1
|
Nyström A. Dystrophic epidermolysis bullosa - From biochemistry to interventions. Matrix Biol 2025; 136:111-126. [PMID: 39922469 DOI: 10.1016/j.matbio.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
The skin, as a barrier organ meeting constant mechanical challenges, is equipped with multiple adhesive structures that collectively support resilient, yet flexible attachment of its epithelium -the epidermis to its mesenchyme - the dermis. One such structure is the collagen VII-composed anchoring fibril, which provides firm anchorage of the epidermal basement membrane to the underlying interstitial extracellular matrix. Blistering and wider tissue fragility in the genetic disease dystrophic epidermolysis bullosa (DEB) caused by collagen VII deficiency illustrate the essential function of collagen VII in supporting skin integrity. DEB is also a progressive inflammatory fibrotic disease with multi-organ involvement, indicating that collagen VII has broader functions than simply providing epithelial anchorage. This review explores the reciprocal relationship between collagen VII biology and DEB pathophysiology. A deeper understanding of collagen VII biology - spanning its synthesis, assembly into suprastructures, and regulatory roles - enhances our understanding of DEB. Conversely, detailed insights into DEB through analysis of disease progression or therapeutic interventions offer valuable information on the broader tissue and organismal roles of collagen VII in maintaining homeostasis. This review focuses on such knowledge exchange in advancing our understanding of collagen VII, the extracellular matrix in general, and inspiring potential strategies for treatment of DEB. Importantly, in a broader sense, the discussed themes are applicable to other conditions driven by compromised extracellular matrix instruction and integrity, leading to progressive damage and inflammation.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Hauptstrasse 7, 79140 Freiburg, Germany.
| |
Collapse
|
2
|
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Zeyer KA, Bornert O, Nelea V, Bao X, Leytens A, Sharoyan S, Sengle G, Antonyan A, Bruckner-Tuderman L, Dengjel J, Reinhardt DP, Nyström A. Dipeptidyl Peptidase-4-Mediated Fibronectin Processing Evokes a Profibrotic Extracellular Matrix. J Invest Dermatol 2024; 144:2477-2487.e13. [PMID: 38570029 DOI: 10.1016/j.jid.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Fibronectin serves as a platform to guide and facilitate deposition of collagen and fibrillin microfibrils. During development of fibrotic diseases, altered fibronectin deposition in the extracellular matrix (ECM) is generally an early event. After this, dysregulated organization of fibrillins and fibrillar collagens occurs. Because fibronectin is an essential orchestrator of healthy ECM, perturbation of its ECM-organizational capacity may be involved in development of fibrosis. To investigate this, we employed recessive dystrophic epidermolysis bullosa as a disease model with progressive, severe dermal fibrosis. Fibroblasts from donors with recessive dystrophic epidermolysis bullosa in 2-dimensional and 3-dimensional cultures displayed dysregulated fibronectin deposition. Our analyses revealed that increase of profibrotic dipeptidyl peptidase-4-positive fibroblasts coincides with altered fibronectin deposition. Dipeptidyl peptidase-4 inhibitors normalized deposition of fibronectin and subsequently of fibrillin microfibrils and collagen I. Intriguingly, proteomics and inhibitor and mutagenesis studies disclosed that dipeptidyl peptidase-4 modulates ECM deposition through the proteolysis of the fibronectin N-terminus. Our study provides mechanistic insights into the observed profibrotic activities of dipeptidyl peptidase-4 and extends the understanding of fibronectin-guided ECM assembly in health and disease.
Collapse
Affiliation(s)
- Karina A Zeyer
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Olivier Bornert
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Valentin Nelea
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Xinyi Bao
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Svetlana Sharoyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Medical Faculty, University of Cologne, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Alvard Antonyan
- H. Buniatian Institute of Biochemistry of Armenian NAS, Yerevan, Republic of Armenia
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Chen Y, Chen H, Han C, Ou H, Zhan X. The structure and proteomic analysis of byssus in Pteria penguin: Insights into byssus evolution and formation. J Proteomics 2024; 307:105267. [PMID: 39089615 DOI: 10.1016/j.jprot.2024.105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Byssus is a unique external structure in sessile bivalves and is critical for settlement and metamorphosis. However, little is known about the stout byssus in Pteria penguin. We explored the byssus structure and proteins using scanning electron microscopy and proteomics, respectively. The results revealed that P. penguin byssus has a dense and highly aligned fiber inner core, and the outer cuticle contains protein granules embedded in the protein matrix. Proteomic analysis revealed 31 proteins in the byssus, among which 15 differentially expressed proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins were enriched in the EF-hand, immunoglobulin, and fibronectin domains. All these domains can participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which, together with the seven types of ECM proteins detected in the byssus, supports the hypothesis that the byssus is derived from the ECM. We also found that in vitro acellular structures of the byssus and the shell shared commonalities in their formation processes. These results are useful for further understanding byssus evolution and the characterization of byssus-related proteins. SIGNIFICANCE: This manuscript investigates the structure and the origin of Pteria penguin byssus, given that byssus is vital to provide critical protection for reproduction and even against environmental stresses that affect survival. However, there is rare research on byssus protein composition. Hence, though scanning electron microscopy and proteomic analysis, we discovered that P. penguin byssus possesses the dense and highly aligned fiber inner core, and the outer cuticle has protein granules embedded in the protein matrix. Proteomic analysis showed that there were 31 proteins in the byssus, among which 15 proteins were mainly enriched in the EGF/EGF-like and laminin EGF-like domains. Foot proteins closely related to byssus formation were enriched in EF hand, immunoglobulin, and fibronectin domains. These domains are able to participate in protein-protein and/or protein-metal interactions in the extracellular matrix (ECM), which together with the seven types of ECM proteins detected in byssus support the hypothesis that byssus derive from the ECM. We also found in vitro acellular structures the byssus and the shell share commonalities in their formation processes. These results were useful for further understanding the byssus evolution and the characterization of the byssus-related proteins.
Collapse
Affiliation(s)
- Yi Chen
- School of Ecology, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Hengda Chen
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Changqing Han
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Huilong Ou
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Neupane S, Williamson DB, Roth RA, Halabi CM, Haltiwanger RS, Holdener BC. Poglut2/3 double knockout in mice results in neonatal lethality with reduced levels of fibrillin in lung tissues. J Biol Chem 2024; 300:107445. [PMID: 38844137 PMCID: PMC11261140 DOI: 10.1016/j.jbc.2024.107445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/30/2024] Open
Abstract
Fibrillin microfibrils play a critical role in the formation of elastic fibers, tissue/organ development, and cardiopulmonary function. These microfibrils not only provide structural support and flexibility to tissues, but they also regulate growth factor signaling through a plethora of microfibril-binding proteins in the extracellular space. Mutations in fibrillins are associated with human diseases affecting cardiovascular, pulmonary, skeletal, and ocular systems. Fibrillins consist of up to 47 epidermal growth factor-like repeats, of which more than half are modified by protein O-glucosyltransferase 2 (POGLUT2) and/or POGLUT3. Loss of these modifications reduces secretion of N-terminal fibrillin constructs overexpressed in vitro. Here, we investigated the role of POGLUT2 and POGLUT3 in vivo using a Poglut2/3 double knockout (DKO) mouse model. Blocking O-glucosylation caused neonatal death with skeletal, pulmonary, and eye defects reminiscent of fibrillin/elastin mutations. Proteomic analyses of DKO dermal fibroblast medium and extracellular matrix provided evidence that fibrillins were more sensitive to loss of O-glucose compared to other POGLUT2/3 substrates. This conclusion was supported by immunofluorescent analyses of late gestation DKO lungs where FBN levels were reduced and microfibrils appeared fragmented in the pulmonary arteries and veins, bronchioles, and developing saccules. Defects in fibrillin microfibrils likely contributed to impaired elastic fiber formation and histological changes observed in DKO lung blood vessels, bronchioles, and saccules. Collectively, these results highlight the importance of POGLUT2/3-mediated O-glucosylation in vivo and open the possibility that O-glucose modifications on fibrillin influence microfibril assembly and or protein interactions in the ECM environment.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Daniel B Williamson
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robyn A Roth
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carmen M Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
6
|
Wozny MR, Nelea V, Siddiqui IFS, Wanga S, de Waard V, Strauss M, Reinhardt DP. Microfibril-associated glycoprotein 4 forms octamers that mediate interactions with elastogenic proteins and cells. Nat Commun 2024; 15:4015. [PMID: 38740766 PMCID: PMC11091212 DOI: 10.1038/s41467-024-48377-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Microfibril-associated glycoprotein 4 (MFAP4) is a 36-kDa extracellular matrix glycoprotein with critical roles in organ fibrosis, chronic obstructive pulmonary disease, and cardiovascular disorders, including aortic aneurysms. MFAP4 multimerises and interacts with elastogenic proteins, including fibrillin-1 and tropoelastin, and with cells via integrins. Structural details of MFAP4 and its potential interfaces for these interactions are unknown. Here, we present a cryo-electron microscopy structure of human MFAP4. In the presence of calcium, MFAP4 assembles as an octamer, where two sets of homodimers constitute the top and bottom halves of each octamer. Each homodimer is linked together by an intermolecular disulphide bond. A C34S missense mutation prevents disulphide-bond formation between monomers but does not prevent octamer assembly. The atomic model, built into the 3.55 Å cryo-EM map, suggests that salt-bridge interactions mediate homodimer assembly, while non-polar residues form the interface between octamer halves. In the absence of calcium, an MFAP4 octamer dissociates into two tetramers. Binding studies with fibrillin-1, tropoelastin, LTBP4, and small fibulins show that MFAP4 has multiple surfaces for protein-protein interactions, most of which depend upon MFAP4 octamer assembly. The C34S mutation does not affect these protein interactions or cell interactions. MFAP4 assemblies with fibrillin-1 abrogate MFAP4 interactions with cells.
Collapse
Affiliation(s)
- Michael R Wozny
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Valentin Nelea
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | | | - Shaynah Wanga
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Vivian de Waard
- Amsterdam UMC location University of Amsterdam, Medical Biochemistry, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Mike Strauss
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
7
|
Li L, Huang J, Liu Y. The extracellular matrix glycoprotein fibrillin-1 in health and disease. Front Cell Dev Biol 2024; 11:1302285. [PMID: 38269088 PMCID: PMC10806136 DOI: 10.3389/fcell.2023.1302285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Fibrillin-1 (FBN1) is a large, cysteine-rich, calcium binding extracellular matrix glycoprotein encoded by FBN1 gene. It serves as a structural component of microfibrils and provides force-bearing mechanical support in elastic and nonelastic connective tissue. As such, mutations in the FBN1 gene can cause a wide variety of genetic diseases such as Marfan syndrome, an autosomal dominant disorder characterized by ocular, skeletal and cardiovascular abnormalities. FBN1 also interacts with numerous microfibril-associated proteins, growth factors and cell membrane receptors, thereby mediating a wide range of biological processes such as cell survival, proliferation, migration and differentiation. Dysregulation of FBN1 is involved in the pathogenesis of many human diseases, such as cancers, cardiovascular disorders and kidney diseases. Paradoxically, both depletion and overexpression of FBN1 upregulate the bioavailability and signal transduction of TGF-β via distinct mechanisms in different settings. In this review, we summarize the structure and expression of FBN1 and present our current understanding of the functional role of FBN1 in various human diseases. This knowledge will allow to develop better strategies for therapeutic intervention of FBN1 related diseases.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Junxin Huang
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
8
|
Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, Mahmoodi M, Pihlajaniemi T, Kaartinen MT, Heljasvaara R. Collagens Regulating Adipose Tissue Formation and Functions. Biomedicines 2023; 11:biomedicines11051412. [PMID: 37239083 DOI: 10.3390/biomedicines11051412] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The globally increasing prevalence of obesity is associated with the development of metabolic diseases such as type 2 diabetes, dyslipidemia, and fatty liver. Excess adipose tissue (AT) often leads to its malfunction and to a systemic metabolic dysfunction because, in addition to storing lipids, AT is an active endocrine system. Adipocytes are embedded in a unique extracellular matrix (ECM), which provides structural support to the cells as well as participating in the regulation of their functions, such as proliferation and differentiation. Adipocytes have a thin pericellular layer of a specialized ECM, referred to as the basement membrane (BM), which is an important functional unit that lies between cells and tissue stroma. Collagens form a major group of proteins in the ECM, and some of them, especially the BM-associated collagens, support AT functions and participate in the regulation of adipocyte differentiation. In pathological conditions such as obesity, AT often proceeds to fibrosis, characterized by the accumulation of large collagen bundles, which disturbs the natural functions of the AT. In this review, we summarize the current knowledge on the vertebrate collagens that are important for AT development and function and include basic information on some other important ECM components, principally fibronectin, of the AT. We also briefly discuss the function of AT collagens in certain metabolic diseases in which they have been shown to play central roles.
Collapse
Affiliation(s)
- Iida Jääskeläinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Elahe Mirzarazi Dahagi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Mahdokht Mahmoodi
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Mari T Kaartinen
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
9
|
Chen M, Cavinato C, Hansen J, Tanaka K, Ren P, Hassab A, Li DS, Youshao E, Tellides G, Iyengar R, Humphrey JD, Schwartz MA. FN (Fibronectin)-Integrin α5 Signaling Promotes Thoracic Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e132-e150. [PMID: 36994727 PMCID: PMC10133209 DOI: 10.1161/atvbaha.123.319120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5β1. We investigated the role of integrin α5-specific signals in Marfan mice in which the cytoplasmic domain of integrin α5 was replaced with that of integrin α2 (denoted α5/2 chimera). METHODS We crossed α5/2 chimeric mice with Fbn1mgR/mgR mice (mgR model of Marfan syndrome) to evaluate the survival rate and pathogenesis of TAAs among wild-type, α5/2, mgR, and α5/2 mgR mice. Further biochemical and microscopic analysis of porcine and mouse aortic SMCs investigated molecular mechanisms by which FN affects SMCs and subsequent development of TAAs. RESULTS FN was elevated in the thoracic aortas from Marfan patients, in nonsyndromic aneurysms, and in mgR mice. The α5/2 mutation greatly prolonged survival of Marfan mice, with improved elastic fiber integrity, mechanical properties, SMC density, and SMC contractile gene expression. Furthermore, plating of wild-type SMCs on FN decreased contractile gene expression and activated inflammatory pathways whereas α5/2 SMCs were resistant. These effects correlated with increased NF-kB activation in cultured SMCs and mgR aortas, which was alleviated by the α5/2 mutation or NF-kB inhibition. CONCLUSIONS FN-integrin α5 signaling is a significant driver of TAA in the mgR mouse model. This pathway thus warrants further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Minghao Chen
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Keiichiro Tanaka
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Pengwei Ren
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Abdulrahman Hassab
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Eric Youshao
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - George Tellides
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Martin A Schwartz
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Departments of Medicine (Cardiology) and Cell Biology (M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| |
Collapse
|
10
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
11
|
Mellody KT, Bradley EJ, Mambwe B, Cotterell L, Kiss O, Halai P, Loftus Z, Bell M, Griffiths TW, Griffiths CEM, Watson REB. Multifaceted amelioration of cutaneous photoageing by (0.3%) retinol. Int J Cosmet Sci 2022; 44:625-635. [PMID: 35778881 PMCID: PMC9826105 DOI: 10.1111/ics.12799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although retinol skin care products improve the appearance of photoaged skin, there is a need for an effective retinol concentration that provides skin benefits without irritation. OBJECTIVE To compare the efficacy of topical 0.1%, 0.3% and 1% retinol in remodelling the cutaneous architecture in an in vivo experimental patch test study, and to determine tolerance of the most effective formulations when used in a daily in-use escalation study. METHODS For the patch test study, retinol products were applied under occlusion, to the extensor forearm of photoaged volunteers (n = 5; age range 66-84 years), and 3 mm skin biopsies obtained after 12 days. Effects of different retinol concentrations, and a vehicle control, on key epidermal and dermal biomarkers of cellular proliferation and dermal remodelling were compared to untreated baseline. Separately, participants (n = 218) recorded their tolerance to 0.3% or 1% retinol over a six-week, approved regimen, which gradually increased the facial applications to once nightly. RESULTS Retinol treatment induced a stepwise increase in epidermal thickness and induced the expression of stratum corneum proteins, filaggrin and KPRP. 0.3% retinol and 1% retinol were comparably effective at inducing keratinocyte proliferation in the epidermis, whilst reducing e-cadherin expression. Fibrillin-rich microfibril deposition was increased following treatment with 0.3% and 1% retinol (p < 0.01); other dermal components remained unaltered (e.g., fibronectin, collagen fibrils, elastin), and no evidence of local inflammation was detected. The in-use study found that 0.3% retinol was better tolerated than 1% retinol, with fewer and milder adverse events reported (χ2 (1) = 23.97; p < 0.001). CONCLUSIONS This study suggests that 1% and 0.3% retinol concentrations were similarly effective at remodelling photodamaged skin in an in vivo model of long-term use. Use of 0.3% retinol in the escalation study was associated with fewer adverse reactions when applied daily. Hence, 0.3% retinol may be better tolerated than 1% retinol, thereby allowing longer-term topical application.
Collapse
Affiliation(s)
- Kieran T. Mellody
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK,Manchester Institute for Collaborative Research on AgeingUniversity of ManchesterManchesterUK
| | | | - Bezaleel Mambwe
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Lindsay F. Cotterell
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK,Manchester Institute for Collaborative Research on AgeingUniversity of ManchesterManchesterUK
| | - Orsolya Kiss
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK,Manchester Institute for Collaborative Research on AgeingUniversity of ManchesterManchesterUK
| | - Poonam Halai
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK,Manchester Institute for Collaborative Research on AgeingUniversity of ManchesterManchesterUK
| | - Zeena Loftus
- No7 Beauty CompanyWalgreens Boots AllianceNottinghamUK
| | - Mike Bell
- No7 Beauty CompanyWalgreens Boots AllianceNottinghamUK
| | - Tamara W. Griffiths
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK,Manchester Institute for Collaborative Research on AgeingUniversity of ManchesterManchesterUK
| | - Christopher E. M. Griffiths
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK,Manchester Institute for Collaborative Research on AgeingUniversity of ManchesterManchesterUK,NIHR Manchester Biomedical Research CentreManchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| | - Rachel E. B. Watson
- Centre for Dermatology ResearchThe University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK,Manchester Institute for Collaborative Research on AgeingUniversity of ManchesterManchesterUK,NIHR Manchester Biomedical Research CentreManchester University NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
12
|
Mohammadi A, Sorensen GL, Pilecki B. MFAP4-Mediated Effects in Elastic Fiber Homeostasis, Integrin Signaling and Cancer, and Its Role in Teleost Fish. Cells 2022; 11:cells11132115. [PMID: 35805199 PMCID: PMC9265350 DOI: 10.3390/cells11132115] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix (ECM) protein belonging to the fibrinogen-related domain superfamily. MFAP4 is highly expressed in elastin-rich tissues such as lung, blood vessels and skin. MFAP4 is involved in organization of the ECM, regulating proper elastic fiber assembly. On the other hand, during pathology MFAP4 actively contributes to disease development and progression due to its interactions with RGD-dependent integrin receptors. Both tissue expression and circulating MFAP4 levels are associated with various disorders, including liver fibrosis and cancer. In other experimental models, such as teleost fish, MFAP4 appears to participate in host defense as a macrophage-specific innate immune molecule. The aim of this review is to summarize the accumulating evidence that indicates the importance of MFAP4 in homeostasis as well as pathological conditions, discuss its known biological functions with special focus on elastic fiber assembly, integrin signaling and cancer, as well as describe the reported functions of non-mammalian MFAP4 in fish. Overall, our work provides a comprehensive overview on the role of MFAP4 in health and disease.
Collapse
|
13
|
Dinesh NEH, Campeau PM, Reinhardt DP. Fibronectin isoforms in skeletal development and associated disorders. Am J Physiol Cell Physiol 2022; 323:C536-C549. [PMID: 35759430 DOI: 10.1152/ajpcell.00226.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix is an intricate and essential network of proteins and non-proteinaceous components that provide a conducive microenvironment for cells to regulate cell function, differentiation, and survival. Fibronectin is one key component in the extracellular matrix that participates in determining cell fate and function crucial for normal vertebrate development. Fibronectin undergoes time dependent expression patterns during stem cell differentiation, providing a unique stem cell niche. Mutations in fibronectin have been recently identified to cause a rare form of skeletal dysplasia with scoliosis and abnormal growth plates. Even though fibronectin has been extensively analyzed in developmental processes, the functional role and importance of this protein and its various isoforms in skeletal development remains less understood. This review attempts to provide a concise and critical overview of the role of fibronectin isoforms in cartilage and bone physiology and associated pathologies. This will facilitate a better understanding of the possible mechanisms through which fibronectin exerts its regulatory role on cellular differentiation during skeletal development. The review discusses the consequences of mutations in fibronectin leading to corner fracture type spondylometaphyseal dysplasia and presents a new outlook towards matrix-mediated molecular pathways in relation to therapeutic and clinical relevance.
Collapse
Affiliation(s)
- Neha E H Dinesh
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | | | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.,Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Mead TJ, Martin DR, Wang LW, Cain SA, Gulec C, Cahill E, Mauch J, Reinhardt D, Lo C, Baldock C, Apte SS. Proteolysis of fibrillin-2 microfibrils is essential for normal skeletal development. eLife 2022; 11:71142. [PMID: 35503090 PMCID: PMC9064305 DOI: 10.7554/elife.71142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Daniel R Martin
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Lauren W Wang
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Stuart A Cain
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Cagri Gulec
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elisabeth Cahill
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Joseph Mauch
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Dieter Reinhardt
- Faculty of Medicine and Health Sciences and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| |
Collapse
|
15
|
Li Y, Fan W, Link F, Wang S, Dooley S. Transforming growth factor β latency: A mechanism of cytokine storage and signalling regulation in liver homeostasis and disease. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100397. [PMID: 35059619 PMCID: PMC8760520 DOI: 10.1016/j.jhepr.2021.100397] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) is a potent effector in the liver, which is involved in a plethora of processes initiated upon liver injury. TGF-β affects parenchymal, non-parenchymal, and inflammatory cells in a highly context-dependent manner. Its bioavailability is critical for a fast response to various insults. In the liver – and probably in other organs – this is made possible by the deposition of a large portion of TGF-β in the extracellular matrix as an inactivated precursor form termed latent TGF-β (L-TGF-β). Several matrisomal proteins participate in matrix deposition, latent complex stabilisation, and activation of L-TGF-β. Extracellular matrix protein 1 (ECM1) was recently identified as a critical factor in maintaining the latency of deposited L-TGF-β in the healthy liver. Indeed, its depletion causes spontaneous TGF-β signalling activation with deleterious effects on liver architecture and function. This review article presents the current knowledge on intracellular L-TGF-β complex formation, secretion, matrix deposition, and activation and describes the proteins and processes involved. Further, we emphasise the therapeutic potential of toning down L-TGF-β activation in liver fibrosis and liver cancer.
Collapse
Affiliation(s)
- Yujia Li
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford CA, USA
| | - Frederik Link
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sai Wang
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Tel.: 06213835595.
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Corresponding authors. Addresses: Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Tel.: 06213833768;
| |
Collapse
|
16
|
Boraldi F, Lofaro FD, Cossarizza A, Quaglino D. The "Elastic Perspective" of SARS-CoV-2 Infection and the Role of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms23031559. [PMID: 35163482 PMCID: PMC8835950 DOI: 10.3390/ijms23031559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
- Correspondence:
| |
Collapse
|
17
|
Rippa AL, Alpeeva EV, Vasiliev AV, Vorotelyak EA. Alveologenesis: What Governs Secondary Septa Formation. Int J Mol Sci 2021; 22:ijms222212107. [PMID: 34829987 PMCID: PMC8618598 DOI: 10.3390/ijms222212107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022] Open
Abstract
The simplification of alveoli leads to various lung pathologies such as bronchopulmonary dysplasia and emphysema. Deep insight into the process of emergence of the secondary septa during development and regeneration after pneumonectomy, and into the contribution of the drivers of alveologenesis and neo-alveolarization is required in an efficient search for therapeutic approaches. In this review, we describe the formation of the gas exchange units of the lung as a multifactorial process, which includes changes in the actomyosin cytoskeleton of alveocytes and myofibroblasts, elastogenesis, retinoic acid signaling, and the contribution of alveolar mesenchymal cells in secondary septation. Knowledge of the mechanistic context of alveologenesis remains incomplete. The characterization of the mechanisms that govern the emergence and depletion of αSMA will allow for an understanding of how the niche of fibroblasts is changing. Taking into account the intense studies that have been performed on the pool of lung mesenchymal cells, we present data on the typing of interstitial fibroblasts and their role in the formation and maintenance of alveoli. On the whole, when identifying cell subpopulations in lung mesenchyme, one has to consider the developmental context, the changing cellular functions, and the lability of gene signatures.
Collapse
|
18
|
Côté E, Zhang RM, Kaiser N, Reinhardt DP, Martin CK. Annuloaortic ectasia in a four-month-old male Newfoundland dog: long-term follow-up and immunofluorescent study. Vet Q 2021; 41:280-291. [PMID: 34607531 PMCID: PMC8526017 DOI: 10.1080/01652176.2021.1961039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A 4 month-old, 14.8 kg, male Newfoundland dog was presented for cardiovascular evaluation following detection of a heart murmur. Echocardiography revealed enlargement of the sinuses of Valsalva and marked, diffuse dilation of the ascending aorta (annuloaortic ectasia, AAE), with mild/equivocal subaortic stenosis (SAS). The dog was monitored over the duration of its lifetime, with serial echocardiograms performed at 5, 6, and 8 months and 1, 2, 3, 4, 8, and 10 years demonstrating persistent, diffuse dilation of the ascending aorta. The dog lived until it was 10 years old and died of metastatic carcinoma. Postmortem examination confirmed AAE and mild SAS. Hematoxylin and eosin and Weigert van Gieson stains were used to compare the ascending aorta to the descending aorta and left subclavian artery, and to compare aortic samples to those of three control dogs. Histopathologic evaluation revealed mild medial degeneration in the ascending aorta of all four dogs. Immunofluorescent microscopy was used for determining the deposition of proteins known to play a role in aortic aneurysms in humans: fibrillin-1 (FBN1), latent transforming growth factor beta binding protein 4 (LTBP4) and fibronectin. The ascending aorta of the AAE case demonstrated reduced deposition of FBN1, indicating that its loss may have contributed to aortic dilation. Diffuse, primary ascending aortic dilation is uncommonly reported in dogs; when it is, it carries a poor prognosis. This case provides an important example of marked dilation of the ascending aorta in a dog that lived with no associated adverse effects for 10 years.
Collapse
Affiliation(s)
- Etienne Côté
- Department of Companion Animals, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Rong-Mo Zhang
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Nicole Kaiser
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | - Dieter P Reinhardt
- Faculty of Medicine and Health Sciences, Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.,Faculty of Dentistry, McGill University, Montreal, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
19
|
Dalton CJ, Lemmon CA. Fibronectin: Molecular Structure, Fibrillar Structure and Mechanochemical Signaling. Cells 2021; 10:2443. [PMID: 34572092 PMCID: PMC8471655 DOI: 10.3390/cells10092443] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) plays a key role as both structural scaffold and regulator of cell signal transduction in tissues. In times of ECM assembly and turnover, cells upregulate assembly of the ECM protein, fibronectin (FN). FN is assembled by cells into viscoelastic fibrils that can bind upward of 40 distinct growth factors and cytokines. These fibrils play a key role in assembling a provisional ECM during embryonic development and wound healing. Fibril assembly is also often upregulated during disease states, including cancer and fibrotic diseases. FN fibrils have unique mechanical properties, which allow them to alter mechanotransduction signals sensed and relayed by cells. Binding of soluble growth factors to FN fibrils alters signal transduction from these proteins, while binding of other ECM proteins, including collagens, elastins, and proteoglycans, to FN fibrils facilitates the maturation and tissue specificity of the ECM. In this review, we will discuss the assembly of FN fibrils from individual FN molecules; the composition, structure, and mechanics of FN fibrils; the interaction of FN fibrils with other ECM proteins and growth factors; the role of FN in transmitting mechanobiology signaling events; and approaches for studying the mechanics of FN fibrils.
Collapse
Affiliation(s)
| | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 W. Main St., Richmond, VA 23284, USA;
| |
Collapse
|
20
|
Parmaksiz M, Elçin AE, Elçin YM. Decellularized Cell Culture ECMs Act as Cell Differentiation Inducers. Stem Cell Rev Rep 2021; 16:569-584. [PMID: 32170583 DOI: 10.1007/s12015-020-09963-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Decellularized tissues and organs have aroused considerable interest for developing functional bio-scaffolds as natural templates in tissue engineering applications. More recently, the use of natural extracellular matrix (ECM) extracted from the in vitro cell cultures for cellular applications have come into question. It is well known that the microenvironment largely defines cellular properties. Thus, we have anticipated that the ECMs of the cells with different potency levels should likely possess different effects on cell cultures. To test this, we have comparatively evaluated the differentiative effects of ECMs derived from the cultures of human somatic dermal fibroblasts, human multipotent bone marrow mesenchymal stem cells, and human induced pluripotent stem cells on somatic dermal fibroblasts. Although challenges remain, the data suggest that the use of cell culture-based extracellular matrices perhaps may be considered as an alternative approach for the differentiation of even somatic cells into other cell types.
Collapse
Affiliation(s)
- Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey. .,Biovalda Health Technologies, Inc, Ankara, Turkey.
| |
Collapse
|
21
|
Assunção M, Yiu CHK, Wan HY, Wang D, Ker DFE, Tuan RS, Blocki A. Hyaluronic acid drives mesenchymal stromal cell-derived extracellular matrix assembly by promoting fibronectin fibrillogenesis. J Mater Chem B 2021; 9:7205-7215. [PMID: 33710248 DOI: 10.1039/d1tb00268f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyaluronic acid (HA)-based biomaterials have been demonstrated to promote wound healing and tissue regeneration, owing to the intrinsic and important role of HA in these processes. A deeper understanding of the biological functions of HA would enable better informed decisions on applications involving HA-based biomaterial design. HA and fibronectin are both major components of the provisional extracellular matrix (ECM) during wound healing and regeneration. Both biomacromolecules exhibit the same spatiotemporal distribution, with fibronectin possessing direct binding sites for HA. As HA is one of the first components present in the wound healing bed, we hypothesized that HA may be involved in the deposition, and subsequently fibrillogenesis, of fibronectin. This hypothesis was tested by exposing cultures of mesenchymal stromal cells (MSCs), which are thought to be involved in the early phase of wound healing, to high molecular weight HA (HMWHA). The results showed that treatment of human bone marrow derived MSCs (bmMSCs) with exogenous HMWHA increased fibronectin fibril formation during early ECM deposition. On the other hand, partial depletion of endogenous HA led to a drastic impairment of fibronectin fibril formation, despite detectable granular presence of fibronectin in the perinuclear region, comparable to observations made under the well-established ROCK inhibition-mediated impairment of fibronectin fibrillogenesis. These findings suggest the functional involvement of HA in effective fibronectin fibrillogenesis. The hypothesis was further supported by the co-alignment of fibronectin, HA and integrin α5 at sites of ongoing fibronectin fibrillogenesis, suggesting that HA might be directly involved in fibrillar adhesions. Given the essential function of fibronectin in ECM assembly and maturation, HA may play a major enabling role in initiating and propagating ECM deposition. Thus, HA, as a readily available biomaterial, presents practical advantages for de novo ECM-rich tissue formation in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Marisa Assunção
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Chi Him Kendrick Yiu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Ho-Ying Wan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China and Department of Orthopaedics & Traumatology, Faculty of Medicine, CUHK, Shatin, Hong Kong SAR, China and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China and Department of Orthopaedics & Traumatology, Faculty of Medicine, CUHK, Shatin, Hong Kong SAR, China and Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China. and School of Biomedical Sciences, CUHK, Shatin, Hong Kong SAR, China and Department of Orthopaedics & Traumatology, Faculty of Medicine, CUHK, Shatin, Hong Kong SAR, China
| |
Collapse
|
22
|
Guilak F, Hayes AJ, Melrose J. Perlecan in Pericellular Mechanosensory Cell-Matrix Communication, Extracellular Matrix Stabilisation and Mechanoregulation of Load-Bearing Connective Tissues. Int J Mol Sci 2021; 22:2716. [PMID: 33800241 PMCID: PMC7962540 DOI: 10.3390/ijms22052716] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we review mechanoregulatory roles for perlecan in load-bearing connective tissues. Perlecan facilitates the co-acervation of tropoelastin and assembly of elastic microfibrils in translamellar cross-bridges which, together with fibrillin and elastin stabilise the extracellular matrix of the intervertebral disc annulus fibrosus. Pericellular perlecan interacts with collagen VI and XI to define and stabilize this matrix compartment which has a strategic position facilitating two-way cell-matrix communication between the cell and its wider extracellular matrix. Cues from the extracellular matrix are fed through this pericellular matrix back to the chondrocyte, allowing it to perceive and respond to subtle microenvironmental changes to regulate tissue homeostasis. Thus perlecan plays a key regulatory role in chondrocyte metabolism, and in chondrocyte differentiation. Perlecan acts as a transport proteoglycan carrying poorly soluble, lipid-modified proteins such as the Wnt or Hedgehog families facilitating the establishment of morphogen gradients that drive tissue morphogenesis. Cell surface perlecan on endothelial cells or osteocytes acts as a flow sensor in blood and the lacunar canalicular fluid providing feedback cues to smooth muscle cells regulating vascular tone and blood pressure, and the regulation of bone metabolism by osteocytes highlighting perlecan's multifaceted roles in load-bearing connective tissues.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA;
- Shriners Hospitals for Children—St. Louis, St. Louis, MO 63110, USA
| | - Anthony J. Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales CF10 3AX, UK;
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
23
|
Matsuzaki T, Keene DR, Nishimoto E, Noda M. Reversion-inducing cysteine-rich protein with Kazal motifs and MT1-MMP promote the formation of robust fibrillin fibers. J Cell Physiol 2021; 236:1980-1995. [PMID: 32730638 PMCID: PMC7818472 DOI: 10.1002/jcp.29982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/30/2023]
Abstract
Fibrillins (FBNs) form mesh-like structures of microfibrils in various elastic tissues. RECK and FBN1 are co-expressed in many human tissues, suggesting a functional relationship. We found that dermal FBN1 fibers show atypical morphology in mice with reduced RECK expression (RECK-Hypo mice). Dermal FBN1 fibers in mice-lacking membrane-type 1-matrix metalloproteinase (MT1-MMP) show a similar atypical morphology, despite the current notion that MT1-MMP (a membrane-bound protease) and RECK (a membrane-bound protease inhibitor) have opposing functions. Our experiments using dermal fibroblasts indicated that RECK promotes pro-MT1-MMP activation, increases cell-associated gelatinase/collagenase activity, and decreases diffusible gelatinase/collagenase activity, while MT1-MMP stabilizes RECK in these cells. Experiments using purified proteins indicate that RECK and its binding partner ADAMTS10 keep the proteolytic activity of MT1-MMP within a certain range. These findings suggest that RECK, ADAMTS10, and MT1-MMP cooperate to support the formation of robust FBN1 fibers.
Collapse
Affiliation(s)
- Tomoko Matsuzaki
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Douglas R. Keene
- Departments of Medical Genetics, and Biochemistry and Molecular Biology, Shriners Hospital for ChildrenOregon Health and Science UniversityPortlandOregon
| | - Emi Nishimoto
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| | - Makoto Noda
- Department of Molecular OncologyKyoto University Graduate School of MedicineKyotoJapan
| |
Collapse
|
24
|
Garrison CM, Schwarzbauer JE. Fibronectin fibril alignment is established upon initiation of extracellular matrix assembly. Mol Biol Cell 2021; 32:739-752. [PMID: 33625865 PMCID: PMC8108514 DOI: 10.1091/mbc.e20-08-0533] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The physical structure of the extracellular matrix (ECM) is tissue-specific and fundamental to normal tissue function. Proper alignment of ECM fibers is essential for the functioning of a variety of tissues. While matrix assembly in general has been intensively investigated, little is known about the mechanisms required for formation of aligned ECM fibrils. We investigated the initiation of fibronectin (FN) matrix assembly using fibroblasts that assemble parallel ECM fibrils and found that matrix assembly sites, where FN fibrillogenesis is initiated, were oriented in parallel at the cell poles. We show that these polarized matrix assembly sites progress into fibrillar adhesions and ultimately into aligned FN fibrils. Cells that assemble an unaligned meshwork matrix form matrix assembly sites around the cell periphery, but the distribution of matrix assembly sites in these cells could be modulated through micropatterning or mechanical stretch. While an elongated cell shape corresponds with a polarized matrix assembly site distribution, these two features are not absolutely linked, since we discovered that transforming growth factor beta (TGF-β1) enhances matrix assembly site polarity and assembly of aligned fibrils independent of cell elongation. We conclude that the ultimate orientation of FN fibrils is determined by the alignment and distribution of matrix assembly sites that form during the initial stages of cell–FN interactions.
Collapse
Affiliation(s)
- Carly M Garrison
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
25
|
Adamo CS, Zuk AV, Sengle G. The fibrillin microfibril/elastic fibre network: A critical extracellular supramolecular scaffold to balance skin homoeostasis. Exp Dermatol 2020; 30:25-37. [PMID: 32920888 DOI: 10.1111/exd.14191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/08/2023]
Abstract
Supramolecular networks composed of fibrillins (fibrillin-1 and fibrillin-2) and associated ligands form intricate cellular microenvironments which balance skin homoeostasis and direct remodelling. Fibrillins assemble into microfibrils which are not only indispensable for conferring elasticity to the skin, but also control the bioavailability of growth factors targeted to the extracellular matrix architecture. Fibrillin microfibrils (FMF) represent the core scaffolds for elastic fibre formation, and they also decorate the surface of elastic fibres and form independent networks. In normal dermis, elastic fibres are suspended in a three-dimensional basket-like lattice of FMF intersecting basement membranes at the dermal-epidermal junction and thus conferring pliability to the skin. The importance of FMF for skin homoeostasis is illustrated by the clinical features caused by mutations in the human fibrillin genes (FBN1, FBN2), summarized as "fibrillinopathies." In skin, fibrillin mutations result in phenotypes ranging from thick, stiff and fibrotic skin to thin, lax and hyperextensible skin. The most plausible explanation for this spectrum of phenotypic outcomes is that FMF regulate growth factor signalling essential for proper growth and homoeostasis of the skin. Here, we will give an overview about the current understanding of the underlying pathomechanisms leading to fibrillin-dependent fibrosis as well as forms of cutis laxa caused by mutational inactivation of FMF-associated ligands.
Collapse
Affiliation(s)
- Christin S Adamo
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexandra V Zuk
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| |
Collapse
|
26
|
Abstract
The Zonule of Zinn, or ciliary zonule, is the elaborate system of extracellular fibers that centers the lens in the eye. In humans, the fibers transmit forces that flatten the lens during the process of disaccommodation, thereby bringing distant objects into focus. Zonular fibers are composed almost entirely of 10-12 nm-wide microfibrils, of which polymerized fibrillin is the most abundant component. The thickest fibers have a fascicular organization, where hundreds or thousands of microfibrils are gathered into micrometer-wide bundles. Many such bundles are aggregated to form a fiber. Dozens of proteins comprise the zonule. Most are derived from cells of the non-pigmented ciliary epithelium in the pars plana region, although some are probably contributed by the lens and perhaps other tissues of the anterior segment. Zonular fibers are viscoelastic cables but their component microfibrils are rather stiff structures. Thus, the elastic properties of the fibers likely stem from lateral interactions between microfibrils. Rupture of zonular fibers and subsequent lens dislocation (ectopia lentis) can result from blunt force trauma or be a sequela of other eye diseases, notably exfoliation syndrome. Ectopia lentis is also a feature of syndromic conditions caused typically by mutations in microfibril-associated genes. The resulting ocular phenotypes raise the possibility that the zonule regulates lens size and shape, globe size, and even corneal topology, in addition to its well-recognized role in accommodation.
Collapse
Affiliation(s)
- Steven Bassnett
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8096, St. Louis, MO 63110, USA.
| |
Collapse
|
27
|
Nyström A, Kiritsi D. Transmembrane collagens-Unexplored mediators of epidermal-dermal communication and tissue homeostasis. Exp Dermatol 2020; 30:10-16. [PMID: 32869371 DOI: 10.1111/exd.14180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Tissue homeostasis is maintained through constant, dynamic and heterogeneous communication between cells and their microenvironment. Proteins that are at the same time active at the intracellular, cell periphery and deeper extracellular levels possess the ability to, on the individual molecular level, influence the cells and their microenvironment in a bidirectional manner. The transmembrane collagens are a family of such proteins, which are of notable interest for tissue development and homeostasis. In skin, expression of all transmembrane collagens has been reported and deficiency of transmembrane collagen XVII manifests with distinct skin phenotypes. Nevertheless, transmembrane collagens in skin remain understudied despite the association of them with epidermal wound healing and dermal fibrotic processes. Here, we present an overview of transmembrane collagens and put a spotlight on them as regulators of epidermal-dermal communication and as potential players in fibrinogenesis.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Dimitra Kiritsi
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
28
|
Garrison CM, Singh-Varma A, Pastino AK, Steele JAM, Kohn J, Murthy NS, Schwarzbauer JE. A multilayered scaffold for regeneration of smooth muscle and connective tissue layers. J Biomed Mater Res A 2020; 109:733-744. [PMID: 32654327 DOI: 10.1002/jbm.a.37058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023]
Abstract
Tissue regeneration often requires recruitment of different cell types and rebuilding of two or more tissue layers to restore function. Here, we describe the creation of a novel multilayered scaffold with distinct fiber organizations-aligned to unaligned and dense to porous-to template common architectures found in adjacent tissue layers. Electrospun scaffolds were fabricated using a biodegradable, tyrosine-derived terpolymer, yielding densely-packed, aligned fibers that transition into randomly-oriented fibers of increasing diameter and porosity. We demonstrate that differently-oriented scaffold fibers direct cell and extracellular matrix (ECM) organization, and that scaffold fibers and ECM protein networks are maintained after decellularization. Smooth muscle and connective tissue layers are frequently adjacent in vivo; we show that within a single scaffold, the architecture supports alignment of contractile smooth muscle cells and deposition by fibroblasts of a meshwork of ECM fibrils. We rolled a flat scaffold into a tubular construct and, after culture, showed cell viability, orientation, and tissue-specific protein expression in the tube were similar to the flat-sheet scaffold. This scaffold design not only has translational potential for reparation of flat and tubular tissue layers but can also be customized for alternative applications by introducing two or more cell types in different combinations.
Collapse
Affiliation(s)
- Carly M Garrison
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Anya Singh-Varma
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Alexandra K Pastino
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Joseph A M Steele
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
29
|
Dengjel J, Bruckner-Tuderman L, Nyström A. Skin proteomics - analysis of the extracellular matrix in health and disease. Expert Rev Proteomics 2020; 17:377-391. [PMID: 32552150 DOI: 10.1080/14789450.2020.1773261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The skin protects the human body from external insults and regulates water and temperature homeostasis. A highly developed extracellular matrix (ECM) supports the skin and instructs its cell functions. Reduced functionality of the ECM is often associated with skin diseases that cause physical impairment and also have implications on social interactions and quality of life of affected individuals. AREAS COVERED With a focus on the skin ECM we discuss how mass spectrometry (MS)-based proteomic approaches first contributed to establishing skin protein inventories and then facilitated elucidation of molecular functions and disease mechanisms. EXPERT OPINION MS-based proteomic approaches have significantly contributed to our understanding of skin pathophysiology, but also revealed the challenges in assessing the skin ECM. The numerous posttranslational modifications of ECM proteins, like glycosylation, crosslinking, oxidation, and proteolytic maturation in disease settings can be difficult to tackle and remain understudied. Increased ease of handling of LC-MS/MS systems and automated/streamlined data analysis pipelines together with the accompanying increased usage of LC-MS/MS approaches will ensure that in the coming years MS-based proteomic approaches will continue to play a vital part in skin disease research. They will facilitate the elucidation of molecular disease mechanisms and, ultimately, identification of new druggable targets.
Collapse
Affiliation(s)
- Jörn Dengjel
- Department of Biology, University of Fribourg , Fribourg, Switzerland
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center - University of Freiburg , Freiburg, University of Freiburg, Freiburg, Germany Germany
| |
Collapse
|
30
|
Briggs DC, Langford-Smith AWW, Birchenough HL, Jowitt TA, Kielty CM, Enghild JJ, Baldock C, Milner CM, Day AJ. Inter-α-inhibitor heavy chain-1 has an integrin-like 3D structure mediating immune regulatory activities and matrix stabilization during ovulation. J Biol Chem 2020; 295:5278-5291. [PMID: 32144206 PMCID: PMC7170535 DOI: 10.1074/jbc.ra119.011916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin β-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor β, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.
Collapse
Affiliation(s)
- David C Briggs
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Alexander W W Langford-Smith
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Holly L Birchenough
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Cay M Kielty
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Jan J Enghild
- Department of Molecular Biology & Genetics, University of Aarhus, 8000 Aarhus C, Denmark
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Caroline M Milner
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Anthony J Day
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Division of Cell-Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
31
|
Orimoto A, Fukuda T. ADAMTSL6β promotes fibrillin-1 microfibril assembly, which is possibly mediated via binding through the third thrombospondin type I domain to fibrillin-1. Cell Biol Int 2020; 44:1436-1446. [PMID: 32141660 DOI: 10.1002/cbin.11337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/01/2020] [Indexed: 11/11/2022]
Abstract
Fibrillin-1 is the major component of extracellular matrix microfibrils. Microfibrils dysfunction is responsible for the onset of various connective tissue diseases, including Marfan syndrome. Although ADAMTSL (a disintegrin and metalloproteinase with thrombospondin motifs-like) 6β is one of the fibrillin-1 binding proteins, the detailed mechanism underlying the involvement of ADAMTSL6β in microfibril formation remains unclear. In this study, we created deletion mutants of ADAMTSL6β and examined their interactions with fibrillin-1 assembly. Pull-down assay of the ADAMTSL6β deletion mutants and fibrillin-1 protein revealed that ADAMTSL6β binds to fibrillin-1 through the third thrombospondin type I domain. Furthermore, we observed that formation of fibrillin-1 matrix assembly was enhanced in MG63 cells, expressing full-length ADAMTSL6β, when compared with that of wild type MG63 cells. While MG63 cells expressing Δ TSP3-ADAMTSL6β form showed enhanced assembly formation, Δ TSP2-ADAMTSL6β form did not enhance that, indicating the difference between Δ TSP2-Δ TSP3 has a critical role for fibrillin-1 assembly. As the difference of Δ TSP2-Δ TSP3 is the third thrombospondin type I domain, we concluded that the third thrombospondin type I domain of ADAMTSL6β influence the microfibril formation. Our data are the functional presentation of the biological role of ADAMTSL6β in the process of microfibril formation.
Collapse
Affiliation(s)
- Ai Orimoto
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan.,Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai, Miyagi, 980-8575, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551, Japan
| |
Collapse
|
32
|
Lu L, Xie R, Wei R, Cai C, Bi D, Yin D, Liu H, Zheng J, Zhang Y, Song F, Gao Y, Tan L, Wei Q, Qin H. Integrin α5 subunit is required for the tumor supportive role of fibroblasts in colorectal adenocarcinoma and serves as a potential stroma prognostic marker. Mol Oncol 2019; 13:2697-2714. [PMID: 31600854 PMCID: PMC6887586 DOI: 10.1002/1878-0261.12583] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/18/2022] Open
Abstract
The tumorigenesis of colorectal cancer (CRC) is a complicated process, involving interactions between cancer cells and the microenvironment. The role of α5 integrin subunit in CRC remains controversial, and previous studies mainly focused on cancer cells. Herein, we report an important role of α5 in stroma fibroblasts in the tumorigenesis of CRC. The expression of α5 was found to be located in colorectal tumor stroma rather than in epithelia cancer cells. Immunofluorescence colocalization and gene correlation analysis confirmed that α5 was mainly expressed in cancer-associated fibroblasts (CAFs). Moreover, experimental evidence showed that α5 expression was required for the tumor-promoting effect of fibroblast cells. In an in vivo xenograft nude mice model, α5 depletion in fibroblasts dramatically suppressed fibroblast-induced tumor growth. In an in vitro cell coculture assay, α5 depletion or knockdown reduced the ability of fibroblasts to promote cancer cell migration and invasion compared with wild-type fibroblasts; moreover, we observed that the expression and assembly of fibronectin were downregulated after α5 depletion or knockdown in fibroblasts. Analysis of the RNA-Seq data of the Cancer Genome Atlas cohort revealed that high expression of ITGA5 (α5 integrin subunit) was correlated with poor overall survival in colorectal adenocarcinoma, which was further confirmed by immunohistochemistry in an independent cohort of 355 patients. Thus, our study identifies α5 integrin subunit as a novel stroma molecular marker for colorectal adenocarcinoma, offers a fresh insight into colorectal adenocarcinoma progression, and shows that α5 expression in stroma fibroblasts underlies its ability to promote the tumorigenesis of colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Ling Lu
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Ruting Xie
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Rong Wei
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Chunmiao Cai
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Dexi Bi
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Dingzi Yin
- Department of Gastrointestinal SurgeryShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Hu Liu
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Jiayi Zheng
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Youhua Zhang
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Feifei Song
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Yaohui Gao
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Linhua Tan
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Qing Wei
- Department of PathologyShanghai Tenth People’s Hospital Affiliated to Tongji UniversityChina
| | - Huanlong Qin
- Division of GastroenterologyDepartment of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
33
|
Godwin ARF, Singh M, Lockhart-Cairns MP, Alanazi YF, Cain SA, Baldock C. The role of fibrillin and microfibril binding proteins in elastin and elastic fibre assembly. Matrix Biol 2019; 84:17-30. [PMID: 31226403 PMCID: PMC6943813 DOI: 10.1016/j.matbio.2019.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/17/2022]
Abstract
Fibrillin is a large evolutionarily ancient extracellular glycoprotein that assembles to form beaded microfibrils which are essential components of most extracellular matrices. Fibrillin microfibrils have specific biomechanical properties to endow animal tissues with limited elasticity, a fundamental feature of the durable function of large blood vessels, skin and lungs. They also form a template for elastin deposition and provide a platform for microfibril-elastin binding proteins to interact in elastic fibre assembly. In addition to their structural role, fibrillin microfibrils mediate cell signalling via integrin and syndecan receptors, and microfibrils sequester transforming growth factor (TGF)β family growth factors within the matrix to provide a tissue store which is critical for homeostasis and remodelling.
Collapse
Affiliation(s)
- Alan R F Godwin
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Mukti Singh
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Michael P Lockhart-Cairns
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Yasmene F Alanazi
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Stuart A Cain
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| | - Clair Baldock
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK.
| |
Collapse
|
34
|
Fibulin-4 exerts a dual role in LTBP-4L-mediated matrix assembly and function. Proc Natl Acad Sci U S A 2019; 116:20428-20437. [PMID: 31548410 DOI: 10.1073/pnas.1901048116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Elastogenesis is a hierarchical process by which cells form functional elastic fibers, providing elasticity and the ability to regulate growth factor bioavailability in tissues, including blood vessels, lung, and skin. This process requires accessory proteins, including fibulin-4 and -5, and latent TGF binding protein (LTBP)-4. Our data demonstrate mechanisms in elastogenesis, focusing on the interaction and functional interdependence between fibulin-4 and LTBP-4L and its impact on matrix deposition and function. We show that LTBP-4L is not secreted in the expected extended structure based on its domain composition, but instead adopts a compact conformation. Interaction with fibulin-4 surprisingly induced a conformational switch from the compact to an elongated LTBP-4L structure. This conversion was only induced by fibulin-4 multimers associated with increased avidity for LTBP-4L; fibulin-4 monomers were inactive. The fibulin-4-induced conformational change caused functional consequences in LTBP-4L in terms of binding to other elastogenic proteins, including fibronectin and fibrillin-1, and of LTBP-4L assembly. A transient exposure of LTBP-4L with fibulin-4 was sufficient to stably induce conformational and functional changes; a stable complex was not required. These data define fibulin-4 as a molecular extracellular chaperone for LTBP-4L. The altered LTBP-4L conformation also promoted elastogenesis, but only in the presence of fibulin-4, which is required to escort tropoelastin onto the extended LTBP-4L molecule. Altogether, this study provides a dual mechanism for fibulin-4 in 1) inducing a stable conformational and functional change in LTBP-4L, and 2) promoting deposition of tropoelastin onto the elongated LTBP-4L.
Collapse
|
35
|
Recent updates on the molecular network of elastic fiber formation. Essays Biochem 2019; 63:365-376. [PMID: 31395654 DOI: 10.1042/ebc20180052] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Elastic fibers confer elasticity and recoiling to tissues and organs and play an essential role in induction of biochemical responses in a cell against mechanical forces derived from the microenvironment. The core component of elastic fibers is elastin (ELN), which is secreted as the monomer tropoelastin from elastogenic cells, and undergoes self-aggregation, cross-linking and deposition on to microfibrils, and assemble into insoluble ELN polymers. For elastic fibers to form, a microfibril scaffold (primarily formed by fibrillin-1 (FBN1)) is required. Numerous elastic fiber-associated proteins are involved in each step of elastogenesis and they instruct and/or facilitate the elastogenesis processes. In this review, we designated five proteins as key molecules in elastic fiber formation, including ELN, FBN1, fibulin-4 (FBLN4), fibulin-5 (FBLN5), and latent TGFβ-binding protein-4 (LTBP4). ELN and FBN1 serve as building blocks for elastic fibers. FBLN5, FBLN4 and LTBP4 have been demonstrated to play crucial roles in elastogenesis through knockout studies in mice. Using these molecules as a platform and expanding the elastic fiber network through the generation of an interactome map, we provide a concise review of elastogenesis with a recent update as well as discuss various biological functions of elastic fiber-associated proteins beyond elastogenesis in vivo.
Collapse
|
36
|
Gabriela Espinosa M, Catalin Staiculescu M, Kim J, Marin E, Wagenseil JE. Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease. J Biomech Eng 2019; 140:2666245. [PMID: 29222533 DOI: 10.1115/1.4038704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid-solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.
Collapse
Affiliation(s)
| | | | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Eric Marin
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, , St. Louis, MO 63130 e-mail:
| |
Collapse
|
37
|
Elastic fibers and biomechanics of the aorta: Insights from mouse studies. Matrix Biol 2019; 85-86:160-172. [PMID: 30880160 DOI: 10.1016/j.matbio.2019.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022]
Abstract
Elastic fibers are major components of the extracellular matrix (ECM) in the aorta and support a life-long cycling of stretch and recoil. Elastic fibers are formed from mid-gestation throughout early postnatal development and the synthesis is regulated at multiple steps, including coacervation, deposition, cross-linking, and assembly of insoluble elastin onto microfibril scaffolds. To date, more than 30 molecules have been shown to associate with elastic fibers and some of them play a critical role in the formation and maintenance of elastic fibers in vivo. Because the aorta is subjected to high pressure from the left ventricle, elasticity of the aorta provides the Windkessel effect and maintains stable blood flow to distal organs throughout the cardiac cycle. Disruption of elastic fibers due to congenital defects, inflammation, or aging dramatically reduces aortic elasticity and affects overall vessel mechanics. Another important component in the aorta is the vascular smooth muscle cells (SMCs). Elastic fibers and SMCs alternate to create a highly organized medial layer within the aortic wall. The physical connections between elastic fibers and SMCs form the elastin-contractile units and maintain cytoskeletal organization and proper responses of SMCs to mechanical strain. In this review, we revisit the components of elastic fibers and their roles in elastogenesis and how a loss of each component affects biomechanics of the aorta. Finally, we discuss the significance of elastin-contractile units in the maintenance of SMC function based on knowledge obtained from mouse models of human disease.
Collapse
|
38
|
Yin W, Kim HT, Wang S, Gunawan F, Li R, Buettner C, Grohmann B, Sengle G, Sinner D, Offermanns S, Stainier DYR. Fibrillin-2 is a key mediator of smooth muscle extracellular matrix homeostasis during mouse tracheal tubulogenesis. Eur Respir J 2019; 53:13993003.00840-2018. [PMID: 30578393 DOI: 10.1183/13993003.00840-2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
Epithelial tubes, comprised of polarised epithelial cells around a lumen, are crucial for organ function. However, the molecular mechanisms underlying tube formation remain largely unknown. Here, we report on the function of fibrillin (FBN)2, an extracellular matrix (ECM) glycoprotein, as a critical regulator of tracheal tube formation.We performed a large-scale forward genetic screen in mouse to identify regulators of respiratory organ development and disease. We identified Fbn2 mutants which exhibit shorter and narrowed tracheas as well as defects in tracheal smooth muscle cell alignment and polarity.We found that FBN2 is essential for elastic fibre formation and Fibronectin accumulation around tracheal smooth muscle cells. These processes appear to be regulated at least in part through inhibition of p38-mediated upregulation of matrix metalloproteinases (MMPs), as pharmacological decrease of p38 phosphorylation or MMP activity partially attenuated the Fbn2 mutant tracheal phenotypes. Analysis of human tracheal tissues indicates that a decrease in ECM proteins, including FBN2 and Fibronectin, is associated with tracheomalacia.Our findings provide novel insights into the role of ECM homeostasis in mesenchymal cell polarisation during tracheal tubulogenesis.
Collapse
Affiliation(s)
- Wenguang Yin
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| | - Hyun-Taek Kim
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Rui Li
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany
| | - Carmen Buettner
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Beate Grohmann
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany
| | - Gerhard Sengle
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Debora Sinner
- Division of Neonatology and Pulmonary Biology, CCHMC, University of Cincinnati, College of Medicine Cincinnati, OH, USA
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Dept of Pharmacology, Bad Nauheim, Germany.,Center for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Dept of Developmental Genetics, Bad Nauheim, Germany.,W. Yin and D.Y.R. Stainier are joint senior authors
| |
Collapse
|
39
|
Beyeler J, Katsaros C, Chiquet M. Impaired Contracture of 3D Collagen Constructs by Fibronectin-Deficient Murine Fibroblasts. Front Physiol 2019; 10:166. [PMID: 30890950 PMCID: PMC6413635 DOI: 10.3389/fphys.2019.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Fibronectin (FN) is an extracellular matrix glycoprotein that is abundantly expressed by fibroblasts in contracting wounds, where it mediates cell adhesion, migration and proliferation. FN also efficiently binds to collagen. Therefore, we and others hypothesized that FN and its cellular receptor integrin α5β1 might be involved in collagen matrix contracture by acting as linkers. However, there are conflicting reports on this issue. Moreover, several publications suggest an important role of collagen-binding integrin receptors α2β1 and α11β1 in collagen matrix contracture. Therefore, the aim of the present study was to determine the contributions of FN-integrin α5β1 interactions relative to those of collagen receptors α2β1 and α11β1 in this process. To assess the role of cellular FN directly, we employed FN-deficient mouse fibroblasts, subjected them to a collagen gel contracture assay in vitro, and compared them to their wildtype counterparts. Exogenous FN was removed from serum-containing medium. For dissecting the role of major collagen receptors, we used two FN-deficient mouse fibroblast lines that both possess integrin α5β1 but differ in their collagen-binding integrins. Embryo-derived FN-null fibroblasts, which express α11- but no α2-integrin, barely spread and tended to cluster on collagen gels. Moreover, FN-null fibroblasts required exogenously added FN to assemble α5β1-integrin in fibrillar adhesion contacts, and to contract collagen matrices. In contrast, postnatal kidney fibroblasts were found to express α2- but barely α11-integrin. When FN expression was suppressed in these cells by shRNA transfection, they were able to spread on and partially contract collagen gels in the absence of exogenous FN. Also in this case, however, collagen contracture was stimulated by adding FN to the medium. Antibody to integrin α5β1 or RGD peptide completely abolished collagen contracture by FN-deficient fibroblasts stimulated by FN addition. We conclude that although collagen-binding integrins (especially α2β1) can mediate contracture of fibrillar collagen gels by murine fibroblasts to some extent, full activity is causally linked to the presence of pericellular FN and its receptor integrin α5β1.
Collapse
Affiliation(s)
- Joël Beyeler
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Matthias Chiquet
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Villain G, Lelievre E, Broekelmann T, Gayet O, Havet C, Werkmeister E, Mecham R, Dusetti N, Soncin F, Mattot V. MAGP
‐1 and fibronectin control
EGFL
7 functions by driving its deposition into distinct endothelial extracellular matrix locations. FEBS J 2018; 285:4394-4412. [DOI: 10.1111/febs.14680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/31/2018] [Accepted: 10/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Gaëlle Villain
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Etienne Lelievre
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Tom Broekelmann
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM) INSERM U1068 CNRS UMR 7258 Aix‐Marseille Université and Institut Paoli‐Calmettes, Parc Scientifique et Technologique de Luminy France
| | - Chantal Havet
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Elisabeth Werkmeister
- Cellular Microbiology and Physics of Infection Group – Center for Infection and Immunity of Lille CNRS UMR8204 Inserm U1019 CHU Lille Institut Pasteur de Lille Univ. Lille. France
| | - Robert Mecham
- Department of Cell Biology and Physiology Washington University School of Medicine St. Louis MO USA
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM) INSERM U1068 CNRS UMR 7258 Aix‐Marseille Université and Institut Paoli‐Calmettes, Parc Scientifique et Technologique de Luminy France
| | - Fabrice Soncin
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| | - Virginie Mattot
- CNRS Institut Pasteur de Lille UMR 8161 – M3T – Mechanisms of Tumorigenesis and Target Therapies Univ. Lille France
| |
Collapse
|
41
|
Delhon L, Mahaut C, Goudin N, Gaudas E, Piquand K, Le Goff W, Cormier-Daire V, Le Goff C. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency. FASEB J 2018; 33:2707-2718. [PMID: 30303737 DOI: 10.1096/fj.201800753rr] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mutations in the a disintegrin and metalloproteinase with thrombospondin motif-like 2 ( ADAMTSL2) gene are responsible for the autosomal recessive form of geleophysic dysplasia, which is characterized by short stature, short extremities, and skeletal abnormalities. However, the exact function of ADAMTSL2 is unknown. To elucidate the role of this protein in skeletal development, we generated complementary knockout (KO) mouse models with either total or chondrocyte Adamtsl2 deficiency. We observed that the Adamtsl2 KO mice displayed skeletal abnormalities reminiscent of the human phenotype. Adamtsl2 deletion affected the growth plate formation with abnormal differentiation and proliferation of chondrocytes. In addition, a TGF-β signaling impairment in limbs lacking Adamtsl2 was demonstrated. Further investigations revealed that Adamtsl2 KO chondrocytes failed to establish a microfibrillar network composed by fibrillin1 and latent TGF-β binding protein 1 fibrils. Chondrocyte Adamtsl2 KO mice also exhibited dwarfism. These studies uncover the function of Adamtsl2 in the maintenance of the growth plate ECM by modulating the microfibrillar network.-Delhon, L., Mahaut, C., Goudin, N., Gaudas, E., Piquand, K., Le Goff, W., Cormier-Daire, V., Le Goff, C. Impairment of chondrogenesis and microfibrillar network in Adamtsl2 deficiency.
Collapse
Affiliation(s)
- Laure Delhon
- INSERM Unité Mixte de Recherche (UMR) 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Clémentine Mahaut
- INSERM Unité Mixte de Recherche (UMR) 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Nicolas Goudin
- La Structure Fédérative de Recherche (SFR) Necker, Imaging Platform, Necker-Enfants Malades Hospital, Paris France
| | - Emilie Gaudas
- INSERM Unité Mixte de Recherche (UMR) 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Kevin Piquand
- INSERM Unité Mixte de Recherche (UMR) 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France
| | - Wilfried Le Goff
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Unité Mixte de Recherche (UMR) S1166, Hôpital de la Pitié, Sorbonne Université, Paris, France
| | - Valérie Cormier-Daire
- INSERM Unité Mixte de Recherche (UMR) 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France.,Department of Medical Genetics, Reference Center for Skeletal Dysplasia, Assistance publique - Hôpitaux de Paris (AP-HP), Necker-Enfants Malades Hospital, Paris, France; and
| | - Carine Le Goff
- INSERM Unité Mixte de Recherche (UMR) 1163, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Imagine Institute, Paris Descartes University-Sorbonne Paris Cité, Paris, France.,INSERM UMR 1148, Laboratory of Vascular Translational Science, Bichat Hospital, Paris Diderot University, Paris, France
| |
Collapse
|
42
|
Nybo T, Cai H, Chuang CY, Gamon LF, Rogowska-Wrzesinska A, Davies MJ. Chlorination and oxidation of human plasma fibronectin by myeloperoxidase-derived oxidants, and its consequences for smooth muscle cell function. Redox Biol 2018; 19:388-400. [PMID: 30237127 PMCID: PMC6142189 DOI: 10.1016/j.redox.2018.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
Fibronectin (FN) occurs as both a soluble form, in plasma and at sites of tissue injury, and a cellular form in tissue extracellular matrices (ECM). FN is critical to wound repair, ECM structure and assembly, cell adhesion and proliferation. FN is reported to play a critical role in the development, progression and stability of cardiovascular atherosclerotic lesions, with high FN levels associated with a thick fibrotic cap, stable disease and a low risk of rupture. Evidence has been presented for FN modification by inflammatory oxidants, and particularly myeloperoxidase (MPO)-derived species including hypochlorous acid (HOCl). The targets and consequences of FN modification are poorly understood. Here we show, using a newly-developed MS protocol, that HOCl and an enzymatic MPO system, generate site-specific dose-dependent Tyr chlorination and dichlorination (up to 16 of 100 residues modified), and oxidation of Trp (7 of 39 residues), Met (3 of 26) and His (1 of 55) within selected FN domains, and particularly the heparin- and cell-binding regions. These alterations increase FN binding to heparin-containing columns. Studies using primary human coronary artery smooth muscle cells (HCASMC) show that exposure to HOCl-modified FN, results in decreased adherence, increased proliferation and altered expression of genes involved in ECM synthesis and remodelling. These findings indicate that the presence of modified fibronectin may play a major role in the formation, development and stabilisation of fibrous caps in atherosclerotic lesions and may play a key role in the switching of quiescent contractile smooth muscle cells to a migratory, synthetic and proliferative phenotype.
Collapse
Affiliation(s)
- Tina Nybo
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Huan Cai
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds. Biomaterials 2018; 180:130-142. [PMID: 30036726 DOI: 10.1016/j.biomaterials.2018.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
One of the tightest bottlenecks in vascular tissue engineering (vTE) is the lack of strength and elasticity of engineered vascular wall models caused by limited elastic fiber deposition. In this study, flat and tubular collagen gel-based scaffolds were cellularised with vascular smooth muscle cells (SMCs) and supplemented with human plasma fibronectin (FN), a known master organizer of several extracellular matrix (ECM) fiber systems. The consequences of FN on construct maturation was investigated in terms of geometrical contraction, viscoelastic mechanical properties and deposition of core elastic fiber proteins. FN was retained in the constructs and promoted deposition of elastin by SMCs as well as of several proteins required for elastogenesis such as fibrillin-1, lysyl oxidase, fibulin-4 and latent TGF-β binding protein-4. Notably, gel contraction, tensile equilibrium elastic modulus and elasticity were strongly improved in tubular engineered tissues, approaching the behaviour of native arteries. In conclusion, this study demonstrates that FN exerts pivotal roles in directing SMC-mediated remodeling of scaffolds toward the production of a physiological-like, elastin-containing ECM with excellent mechanical properties. The developed FN-supplemented systems are promising for tissue engineering applications where the generation of mature elastic tissue is desired and represent valuable advanced in vitro models to investigate elastogenesis.
Collapse
|
44
|
Kumra H, Sabatier L, Hassan A, Sakai T, Mosher DF, Brinckmann J, Reinhardt DP. Roles of fibronectin isoforms in neonatal vascular development and matrix integrity. PLoS Biol 2018; 16:e2004812. [PMID: 30036393 PMCID: PMC6072322 DOI: 10.1371/journal.pbio.2004812] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/02/2018] [Accepted: 07/03/2018] [Indexed: 01/18/2023] Open
Abstract
Fibronectin (FN) exists in two forms-plasma FN (pFN) and cellular FN (cFN). Although the role of FN in embryonic blood vessel development is well established, its function and the contribution of individual isoforms in early postnatal vascular development are poorly understood. Here, we employed a tamoxifen-dependent cFN inducible knockout (cFN iKO) mouse model to study the consequences of postnatal cFN deletion in smooth muscle cells (SMCs), the major cell type in the vascular wall. Deletion of cFN influences collagen deposition but does not affect life span. Unexpectedly, pFN translocated to the aortic wall in the cFN iKO and in control mice, possibly rescuing the loss of cFN. Postnatal pFN deletion did not show a histological aortic phenotype. Double knockout (dKO) mice lacking both, cFN in SMCs and pFN, resulted in postnatal lethality. These data demonstrate a safeguard role of pFN in vascular stability and the dispensability of the individual FN isoforms in postnatal vascular development. Complete absence of FNs in the dKOs resulted in a disorganized tunica media of the aortic wall. Matrix analysis revealed common and differential roles of the FN isoforms in guiding the assembly/deposition of elastogenic extracellular matrix (ECM) proteins in the aortic wall. In addition, we determined with two cell culture models that that the two FN isoforms acted similarly in supporting matrix formation with a greater contribution from cFN. Together, these data show that pFN exerts a critical role in safeguarding vascular organization and health, and that the two FN isoforms function in an overlapping as well as distinct manner to maintain postnatal vascular matrix integrity.
Collapse
Affiliation(s)
- Heena Kumra
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Laetitia Sabatier
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Amani Hassan
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Takao Sakai
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Deane F. Mosher
- Departments of Biomolecular Chemistry and Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jürgen Brinckmann
- Department of Dermatology and Institute of Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Dieter P. Reinhardt
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
45
|
Eckersley A, Mellody KT, Pilkington S, Griffiths CEM, Watson REB, O'Cualain R, Baldock C, Knight D, Sherratt MJ. Structural and compositional diversity of fibrillin microfibrils in human tissues. J Biol Chem 2018; 293:5117-5133. [PMID: 29453284 PMCID: PMC5892578 DOI: 10.1074/jbc.ra117.001483] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/07/2018] [Indexed: 12/11/2022] Open
Abstract
Elastic fibers comprising fibrillin microfibrils and elastin are present in many tissues, including the skin, lungs, and arteries, where they confer elasticity and resilience. Although fibrillin microfibrils play distinct and tissue-specific functional roles, it is unclear whether their ultrastructure and composition differ between elastin-rich (skin) and elastin-poor (ciliary body and zonule) organs or after in vitro synthesis by cultured cells. Here, we used atomic force microscopy, which revealed that the bead morphology of fibrillin microfibrils isolated from the human eye differs from those isolated from the skin. Using newly developed pre-MS preparation methods and LC-MS/MS, we detected tissue-specific regions of the fibrillin-1 primary structure that were differentially susceptible to proteolytic extraction. Comparing tissue- and culture-derived microfibrils, we found that dermis- and dermal fibroblast–derived fibrillin microfibrils differ in both bead morphology and periodicity and also exhibit regional differences in fibrillin-1 proteolytic susceptibility. In contrast, collagen VI microfibrils from the same dermal or fibroblast samples were invariant in ultrastructure (periodicity) and protease susceptibility. Finally, we observed that skin- and eye-derived microfibril suspensions were enriched in elastic fiber– and basement membrane–associated proteins, respectively. LC-MS/MS also identified proteins (such as calreticulin and protein-disulfide isomerase) that are potentially fundamental to fibrillin microfibril biology, regardless of their tissue source. Fibrillin microfibrils synthesized in cell culture lacked some of these key proteins (MFAP2 and -4 and fibrillin-2). These results showcase the structural diversity of these key extracellular matrix assemblies, which may relate to their distinct roles in the tissues where they reside.
Collapse
Affiliation(s)
| | - Kieran T Mellody
- From the Division of Cell Matrix Biology and Regenerative Medicine
| | | | - Christopher E M Griffiths
- the Division of Musculoskeletal and Dermatological Sciences.,the NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Rachel E B Watson
- the Division of Musculoskeletal and Dermatological Sciences.,the NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | | | - Clair Baldock
- From the Division of Cell Matrix Biology and Regenerative Medicine.,the Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom and
| | | | | |
Collapse
|
46
|
Dahal S, Broekelman T, Mecham RP, Ramamurthi A. Maintaining Elastogenicity of Mesenchymal Stem Cell-Derived Smooth Muscle Cells in Two-Dimensional Culture. Tissue Eng Part A 2018; 24:979-989. [PMID: 29264957 DOI: 10.1089/ten.tea.2017.0237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are localized expansions of the abdominal aorta that grow slowly to rupture. AAA growth is driven by irreversible elastic matrix breakdown in the aorta wall by chronically upregulated matrix metalloproteases (MMPs). Since adult vascular smooth muscle cells (SMCs) poorly regenerate elastic matrix, we previously explored utility of bone marrow mesenchymal stem cells and SMCs derived therefrom (BM-SMCs) for this purpose. One specific differentiated phenotype (cBM-SMCs) generated on a fibronectin substrate in presence of exogenous transforming growth factor-β and platelet-derived growth factor exhibited superior elastogenicity versus other phenotypes, and usefully provided proelastogenic and antiproteolytic stimuli to aneurysmal SMCs. Since in vivo cell therapy demands large cell inoculates, these derived SMCs must be propagated in vitro while maintaining their superior elastogenic, proelastogenic, and antiproteolytic characteristics. In this work, we thus investigated the culture conditions that must be provided to this propagation phase, which ensure that the differentiated SMCs maintain their phenotype and matrix regenerative benefits. Our results indicate that our BM-SMCs retain their phenotype in long-term culture even in the absence of differentiation growth factors and fibronectin substrate, but these conditions must be continued to be provided during postdifferentiation propagation if they are to maintain their superior elastic matrix deposition, crosslinking, and fiber formation properties. Our study, however, showed that cells propagated under these conditions exhibit higher expression of MMP-2, but favorably, no expression of elastolytic MMP-9. Hence, the study outcomes provide crucial guidelines to maintain phenotypic stability of cBM-SMCs during their propagation in two-dimensional culture before their delivery to the AAA wall for therapy.
Collapse
Affiliation(s)
- Shataakshi Dahal
- 1 Department of Biomedical Engineering, Cleveland Clinic , Cleveland, Ohio
| | - Thomas Broekelman
- 2 Department of Cell Biology and Physiology, Washington University at St. Louis , St. Louis, Missouri
| | - Robert P Mecham
- 2 Department of Cell Biology and Physiology, Washington University at St. Louis , St. Louis, Missouri
| | - Anand Ramamurthi
- 1 Department of Biomedical Engineering, Cleveland Clinic , Cleveland, Ohio.,3 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
47
|
Schrenk S, Cenzi C, Bertalot T, Conconi MT, Di Liddo R. Structural and functional failure of fibrillin‑1 in human diseases (Review). Int J Mol Med 2017; 41:1213-1223. [PMID: 29286095 DOI: 10.3892/ijmm.2017.3343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Fibrillins (FBNs) are key relay molecules that form the backbone of microfibrils in elastic and non‑elastic tissues. Interacting with other components of the extracellular matrix (ECM), these ubiquitous glycoproteins exert pivotal roles in tissue development, homeostasis and repair. In addition to mechanical support, FBN networks also exhibit regulatory activities on growth factor signalling, ECM formation, cell behaviour and the immune response. Consequently, mutations affecting the structure, assembly and stability of FBN microfibrils have been associated with impaired biomechanical tissue properties, altered cell‑matrix interactions, uncontrolled growth factor or cytokine activation, and the development of fibrillinopathies and associated severe complications in multiple organs. Beyond a panoramic overview of structural cues of the FBN network, the present review will also describe the pathological implications of FBN disorders in the development of inflammatory and fibrotic conditions.
Collapse
Affiliation(s)
- Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Carola Cenzi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, I‑35131 Padova, Italy
| |
Collapse
|
48
|
Abstract
Fibrillins are one of the major components of supramolecular fibrous structures in the extracellular matrix of elastic and nonelastic tissues, termed microfibrils. Microfibrils provide tensile strength in nonelastic tissues and scaffolds for the assembly of tropoelastin in elastic tissues, and act a regulator of growth factor bioavailability and activity in connective tissues. Mutations in fibrillins lead to a variety of connective tissue disorders including Marfan syndrome, stiff skin syndrome, dominant Weill-Marchesani syndrome, and others. Therefore, fibrillins are frequently studied to understand the pathophysiology of these diseases and to identify effective treatment strategies. Extraction of endogenous microfibrils from cells and tissues can aid in obtaining structural insights of microfibrils. Recombinant production of fibrillins is an important tool which can be utilized to study the properties of normal fibrillins and the consequences of disease causing mutations. Other means of studying the role of fibrillins in the context of various physiological settings is by knocking down the mRNA expression and analyzing its downstream consequences. It is also important to study the interactome of fibrillins by protein-protein interactions, which can be derailed in pathological situations. Interacting proteins can affect the assembly of fibrillins in cells and tissues or can affect the levels of growth factors in the matrix. This chapter describes important techniques in the field that facilitate answering relevant questions of fibrillin biology and pathophysiology.
Collapse
|
49
|
Filla MS, Dimeo KD, Tong T, Peters DM. Disruption of fibronectin matrix affects type IV collagen, fibrillin and laminin deposition into extracellular matrix of human trabecular meshwork (HTM) cells. Exp Eye Res 2017; 165:7-19. [PMID: 28860021 PMCID: PMC5705399 DOI: 10.1016/j.exer.2017.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/02/2017] [Accepted: 08/27/2017] [Indexed: 10/19/2022]
Abstract
Fibronectin fibrils are a major component of the extracellular matrix (ECM) of the trabecular meshwork (TM). They are a key mediator of the formation of the ECM which controls aqueous humor outflow and contributes to the pathogenesis of glaucoma. The purpose of this work was to determine if a fibronectin-binding peptide called FUD, derived from the Streptococcus pyogenes Functional Upstream Domain of the F1 adhesin protein, could be used to control fibronectin fibrillogenesis and hence ECM formation under conditions where its expression was induced by treatment with the glucocorticoid dexamethasone. FUD was very effective at preventing fibronectin fibrillogenesis in the presence or absence of steroid treatment as well as the removal of existing fibronectin fibrils. Disruption of fibronectin fibrillogenesis by FUD also disrupted the incorporation of type IV collagen, laminin and fibrillin into the ECM. The effect of FUD on these other protein matrices, however, was found to be dependent upon the maturity of the ECM when FUD was added. FUD effectively disrupted the incorporation of these other proteins into matrices when added to newly confluent cells that were forming a nascent ECM. In contrast, FUD had no effect on these other protein matrices if the cell cultures already possessed a pre-formed, mature ECM. Our studies indicate that FUD can be used to control fibronectin fibrillogenesis and that these fibrils play a role in regulating the assembly of other ECM protein into matrices involving type IV collagen, laminin, and fibrillin within the TM. This suggests that under in vivo conditions, FUD would selectively disrupt fibronectin fibrils and de novo assembly of other proteins into the ECM. Finally, our studies suggest that targeting fibronectin fibril assembly may be a viable treatment for POAG as well as other glaucomas involving excessive or abnormal matrix deposition of the ECM.
Collapse
Affiliation(s)
- Mark S Filla
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Kaylee D Dimeo
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Tiegang Tong
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States
| | - Donna M Peters
- Departments of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI 53706, United States; Ophthalmology & Visual Sciences, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
50
|
Kielty CM. Fell-Muir Lecture: Fibrillin microfibrils: structural tensometers of elastic tissues? Int J Exp Pathol 2017; 98:172-190. [PMID: 28905442 PMCID: PMC5639267 DOI: 10.1111/iep.12239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Fibrillin microfibrils are indispensable structural elements of connective tissues in multicellular organisms from early metazoans to humans. They have an extensible periodic beaded organization, and support dynamic tissues such as ciliary zonules that suspend the lens. In tissues that express elastin, including blood vessels, skin and lungs, microfibrils support elastin deposition and shape the functional architecture of elastic fibres. The vital contribution of microfibrils to tissue form and function is underscored by the heritable fibrillinopathies, especially Marfan syndrome with severe elastic, ocular and skeletal tissue defects. Research since the early 1990s has advanced our knowledge of biology of microfibrils, yet understanding of their mechanical and homeostatic contributions to tissues remains far from complete. This review is a personal reflection on key insights, and puts forward the conceptual hypothesis that microfibrils are structural 'tensometers' that direct cells to monitor and respond to altered tissue mechanics.
Collapse
Affiliation(s)
- Cay M Kielty
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|