, Shanghai, China;
| | - Li-Ying Sung
- National Taiwan University, 33561, Institute of Biotechnology, Taipei, Taiwan, 10617;
| |
Collapse
|
5
|
D'Amico D, Biondi O, Januel C, Bezier C, Sapaly D, Clerc Z, Khoury ME, Sundaram VK, Houdebine L, Josse T, Gaspera BD, Martinat C, Massaad C, Weill L, Charbonnier F. Activating ATF6 in Spinal Muscular Atrophy promotes SMN expression and motor neuron survival through the IRE1α-XBP1 pathway. Neuropathol Appl Neurobiol 2022; 48:e12816. [PMID: 35338505 DOI: 10.1111/nan.12816] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/27/2022]
Abstract
AIM Spinal Muscular Atrophy (SMA) is a neuromuscular disease caused by Survival of Motor Neuron (SMN) deficiency that induces motor neuron (MN) degeneration and severe muscular atrophy. Gene therapies that increase SMN have proven their efficacy but not for all patients. Here, we explored the Unfolded Protein Response (UPR) status in SMA pathology and explored whether UPR modulation could be beneficial for SMA patients. METHODS We analysed the expression and activation of key UPR proteins by RT-qPCR and by western blots in SMA patient iPSC-derived MNs and one SMA cell line in which SMN expression was re-established (rescue). We complemented this approach by using myoblast and fibroblast SMA patient cells and SMA mouse models of varying severities. Finally, we tested in vitro and in vivo the effect of IRE1α/XBP1 pathway restoration on SMN expression and subsequent neuroprotection. RESULTS We report that the IRE1α/XBP1 branch of the unfolded protein response is disrupted in SMA, with a depletion of XBP1s irrespective of IRE1α activation pattern. The overexpression of XBP1s in SMA fibroblasts proved to transcriptionally enhance SMN expression. Importantly, rebalancing XBP1s expression in severe SMA-like mice, induced SMN expression and spinal MN protection. CONCLUSIONS We have identified XBP1s depletion as a contributing factor in SMA pathogenesis, and the modulation of this transcription factor proves to be a plausible therapeutic avenue in the context of pharmacological interventions for patients.
Collapse
Affiliation(s)
- Domenico D'Amico
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Olivier Biondi
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Camille Januel
- Université d'Evry-Val-d'Essonne & Inserm UMR 861, I-STEM, AFM, Corbeil-Essonne, France
| | - Cynthia Bezier
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France.,Biophytis, Sorbonne Université, Paris Cedex 05, France
| | - Delphine Sapaly
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Zoé Clerc
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | | | | | - Léo Houdebine
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Thibaut Josse
- Université de Tour &CNRS UMR 7261, Institut de Recherche sur la Biologie de l'Insecte, Tours, France
| | | | - Cécile Martinat
- Université d'Evry-Val-d'Essonne & Inserm UMR 861, I-STEM, AFM, Corbeil-Essonne, France
| | - Charbel Massaad
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | - Laure Weill
- Université Paris cité & Inserm UMR_S1124, Paris Cedex 06, France
| | | |
Collapse
|
6
|
Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB. Drug Discovery of Spinal Muscular Atrophy (SMA) from the Computational Perspective: A Comprehensive Review. Int J Mol Sci 2021; 22:8962. [PMID: 34445667 PMCID: PMC8396480 DOI: 10.3390/ijms22168962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
Collapse
Affiliation(s)
- Li Chuin Chong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Jian Ming Lee
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Sy-Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| |
Collapse
|
7
|
Courchaine EM, Barentine AES, Straube K, Lee DR, Bewersdorf J, Neugebauer KM. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell 2021; 184:3612-3625.e17. [PMID: 34115980 DOI: 10.1016/j.cell.2021.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
Collapse
Affiliation(s)
- Edward M Courchaine
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Andrew E S Barentine
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Korinna Straube
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Joerg Bewersdorf
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Cell Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Sapaly D, Delers P, Coridon J, Salman B, Letourneur F, Dumont F, Lefebvre S. The Small-Molecule Flunarizine in Spinal Muscular Atrophy Patient Fibroblasts Impacts on the Gemin Components of the SMN Complex and TDP43, an RNA-Binding Protein Relevant to Motor Neuron Diseases. Front Mol Biosci 2020; 7:55. [PMID: 32363199 PMCID: PMC7181958 DOI: 10.3389/fmolb.2020.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The motor neurodegenerative disease spinal muscular atrophy (SMA) is caused by alterations of the survival motor neuron 1 (SMN1) gene involved in RNA metabolism. Although the disease mechanisms are not completely elucidated, SMN protein deficiency leads to abnormal small nuclear ribonucleoproteins (snRNPs) assembly responsible for widespread splicing defects. SMN protein localizes in nuclear bodies that are lost in SMA and adult onset amyotrophic lateral sclerosis (ALS) patient cells harboring TDP-43 or FUS/TLS mutations. We previously reported that flunarizine recruits SMN into nuclear bodies and improves the phenotype of an SMA mouse model. However, the precise mode of action remains elusive. Here, a marked reduction of the integral components of the SMN complex is observed in severe SMA patient fibroblast cells. We show that flunarizine increases the protein levels of a subset of components of the SMN-Gemins complex, Gemins2-4, and markedly reduces the RNA and protein levels of the pro-oxydant thioredoxin-interacting protein (TXNIP) encoded by an mRNA target of Gemin5. We further show that SMN deficiency causes a dissociation of the localization of the SMN complex components from the same nuclear bodies. The accumulation of TDP-43 in SMN-positive nuclear bodies is also perturbed in SMA cells. Notably, TDP-43 is found to co-localize with SMN in nuclear bodies of flunarizine-treated SMA cells. Our findings indicate that flunarizine reverses cellular changes caused by SMN deficiency in SMA cells and further support the view of a common pathway in RNA metabolism underlying infantile and adult motor neuron diseases.
Collapse
Affiliation(s)
- Delphine Sapaly
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Perrine Delers
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Jennifer Coridon
- BioMedTech Facilities INSERM US36 - CNRS UMS 2009, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Badih Salman
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | | | - Florent Dumont
- Genom'ic Platform, INSERM U1016, Institut Cochin, Paris, France
| | - Suzie Lefebvre
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| |
Collapse
|
9
|
Understanding human DNA variants affecting pre-mRNA splicing in the NGS era. ADVANCES IN GENETICS 2019; 103:39-90. [PMID: 30904096 DOI: 10.1016/bs.adgen.2018.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pre-mRNA splicing, an essential step in eukaryotic gene expression, relies on recognition of short sequences on the primary transcript intron ends and takes place along transcription by RNA polymerase II. Exonic and intronic auxiliary elements may modify the strength of exon definition and intron recognition. Splicing DNA variants (SV) have been associated with human genetic diseases at canonical intron sites, as well as exonic substitutions putatively classified as nonsense, missense or synonymous variants. Their effects on mRNA may be modulated by cryptic splice sites associated to the SV allele, comprehending exon skipping or shortening, and partial or complete intron retention. As splicing mRNA outputs result from combinatorial effects of both intrinsic and extrinsic factors, in vitro functional assays supported by computational analyses are recommended to assist SV pathogenicity assessment for human Mendelian inheritance diseases. The increasing use of next-generating sequencing (NGS) targeting full genomic gene sequence has raised awareness of the relevance of deep intronic SV in genetic diseases and inclusion of pseudo-exons into mRNA. Finally, we take advantage of recent advances in sequencing and computational technologies to analyze alternative splicing in cancer. We explore the Catalog of Somatic Mutations in Cancer (COSMIC) to describe the proportion of splice-site mutations in cis and trans regulatory elements. Genomic data from large cohorts of different cancer types are increasingly available, in addition to repositories of normal and somatic genetic variations. These are likely to bring new insights to understanding the genetic control of alternative splicing by mapping splicing quantitative trait loci in tumors.
Collapse
|
10
|
Thompson LW, Morrison KD, Shirran SL, Groen EJN, Gillingwater TH, Botting CH, Sleeman JE. Neurochondrin interacts with the SMN protein suggesting a novel mechanism for spinal muscular atrophy pathology. J Cell Sci 2018; 131:jcs.211482. [PMID: 29507115 PMCID: PMC5963842 DOI: 10.1242/jcs.211482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neurodegenerative condition caused by a reduction in the amount of functional survival motor neuron (SMN) protein. SMN has been implicated in transport of mRNA in neural cells for local translation. We previously identified microtubule-dependent mobile vesicles rich in SMN and SNRPB, a member of the Sm family of small nuclear ribonucleoprotein (snRNP)-associated proteins, in neural cells. By comparing the interactomes of SNRPB and SNRPN, a neural-specific Sm protein, we now show that the essential neural protein neurochondrin (NCDN) interacts with Sm proteins and SMN in the context of mobile vesicles in neurites. NCDN has roles in protein localisation in neural cells and in maintenance of cell polarity. NCDN is required for the correct localisation of SMN, suggesting they may both be required for formation and transport of trafficking vesicles. NCDN may have potential as a therapeutic target for SMA together with, or in place of the targeting of SMN expression. This article has an associated First Person interview with the first author of the paper. Highlighted Article: The essential neural protein neurochondrin interacts with the spinal muscular atrophy (SMA) protein SMN in cell lines and in mice. This might be relevant to the molecular pathology of SMA.
Collapse
Affiliation(s)
- Luke W Thompson
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Kim D Morrison
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Sally L Shirran
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Catherine H Botting
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| | - Judith E Sleeman
- School of Biology, University of St Andrews, BSRC Complex, North Haugh St Andrews, KY16 9ST, UK
| |
Collapse
|
11
|
Lafarga V, Tapia O, Sharma S, Bengoechea R, Stoecklin G, Lafarga M, Berciano MT. CBP-mediated SMN acetylation modulates Cajal body biogenesis and the cytoplasmic targeting of SMN. Cell Mol Life Sci 2018; 75:527-546. [PMID: 28879433 PMCID: PMC11105684 DOI: 10.1007/s00018-017-2638-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 01/12/2023]
Abstract
The survival of motor neuron (SMN) protein plays an essential role in the biogenesis of spliceosomal snRNPs and the molecular assembly of Cajal bodies (CBs). Deletion of or mutations in the SMN1 gene cause spinal muscular atrophy (SMA) with degeneration and loss of motor neurons. Reduced SMN levels in SMA lead to deficient snRNP biogenesis with consequent splicing pathology. Here, we demonstrate that SMN is a novel and specific target of the acetyltransferase CBP (CREB-binding protein). Furthermore, we identify lysine (K) 119 as the main acetylation site in SMN. Importantly, SMN acetylation enhances its cytoplasmic localization, causes depletion of CBs, and reduces the accumulation of snRNPs in nuclear speckles. In contrast, the acetylation-deficient SMNK119R mutant promotes formation of CBs and a novel category of promyelocytic leukemia (PML) bodies enriched in this protein. Acetylation increases the half-life of SMN protein, reduces its cytoplasmic diffusion rate and modifies its interactome. Hence, SMN acetylation leads to its dysfunction, which explains the ineffectiveness of HDAC (histone deacetylases) inhibitors in SMA therapy despite their potential to increase SMN levels.
Collapse
Affiliation(s)
- Vanesa Lafarga
- Laboratory of Genomic Instability, "Centro Nacional de Investigaciones Oncológicas" (CNIO), 28024, Madrid, Spain
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Olga Tapia
- Department of Anatomy and Cell Biology, "Centro de Investigación en Red de Enfermedades Neurodegenerativas" (CIBERNED), University of Cantabria-IDIVAL, 39011, Santander, Spain
| | - Sahil Sharma
- Department of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 68167, Mannheim, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 68167, Mannheim, Germany
| | - Rocio Bengoechea
- Department of Neurology, The Hope Center for Neurological Diseases, School of Medicine of Washington University, St. Louis, 63110, USA
| | - Georg Stoecklin
- Department of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 68167, Mannheim, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 68167, Mannheim, Germany
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, "Centro de Investigación en Red de Enfermedades Neurodegenerativas" (CIBERNED), University of Cantabria-IDIVAL, 39011, Santander, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology, "Centro de Investigación en Red de Enfermedades Neurodegenerativas" (CIBERNED), University of Cantabria-IDIVAL, 39011, Santander, Spain.
| |
Collapse
|
12
|
Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2017; 1860:299-315. [PMID: 28095296 PMCID: PMC5325804 DOI: 10.1016/j.bbagrm.2016.12.008] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023]
Abstract
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance. The tissue-specific requirement of SMN is dictated by the variety and the abundance of its interacting partners. Reduced expression of SMN causes spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. SMA displays a broad spectrum ranging from embryonic lethality to an adult onset. Aberrant expression and/or localization of SMN has also been associated with male infertility, inclusion body myositis, amyotrophic lateral sclerosis and osteoarthritis. This review provides a summary of various SMN functions with implications to a better understanding of SMA and other pathological conditions.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States.
| | - Matthew D Howell
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Eric W Ottesen
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
13
|
Han KJ, Foster D, Harhaj EW, Dzieciatkowska M, Hansen K, Liu CW. Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum Mol Genet 2016; 25:1392-405. [PMID: 26908624 DOI: 10.1093/hmg/ddw021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Low levels of the survival motor neuron (SMN) protein cause spinal muscular atrophy, the leading genetic disorder for infant mortality. SMN is ubiquitously expressed in various cell types and localizes in both the cytoplasm and the nucleus, where it concentrates in two subnuclear structures termed Cajal body (CB) and gems. In addition, SMN can also be detected in the nucleolus of neurons. Mechanisms that control SMN sorting in the cell remain largely unknown. Here, we report that the ubiquitin (Ub) ligase Itch directly interacts with and monoubiquitinates SMN. Monoubiquitination of SMN has a mild effect on promoting proteasomal degradation of SMN. We generated two SMN mutants, SMN(K0), in which all lysines are mutated to arginines and thereby abolishing SMN ubiquitination, and Ub-SMN(K0), in which a single Ub moiety is fused at the N-terminus of SMN(K0) and thereby mimicking SMN monoubiquitination. Immunostaining assays showed that SMN(K0) mainly localizes in the nucleus, whereas Ub-SMN(K0) localizes in both the cytoplasm and the nucleolus in neuronal SH-SY5Y cells. Interestingly, canonical CB foci and coilin/small nuclear ribonucleoprotein (snRNP) co-localization are significantly impaired in SH-SY5Y cells stably expressing SMN(K0) or Ub-SMN(K0). Thus, our studies discover that Itch monoubiquitinates SMN and monoubiquitination of SMN plays an important role in regulating its cellular localization. Moreover, mislocalization of SMN disrupts CB integrity and likely impairs snRNP maturation.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Daniel Foster
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Edward W Harhaj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| |
Collapse
|
14
|
Tapia O, Lafarga V, Bengoechea R, Palanca A, Lafarga M, Berciano MT. The SMN Tudor SIM-like domain is key to SmD1 and coilin interactions and to Cajal body biogenesis. J Cell Sci 2014; 127:939-46. [PMID: 24413165 DOI: 10.1242/jcs.138537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cajal bodies (CBs) are nuclear organelles involved in the maturation of spliceosomal small nuclear ribonucleoproteins (snRNPs). They concentrate coilin, snRNPs and the survival motor neuron protein (SMN). Dysfunction of CB assembly occurs in spinal muscular atrophy (SMA). Here, we demonstrate that SMN is a SUMO1 target that has a small ubiquitin-related modifier (SUMO)-interacting motif (SIM)-like motif in the Tudor domain. The expression of SIM-like mutant constructs abolishes the interaction of SMN with the spliceosomal SmD1 (also known as SNRPD1), severely decreases SMN-coilin interaction and prevents CB assembly. Accordingly, the SMN SIM-like-mediated interactions are important for CB biogenesis and their dysfunction can be involved in SMA pathophysiology.
Collapse
Affiliation(s)
- Olga Tapia
- Department of Anatomy and Cell Biology, University of Cantabria-IFIMAV, Santander E-39008, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Sabra M, Texier P, El Maalouf J, Lomonte P. The tudor protein survival motor neuron (SMN) is a chromatin-binding protein that interacts with methylated histone H3 lysine 79. J Cell Sci 2013; 126:3664-77. [DOI: 10.1242/jcs.126003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a muscular disease characterized by the death of motoneurons, and is a major genetic cause of infant mortality. Mutations in the SMN1 gene, which encodes the protein survival motor neuron (SMN), are responsible for the disease due to compensation deficit. SMN belongs to the Tudor domain protein family, whose members are known to interact with methylated arginine (R) or lysine (K) residues. SMN has well-defined roles in the metabolism of small non-coding ribonucleoproteins (snRNPs) and spliceosome activity. We previously showed that SMN relocated to damaged interphase centromeres, together with the Cajal body-associated proteins coilin and fibrillarin, during the so-called interphase centromere damage response (iCDR). Here we reveal that SMN is a chromatin-binding protein that specifically interacts with methylated histone H3K79, a gene expression- and splicing-associated histone modification. SMN relocation to damaged centromeres requires its functional Tudor domain and activity of the H3K79 methyltransferase DOT1-L. In vitro pull-down assays showed that SMN interacts with H3K79me1,2 via its functional Tudor domain. Chromatin immunoprecipitation confirmed that SMN binds to H3K79me1,2-containing chromatin in iCDR-induced cells. These data reveal a novel SMN property in the detection of specific chromatin modifications, and shed new light on the involvement of a putative epigenetic dimension to the occurrence of SMA.
Collapse
|
16
|
Singh NN, Seo J, Rahn SJ, Singh RN. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. PLoS One 2012. [PMID: 23185376 PMCID: PMC3501452 DOI: 10.1371/journal.pone.0049595] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Humans have two near identical copies of Survival Motor Neuron gene: SMN1 and SMN2. Loss of SMN1 coupled with the predominant skipping of SMN2 exon 7 causes spinal muscular atrophy (SMA), a neurodegenerative disease. SMA patient cells devoid of SMN1 provide a powerful system to examine splicing pattern of various SMN2 exons. Until now, similar system to examine splicing of SMN1 exons was unavailable. We have recently screened several patient cell lines derived from various diseases, including SMA, Alzheimer’s disease, Parkinson’s disease and Batten disease. Here we report a Batten disease cell line that lacks functional SMN2, as an ideal system to examine pre-mRNA splicing of SMN1. We employ a multiple-exon-skipping detection assay (MESDA) to capture simultaneously skipping of multiple exons. Our results show surprising diversity of splice isoforms and reveal novel splicing events that include skipping of exon 4 and co-skipping of three adjacent exons of SMN. Contrary to the general belief, MESDA captured oxidative-stress induced skipping of SMN1 exon 5 in several cell types, including non-neuronal cells. We further demonstrate that the predominant SMN2 exon 7 skipping induced by oxidative stress is modulated by a combinatorial control that includes promoter sequence, endogenous context, and the weak splice sites. We also show that an 8-mer antisense oligonucleotide blocking a recently described GC-rich sequence prevents SMN2 exon 7 skipping under the conditions of oxidative stress. Our findings bring new insight into splicing regulation of an essential housekeeping gene linked to neurodegeneration and infant mortality.
Collapse
Affiliation(s)
- Natalia N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Joonbae Seo
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Sarah J. Rahn
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Ravindra N. Singh
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
17
|
Renvoisé B, Quérol G, Verrier ER, Burlet P, Lefebvre S. A role for protein phosphatase PP1γ in SMN complex formation and subnuclear localization to Cajal bodies. J Cell Sci 2012; 125:2862-74. [PMID: 22454514 DOI: 10.1242/jcs.096255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The spinal muscular atrophy (SMA) gene product SMN forms with gem-associated protein 2-8 (Gemin2-8) and unrip (also known as STRAP) the ubiquitous survival motor neuron (SMN) complex, which is required for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs), their nuclear import and their localization to subnuclear domain Cajal bodies (CBs). The concentration of the SMN complex and snRNPs in CBs is reduced upon SMN deficiency in SMA cells. Subcellular localization of the SMN complex is regulated in a phosphorylation-dependent manner and the precise mechanisms remain poorly understood. Using co-immunoprecipitation in HeLa cell extracts and in vitro protein binding assays, we show here that the SMN complex and its component Gemin8 interact directly with protein phosphatase PP1γ. Overexpression of Gemin8 in cells increases the number of CBs and results in targeting of PP1γ to CBs. Moreover, depletion of PP1γ by RNA interference enhances the localization of the SMN complex and snRNPs to CBs. Consequently, the interaction between SMN and Gemin8 increases in cytoplasmic and nuclear extracts of PP1γ-depleted cells. Two-dimensional protein gel electrophoresis revealed that SMN is hyperphosphorylated in nuclear extracts of PP1γ-depleted cells and expression of PP1γ restores these isoforms. Notably, SMN deficiency in SMA leads to the aberrant subcellular localization of Gemin8 and PP1γ in the atrophic skeletal muscles, suggesting that the function of PP1γ is likely to be affected in disease. Our findings reveal a role of PP1γ in the formation of the SMN complex and the maintenance of CB integrity. Finally, we propose Gemin8 interaction with PP1γ as a target for therapeutic intervention in SMA.
Collapse
Affiliation(s)
- Benoît Renvoisé
- Laboratoire de Biologie Cellulaire des Membranes, Programme de Biologie Cellulaire, Institut Jacques-Monod, UMR 7592 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75205 Paris cedex 13, France
| | | | | | | | | |
Collapse
|
18
|
Reorganization of Cajal bodies and nucleolar targeting of coilin in motor neurons of type I spinal muscular atrophy. Histochem Cell Biol 2012; 137:657-67. [DOI: 10.1007/s00418-012-0921-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2012] [Indexed: 12/21/2022]
|
19
|
Timmerman V, Clowes VE, Reid E. Overlapping molecular pathological themes link Charcot-Marie-Tooth neuropathies and hereditary spastic paraplegias. Exp Neurol 2012; 246:14-25. [PMID: 22285450 DOI: 10.1016/j.expneurol.2012.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/29/2011] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
In this review we focus on Charcot-Marie-Tooth (CMT) neuropathies and hereditary spastic paraplegias (HSPs). Although these diseases differ in whether they primarily affect the peripheral or central nervous system, both are genetically determined, progressive, long axonopathies that affect motor and sensory pathways. This commonality suggests that there might be similarities in the molecular pathology underlying these conditions, and here we compare the molecular genetics and cellular pathology of the two groups.
Collapse
Affiliation(s)
- Vincent Timmerman
- Peripheral Neuropathy Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium.
| | | | | |
Collapse
|
20
|
Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M. Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 2011; 18:1414-20. [PMID: 22101937 DOI: 10.1038/nsmb.2185] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/14/2011] [Indexed: 11/09/2022]
Abstract
Arginine dimethylation plays critical roles in the assembly of ribonucleoprotein complexes in pre-mRNA splicing and piRNA pathways. We report solution structures of SMN and SPF30 Tudor domains bound to symmetric and asymmetric dimethylated arginine (DMA) that is inherent in the RNP complexes. An aromatic cage in the Tudor domain mediates dimethylarginine recognition by electrostatic stabilization through cation-π interactions. Distinct from extended Tudor domains, dimethylarginine binding by the SMN and SPF30 Tudor domains is independent of proximal residues in the ligand. Yet, enhanced micromolar affinities are obtained by external cooperativity when multiple methylation marks are presented in arginine- and glycine-rich peptide ligands. A hydrogen bond network in the SMN Tudor domain, including Glu134 and a tyrosine hydroxyl of the aromatic cage, enhances cation-π interactions and is impaired by a mutation causing an E134K substitution associated with spinal muscular atrophy. Our structural analysis enables the design of an optimized binding pocket and the prediction of DMA binding properties of Tudor domains.
Collapse
|
21
|
Fuentes JL, Strayer MS, Matera AG. Molecular determinants of survival motor neuron (SMN) protein cleavage by the calcium-activated protease, calpain. PLoS One 2010; 5:e15769. [PMID: 21209906 PMCID: PMC3012718 DOI: 10.1371/journal.pone.0015769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/28/2010] [Indexed: 01/13/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a leading genetic cause of childhood mortality, caused by reduced levels of survival motor neuron (SMN) protein. SMN functions as part of a large complex in the biogenesis of small nuclear ribonucleoproteins (snRNPs). It is not clear if defects in snRNP biogenesis cause SMA or if loss of some tissue-specific function causes disease. We recently demonstrated that the SMN complex localizes to the Z-discs of skeletal and cardiac muscle sarcomeres, and that SMN is a proteolytic target of calpain. Calpains are implicated in muscle and neurodegenerative disorders, although their relationship to SMA is unclear. Using mass spectrometry, we identified two adjacent calpain cleavage sites in SMN, S192 and F193. Deletion of small motifs in the region surrounding these sites inhibited cleavage. Patient-derived SMA mutations within SMN reduced calpain cleavage. SMN(D44V), reported to impair Gemin2 binding and amino-terminal SMN association, drastically inhibited cleavage, suggesting a role for these interactions in regulating calpain cleavage. Deletion of A188, a residue mutated in SMA type I (A188S), abrogated calpain cleavage, highlighting the importance of this region. Conversely, SMA mutations that interfere with self-oligomerization of SMN, Y272C and SMNΔ7, had no effect on cleavage. Removal of the recently-identified SMN degron (Δ268-294) resulted in increased calpain sensitivity, suggesting that the C-terminus of SMN is important in dictating availability of the cleavage site. Investigation into the spatial determinants of SMN cleavage revealed that endogenous calpains can cleave cytosolic, but not nuclear, SMN. Collectively, the results provide insight into a novel aspect of the post-translation regulation of SMN.
Collapse
Affiliation(s)
- Jennifer L. Fuentes
- Program in Molecular Biology and Biotechnology, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Molly S. Strayer
- Program in Molecular Biology and Biotechnology, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - A. Gregory Matera
- Program in Molecular Biology and Biotechnology, Departments of Biology and Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hubers L, Valderrama-Carvajal H, Laframboise J, Timbers J, Sanchez G, Côté J. HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects. Hum Mol Genet 2010; 20:553-79. [PMID: 21088113 DOI: 10.1093/hmg/ddq500] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Spinal muscular atrophy is an autosomal-recessive neuromuscular disease caused by disruption of the survival of motor neuron (SMN) gene, which promotes cytoplasmic assembly of the splicing core machinery. It remains unclear how a deficiency in SMN results in a disorder leading to selective degeneration of lower motor neurons. We report here that SMN interacts with RNA-binding protein HuD in neurites of motorneuron-derived MN-1 cells. This interaction is mediated through the Tudor domain of SMN and, importantly, naturally occurring Tudor mutations found in patients with severe spinal muscular atrophy (SMA) completely abrogate the interaction, underscoring its relevance to the disease process. We also characterized a regulatory pathway involving coactivator-associated arginine methyltransferase 1 (CARM1) and HuD. Specifically, we show that CARM1 expression is rapidly downregulated, at the protein level, following induction of differentiation through retinoid and neurotrophic signaling. Using purified proteins, we demonstrate that methylation of HuD by CARM1 reduces its interaction with the p21(cip1/waf1) mRNA, showing that CARM1 can directly influence RNA-binding activity. We further demonstrate that this CARM1-dependent regulatory switch mainly controls the activity of HuD in promoting cell-cycle exit, whereas the interaction between HuD and SMN is required for proper recruitment of HuD and its mRNA targets in neuronal RNA granules. Finally, we were able to rescue SMA-like defects in a hypomorphic Smn knockdown MN-1 cell line through overexpression of HuD. Together, these findings extend our understanding of specific role(s) of SMN in motor neurons and provide crucial insights into potential new avenues for SMA therapeutic strategies.
Collapse
Affiliation(s)
- Lisa Hubers
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario,Canada K1H 8M5
| | | | | | | | | | | |
Collapse
|
23
|
Renvoisé B, Colasse S, Burlet P, Viollet L, Meier UT, Lefebvre S. The loss of the snoRNP chaperone Nopp140 from Cajal bodies of patient fibroblasts correlates with the severity of spinal muscular atrophy. Hum Mol Genet 2009; 18:1181-9. [PMID: 19129172 DOI: 10.1093/hmg/ddp009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive neurodegenerative disease caused by reduced survival motor neuron (SMN) levels. The assembly machinery containing SMN is implicated in the biogenesis of the spliceosomal small nuclear ribonucleoproteins (snRNPs). SMN is present in both the cytoplasm and nucleus, where it transiently accumulates in subnuclear domains named Cajal bodies (CBs) and functions in the maturation of snRNPs and small nucleolar (sno)RNPs. The impact of lowering SMN levels on the composition of CBs in SMA cells is still not completely understood. Here, we analyse the CB composition in immortalized and primary fibroblasts from SMA patients. We show that the U snRNA export factors PHAX and chromosome region maintenance 1 and the box C/D snoRNP core protein fibrillarin concentrate in CBs from SMA cells, whereas the box H/ACA core proteins GAR1 and NAP57/dyskerin show reduced CB localization. Remarkably, the functional deficiency in SMA cells is associated with decreased localization of the snoRNP chaperone Nopp140 in CBs that correlates with disease severity. Indeed, RNA interference knockdown experiments in control fibroblasts demonstrate that SMN is required for accumulation of Nopp140 in CBs. Conversely, overexpression of SMN in SMA cells restores the CB localization of Nopp140, whereas SMN mutants found in SMA patients are defective in promoting the association of Nopp140 with CBs. Taken together, we demonstrate that only a subset of CB functions (as indicated by the association of representative factors) are impaired in SMA cells and, importantly, we identify the decrease of Nopp140 localization in CBs as a phenotypic marker for SMA.
Collapse
Affiliation(s)
- Benoît Renvoisé
- Laboratoire de Biologie Cellulaire des Membranes, Department of Cell Biology, Institut Jacques Monod (IJM), UMR 7592 CNRS/Universités Paris 6 et 7, Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
24
|
Joining the dots: Production, processing and targeting of U snRNP to nuclear bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2137-44. [DOI: 10.1016/j.bbamcr.2008.07.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/22/2008] [Accepted: 07/23/2008] [Indexed: 11/20/2022]
|
25
|
Zhang H, Xing L, Singer RH, Bassell GJ. QNQKE targeting motif for the SMN-Gemin multiprotein complexin neurons. J Neurosci Res 2007; 85:2657-67. [PMID: 17455327 DOI: 10.1002/jnr.21308] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Spinal muscular atrophy (SMA) is a heritable neurodegenerative disease affecting motor neurons that is caused by the impaired expression of the full-length form of the survival of motor neuron protein (SMN), which may have a specialized function in neurons related to mRNA localization. We have previously shown that a population SMN complexes contain Gemin ribonucleoproteins and traffic in the form of granules to neuronal processes and growth cones of cultured neurons. A QNQKE sequence within exon 7 has been shown to be necessary for both cytoplasmic localization of SMN and axonal function. Here we show that the QNQKE sequence can influence the nucleocytoplasmic distribution of the SMN-Gemin complex and its localization into neuronal processes. QNQKE exerted a stronger effect on SMN localization in primary neurons compared with COS-7 cells. By using double-label fluorescence in situ hybridization and immunofluorescence, SMN granules within neuronal processes colocalized with poly-(A) mRNA and PABP. These findings provide further evidence in support of a neuronal function for SMN and motivation to investigate for impaired assembly and/or localization of mRNP complexes as an underlying cause of SMA.
Collapse
Affiliation(s)
- Honglai Zhang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | |
Collapse
|
26
|
Gene function in early mouse embryonic stem cell differentiation. BMC Genomics 2007; 8:85. [PMID: 17394647 PMCID: PMC1851713 DOI: 10.1186/1471-2164-8-85] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 03/29/2007] [Indexed: 12/20/2022] Open
Abstract
Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database.
Collapse
|
27
|
Rogne M, Landsverk HB, Van Eynde A, Beullens M, Bollen M, Collas P, Küntziger T. The KH-Tudor Domain of A-Kinase Anchoring Protein 149 Mediates RNA-Dependent Self-Association. Biochemistry 2006; 45:14980-9. [PMID: 17154535 DOI: 10.1021/bi061418y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A-Kinase anchoring proteins (AKAPs) control the subcellular localization and temporal specificity of protein phosphorylation mediated by cAMP-dependent protein kinase. AKAP149 (AKAP1) is found in mitochondria and in the endoplasmic reticulum-nuclear envelope network where it anchors protein kinases, phosphatases, and a phosphodiesterase. AKAP149 harbors in its COOH-terminal part one KH and one Tudor domain, both known to be involved in RNA binding. We investigated the properties of the COOH-terminal domain of AKAP149. We show here that AKAP149 is a self-associating protein with RNA binding features. The KH domain of AKAP149 is sufficient for self-association in a RNA-dependent manner. The Tudor domain is not necessary for self-association, but it is required together with the KH domain for targeting to well-defined nuclear foci. These foci are spatially closely related to nucleolar subcompartments. We also show that the KH-Tudor-containing domain of AKAP149 binds RNA in vitro and in RNA coprecipitation experiments. AKAP149 emerges as a scaffolding protein involved in the integration of intracellular signals and possibly in RNA metabolism.
Collapse
Affiliation(s)
- Marie Rogne
- Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, P.O. Box 1112 Blindern, 0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|