1
|
Lian L, Sun Q, Huang X, Li W, Cui Y, Pan Y, Yang X, Wang P. Inhibition of Cell Apoptosis by Apicomplexan Protozoa-Host Interaction in the Early Stage of Infection. Animals (Basel) 2023; 13:3817. [PMID: 38136854 PMCID: PMC10740567 DOI: 10.3390/ani13243817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Apicomplexan protozoa, which are a group of specialized intracellular parasitic protozoa, infect humans and other animals and cause a variety of diseases. The lack of research on the interaction mechanism between Apicomplexan protozoa and their hosts is a key factor restricting the development of new drugs and vaccines. In the early stages of infection, cell apoptosis is inhibited by Apicomplexan protozoa through their interaction with the host cells; thereby, the survival and reproduction of Apicomplexan protozoa in host cells is promoted. In this review, the key virulence proteins and pathways are introduced regarding the inhibition of cell apoptosis by the interaction between the protozoa and their host during the early stage of Apicomplexan protozoa infection. It provides a theoretical basis for the development of drugs or vaccines for protozoal diseases.
Collapse
Affiliation(s)
- Liyin Lian
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Qian Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Xinyi Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Wanjing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Yanjun Cui
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Yuebo Pan
- Gansu Polytechnic College of Animal Husbandry and Engineering, Wuwei 733006, China
| | - Xianyu Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| | - Pu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou 311300, China; (L.L.); (Q.S.); (X.H.); (W.L.); (Y.C.); (X.Y.)
| |
Collapse
|
2
|
Taheri M, Bahrami A, Asadi KK, Mohammadi M, Molaei P, Hashemi M, Nouri F. A review on nonviral, nonbacterial infectious agents toxicity involved in neurodegenerative diseases. Neurodegener Dis Manag 2023; 13:351-369. [PMID: 38357803 DOI: 10.2217/nmt-2023-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Neuronal death, decreased activity or dysfunction of neurotransmitters are some of the pathophysiological reasons for neurodegenerative diseases like Alzheimer's, Parkinson's and multiple sclerosis. Also, there is evidence for the role of infections and infectious agents in neurodegenerative diseases and the effect of some metabolites in microorganisms in the pathophysiology of these diseases. In this study, we intend to evaluate the existing studies on the role of infectious agents and their metabolites on the pathophysiology of neurodegenerative diseases. PubMed, Scopus, Google Scholar and Web of Science search engines were searched. Some infectious agents have been observed in neurodegenerative diseases. Also, isolations of some fungi and microalgae have an improving effect on Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiana Kimiaei Asadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Pejman Molaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Zhai B, Meng YM, Xie SC, Peng JJ, Liu Y, Qiu Y, Wang L, Zhang J, He JJ. iTRAQ-Based Phosphoproteomic Analysis Exposes Molecular Changes in the Small Intestinal Epithelia of Cats after Toxoplasma gondii Infection. Animals (Basel) 2023; 13:3537. [PMID: 38003154 PMCID: PMC10668779 DOI: 10.3390/ani13223537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite, has the ability to invade and proliferate within most nucleated cells. The invasion and destruction of host cells by T. gondii lead to significant changes in the cellular signal transduction network. One important post-translational modification (PTM) of proteins is phosphorylation/dephosphorylation, which plays a crucial role in cell signal transmission. In this study, we aimed to investigate how T. gondii regulates signal transduction in definitive host cells. We employed titanium dioxide (TiO2) affinity chromatography to enrich phosphopeptides in the small intestinal epithelia of cats at 10 days post-infection with the T. gondii Prugniuad (Pru) strain and quantified them using iTRAQ technology. A total of 4998 phosphopeptides, 3497 phosphorylation sites, and 1805 phosphoproteins were identified. Among the 705 differentially expressed phosphoproteins (DEPs), 68 were down-regulated and 637 were up-regulated. The bioinformatics analysis revealed that the DE phosphoproteins were involved in various cellular processes, including actin cytoskeleton reorganization, cell necroptosis, and MHC immune processes. Our findings confirm that T. gondii infection leads to extensive changes in the phosphorylation of proteins in the cat intestinal epithelial cells. The results of this study provide a theoretical foundation for understanding the interaction between T. gondii and its definitive host.
Collapse
Affiliation(s)
- Bintao Zhai
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Yu-Meng Meng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Shi-Chen Xie
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jun-Jie Peng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (Y.-M.M.); (J.-J.P.)
| | - Yang Liu
- College of Life Science, Ningxia University, Yinchuan 750021, China;
| | - Yanhua Qiu
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Lu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (S.-C.X.); (L.W.)
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Lanzhou Institute of Husbandry and Pharma-Ceutical Sciences, Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China; (B.Z.); (Y.Q.)
| | - Jun-Jun He
- Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
4
|
Dupont D, Robert M, Brenier-Pinchart M, Lefevre A, Wallon M, Pelloux H. Toxoplasma gondii, a plea for a thorough investigation of its oncogenic potential. Heliyon 2023; 9:e22147. [PMID: 38034818 PMCID: PMC10685377 DOI: 10.1016/j.heliyon.2023.e22147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
It is estimated that 30 % of the world's population harbours the parasite Toxoplasma gondii, particularly in the brain. Beyond its implication in potentially severe opportunistic or congenital infections, this persistence has long been considered as without consequence. However, certain data in animals and humans suggest that this carriage may be linked to various neuropsychiatric or neurodegenerative disorders. The hypothesis of a potential cerebral oncogenicity of the parasite is also emerging. In this personal view, we will present the epidemiological arguments in favour of an association between toxoplasmosis and cerebral malignancy, before considering the points that could underlie a potential causal link. More specifically, we will focus on the brain as the preferred location for T. gondii persistence and the propensity of this parasite to interfere with the apoptosis and cell cycle signalling pathways of their host cell.
Collapse
Affiliation(s)
- D. Dupont
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - M.G. Robert
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - M.P. Brenier-Pinchart
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| | - A. Lefevre
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
| | - M. Wallon
- Institut des Agents Infectieux, Parasitologie Mycologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, 69004, France
- Physiologie intégrée du système d’éveil, Centre de Recherche en Neurosciences de Lyon, INSERM U1028-CNRS UMR 5292, Faculté de Médecine, Université Claude Bernard Lyon 1, Bron, 69500, France
| | - H. Pelloux
- Service de Parasitologie-Mycologie, CHU Grenoble Alpes, Grenoble, 38000, France
- Université Grenoble Alpes, Institut pour l'Avancée des Biosciences (IAB), INSERM U1209-CNRS UMR 5309, Grenoble, 38000, France
| |
Collapse
|
5
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
6
|
Overview of Apoptosis, Autophagy, and Inflammatory Processes in Toxoplasma gondii Infected Cells. Pathogens 2023; 12:pathogens12020253. [PMID: 36839525 PMCID: PMC9966443 DOI: 10.3390/pathogens12020253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite. During the parasitic invasion, T. gondii creates a parasitophorous vacuole, which enables the modulation of cell functions, allowing its replication and host infection. It has effective strategies to escape the immune response and reach privileged immune sites and remain inactive in a controlled environment in tissue cysts. This current review presents the factors that affect host cells and the parasite, as well as changes in the immune system during host cell infection. The secretory organelles of T. gondii (dense granules, micronemes, and rhoptries) are responsible for these processes. They are involved with proteins secreted by micronemes and rhoptries (MIC, AMA, and RONs) that mediate the recognition and entry into host cells. Effector proteins (ROP and GRA) that modify the STAT signal or GTPases in immune cells determine their toxicity. Interference byhost autonomous cells during parasitic infection, gene expression, and production of microbicidal molecules such as reactive oxygen species (ROS) and nitric oxide (NO), result in the regulation of cell death. The high level of complexity in host cell mechanisms prevents cell death in its various pathways. Many of these abilities play an important role in escaping host immune responses, particularly by manipulating the expression of genes involved in apoptosis, necrosis, autophagy, and inflammation. Here we present recent works that define the mechanisms by which T. gondii interacts with these processes in infected host cells.
Collapse
|
7
|
Pereira LM, Audrey de Paula J, Baroni L, Bezerra MA, Abreu-Filho PG, Yatsuda AP. Molecular characterization of NCLIV_011700 of Neospora caninum, a low sequence identity rhoptry protein. Exp Parasitol 2022; 238:108268. [PMID: 35513005 DOI: 10.1016/j.exppara.2022.108268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 02/05/2023]
Abstract
Neospora caninum is an obligate intracellular parasite related to abortion in cattle, goats and sheep. The life cycle of N. caninum is characterized by the time-coordinated secretion of proteins contained in micronemes, rhoptries and dense granules, allowing the active invasion and the adaptation of the parasite in the cell environment. Thus, the proteins of the secretome have the potential to be considered as targets for N. caninum control. Despite the importance of neosporosis in the livestock-related economy, no commercial treatment is available. Furthermore, the process of invasion, propagation and immune evasion are not completely elucidated. In this study, we initiated the characterization of NCLIV_011700 of N. caninum, a protein with low sequence identity to NcROP15 or TgROP15 (<15%). Our goal was the detection and molecular characterization of the NCLIV_011700, once homology (with low identity >20%) was observed within the Apicomplexa. The NCLIV_011700 sequence was aligned and compared to the closer apicomplexan homologues (ROP15 from N. caninum, T. gondii, Hammondia hammondi, Cystospores suis), including the predicted domains. In general, the NCLIV_011700 demonstrated low identity with ROP15 of apicomplexan (<20%) and had a ubiquitin domain. On the other side, the NCLIV_011700 homologues were composed of a non-cytoplasmic domain, suggesting different functions between NcROP15 (or homologues) and NCLIV_011700 during the parasite life cycle. Moreover, the NCLIV_011700 was amplified by PCR, ligated to a pET28a plasmid and expressed in Escherichia coli. The recombinant form of NCLIV_011700 was purified in a nickel-Sepharose resin and applied for polyclonal antibody production in mice. The antiserum against NCLIV_011700 (anti-r NCLIV_011700) was used to localize the native form of the protein using Western blot and confocal microscopy. Also, the NCLIV_011700 antiserum partially inhibited the parasite adhesion/invasion process, indicating an active role of the protein in the N. caninum cycle. Thus, the initial NCLIV_011700 characterization will contribute to enlarging the comprehension of N. caninum, aiming at the future development of tools to control the parasite infection/propagation.
Collapse
Affiliation(s)
- Luiz Miguel Pereira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Julia Audrey de Paula
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Luciana Baroni
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Marcos Alexandre Bezerra
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Péricles Gama Abreu-Filho
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café, sn/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
8
|
Rahimi HM, Nemati S, Alavifard H, Baghaei K, Mirjalali H, Zali MR. Soluble total antigen derived from Toxoplasma gondii RH strain prevents apoptosis, but induces anti-apoptosis in human monocyte cell line. Folia Parasitol (Praha) 2021; 68. [PMID: 34889779 DOI: 10.14411/fp.2021.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Abstract
Apoptosis plays crucial role in the pathogenesis of toxoplasmosis, as it limits further development of the disease. The current study aimed to investigate the effects of different concentrations of soluble total antigen (STAg) of Toxoplasma gondii (Nicolle et Manceaux, 1908) on the apoptotic and anti-apoptotic pathways. PMA-activated THP-1 cell line was sensed by T. gondii STAg and the expression patterns of caspase-3, -7, -8, -9, Bax, Bcl-2, and Mcl-1 genes were evaluated. The results showed statistically significant concentration-dependent overexpression of both Bcl-2 (P-value < 0.0001) and Mcl-1 (P-value = 0.0147). The cas-7 showed overexpression in all concentrations (P-value < 0.0001). The cas-3 was suppressed in concentrations 100, 80, and 40 µg, but statistically significant downregulated in concentrations 10 and 20 µg. The Bax was suppressed in concentrations 100 to 20 µg, while it slightly downregulated 1.42 fold (P-value = 0.0029) in concentration 10 µg. The expression of cas-8 and -9 was suppressed in all concentrations. Our results indicated that T. gondii STAg downregulated and suppressed apoptotic and upregulated anti-apoptotic pathways. The upregulation of cas-7 in this study may indicate the role of T. gondii STAg in activation of inflammatory responses.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran *Address for correspondence: Hamed Mirjalali, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Arabi Street, 1985717413, Chamran Highway, Tehran, Iran.
| |
Collapse
|
9
|
Gao FF, Quan JH, Choi IW, Lee YJ, Jang SG, Yuk JM, Lee YH, Cha GH. FAF1 downregulation by Toxoplasma gondii enables host IRF3 mobilization and promotes parasite growth. J Cell Mol Med 2021; 25:9460-9472. [PMID: 34464509 PMCID: PMC8500981 DOI: 10.1111/jcmm.16889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 01/27/2023] Open
Abstract
Fas‐associated factor 1 (FAF1) has gained a reputation as a member of the FAS death‐inducing signalling complex. However, the role of FAF1 in the immunity response is not fully understood. Here, we report that, in the human retinal pigment epithelial (RPE) cell line ARPE‐19 cells, FAF1 expression level was downregulated by Toxoplasma gondii infection, and PI3K/AKT inhibitors reversed T. gondii‐induced FAF1 downregulation. In silico analysis for the FAF1 promoter sequence showed the presence of a FOXO response element (FRE), which is a conserved binding site for FOXO1 transcription factor. In accordance with the finding, FOXO1 overexpression potentiated, whereas FOXO1 depletion inhibited intracellular FAF1 expression level. We also found that FAF1 downregulation by T. gondii is correlated with enhanced IRF3 transcription activity. Inhibition of PI3K/AKT pathway with specific inhibitors had no effect on the level of T. gondii‐induced IRF3 phosphorylation but blocked IRF3 nuclear import and ISGs transcription. These results suggest that T. gondii can downregulate host FAF1 in PI3K/AKT/FOXO1‐dependent manner, and the event is essential for IRF3 nuclear translocation to active the transcription of ISGs and thereby T. gondii proliferation.
Collapse
Affiliation(s)
- Fei-Fei Gao
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Juan-Hua Quan
- Department of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - In-Wook Choi
- Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Yeon-Jae Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Seul-Gi Jang
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Jae-Min Yuk
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Young-Ha Lee
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, Korea.,Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| | - Guang-Ho Cha
- Department of Medical Science and Department of Infection Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
10
|
Mitra P, Deshmukh AS, Choudhury C. Molecular chaperone function of stress inducible Hsp70 is critical for intracellular multiplication of Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118898. [PMID: 33157166 DOI: 10.1016/j.bbamcr.2020.118898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 11/27/2022]
Abstract
Intracellular pathogens like Toxoplasma gondii often target proteins and pathways critical for host cell survival and stress response. Molecular chaperones encoded by the evolutionary conserved Heat shock proteins (Hsps) maintain proteostasis and are vital to cell survival following exposure to any form of stress. A key protein of this family is Hsp70, an ATP-driven molecular chaperone, which is stress inducible and often indiscernible in normal cells. Role of this protein with respect to intracellular survival and multiplication of protozoan parasite like T. gondii remains to be examined. We find that T. gondii infection upregulates expression of host Hsp70. Hsp70 selective inhibitor 2-phenylethynesulfonamide (PES) attenuates intracellular T. gondii multiplication. Biotinylated PES confirms selective interaction of this small molecule inhibitor with Hsp70. We show that PES acts by disrupting Hsp70 chaperone function which leads to dysregulation of host autophagy. Silencing of host Hsp70 underscores its importance for intracellular multiplication of T. gondii, however, attenuation achieved using PES is not completely attributable to host Hsp70 indicating the presence of other intracellular targets of PES in infected host cells. We find that PES is also able to target T. gondii Hsp70 homologue which was shown using PES binding assay. Detailed molecular docking analysis substantiates PES targeting of TgHsp70 in addition to host Hsp70. While establishing the importance of protein quality control in infection, this study brings to the fore a unique opportunity of dual targeting of host and parasite Hsp70 demonstrating how structural conservation of these proteins may be exploited for therapeutic design.
Collapse
Affiliation(s)
- Pallabi Mitra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| | | | - Chinmayee Choudhury
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Research and Education, Chandigarh, India
| |
Collapse
|
11
|
Baggiani M, Dell’Anno MT, Pistello M, Conti L, Onorati M. Human Neural Stem Cell Systems to Explore Pathogen-Related Neurodevelopmental and Neurodegenerative Disorders. Cells 2020; 9:E1893. [PMID: 32806773 PMCID: PMC7464299 DOI: 10.3390/cells9081893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022] Open
Abstract
Building and functioning of the human brain requires the precise orchestration and execution of myriad molecular and cellular processes, across a multitude of cell types and over an extended period of time. Dysregulation of these processes affects structure and function of the brain and can lead to neurodevelopmental, neurological, or psychiatric disorders. Multiple environmental stimuli affect neural stem cells (NSCs) at several levels, thus impairing the normal human neurodevelopmental program. In this review article, we will delineate the main mechanisms of infection adopted by several neurotropic pathogens, and the selective NSC vulnerability. In particular, TORCH agents, i.e., Toxoplasma gondii, others (including Zika virus and Coxsackie virus), Rubella virus, Cytomegalovirus, and Herpes simplex virus, will be considered for their devastating effects on NSC self-renewal with the consequent neural progenitor depletion, the cellular substrate of microcephaly. Moreover, new evidence suggests that some of these agents may also affect the NSC progeny, producing long-term effects in the neuronal lineage. This is evident in the paradigmatic example of the neurodegeneration occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| | - Maria Teresa Dell’Anno
- Cellular Engineering Laboratory, Fondazione Pisana per la Scienza ONLUS, 56017 Pisa, Italy;
| | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa and Virology Division, Pisa University Hospital, 56100 Pisa, Italy;
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy;
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56126 Pisa, Italy;
| |
Collapse
|
12
|
Choi HG, Gao FF, Zhou W, Sun PR, Yuk JM, Lee YH, Cha GH. The Role of PI3K/AKT Pathway and NADPH Oxidase 4 in Host ROS Manipulation by Toxoplasma gondii. THE KOREAN JOURNAL OF PARASITOLOGY 2020; 58:237-247. [PMID: 32615737 PMCID: PMC7338895 DOI: 10.3347/kjp.2020.58.3.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/27/2020] [Indexed: 01/13/2023]
Abstract
Dendritic cell is one of the first innate immune cell to encounter T. gondii after the parasite crosses the host intestinal epithelium. T. gondii requires intact DC as a carrier to infiltrate into host central nervous system (CNS) without being detected or eliminated by host defense system. The mechanism by which T. gondii avoids innate immune defense of host cell, especially in the dendritic cell is unknown. Therefore, we examined the role of host PI3K/AKT signaling pathway activation by T. gondii in dendritic cell. T. gondii infection or T. gondii excretory/secretory antigen (TgESA) treatment to the murine dendritic cell line DC2.4 induced AKT phosphorylation, and treatment of PI3K inhibitors effectively suppressed the T. gondii proliferation but had no effect on infection rate or invasion rate. Furthermore, it is found that T. gondii or TgESA can reduce H2O2-induced intracellular reactive oxygen species (ROS) as well as host endogenous ROS via PI3K/AKT pathway activation. While searching for the main source of the ROS, we found that NADPH oxidase 4 (NOX4) expression was controlled by T. gondii infection or TgESA treatment, which is in correlation with previous observation of the ROS reduction by identical treatments. These findings suggest that the manipulation of the host PI3K/AKT signaling pathway and NOX4 expression is an essential mechanism for the down-regulation of ROS, and therefore, for the survival and the proliferation of T. gondii.
Collapse
Affiliation(s)
- Hei Gwon Choi
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Fei-Fei Gao
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Wei Zhou
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea.,Institute of Immunology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271-000, Shandong, China
| | - Pu-Reum Sun
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Jae-Min Yuk
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Young-Ha Lee
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| | - Guang-Ho Cha
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 35015; Korea
| |
Collapse
|
13
|
Zhang X, Li S, Zheng M, Zhang L, Bai R, Li R, Hao S, Bai B, Kang H. Effects of the PI3K/Akt signaling pathway on the apoptosis of early host cells infected with Eimeria tenella. Parasitol Res 2020; 119:2549-2561. [PMID: 32562065 DOI: 10.1007/s00436-020-06738-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/31/2020] [Indexed: 12/14/2022]
Abstract
This study investigated the role of PI3K/Akt signaling pathway on host cell apoptosis in the early infection of Eimeria tenella. Chicken cecal epithelial cells were treated with apoptosis-inducer Actinomycin D (Act D) or PI3K/Akt signaling pathway inhibitor LY294002 and then infected with E. tenella. Results demonstrated that the E. tenella-infected group had less apoptosis 4-8 h after the infection and more apoptosis 12-20 h after the infection than the control group. At 4-20 h after the infection, the apoptotic/necrotic rate and the Caspase-3 activity in the Act D + E. tenella group were lower (P < 0.01) than those in the Act D-treated group. The p-Akt and NF-κB contents in the E. tenella-infected group were higher (P < 0.01) than those in the control group 4-12 h after the infection. However, the bad content and the Caspase-9/3 activity were lower (P < 0.05) in the E. tenella-infected group than in the control group. Compared with the E. tenella-infected group, the LY294002 + E. tenella group showed decreased p-Akt content and increased apoptotic/necrotic rate, bad content, NF-κB expression, membrane permeability transition pore (MPTP) openness, and Caspase-9/3 activity. Thus, the early development of E. tenella could inhibit host cell apoptosis by downregulating the Caspase-3 activity. Upregulating this activity promoted apoptosis. In addition, activating the PI3K/Akt signaling pathway inhibited the apoptosis of E. tenella host cells in the early infection by reducing the expression of the bad content, limiting the MPTP opening, and decreasing the Caspase-9 and Caspase-3 activities.
Collapse
Affiliation(s)
- Xuesong Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Shan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Mingxue Zheng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China.
| | - Li Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Rui Bai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Ruiqi Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Siyuan Hao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Bing Bai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| | - Huixin Kang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, China
| |
Collapse
|
14
|
The Cataleptic, Asymmetric, Analgesic, and Brain Biochemical Effects of Parkinson's Disease Can Be Affected by Toxoplasma gondii Infection. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2546365. [PMID: 32461971 PMCID: PMC7222602 DOI: 10.1155/2020/2546365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Purpose Parkinson's disease (PD) is a neurodegenerative disorder with progressive motor defects. Therefore, the aim of the present investigation was to examine whether catalepsy, asymmetry, and nociceptive behaviors; the Nissl-body and neuron distribution; brain-derived neurotrophic factor (BDNF); malondialdehyde (MDA); total antioxidant capacity (TAC) levels; and the percentage of dopamine depletion of striatal neurons in the rat model of Parkinson's disease (PD) can be affected by Toxoplasma gondii (TG) infection. Methods Fifty rats were divided into five groups: control (intact rats), sham (rats which received an intrastriatal injection of artificial cerebrospinal fluid (ACSF)), PD control (induction of PD without TG infection), TG control (rats infected by TG without PD induction), and PD infected (third week after PD induction, infection by TG was done). PD was induced by the unilateral intrastriatal microinjection of 6-hydroxydopamine (6-OHDA) and ELISA quantified dopamine, BDNF, MDA, and TAC in the striatum tissue. Cataleptic, asymmetrical, nociceptive, and histological alterations were determined by bar test, elevated body swing test, formalin test, and Nissl-body and neuron counting in the striatal neurons. Results The results demonstrated that PD could significantly increase the number of biased swings, descent latency time, and nociceptive behavior and decrease the distribution of Nissl-stained neurons compared to the control and sham groups. TG infection significantly improved biased swing, descent latency time, nociceptive behavior, and the Nissl-body distribution in striatal neurons in comparison to the PD control group. The striatal level of BDNF in the PD-infected and TG control groups significantly increased relative to the PD control group. The striatal MDA was significantly higher in the PD control than other groups, while striatal TAC was significantly lower in the PD control than other groups. Conclusions The current study indicates that TG infection could improve the cataleptic, asymmetric, nociceptive and behaviors; the level of striatal dopamine release; BDNF levels; TAC; and MDA in PD rats.
Collapse
|
15
|
Mercer HL, Snyder LM, Doherty CM, Fox BA, Bzik DJ, Denkers EY. Toxoplasma gondii dense granule protein GRA24 drives MyD88-independent p38 MAPK activation, IL-12 production and induction of protective immunity. PLoS Pathog 2020; 16:e1008572. [PMID: 32413093 PMCID: PMC7255617 DOI: 10.1371/journal.ppat.1008572] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/28/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
The apicomplexan Toxoplasma gondii induces strong protective immunity dependent upon recognition by Toll-like receptors (TLR)11 and 12 operating in conjunction with MyD88 in the murine host. However, TLR11 and 12 proteins are not present in humans, inspiring us to investigate MyD88-independent pathways of resistance. Using bicistronic IL-12-YFP reporter mice on MyD88+/+ and MyD88-/- genetic backgrounds, we show that CD11c+MHCII+F4/80- dendritic cells, F4/80+ macrophages, and Ly6G+ neutrophils were the dominant cellular sources of IL-12 in both wild type and MyD88 deficient mice after parasite challenge. Parasite dense granule protein GRA24 induces p38 MAPK activation and subsequent IL-12 production in host macrophages. We show that Toxoplasma triggers an early and late p38 MAPK phosphorylation response in MyD88+/+ and MyD88-/- bone marrow-derived macrophages. Using the uracil auxotrophic Type I T. gondii strain cps1-1, we demonstrate that the late response does not require active parasite proliferation, but strictly depends upon GRA24. By i. p. inoculation with cps1-1 and cps1-1:Δgra24, we identified unique subsets of chemokines and cytokines that were up and downregulated by GRA24. Finally, we demonstrate that cps1-1 triggers a strong host-protective GRA24-dependent Th1 response in the absence of MyD88. Our data identify GRA24 as a major mediator of p38 MAPK activation, IL-12 induction and protective immunity that operates independently of the TLR/MyD88 cascade.
Collapse
Affiliation(s)
- Heather L. Mercer
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Lindsay M. Snyder
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Claire M. Doherty
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - Eric Y. Denkers
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
16
|
Subauste CS. Interplay Between Toxoplasma gondii, Autophagy, and Autophagy Proteins. Front Cell Infect Microbiol 2019; 9:139. [PMID: 31119109 PMCID: PMC6506789 DOI: 10.3389/fcimb.2019.00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 12/31/2022] Open
Abstract
Survival of Toxoplasma gondii within host cells depends on its ability of reside in a vacuole that avoids lysosomal degradation and enables parasite replication. The interplay between immune-mediated responses that lead to either autophagy-driven lysosomal degradation or disruption of the vacuole and the strategies used by the parasite to avoid these responses are major determinants of the outcome of infection. This article provides an overview of this interplay with an emphasis on autophagy.
Collapse
Affiliation(s)
- Carlos S Subauste
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
17
|
Toxoplasma gondii Modulates the Host Cell Responses: An Overview of Apoptosis Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6152489. [PMID: 31080827 PMCID: PMC6475534 DOI: 10.1155/2019/6152489] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
Infection with Toxoplasma gondii has a major implication in public health. Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect all nucleated cells belonging to a wide range of host species. One of the particularities of this parasite is its invasion and persistence in host cells of immunocompetent people. This infection is usually asymptomatic. In immunocompromised patients, the infection is severe and symptomatic. The mechanisms by which T. gondii persists are poorly studied in humans. In mouse models, many aspects of the interaction between the parasite and the host cells are being studied. Apoptosis is one of these mechanisms that could be modulated by Toxoplasma to persist in host cells. Indeed, Toxoplasma has often been implicated in the regulation of apoptosis and viability mechanisms in both human and murine infection models. Several of these studies centered on the regulation of apoptosis pathways have revealed interference of this parasite with host cell immunity, cell signalling, and invasion mechanisms. This review provides an overview of recent studies concerning the effect of Toxoplasma on different apoptotic pathways in infected host cells.
Collapse
|
18
|
Tyebji S, Seizova S, Hannan AJ, Tonkin CJ. Toxoplasmosis: A pathway to neuropsychiatric disorders. Neurosci Biobehav Rev 2018; 96:72-92. [PMID: 30476506 DOI: 10.1016/j.neubiorev.2018.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/24/2022]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that resides, in a latent form, in the human central nervous system. Infection with Toxoplasma drastically alters the behaviour of rodents and is associated with the incidence of specific neuropsychiatric conditions in humans. But the question remains: how does this pervasive human pathogen alter behaviour of the mammalian host? This fundamental question is receiving increasing attention as it has far reaching public health implications for a parasite that is very common in human populations. Our current understanding centres on neuronal changes that are elicited directly by this intracellular parasite versus indirect changes that occur due to activation of the immune system within the CNS, or a combination of both. In this review, we explore the interactions between Toxoplasma and its host, the proposed mechanisms and consequences on neuronal function and mental health, and discuss Toxoplasma infection as a public health issue.
Collapse
Affiliation(s)
- Shiraz Tyebji
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Simona Seizova
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Victoria, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville, 3052, Victoria, Australia.
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, 3052, Australia.
| |
Collapse
|
19
|
Cong W, Dottorini T, Khan F, Emes RD, Zhang FK, Zhou CX, He JJ, Zhang XX, Elsheikha HM, Zhu XQ. Acute Toxoplasma Gondii Infection in Cats Induced Tissue-Specific Transcriptional Response Dominated by Immune Signatures. Front Immunol 2018; 9:2403. [PMID: 30405608 PMCID: PMC6202952 DOI: 10.3389/fimmu.2018.02403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
RNA-sequencing was used to detect transcriptional changes in six tissues of cats, seven days after T. gondii infection. A total of 737 genes were differentially expressed (DEGs), of which 410 were up-regulated and 327 were down-regulated. The liver exhibited 151 DEGs, lung (149 DEGs), small intestine (130 DEGs), heart (123 DEGs), brain (104 DEGs), and spleen (80 DEGs)-suggesting tissue-specific transcriptional patterns. Gene ontology and KEGG analyses identified DEGs enriched in immune pathways, such as cytokine-cytokine receptor interaction, Jak-STAT signaling pathway, NOD-like receptor signaling pathway, NF-kappa B signaling pathway, MAPK signaling pathway, T cell receptor signaling pathway, and the cytosolic DNA sensing pathway. C-X-C motif chemokine 10 (CXCL10) was involved in most of the immune-related pathways. PI3K/Akt expression was down-regulated in all tissues, except the spleen. The genes for phosphatase, indoleamine 2,3-dioxygenase, Hes Family BHLH Transcription Factor 1, and guanylate-binding protein 5, playing various roles in immune defense, were co-expressed across various feline tissues. Multivariate K-means clustering analysis produced seven gene clusters featuring similar gene expression patterns specific to individual tissues, with lung tissue cluster having the largest number of DEGs. These findings suggest the presence of a broad immune defense mechanism across various tissues in cats against acute T. gondii infection.
Collapse
Affiliation(s)
- Wei Cong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Department of Marine Engineering, Marine College, Shandong University, Weihai, China
| | - Tania Dottorini
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Faraz Khan
- Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Richard D Emes
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom.,Advanced Data Analysis Centre, University of Nottingham, Loughborough, United Kingdom
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun-Xue Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Xuan Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
20
|
Zhou W, Quan JH, Gao FF, Ismail HAHA, Lee YH, Cha GH. Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:135-145. [PMID: 29742868 PMCID: PMC5976016 DOI: 10.3347/kjp.2018.56.2.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 11/23/2022]
Abstract
Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, CK2β, VEGF, GCL, GST, and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Immunology, Taishan Medical College, Tai'an 271-000, Shandong, China.,Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 34134, Korea
| | - Juan-Hua Quan
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524-001, Guangdong, China
| | - Fei-Fei Gao
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 34134, Korea
| | | | - Young-Ha Lee
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 34134, Korea
| | - Guang-Ho Cha
- Department of Medical Science & Infection Biology, Chungnam National University, School of Medicine, Daejeon 34134, Korea
| |
Collapse
|
21
|
The Science and Translation of Lactate Shuttle Theory. Cell Metab 2018; 27:757-785. [PMID: 29617642 DOI: 10.1016/j.cmet.2018.03.008] [Citation(s) in RCA: 775] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/06/2018] [Accepted: 03/16/2018] [Indexed: 02/07/2023]
Abstract
Once thought to be a waste product of anaerobic metabolism, lactate is now known to form continuously under aerobic conditions. Shuttling between producer and consumer cells fulfills at least three purposes for lactate: (1) a major energy source, (2) the major gluconeogenic precursor, and (3) a signaling molecule. "Lactate shuttle" (LS) concepts describe the roles of lactate in delivery of oxidative and gluconeogenic substrates as well as in cell signaling. In medicine, it has long been recognized that the elevation of blood lactate correlates with illness or injury severity. However, with lactate shuttle theory in mind, some clinicians are now appreciating lactatemia as a "strain" and not a "stress" biomarker. In fact, clinical studies are utilizing lactate to treat pro-inflammatory conditions and to deliver optimal fuel for working muscles in sports medicine. The above, as well as historic and recent studies of lactate metabolism and shuttling, are discussed in the following review.
Collapse
|
22
|
Ismail HAHA, Kang BH, Kim JS, Lee JH, Choi IW, Cha GH, Yuk JM, Lee YH. IL-12 and IL-23 Production in Toxoplasma gondii- or LPS-Treated Jurkat T Cells via PI3K and MAPK Signaling Pathways. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 55:613-622. [PMID: 29320816 PMCID: PMC5776897 DOI: 10.3347/kjp.2017.55.6.613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 11/23/2022]
Abstract
IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30–60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.
Collapse
Affiliation(s)
| | - Byung-Hun Kang
- Department of Obstetrics and Gynecology, Chungnam National University School of Medicine, Daejeon 34134, Korea
| | - Jae-Su Kim
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 34134, Korea
| | - Jae-Hyung Lee
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 34134, Korea.,Department of Biomedical Science, Chungnam National University Graduate School, Daejeon 34134, Korea
| | - In-Wook Choi
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 34134, Korea
| | - Guang-Ho Cha
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 34134, Korea
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 34134, Korea
| | - Young-Ha Lee
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 34134, Korea
| |
Collapse
|
23
|
Chakraborty S, Roy S, Mistry HU, Murthy S, George N, Bhandari V, Sharma P. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits. Front Immunol 2017; 8:1261. [PMID: 29081773 PMCID: PMC5645534 DOI: 10.3389/fimmu.2017.01261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress.
Collapse
Affiliation(s)
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Hiral Uday Mistry
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Shweta Murthy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Neena George
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| |
Collapse
|
24
|
Brasil TR, Freire-de-Lima CG, Morrot A, Vetö Arnholdt AC. Host- Toxoplasma gondii Coadaptation Leads to Fine Tuning of the Immune Response. Front Immunol 2017; 8:1080. [PMID: 28955329 PMCID: PMC5601305 DOI: 10.3389/fimmu.2017.01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii has successfully developed strategies to evade host's immune response and reach immune privileged sites, which remains in a controlled environment inside quiescent tissue cysts. In this review, we will approach several known mechanisms used by the parasite to modulate mainly the murine immune system at its favor. In what follows, we review recent findings revealing interference of host's cell autonomous immunity and cell signaling, gene expression, apoptosis, and production of microbicide molecules such as nitric oxide and oxygen reactive species during parasite infection. Modulation of host's metalloproteinases of extracellular matrix is also discussed. These immune evasion strategies are determinant to parasite dissemination throughout the host taking advantage of cells from the immune system to reach brain and retina, crossing crucial hosts' barriers.
Collapse
Affiliation(s)
- Thaís Rigueti Brasil
- Laboratório de Biologia do Reconhecer, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | | | - Alexandre Morrot
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
25
|
Abstract
Early electron microscopy studies revealed the elaborate cellular features that define the unique adaptations of apicomplexan parasites. Among these were bulbous rhoptry (ROP) organelles and small, dense granules (GRAs), both of which are secreted during invasion of host cells. These early morphological studies were followed by the exploration of the cellular contents of these secretory organelles, revealing them to be comprised of highly divergent protein families with few conserved domains or predicted functions. In parallel, studies on host-pathogen interactions identified many host signaling pathways that were mysteriously altered by infection. It was only with the advent of forward and reverse genetic strategies that the connections between individual parasite effectors and the specific host pathways that they targeted finally became clear. The current repertoire of parasite effectors includes ROP kinases and pseudokinases that are secreted during invasion and that block host immune pathways. Similarly, many secretory GRA proteins alter host gene expression by activating host transcription factors, through modification of chromatin, or by inducing small noncoding RNAs. These effectors highlight novel mechanisms by which T. gondii has learned to harness host signaling to favor intracellular survival and will guide future studies designed to uncover the additional complexity of this intricate host-pathogen interaction.
Collapse
|
26
|
Mota CM, Oliveira ACM, Davoli-Ferreira M, Silva MV, Santiago FM, Nadipuram SM, Vashisht AA, Wohlschlegel JA, Bradley PJ, Silva JS, Mineo JR, Mineo TWP. Neospora caninum Activates p38 MAPK as an Evasion Mechanism against Innate Immunity. Front Microbiol 2016; 7:1456. [PMID: 27679624 PMCID: PMC5020094 DOI: 10.3389/fmicb.2016.01456] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
Due to the high prevalence and economic impact of neosporosis, the development of safe and effective vaccines and therapies against this parasite has been a priority in the field and is crucial to limit horizontal and vertical transmission in natural hosts. Limited data is available regarding factors that regulate the immune response against this parasite and such knowledge is essential in order to understand Neospora caninum induced pathogenesis. Mitogen-activated protein kinases (MAPKs) govern diverse cellular processes, including growth, differentiation, apoptosis, and immune-mediated responses. In that sense, our goal was to understand the role of MAPKs during the infection by N. caninum. We found that p38 phosphorylation was quickly triggered in macrophages stimulated by live tachyzoites and antigen extracts, while its chemical inhibition resulted in upregulation of IL-12p40 production and augmented B7/MHC expression. In vivo blockade of p38 resulted in an amplified production of cytokines, which preceded a reduction in latent parasite burden and enhanced survival against the infection. Additionally, the experiments indicate that the p38 activation is induced by a mechanism that depends on GPCR, PI3K and AKT signaling pathways, and that the phenomena here observed is distinct that those induced by Toxoplasma gondii’s GRA24 protein. Altogether, these results showed that N. caninum manipulates p38 phosphorylation in its favor, in order to downregulate the host’s innate immune responses. Additionally, those results infer that active interference in this signaling pathway may be useful for the development of a new therapeutic strategy against neosporosis.
Collapse
Affiliation(s)
- Caroline M Mota
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Ana C M Oliveira
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Marcela Davoli-Ferreira
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - Murilo V Silva
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Fernanda M Santiago
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Santhosh M Nadipuram
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles CA, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles CA, USA
| | - Peter J Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los AngelesCA, USA; Molecular Biology Institute, University of California, Los Angeles, Los AngelesCA, USA
| | - João S Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo Ribeirão Preto, Brazil
| | - José R Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| | - Tiago W P Mineo
- Laboratory of Immunoparasitology "Dr. Mário Endsfeldz Camargo," Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia Uberlândia, Brazil
| |
Collapse
|
27
|
Intracellular Networks of the PI3K/AKT and MAPK Pathways for Regulating Toxoplasma gondii-Induced IL-23 and IL-12 Production in Human THP-1 Cells. PLoS One 2015; 10:e0141550. [PMID: 26528819 PMCID: PMC4631599 DOI: 10.1371/journal.pone.0141550] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/01/2015] [Indexed: 11/19/2022] Open
Abstract
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.
Collapse
|
28
|
Abstract
Toxoplasmosis is the clinical and pathological consequence of acute infection with the obligate intracellular apicomplexan parasite Toxoplasma gondii. Symptoms result from tissue destruction that accompanies lytic parasite growth. This review updates current understanding of the host cell invasion, parasite replication, and eventual egress that constitute the lytic cycle, as well as the ways T. gondii manipulates host cells to ensure its survival. Since the publication of a previous iteration of this review 15 years ago, important advances have been made in our molecular understanding of parasite growth and mechanisms of host cell egress, and knowledge of the parasite's manipulation of the host has rapidly progressed. Here we cover molecular advances and current conceptual frameworks that include each of these topics, with an eye to what may be known 15 years from now.
Collapse
Affiliation(s)
- Ira J Blader
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York 14127;
| | - Bradley I Coleman
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Chun-Ti Chen
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| | - Marc-Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467; , ,
| |
Collapse
|
29
|
siRNA Screening Identifies the Host Hexokinase 2 (HK2) Gene as an Important Hypoxia-Inducible Transcription Factor 1 (HIF-1) Target Gene in Toxoplasma gondii-Infected Cells. mBio 2015; 6:e00462. [PMID: 26106078 PMCID: PMC4479703 DOI: 10.1128/mbio.00462-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although it is established that oxygen availability regulates cellular metabolism and growth, little is known regarding how intracellular pathogens use host factors to grow at physiological oxygen levels. Therefore, large-scale human small interfering RNA screening was performed to identify host genes important for growth of the intracellular protozoan parasite Toxoplasma gondii at tissue oxygen tensions. Among the genes identified by this screen, we focused on the hexokinase 2 (HK2) gene because its expression is regulated by hypoxia-inducible transcription factor 1 (HIF-1), which is important for Toxoplasma growth. Toxoplasma increases host HK2 transcript and protein levels in a HIF-1-dependent manner. In addition, parasite growth at 3% oxygen is restored in HIF-1-deficient cells transfected with HK2 expression plasmids. Both HIF-1 activation and HK2 expression were accompanied by increases in host glycolytic flux, suggesting that enhanced HK2 expression in parasite-infected cells is functionally significant. Parasite dependence on host HK2 and HIF-1 expression is not restricted to transformed cell lines, as both are required for parasite growth in nontransformed C2C12 myoblasts and HK2 is upregulated in vivo following infection. While HK2 is normally associated with the cytoplasmic face of the outer mitochondrial membrane at physiological O2 levels, HK2 relocalizes to the host cytoplasm following infection, a process that is required for parasite growth at 3% oxygen. Taken together, our findings show that HIF-1-dependent expression and relocalization of HK2 represent a novel mechanism by which Toxoplasma establishes its replicative niche at tissue oxygen tensions. Little is known regarding how the host cell contributes to the survival of the intracellular parasite Toxoplasma gondii at oxygen levels that mimic those found in tissues. Our previous work showed that Toxoplasma activates the expression of an oxygen-regulated transcription factor that is required for growth. Here, we report that Toxoplasma regulates the abundance and activity of a key host metabolic enzyme, hexokinase 2, by activating HIF-1 and by promoting dissociation of hexokinase 2 from the mitochondrial membrane. Collectively, our data reveal HIF-1/hexokinase 2 as a novel target for an intracellular pathogen that acts by reprograming the host cell’s metabolism to create an environment conducive for parasite replication at physiological oxygen levels.
Collapse
|
30
|
Parlog A, Schlüter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol 2015; 37:159-70. [PMID: 25376390 DOI: 10.1111/pim.12157] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/31/2014] [Indexed: 12/13/2022]
Abstract
The zoonotic pathogen Toxoplasma gondii infects over 30% of the human population. The intracellular parasite can persist lifelong in the CNS within neurons modifying their function and structure, thus leading to specific behavioural changes of the host. In recent years, several in vitro studies and murine models have focused on the elucidation of these modifications. Furthermore, investigations of the human population have correlated Toxoplasma seropositivity with changes in neurological functions; however, the complex underlying mechanisms of the subtle behavioural alteration are still not fully understood. The parasites are able to induce direct modifications in the infected cells, for example by altering dopamine metabolism, by functionally silencing neurons as well as by hindering apoptosis. Moreover, indirect effects of the peripheral immune system and alterations of the immune status of the CNS, observed during chronic infection, might also contribute to changes in neuronal connectivity and synaptic plasticity. In this review, we will provide an overview and highlight recent advances, which describe changes in the neuronal function and morphology upon T. gondii infection.
Collapse
Affiliation(s)
- A Parlog
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University, Magdeburg, Germany
| | | | | |
Collapse
|
31
|
Graumann K, Schaumburg F, Reubold TF, Hippe D, Eschenburg S, Lüder CGK. Toxoplasma gondii inhibits cytochrome c-induced caspase activation in its host cell by interference with holo-apoptosome assembly. MICROBIAL CELL 2015; 2:150-162. [PMID: 28357287 PMCID: PMC5349237 DOI: 10.15698/mic2015.05.201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inhibition of programmed cell death pathways of mammalian cells often facilitates the sustained survival of intracellular microorganisms. The apicomplexan parasite Toxoplasma gondii is a master regulator of host cell apoptotic pathways. Here, we have characterized a novel anti-apoptotic activity of T. gondii. Using a cell-free cytosolic extract model, we show that T. gondii interferes with the activities of caspase 9 and caspase 3/7 which have been induced by exogenous cytochrome c and dATP. Proteolytic cleavage of caspases 9 and 3 is also diminished suggesting inhibition of holo-apoptosome function. Parasite infection of Jurkat T cells and subsequent triggering of apoptosome formation by exogenous cytochrome cin vitro and in vivo indicated that T. gondii also interferes with caspase activation in infected cells. Importantly, parasite inhibition of cytochrome c-induced caspase activation considerably contributes to the overall anti-apoptotic activity of T. gondii as observed in staurosporine-treated cells. Co-immunoprecipitation showed that T. gondii abolishes binding of caspase 9 to Apaf-1 whereas the interaction of cytochrome c with Apaf-1 remains unchanged. Finally, T. gondii lysate mimics the effect of viable parasites and prevents holo-apoptosome functionality in a reconstituted in vitro system comprising recombinant Apaf-1 and caspase 9. Beside inhibition of cytochrome c release from host cell mitochondria, T. gondii thus also targets the holo-apoptosome assembly as a second mean to efficiently inhibit the caspase-dependent intrinsic cell death pathway.
Collapse
Affiliation(s)
- Kristin Graumann
- Institute for Medical Microbiology, Georg-August-University, Göttingen, Germany. ; Present address: In den Brühlwiesen 12, 61352 Bad Homburg, Germany
| | - Frieder Schaumburg
- Institute for Medical Microbiology, Georg-August-University, Göttingen, Germany. ; Present address: Institute for Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149 Münster, Germany
| | - Thomas F Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Diana Hippe
- Institute for Medical Microbiology, Georg-August-University, Göttingen, Germany
| | - Susanne Eschenburg
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Carsten G K Lüder
- Institute for Medical Microbiology, Georg-August-University, Göttingen, Germany
| |
Collapse
|
32
|
Hassan IA, Wang S, Xu L, Yan R, Song X, Li X. DNA vaccination with a gene encoding Toxoplasma gondii Deoxyribose Phosphate Aldolase (TgDPA) induces partial protective immunity against lethal challenge in mice. Parasit Vectors 2014; 7:431. [PMID: 25201636 PMCID: PMC4164750 DOI: 10.1186/1756-3305-7-431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Toxoplasma gondii is an obligate intracellular parasite that causes a pathological status known as toxoplasmosis, which has a huge impact on human and animal health. Currently, the main control strategy depends on the usage of drugs that target the acute stage of the infection, however, drawbacks were encountered while applying this method; therefore, development of an alternative effective method would be important progress. Deoxyribose Phosphate Aldolase (TgDPA) plays an important role supporting cell invasion and providing energy for the parasite. Methods TgDPA was expressed in Escherichia coli and the purified recombinant protein was used to immunize rats. The antibodies obtained were used to verify in vitro expression of TgDPA. The vector pVAX1 was utilized to formulate a DNA vaccine designated as pTgDPA, which was used to evaluate the immunological changes and the level of protection against challenge with the virulent RH strain of T. gondii. Results DNA vaccine, TgDPA revealed that it can induce a strong humoral as well as cellular mediated response in mice. These responses were a contribution of TH1, TH2 and TH17 type of responses. Following challenge, mice immunized with TgDPA showed longer survival rates than did those in control groups. Conclusions Further investigation regarding TgDPA is required to shed more light on its immunogenicity and its possible selection as a vaccine candidate.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|
33
|
Zhang YH, Chen H, Chen Y, Wang L, Cai YH, Li M, Wen HQ, Du J, An R, Luo QL, Wang XL, Lun ZR, Xu YH, Shen JL. Activated microglia contribute to neuronal apoptosis in Toxoplasmic encephalitis. Parasit Vectors 2014; 7:372. [PMID: 25128410 PMCID: PMC4143554 DOI: 10.1186/1756-3305-7-372] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/01/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A plethora of evidence shows that activated microglia play a critical role in the pathogenesis of the central nervous system (CNS). Toxoplasmic encephalitis (TE) frequently occurs in HIV/AIDS patients. However, knowledge remains limited on the contributions of activated microglia to the pathogenesis of TE. METHODS A murine model of reactivated encephalitis was generated in a latent infection with Toxoplasma gondii induced by cyclophosphamide. The neuronal apoptosis in the CNS and the profile of pro-inflammatory cytokines were assayed in both in vitro and in vivo experiments. RESULTS Microglial cells were found to be activated in the cortex and hippocampus in the brain tissues of mice. The in vivo expression of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and inducible nitric oxide synthase (iNOS) were up-regulated in TE mice, and accordingly, the neuronal apoptosis was significantly increased. The results were positively correlated with those of the in vitro experiments. Additionally,apoptosis of the mouse neuroblastoma type Neuro2a (N2a) remarkably increased when the N2a was co-cultured in transwell with microglial cells and Toxoplasma tachyzoites. Both in vivo and in vitro experiments showed that minocycline (a microglia inhibitor) treatment notably reduced microglial activation and neuronal apoptosis. CONCLUSIONS Activated microglia contribute to neuronal apoptosis in TE and inhibition of microglia activation might represent a novel therapeutic strategy of TE.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Yuan-hong Xu
- The Key Laboratory of Zoonoses and Pathogen Biology Anhui, and Department of Parasitology, Anhui Medical University, Hefei, China.
| | | |
Collapse
|
34
|
Toxoplasma gondii development of its replicative niche: in its host cell and beyond. EUKARYOTIC CELL 2014; 13:965-76. [PMID: 24951442 DOI: 10.1128/ec.00081-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracellular pathogens can replicate efficiently only after they manipulate and modify their host cells to create an environment conducive to replication. While diverse cellular pathways are targeted by different pathogens, metabolism, membrane and cytoskeletal architecture formation, and cell death are the three primary cellular processes that are modified by infections. Toxoplasma gondii is an obligate intracellular protozoan that infects ∼30% of the world's population and causes severe and life-threatening disease in developing fetuses, in immune-comprised patients, and in certain otherwise healthy individuals who are primarily found in South America. The high prevalence of Toxoplasma in humans is in large part a result of its ability to modulate these three host cell processes. Here, we highlight recent work defining the mechanisms by which Toxoplasma interacts with these processes. In addition, we hypothesize why some processes are modified not only in the infected host cell but also in neighboring uninfected cells.
Collapse
|
35
|
Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates. EUKARYOTIC CELL 2014; 13:483-93. [PMID: 24532536 DOI: 10.1128/ec.00316-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Toxoplasma gondii infection has previously been described to cause dramatic changes in the host transcriptome by manipulating key regulators, including STATs, NF-κB, and microRNAs. Here, we report that Toxoplasma tachyzoites also mediate rapid and sustained induction of another pivotal regulator of host cell transcription, c-Myc. This induction is seen in cells infected with all three canonical types of Toxoplasma but not the closely related apicomplexan parasite Neospora caninum. Coinfection of cells with both Toxoplasma and Neospora still results in an increase in the level of host c-Myc, showing that c-Myc is actively upregulated by Toxoplasma infection (rather than repressed by Neospora). We further demonstrate that this upregulation may be mediated through c-Jun N-terminal protein kinase (JNK) and is unlikely to be a nonspecific host response, as heat-killed Toxoplasma parasites do not induce this increase and neither do nonviable parasites inside the host cell. Finally, we show that the induced c-Myc is active and that transcripts dependent on its function are upregulated, as predicted. Hence, c-Myc represents an additional way in which Toxoplasma tachyzoites have evolved to specifically alter host cell functions during intracellular growth.
Collapse
|
36
|
Muniz-Feliciano L, Van Grol J, Portillo JAC, Liew L, Liu B, Carlin CR, Carruthers VB, Matthews S, Subauste CS. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog 2013; 9:e1003809. [PMID: 24367261 PMCID: PMC3868508 DOI: 10.1371/journal.ppat.1003809] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/19/2013] [Indexed: 12/24/2022] Open
Abstract
Toxoplasma gondii resides in an intracellular compartment (parasitophorous vacuole) that excludes transmembrane molecules required for endosome-lysosome recruitment. Thus, the parasite survives by avoiding lysosomal degradation. However, autophagy can re-route the parasitophorous vacuole to the lysosomes and cause parasite killing. This raises the possibility that T. gondii may deploy a strategy to prevent autophagic targeting to maintain the non-fusogenic nature of the vacuole. We report that T. gondii activated EGFR in endothelial cells, retinal pigment epithelial cells and microglia. Blockade of EGFR or its downstream molecule, Akt, caused targeting of the parasite by LC3(+) structures, vacuole-lysosomal fusion, lysosomal degradation and killing of the parasite that were dependent on the autophagy proteins Atg7 and Beclin 1. Disassembly of GPCR or inhibition of metalloproteinases did not prevent EGFR-Akt activation. T. gondii micronemal proteins (MICs) containing EGF domains (EGF-MICs; MIC3 and MIC6) appeared to promote EGFR activation. Parasites defective in EGF-MICs (MIC1 ko, deficient in MIC1 and secretion of MIC6; MIC3 ko, deficient in MIC3; and MIC1-3 ko, deficient in MIC1, MIC3 and secretion of MIC6) caused impaired EGFR-Akt activation and recombinant EGF-MICs (MIC3 and MIC6) caused EGFR-Akt activation. In cells treated with autophagy stimulators (CD154, rapamycin) EGFR signaling inhibited LC3 accumulation around the parasite. Moreover, increased LC3 accumulation and parasite killing were noted in CD154-activated cells infected with MIC1-3 ko parasites. Finally, recombinant MIC3 and MIC6 inhibited parasite killing triggered by CD154 particularly against MIC1-3 ko parasites. Thus, our findings identified EGFR activation as a strategy used by T. gondii to maintain the non-fusogenic nature of the parasitophorous vacuole and suggest that EGF-MICs have a novel role in affecting signaling in host cells to promote parasite survival.
Collapse
Affiliation(s)
- Luis Muniz-Feliciano
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jennifer Van Grol
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Jose-Andres C. Portillo
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lloyd Liew
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Bing Liu
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Stephen Matthews
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Carlos S. Subauste
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
37
|
Jia XY, Chang Y, Sun XJ, Wu HX, Wang C, Xu HM, Zhang L, Zhang LL, Zheng YQ, Song LH, Wei W. Total glucosides of paeony inhibit the proliferation of fibroblast-like synoviocytes through the regulation of G proteins in rats with collagen-induced arthritis. Int Immunopharmacol 2013; 18:1-6. [PMID: 24161745 DOI: 10.1016/j.intimp.2013.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 01/29/2023]
Abstract
The aim of this study was to investigate the expression of G proteins in fibroblast-like synoviocytes (FLSs) from rats with collagen-induced arthritis (CIA) and to determine the effect of total glucosides of paeony (TGP). CIA rats were induced with chicken type II collagen (CCII) in Freund's complete adjuvant. The rats with experimental arthritis were randomly separated into five groups and then treated with TGP (25, 50, and 100mg/kg) from days 14 to 35 after immunization. The secondary inflammatory reactions were evaluated through the polyarthritis index and histopathological changes. The level of cyclic adenosine monophosphate (cAMP) was measured by radioimmunoassay. The FLS proliferation response was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The toxin-catalyzed ADP-ribosylation of G proteins was performed through autoradiography. The results show that TGP (25, 50, and 100mg/kg) significantly decreased the arthritis scores of CIA rats and improved the histopathological changes. TGP inhibited the proliferation of FLSs and increased the level of cAMP. Moreover, the FLS proliferation and the level of Gαi expression were significantly increased, but the level of Gαs expression was decreased after stimulation with IL-1β (10ng/ml) in vitro. TGP (12.5 and 62.5μg/ml) significantly inhibited the FLS proliferation and regulated the balance between Gαi and Gαs. These results demonstrate that TGP may exert its anti-inflammatory effects through the suppression of FLS proliferation, which may be associated with its ability to regulate the balance of G proteins. Thus, TGP may have potential as a therapeutic agent for the treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Xiao-Yi Jia
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China; School of Pharmacy, Anhui Xinhua University, Hefei 230088, China.
| | - Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China.
| | - Xiao-Jing Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Hua-Xun Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China.
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Hong-Mei Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Lei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Ling-Ling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Yong-Qiu Zheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China
| | - Li-Hua Song
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of the Education Ministry of China, Hefei 230032, China.
| |
Collapse
|
38
|
Angeloni MB, Guirelli PM, Franco PS, Barbosa BF, Gomes AO, Castro AS, Silva NM, Martins-Filho OA, Mineo TWP, Silva DAO, Mineo JR, Ferro EAV. Differential apoptosis in BeWo cells after infection with highly (RH) or moderately (ME49) virulent strains of Toxoplasma gondii is related to the cytokine profile secreted, the death receptor Fas expression and phosphorylated ERK1/2 expression. Placenta 2013; 34:973-82. [PMID: 24074900 DOI: 10.1016/j.placenta.2013.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/27/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Alterations of apoptosis are commonly associated with pregnancy complications and abortion. Modulation of apoptosis is a relevant feature of Toxoplasma gondii infection and it is related to parasite strain types. The aim of the present study was to evaluate the possible factors that are involved in the differential apoptosis of BeWo cells infected with distinct T. gondii strain types. METHODS Human trophoblastic cells (BeWo cell line) were infected with RH or ME49 strains, the cytokine production was measured and the phosphorylation of anti-apoptotic ERK1/2 protein was analyzed. Also, cells were treated with different cytokines, infected with RH or ME49 strain, and analyzed for apoptosis index and Fas/CD95 death receptor expression. RESULTS ME49-infected BeWo cells exhibited a predominantly pro-inflammatory cytokine profile, whereas cells infected with RH strain had a higher production of anti-inflammatory cytokines. Also, the incidence of apoptosis was higher in ME49-infected cells, which have been treated with pro-inflammatory cytokines compared to cells infected with RH and treated with anti-inflammatory cytokines. Moreover, Fas/CD95 expression was higher in cells infected with either ME49 or RH strain and treated with pro-inflammatory cytokines compared to anti-inflammatory cytokine treatment. The phosphorylation of ERK1/2 protein increased after 24 h of infection only with the RH strain. CONCLUSION These results suggest that opposing mechanisms of interference in apoptosis of BeWo cells after infection with RH or ME49 strains of T. gondii can be associated with the differential cytokine profile secreted, the Fas/CD95 expression and the phosphorylated ERK1/2 expression.
Collapse
Affiliation(s)
- M B Angeloni
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará, 1720, 38405-320 Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lu CY, Lai SC. Induction of matrix metalloproteinase-2 and -9 via Erk1/2-NF-κB pathway in human astroglia infected with Toxoplasma gondii. Acta Trop 2013; 127:14-20. [PMID: 23517828 DOI: 10.1016/j.actatropica.2013.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/18/2013] [Accepted: 03/03/2013] [Indexed: 01/31/2023]
Abstract
Matrix metalloproteinase (MMP)-2 and MMP-9 can cleave fibronectin, allowing leukocyte migration to the site of Toxoplasma gondii infection during toxoplasmic encephalitis. The aim of this study was to investigate the association between extracellular signal-regulated kinase (Erk)1/2-nuclear factor (NF)-κB pathway and MMP-2/-9 expression in astroglia infected with T. gondii tachyzoite in vitro. Our results showed that phosphorylated (p)-Erk1/2 transiently increased 1h post-infection (PI) and p-NF-κB significantly increased from 1h PI to 12h PI in cell homogenates. NF-κB was bound directly to oligonucleotides containing putative NF-κB binding sites for the MMP-9 promoter. Additionally, expression of p-NF-κB, MMP-2, and MMP-9 was significantly decreased by MG132, an indirect NF-κB inhibitor. Treatment with PD98059, an Erk kinase inhibitor, efficiently reduced p-Erk1/2, p-NF-κB, MMP-2, and MMP-9 expression. These results suggest that suppression of the Erk1/2-NF-κB signaling pathway causes reductions in MMP-2 and MMP-9 activities in astroglia response to T. gondii infection. Thus, inhibiting this signaling intermediate involved in MMP-2 and MMP-9 expression may be a potential method for controlling inflammatory development of T. gondii-induced encephalitis.
Collapse
Affiliation(s)
- Cheng-You Lu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | | |
Collapse
|
40
|
Zhou W, Quan JH, Lee YH, Shin DW, Cha GH. Toxoplasma gondii Proliferation Require Down-Regulation of Host Nox4 Expression via Activation of PI3 Kinase/Akt Signaling Pathway. PLoS One 2013; 8:e66306. [PMID: 23824914 PMCID: PMC3688893 DOI: 10.1371/journal.pone.0066306] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/03/2013] [Indexed: 01/22/2023] Open
Abstract
Toxoplasma gondii results in ocular toxoplasmosis characterized by chorioretinitis with inflammation and necrosis of the neuroretina, pigment epithelium, and choroid. After invasion, T. gondii replicates in host cells before cell lysis, which releases the parasites to invade neighboring cells to repeat the life cycle and establish a chronic retinal infection. The mechanism by which T. gondii avoids innate immune defense, however, is unknown. Therefore, we determined whether PI3K/Akt signaling pathway activation by T. gondii is essential for subversion of host immunity and parasite proliferation. T. gondii infection or excretory/secretory protein (ESP) treatment of the human retinal pigment epithelium cell line ARPE-19 induced Akt phosphorylation, and PI3K inhibitors effectively reduced T. gondii proliferation in host cells. Furthermore, T. gondii reduced intracellular reactive oxygen species (ROS) while activating the PI3K/Akt signaling pathway. While searching for the main source of these ROS, we found that NADPH oxidase 4 (Nox4) was prominently expressed in ARPE-19 cells, and this expression was significantly reduced by T. gondii infection or ESP treatment along with decreased ROS levels. In addition, artificial reduction of host Nox4 levels with specific siRNA increased replication of intracellular T. gondii compared to controls. Interestingly, these T. gondii-induced effects were reversed by PI3K inhibitors, suggesting that activation of the PI3K/Akt signaling pathway is important for suppression of both Nox4 expression and ROS levels by T. gondii infection. These findings demonstrate that manipulation of the host PI3K/Akt signaling pathway and Nox4 gene expression is a novel mechanism involved in T. gondii survival and proliferation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Juan-Hua Quan
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Young-Ha Lee
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Dae-Whan Shin
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
| | - Guang-Ho Cha
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, Korea
- * E-mail:
| |
Collapse
|
41
|
Thirugnanam S, Rout N, Gnanasekar M. Possible role of Toxoplasma gondii in brain cancer through modulation of host microRNAs. Infect Agent Cancer 2013; 8:8. [PMID: 23391314 PMCID: PMC3583726 DOI: 10.1186/1750-9378-8-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The obligate intracellular protozoan parasite Toxoplasma gondii infects humans and other warm-blooded animals and establishes a chronic infection in the central nervous system after invasion. Studies showing a positive correlation between anti-Toxoplasma antibodies and incidences of brain cancer have led to the notion that Toxoplasma infections increase the risk of brain cancer. However, molecular events involved in Toxoplasma induced brain cancers are not well understood. Presentation of the hypothesis Toxoplasma gains control of host cell functions including proliferation and apoptosis by channelizing parasite proteins into the cell cytoplasm and some of the proteins are targeted to the host nucleus. Recent studies have shown that Toxoplasma is capable of manipulating host micro RNAs (miRNAs), which play a central role in post-transcriptional regulation of gene expression. Therefore, we hypothesize that Toxoplasma promotes brain carcinogenesis by altering the host miRNAome using parasitic proteins and/or miRNAs. Testing the hypothesis The miRNA expression profiles of brain cancer specimens obtained from patients infected with Toxoplasma could be analyzed and compared with that of normal tissues as well as brain cancer tissues from Toxoplasma uninfected individuals to identify dysregulated miRNAs in Toxoplasma-driven brain cancer cells. Identified miRNAs will be further confirmed by studying cancer related miRNA profiles of the different types of brain cells before and after Toxoplasma infection using cell lines and experimental animals. Expected outcome The miRNAs specifically associated with brain cancers that are caused by Toxoplasma infection will be identified. Implications of the hypothesis Toxoplasma infection may promote initiation and progression of cancer by modifying the miRNAome in brain cells. If this hypothesis is true, the outcome of this research would lead to the development of novel biomarkers and therapeutic tools against Toxoplasma driven brain cancers.
Collapse
Affiliation(s)
- Sivasakthivel Thirugnanam
- Department of Biomedical Sciences, University of Illinois, College of Medicine, 1601 Parkview Ave, Rockford, IL, 61107, USA.
| | | | | |
Collapse
|
42
|
Quan JH, Cha GH, Zhou W, Chu JQ, Nishikawa Y, Lee YH. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis. Exp Parasitol 2013; 133:462-71. [PMID: 23333591 DOI: 10.1016/j.exppara.2013.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/17/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
Abstract
Toxoplasma gondii-infected cells are resistant to various apoptotic stimuli, however, the role of the pro-apoptotic BH3-only Bad protein in T. gondii-imposed inhibition of host cell apoptosis in connection with the phosphoinositide 3-kinase (PI3K)-PKB/Akt pathway was not well delineated. Here, we investigated the signaling patterns of Bad, Bax and PKB/Akt in T. gondii-infected and uninfected THP-1 cells treated with staurosporine (STS) or PI3K inhibitors. STS treatment, without T. gondii infection, reduced the viability of THP-1 cells in proportion to STS concentration and triggered many cellular death events such as caspase-3 and -9 activation, Bax translocation, cytochrome c release from host cell mitochondria into cytosol, and PARP cleavage in the host cell. However, T. gondii infection eliminated the STS-triggered mitochondrial apoptotic events described above. Additionally, T. gondii infection in vitro and in vivo induced the phosphorylation of PKB/Akt and Bad in a parasite-load-dependent manner which subsequently inhibited Bax translocation. The PI3K inhibitors, LY294002 and Wortmannin, both blocked parasite-induced phosphorylation of PKB/Akt and Bad. Furthermore, THP-1 cells pretreated with these PI3K inhibitors showed reduced phosphorylation of Bad in a dose-dependent manner and subsequently failed to inhibit the Bax translocation, also these cells also failed to overcome the T. gondii-imposed inhibition of host cell apoptosis. These data demonstrate that the PI3K-PKB/Akt pathway may be one of the major route for T. gondii in the prevention of host cell apoptosis and T. gondii phosphorylates the pro-apoptotic Bad protein to prevent apoptosis.
Collapse
Affiliation(s)
- Juan-Hua Quan
- Department of Infection Biology and Research Institute for Medical Sciences, Chungnam National University School of Medicine, Daejeon 301-131, South Korea
| | | | | | | | | | | |
Collapse
|
43
|
Host metabolism regulates growth and differentiation of Toxoplasma gondii. Int J Parasitol 2012; 42:947-59. [PMID: 22940576 DOI: 10.1016/j.ijpara.2012.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/21/2023]
Abstract
A critical step in the pathogenesis of Toxoplasma gondii is conversion from the fast-replicating tachyzoite form experienced during acute infection to the slow-replicating bradyzoite form that establishes long-lived tissue cysts during chronic infection. Bradyzoite cyst development exhibits a clear tissue tropism in vivo, yet conditions of the host cell environment that influence this tropism remain unclear. Using an in vitro assay of bradyzoite conversion, we have found that cell types differ dramatically in the ability to facilitate differentiation of tachyzoites into bradyzoites. Characterization of cell types that were either resistant or permissive for conversion revealed that resistant cell lines release low molecular weight metabolites that could support tachyzoite growth under metabolic stress conditions and thereby inhibit bradyzoite formation in permissive cells. Biochemical analysis revealed that the glycolytic metabolite lactate is an inhibitory component of supernatants from resistant cells. Furthermore, upregulation of glycolysis in permissive cells through the addition of glucose or by overexpression of the host kinase, Akt, was sufficient to convert cells from a permissive to a resistant phenotype. These results suggest that the metabolic state of the host cell may play a role in determining the predilection of the parasite to switch from the tachyzoite to bradyzoite form.
Collapse
|
44
|
Thi EP, Lambertz U, Reiner NE. Sleeping with the enemy: how intracellular pathogens cope with a macrophage lifestyle. PLoS Pathog 2012; 8:e1002551. [PMID: 22457616 PMCID: PMC3310772 DOI: 10.1371/journal.ppat.1002551] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Emily P Thi
- Department of Medicine (Division of Infectious Diseases), University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
45
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Silvestre R, Estaquier J. Modulation of mammalian apoptotic pathways by intracellular protozoan parasites. Cell Microbiol 2012; 14:325-33. [PMID: 22168464 DOI: 10.1111/j.1462-5822.2011.01737.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During intracellular parasitic infections, pathogens and host cells take part in a complex web of events that are crucial for the outcome of the infection. Modulation of host cell apoptosis by pathogens attracted the attention of scientists during the last decade. Apoptosis is an efficient mechanism used by the host to control infection and limit pathogen multiplication and dissemination. In order to ensure completion of their complex life cycles and to guarantee transmission between different hosts, intracellular parasites have developed mechanisms to block apoptosis and sustain the viability of their host cells. Here, we review how some of the most prominent intracellular protozoan parasites modulate the main mammalian apoptotic pathways by emphasizing the advances from the last decade, which have begun to dissect this dynamic and complex interaction.
Collapse
|
46
|
Butcher BA, Fox BA, Rommereim LM, Kim SG, Maurer KJ, Yarovinsky F, Herbert DR, Bzik DJ, Denkers EY. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog 2011; 7:e1002236. [PMID: 21931552 PMCID: PMC3169547 DOI: 10.1371/journal.ppat.1002236] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 07/08/2011] [Indexed: 01/08/2023] Open
Abstract
The ROP16 kinase of Toxoplasma gondii is injected into the host cell cytosol where it activates signal transducer and activator of transcription (STAT)-3 and STAT6. Here, we generated a ROP16 deletion mutant on a Type I parasite strain background, as well as a control complementation mutant with restored ROP16 expression. We investigated the biological role of the ROP16 molecule during T. gondii infection. Infection of mouse bone marrow-derived macrophages with rop16-deleted (ΔROP16) parasites resulted in increased amounts of IL-12p40 production relative to the ROP16-positive RH parental strain. High level IL-12p40 production in ΔROP16 infection was dependent on the host cell adaptor molecule MyD88, but surprisingly was independent of any previously recognized T. gondii triggered pathway linking to MyD88 (TLR2, TLR4, TLR9, TLR11, IL-1ß and IL-18). In addition, ROP16 was found to mediate the suppressive effects of Toxoplasma on LPS-induced cytokine synthesis in macrophages and on IFN-γ-induced nitric oxide production by astrocytes and microglial cells. Furthermore, ROP16 triggered synthesis of host cell arginase-1 in a STAT6-dependent manner. In fibroblasts and macrophages, failure to induce arginase-1 by ΔROP16 tachyzoites resulted in resistance to starvation conditions of limiting arginine, an essential amino acid for replication and virulence of this parasite. ΔROP16 tachyzoites that failed to induce host cell arginase-1 displayed increased replication and dissemination during in vivo infection. We conclude that encounter between Toxoplasma ROP16 and the host cell STAT signaling cascade has pleiotropic downstream effects that act in multiple and complex ways to direct the course of infection. Toxoplasma gondii is an extremely widespread intracellular protozoan parasite that establishes long-lasting infection in humans and animals. Because Toxoplasma infection is most often asymptomatic, it is evident that this parasite has developed sophisticated ways to manipulate host immunity. Recently, the parasite ROP16 kinase was identified as an important determinant of host cell signaling. During cell invasion, ROP16 is injected into the host cell cytoplasm and subsequently localizes to the nucleus. Here, we report the generation of ROP16 knockout parasites (ΔROP16) as well as ΔROP16 complementation mutants (ΔROP16:1) and we describe the biological effects of deleting and re-inserting this molecule. We find that ROP16 controls the ability to activate multiple host cell signaling pathways and simultaneously suppress macrophage proinflammatory responses. Deletion of ROP16 increases parasite ability to replicate and disseminate during in vivo infection. This increased growth response may arise from ROP16-dependent activation of host arginase-1. Induction of arginase-1 limits availability of arginine, an amino acid that is required for parasite growth and host-inducible nitric oxide production. Our results provide new insight into the complex interactions between an intracellular eukaryotic pathogen and its host cell.
Collapse
Affiliation(s)
- Barbara A. Butcher
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (BAB); (EYD)
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Leah M. Rommereim
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Sung Guk Kim
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kirk J. Maurer
- Center for Animal Resources and Education, College of Veterinary Medicine and Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Felix Yarovinsky
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - De'Broski R. Herbert
- Division of Immunobiology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - David J. Bzik
- Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America
| | - Eric Y. Denkers
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail: (BAB); (EYD)
| |
Collapse
|
47
|
Stutz A, Kessler H, Kaschel ME, Meissner M, Dalpke AH. Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by Toxoplasma gondii. Immunobiology 2011; 217:28-36. [PMID: 22015046 DOI: 10.1016/j.imbio.2011.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 08/17/2011] [Accepted: 08/21/2011] [Indexed: 01/12/2023]
Abstract
Toxoplasma gondii is an intracellular parasite that has to cope with the microbicidal actions of IFNγ. Previously we reported that parasite-mediated induction of suppressor of cytokine signaling protein 1 (SOCS1) contributes to inhibition of IFNγ signaling. However, the signaling requirements remained elusive. We now show that induction of SOCS1 and inhibition of nitric oxide production by IFNγ was independent of stimulation of Toll-like receptors. Instead, infection by T. gondii resulted in induction of egr transcription factors which have been reported to regulate SOCS expression. Indeed, induction of egr2 as well as SOCS1 was dependent on p38 MAP kinase and blockade of egr inhibited SOCS1 expression. Moreover, we found that Mic8, a previously identified invasion factor of T. gondii, was necessary for SOCS1 regulation and escape of IFNγ mediated nitric oxide secretion within macrophages. Surprisingly, when further analyzing Mic8 deficient parasites we noted that inhibition of IFNγ mediated up-regulation of MHC-class II and ICAM1 molecules was independent of cell invasion. Furthermore, these inhibitory effects were equally observed in type I and II strains of T. gondii and were dependent on excreted and secreted antigens. In contrast, only the virulent RH type I strain additionally induced SOCS1 and efficiently inhibited nitric oxide secretion by IFNγ. The results show that T. gondii makes use of two different mechanisms to escape from IFNγ activity with one mode being strain dependent and relying on active cell invasion and SOCS1 induction.
Collapse
Affiliation(s)
- Andrea Stutz
- Dept. of Infectious Diseases - Medical Microbiology and Hygiene, University Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Toxoplasma gondii is a highly successful parasite capable of infecting virtually all warm-blooded animals by actively invading nucleated host cells and forming a modified compartment where it replicates within the cytosol. The parasite-containing vacuole provides a safe haven, even in professional phagocytes such as macrophages, which normally destroy foreign microbes. In an effort to eliminate the parasite, the host up-regulates a family of immunity-related p47 GTPases (IRGs), which are recruited to the parasite-containing vacuole, resulting in membrane rupture and digestion of the parasite. To avoid this fate, highly virulent strains of Toxoplasma coat the external surface of their vacuole with a secretory serine/threonine kinase, known as ROP18. At this host-pathogen interface, ROP18 phosphorylates and inactivates IRGs, thereby protecting the parasite from killing. These findings reveal a novel molecular mechanism by which the parasite disarms host innate immunity.
Collapse
Affiliation(s)
- Sarah J Fentress
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
49
|
Volling K, Thywissen A, Brakhage AA, Saluz HP. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell Microbiol 2011; 13:1130-48. [PMID: 21501368 DOI: 10.1111/j.1462-5822.2011.01605.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell death is a critical component of innate immunity and often determines the progression and outcome of infections. The opportunistic human pathogen Aspergillus fumigatus can manipulate the immune system either by inducing or by inhibiting host cell apoptosis dependent on its distinct morphological form. Here, we show that conidia of Aspergillus ssp. inhibit apoptosis of macrophages induced via the intrinsic (staurosporine) and extrinsic (Fas ligand) pathway. Hence, mitochondrial cytochrome c release and caspase activation were prevented. We further found that the anti-apoptotic effect depends on both host cell de novo protein synthesis and phagocytosis of conidia by macrophages. Moreover, sustained PI3K/Akt signalling in infected cells is an important determinant to resist apoptosis. We demonstrate that pigmentless pksP mutant conidia of A. fumigatus failed to trigger protection against apoptosis and provide evidence that the sustained survival of infected macrophages depends on the presence of the grey-green conidial pigment consisting of dihydroxynaphthalene-melanin. In conclusion, we revealed a novel potential function of melanin in the pathogenesis of A. fumigatus. For the first time, we show that melanin itself is a crucial component to inhibit macrophage apoptosis which may contribute to dissemination of the fungus within the host.
Collapse
Affiliation(s)
- Katrin Volling
- Department of Cell and Molecular Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstrasse 11a, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
50
|
Yamada T, Tomita T, Weiss LM, Orlofsky A. Toxoplasma gondii inhibits granzyme B-mediated apoptosis by the inhibition of granzyme B function in host cells. Int J Parasitol 2011; 41:595-607. [PMID: 21329693 PMCID: PMC3116727 DOI: 10.1016/j.ijpara.2010.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/16/2010] [Accepted: 11/17/2010] [Indexed: 12/14/2022]
Abstract
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8(+) T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.
Collapse
Affiliation(s)
- Tatsuya Yamada
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Tadakimi Tomita
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Louis M. Weiss
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| | - Amos Orlofsky
- Department of Pathology Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York, 10461, USA
| |
Collapse
|